1
|
Hong J, Garfolo R, Kabre S, Humml C, Velanac V, Roué C, Beck B, Jeanette H, Haslam S, Bach M, Arora S, Acheta J, Nave KA, Schwab MH, Jourd’heuil D, Poitelon Y, Belin S. PMP2 regulates myelin thickening and ATP production during remyelination. Glia 2024; 72:885-898. [PMID: 38311982 PMCID: PMC11027087 DOI: 10.1002/glia.24508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.
Collapse
Affiliation(s)
- Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Rebekah Garfolo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sejal Kabre
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Christian Humml
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viktorija Velanac
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Clémence Roué
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Brianna Beck
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Haley Jeanette
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sarah Haslam
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Martin Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Simar Arora
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus H. Schwab
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul Flechsig Institute of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - David Jourd’heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
2
|
Uusitalo M, Klenow MB, Laulumaa S, Blakeley MP, Simonsen AC, Ruskamo S, Kursula P. Human myelin protein P2: from crystallography to time-lapse membrane imaging and neuropathy-associated variants. FEBS J 2021; 288:6716-6735. [PMID: 34138518 DOI: 10.1111/febs.16079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot-Marie-Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patients. To shed light on the structure and function of these P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations and lipid binding assays. The crystal and solution structures of the I50del, M114T and V115A variants of P2 showed minor differences to the wild-type protein, whereas their thermal stability was reduced. Vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated formation of double-membrane structures induced by P2, which could be related to its function in stacking of two myelin membrane surfaces in vivo. In order to better understand the links between structure, dynamics and function, the crystal structure of perdeuterated P2 was refined from room temperature data using neutrons and X-rays, and the results were compared to simulations and cryocooled crystal structures. Our data indicate similar properties for all known human P2 CMT variants; while crystal structures are nearly identical, thermal stability and function of CMT variants are impaired. Our data provide new insights into the structure-function relationships and dynamics of P2 in health and disease.
Collapse
Affiliation(s)
- Maiju Uusitalo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,European Spallation Source, Lund, Sweden
| | | | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
3
|
Tsuge H. A myelin sheath protein forming its lattice. J Biol Chem 2020; 295:8706-8707. [PMID: 32591442 DOI: 10.1074/jbc.h120.014273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/06/2022] Open
Abstract
The formation of a mature, multilayered myelin sheath requires the compaction of lipid bilayers, but the molecular mechanism by which these bilayers condense is an open question. In this issue, Ruskamo et al. find that peripheral myelin protein P2 forms an ordered three-dimensional lattice within model membranes using Escherichia coli polar lipid liposomes. These data will help to understand the assembly, function, and structure of the myelin sheath.
Collapse
Affiliation(s)
- Hideaki Tsuge
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
4
|
Geroldi A, Prada V, Veneri F, Trevisan L, Origone P, Grandis M, Schenone A, Gemelli C, Lanteri P, Fossa P, Mandich P, Bellone E. Early onset demyelinating Charcot-Marie-Tooth disease caused by a novel in-frame isoleucine deletion in peripheral myelin protein 2. J Peripher Nerv Syst 2020; 25:102-106. [PMID: 32277537 DOI: 10.1111/jns.12375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Peripheral myelin protein 2 (PMP2) is a small protein located on the cytoplasmic side of compact myelin, involved in the lipids transport and in the myelination process. In the last years few families affected with demyelinating Charcot-Marie-Tooth neuropathy (CMT1), caused by PMP2 mutations, have been identified. In this study we describe the first case of a PMP2 in-frame deletion. PMP2 was analyzed by direct sequencing after exclusion of the most frequent CMT-associated genes by using a next generation sequencing (NGS) genes panel. Sanger sequencing was used for family's segregation analysis. Molecular modeling analysis was used to evaluate the mutation impact on the protein structure. A novel PMP2: p.I50del has been identified in a child with early onset CMT1 and in three affected family members. All family members show an early onset demyelinating neuropathy without other distinguish features. Molecular modeling analysis and in silico evaluations do not suggest a strong impact on the overall protein structure, but a most likely altered protein function. This study suggests the importance to add PMP2 in CMT NGS genes panels or, at most, to test it after major CMT1 genes exclusion, due to the lack of diagnostic-addressing additional features.
Collapse
Affiliation(s)
- Alessandro Geroldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Francesca Veneri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Lucia Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Marina Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy.,IRCCS-Ospedale Policlinico San Martino-UOC Neurologia, Genoa, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy.,IRCCS-Ospedale Policlinico San Martino-UOC Neurologia, Genoa, Italy
| | - Chiara Gemelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Neurology, University of Genoa, Genoa, Italy
| | - Paola Lanteri
- IRCCS Giannina Gaslini-U.O. Neuropsichiatria Infantile, Genoa, Italy
| | - Paola Fossa
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health-Medical Genetics, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino-UOC Genetica Medica, Genoa, Italy
| |
Collapse
|
5
|
Ruskamo S, Krokengen OC, Kowal J, Nieminen T, Lehtimäki M, Raasakka A, Dandey VP, Vattulainen I, Stahlberg H, Kursula P. Cryo-EM, X-ray diffraction, and atomistic simulations reveal determinants for the formation of a supramolecular myelin-like proteolipid lattice. J Biol Chem 2020; 295:8692-8705. [PMID: 32265298 DOI: 10.1074/jbc.ra120.013087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Myelin protein P2 is a peripheral membrane protein of the fatty acid-binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 β-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Oda C Krokengen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Tuomo Nieminen
- Computational Physics Laboratory, Tampere University, 33014 Tampere, Finland
| | - Mari Lehtimäki
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Venkata P Dandey
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Ilpo Vattulainen
- Computational Physics Laboratory, Tampere University, 33014 Tampere, Finland; Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
6
|
Siems SB, Jahn O, Eichel MA, Kannaiyan N, Wu LMN, Sherman DL, Kusch K, Hesse D, Jung RB, Fledrich R, Sereda MW, Rossner MJ, Brophy PJ, Werner HB. Proteome profile of peripheral myelin in healthy mice and in a neuropathy model. eLife 2020; 9:e51406. [PMID: 32130108 PMCID: PMC7056269 DOI: 10.7554/elife.51406] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.
Collapse
Affiliation(s)
- Sophie B Siems
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Nirmal Kannaiyan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Lai Man N Wu
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Institute of Anatomy, University of LeipzigLeipzigGermany
| | - Michael W Sereda
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
- Department of Clinical Neurophysiology, University Medical CenterGöttingenGermany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU MunichMunichGermany
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental MedicineGöttingenGermany
| |
Collapse
|
7
|
Punetha J, Mackay-Loder L, Harel T, Coban-Akdemir Z, Jhangiani SN, Gibbs RA, Lee I, Terespolsky D, Lupski JR, Posey JE. Identification of a pathogenic PMP2 variant in a multi-generational family with CMT type 1: Clinical gene panels versus genome-wide approaches to molecular diagnosis. Mol Genet Metab 2018; 125:302-304. [PMID: 30249361 PMCID: PMC6326168 DOI: 10.1016/j.ymgme.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease type 1 is an inherited peripheral neuropathy characterized by demyelination and reduced nerve conduction velocities. We present a multi-generational family with peripheral neuropathy in whom clinical CMT panel testing failed to conclude a molecular diagnosis. We found a PMP2 pathogenic variant c.155T > C, p.(Ile52Thr) that segregates with disease suggesting that PMP2 variants should be considered in patients with neuropathy and that it may be prudent to include in clinical CMT gene panels.
Collapse
Affiliation(s)
- Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loren Mackay-Loder
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ian Lee
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - Deborah Terespolsky
- Department of Laboratory Medicine - Genetics Program, Trillium Health Partners, Mississauga, ON L5M 2N1, Canada
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Ruskamo S, Nieminen T, Kristiansen CK, Vatne GH, Baumann A, Hallin EI, Raasakka A, Joensuu P, Bergmann U, Vattulainen I, Kursula P. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep 2017; 7:6510. [PMID: 28747762 PMCID: PMC5529448 DOI: 10.1038/s41598-017-06781-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the β barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
| | | | - Guro H Vatne
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Päivi Joensuu
- Department of Sustainable Chemistry, Technical Faculty, University of Oulu, 90570, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
- Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
| |
Collapse
|
9
|
The Role of Peripheral Myelin Protein 2 in Remyelination. Cell Mol Neurobiol 2017; 38:487-496. [DOI: 10.1007/s10571-017-0494-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
10
|
Motley WW, Palaima P, Yum SW, Gonzalez MA, Tao F, Wanschitz JV, Strickland AV, Löscher WN, De Vriendt E, Koppi S, Medne L, Janecke AR, Jordanova A, Zuchner S, Scherer SS. De novo PMP2 mutations in families with type 1 Charcot-Marie-Tooth disease. Brain 2016; 139:1649-56. [PMID: 27009151 DOI: 10.1093/brain/aww055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/25/2016] [Indexed: 11/12/2022] Open
Abstract
We performed whole exome sequencing on a patient with Charcot-Marie-Tooth disease type 1 and identified a de novo mutation in PMP2, the gene that encodes the myelin P2 protein. This mutation (p.Ile52Thr) was passed from the proband to his one affected son, and segregates with clinical and electrophysiological evidence of demyelinating neuropathy. We then screened a cohort of 136 European probands with uncharacterized genetic cause of Charcot-Marie-Tooth disease and identified another family with Charcot-Marie-Tooth disease type 1 that has a mutation affecting an adjacent amino acid (p.Thr51Pro), which segregates with disease. Our genetic and clinical findings in these kindred demonstrate that dominant PMP2 mutations cause Charcot-Marie-Tooth disease type 1.
Collapse
Affiliation(s)
- William W Motley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Department of Medicine, Pennsylvania Hospital, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | - Paulius Palaima
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Sabrina W Yum
- Department of Pediatrics, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Michael A Gonzalez
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | - Feifei Tao
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | | | - Alleene V Strickland
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | | | - Els De Vriendt
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Stefan Koppi
- Department of Neurology, State Hospital of Rankweil, Rankweil, Austria
| | - Livija Medne
- Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Andreas R Janecke
- Division of Human Genetics, Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2650-Antwerpen, Belgium
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, Florida 33136, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Knoll W, Peters J, Kursula P, Gerelli Y, Natali F. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime. J Chem Phys 2015; 141:205101. [PMID: 25429962 DOI: 10.1063/1.4901738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.
Collapse
Affiliation(s)
- W Knoll
- University Joseph Fourier, UFR PhiTEM, Grenoble, France
| | - J Peters
- University Joseph Fourier, UFR PhiTEM, Grenoble, France
| | | | - Y Gerelli
- Institut Laue-Langevin, Grenoble, France
| | - F Natali
- Institut Laue-Langevin, Grenoble, France
| |
Collapse
|
12
|
Laulumaa S, Kursula P, Natali F. Neutron scattering studies on protein dynamics using the human myelin peripheral membrane protein P2. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158302010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:51-60. [PMID: 25150974 DOI: 10.1016/j.bbalip.2014.08.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/16/2022]
Abstract
Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.
Collapse
|
14
|
Zenker J, Stettner M, Ruskamo S, Domènech-Estévez E, Baloui H, Médard JJ, Verheijen MHG, Brouwers JF, Kursula P, Kieseier BC, Chrast R. A role of peripheral myelin protein 2 in lipid homeostasis of myelinating Schwann cells. Glia 2014; 62:1502-12. [PMID: 24849898 DOI: 10.1002/glia.22696] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/28/2023]
Abstract
Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, Switzerland; Graduate Program in Neurosciences, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Knoll W, Peters J, Kursula P, Gerelli Y, Ollivier J, Demé B, Telling M, Kemner E, Natali F. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering. SOFT MATTER 2014; 10:519-529. [PMID: 24651633 DOI: 10.1039/c3sm51393a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.
Collapse
Affiliation(s)
- Wiebke Knoll
- University Joseph Fourier UFR PhITEM, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruskamo S, Yadav RP, Sharma S, Lehtimäki M, Laulumaa S, Aggarwal S, Simons M, Bürck J, Ulrich AS, Juffer AH, Kursula I, Kursula P. Atomic resolution view into the structure-function relationships of the human myelin peripheral membrane protein P2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:165-76. [PMID: 24419389 PMCID: PMC3919267 DOI: 10.1107/s1399004713027910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023]
Abstract
P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structural analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.
Collapse
Affiliation(s)
- Salla Ruskamo
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ravi P. Yadav
- Molecular Biology Unit, Institute of Medical Sciences (IMS), Banaras Hindu University, Varanasi, India
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Satyan Sharma
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mari Lehtimäki
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Saara Laulumaa
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Shweta Aggarwal
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - André H. Juffer
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research (CSSB-HZI), German Electron Synchrotron (DESY), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Han H, Myllykoski M, Ruskamo S, Wang C, Kursula P. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors 2013; 39:233-41. [PMID: 23780694 DOI: 10.1002/biof.1076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/15/2012] [Indexed: 12/15/2022]
Abstract
The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.
Collapse
Affiliation(s)
- Huijong Han
- Department of Biochemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
18
|
Lehtimäki M, Laulumaa S, Ruskamo S, Kursula P. Production and crystallization of a panel of structure-based mutants of the human myelin peripheral membrane protein P2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1359-62. [PMID: 23143249 PMCID: PMC3515381 DOI: 10.1107/s1744309112039036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/12/2012] [Indexed: 11/10/2022]
Abstract
The myelin sheath is a multilayered membrane that surrounds and insulates axons in the nervous system. One of the proteins specific to the peripheral nerve myelin is P2, a protein that is able to stack lipid bilayers. With the goal of obtaining detailed information on the structure-function relationship of P2, 14 structure-based mutated variants of human P2 were generated and produced. The mutants were designed to potentially affect the binding of lipid bilayers by P2. All mutated variants were also crystallized and preliminary crystallographic data are presented. The structural data from the mutants will be combined with diverse functional assays in order to elucidate the fine details of P2 function at the molecular level.
Collapse
Affiliation(s)
- Mari Lehtimäki
- Department of Biochemistry and Biocenter Oulu, Universtity of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Saara Laulumaa
- Department of Biochemistry and Biocenter Oulu, Universtity of Oulu, PO Box 3000, 90014 Oulu, Finland
- CSSB–HZI, DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | - Salla Ruskamo
- Department of Biochemistry and Biocenter Oulu, Universtity of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Petri Kursula
- Department of Biochemistry and Biocenter Oulu, Universtity of Oulu, PO Box 3000, 90014 Oulu, Finland
- CSSB–HZI, DESY, Notkestrasse 85, 22603 Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 2012; 31:16369-86. [PMID: 22072688 DOI: 10.1523/jneurosci.4016-11.2011] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.
Collapse
|
20
|
Abstract
The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions.
Collapse
Affiliation(s)
- Judith Storch
- From the Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.
| | - Alfred E Thumser
- Division of Biochemical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
21
|
Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KSD, Foster JA, Brenna JT, Weiss RS, Travis AJ. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 2010; 348:177-89. [PMID: 20920498 DOI: 10.1016/j.ydbio.2010.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/22/2022]
Abstract
The male germ cell-specific fatty acid-binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9(-/-) mice were viable and fertile. Phenotypic analysis showed that FABP9(-/-) mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the "ventral spur" in ~10% of FABP9(-/-) sperm. However, deficiency of FABP9 affected neither membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9(-/-) mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Majava V, Polverini E, Mazzini A, Nanekar R, Knoll W, Peters J, Natali F, Baumgärtel P, Kursula I, Kursula P. Structural and functional characterization of human peripheral nervous system myelin protein P2. PLoS One 2010; 5:e10300. [PMID: 20421974 PMCID: PMC2858655 DOI: 10.1371/journal.pone.0010300] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/24/2010] [Indexed: 11/19/2022] Open
Abstract
The myelin sheath is a tightly packed multilayered membrane structure insulating selected axons in the central and the peripheral nervous systems. Myelin is a biochemically unique membrane, containing a specific set of proteins. In this study, we expressed and purified recombinant human myelin P2 protein and determined its crystal structure to a resolution of 1.85 A. A fatty acid molecule, modeled as palmitate based on the electron density, was bound inside the barrel-shaped protein. Solution studies using synchrotron radiation indicate that the crystal structure is similar to the structure of the protein in solution. Docking experiments using the high-resolution crystal structure identified cholesterol, one of the most abundant lipids in myelin, as a possible ligand for P2, a hypothesis that was proven by fluorescence spectroscopy. In addition, electrostatic potential surface calculations supported a structural role for P2 inside the myelin membrane. The potential membrane-binding properties of P2 and a peptide derived from its N terminus were studied. Our results provide an enhanced view into the structure and function of the P2 protein from human myelin, which is able to bind both monomeric lipids inside its cavity and membrane surfaces.
Collapse
Affiliation(s)
- Viivi Majava
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | - Rahul Nanekar
- Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Wiebke Knoll
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
| | - Judith Peters
- Institut Laue-Langevin, Grenoble, France
- University Joseph Fourier, Grenoble, France
- Institut de Biologie Structurale, Grenoble, France
| | - Francesca Natali
- Institut Laue-Langevin, Grenoble, France
- Consiglio Nazionale delle Richerche – Operative Group in Grenoble, Grenoble, France
| | | | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| | - Petri Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Electron Synchrotron, University of Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Abstract
All vertebrate nervous systems, except those of agnathans, make extensive use of the myelinated fiber, a structure formed by coordinated interplay between neuronal axons and glial cells. Myelinated fibers, by enhancing the speed and efficiency of nerve cell communication allowed gnathostomes to evolve extensively, forming a broad range of diverse lifestyles in most habitable environments. The axon-covering myelin sheaths are structurally and biochemically novel as they contain high portions of lipid and a few prominent low molecular weight proteins often considered unique to myelin. Here we searched genome and EST databases to identify orthologs and paralogs of the following myelin-related proteins: (1) myelin basic protein (MBP), (2) myelin protein zero (MPZ, formerly P0), (3) proteolipid protein (PLP1, formerly PLP), (4) peripheral myelin protein-2 (PMP2, formerly P2), (5) peripheral myelin protein-22 (PMP22) and (6) stathmin-1 (STMN1). Although widely distributed in gnathostome/vertebrate genomes, neither MBP nor MPZ are present in any of nine invertebrate genomes examined. PLP1, which replaced MPZ in tetrapod CNS myelin sheaths, includes a novel 'tetrapod-specific' exon (see also Möbius et al., 2009). Like PLP1, PMP2 first appears in tetrapods and like PLP1 its origins can be traced to invertebrate paralogs. PMP22, with origins in agnathans, and STMN1 with origins in protostomes, existed well before the evolution of gnathostomes. The coordinated appearance of MBP and MPZ with myelin sheaths and of PLP1 with tetrapod CNS myelin suggests interdependence - new proteins giving rise to novel vertebrate structures.
Collapse
|
24
|
Kursula P. Structural properties of proteins specific to the myelin sheath. Amino Acids 2006; 34:175-85. [PMID: 17177074 DOI: 10.1007/s00726-006-0479-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/13/2006] [Indexed: 12/15/2022]
Abstract
The myelin sheath is an insulating membrane layer surrounding myelinated axons in vertebrates, which is formed when the plasma membrane of an oligodendrocyte or a Schwann cell wraps itself around the axon. A large fraction of the total protein in this membrane layer is comprised of only a small number of individual proteins, which have certain intriguing structural properties. The myelin proteins are implicated in a number of neurological diseases, including, for example, autoimmune diseases and peripheral neuropathies. In this review, the structural properties of a number of myelin-specific proteins are described.
Collapse
Affiliation(s)
- P Kursula
- Department of Biochemistry, University of Oulu, Oulu, Finland.
| |
Collapse
|
25
|
Polverini E, Fornabaio M, Fasano A, Carlone G, Riccio P, Cavatorta P. The pH-dependent unfolding mechanism of P2 myelin protein: an experimental and computational study. J Struct Biol 2005; 153:253-63. [PMID: 16427315 DOI: 10.1016/j.jsb.2005.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/04/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
The P2 protein is a small, extrinsic protein of the myelin membrane in the peripheral nervous system that structurally belongs to the fatty acid binding proteins (FABPs) family, sharing with them a 10 strands beta-barrel structure. FABPs appear to be involved in cellular fatty acid transport, but very little is known about the role of P2 in the metabolism of peripheral myelin lipids. Study of protein conformation at different pHs is a useful tool for the characterization of the unfolding mechanisms and the intrinsic conformational properties of the protein, and may give insight into factors that guide protein folding pathways. In particular, low pH conditions have been shown to induce partially folded states in several proteins. In this paper, the acidic unfolding of purified P2 protein was studied with both spectroscopic techniques and molecular dynamics simulation. Both experimental and computational results indicate the presence of a partly folded state at low pH, which shows structural changes mainly involving the lid that is formed by the helix-turn-helix domain. The opening of the lid, together with a barrel relaxation, could regulate the ligand exchanges near the cell membrane, supporting the hypothesis that the P2 protein may transport fatty acids between Schwann cells and peripheral myelin.
Collapse
Affiliation(s)
- Eugenia Polverini
- Dipartimento di Fisica, CNR-INFM and CNISM, Università di Parma, Parco Area delle Scienze, 7/A, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Veerkamp JH, Zimmerman AW. Fatty acid-binding proteins of nervous tissue. J Mol Neurosci 2001; 16:133-42; discussion 151-7. [PMID: 11478368 DOI: 10.1385/jmn:16:2-3:133] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 11/01/2000] [Indexed: 12/16/2022]
Abstract
Fatty acid-binding proteins (FABPs) are cytosolic 14-15 kDa proteins, which are supposed to be involved in fatty acid (FA) uptake, transport, and targeting. They may modulate FA concentration and in this way influence function of enzymes, membranes, ion channels and receptors, and gene expression and cellular growth and differentiation. Nine FABP types can be discerned with a specific tissue distribution. In spite of 30-70% amino acid sequence identity, they have a similar tertiary, beta-clam structure in which the FA is bound. Nervous tissue contains four FABP types with a distinct spatio-temporal distribution. Myelin (M)-FABP is only present in the peripheral nerves, brain (B)-FABP and epidermal (E)-FABP mainly in glial cells and neurons, respectively of pre- and perinatal brain, and heart (H)-FABP in adult brain. Possible functions of FABPs in the nervous system are discussed. Binding studies with a range of physiological FA showed no large differences between recombinant proteins of the four human FABP types in binding specificity and affinity, also not for polyunsaturated FA (PUFA). The transfer of FA from fixed liposomes to mitochondria was similarly promoted by the four types. A marked difference in conformational stability was observed with H-FABP > B-FABP > M-FABP > E-FABP. Surface epitopes of H-FABP showed reaction with anti-B-FABP antibodies, but no other cross-reactivity of FABP type and heterologous antibodies was observed. The functional significance of the distinct spatio-temporal pattern of the four FABP types remains to be elucidated.
Collapse
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University Medical Center St. Radboud, Nijmegen, The Netherlands.
| | | |
Collapse
|
27
|
Storch J, Thumser AE. The fatty acid transport function of fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1486:28-44. [PMID: 10856711 DOI: 10.1016/s1388-1981(00)00046-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The intracellular fatty acid-binding proteins (FABPs) comprise a family of 14-15 kDa proteins which bind long-chain fatty acids. A role for FABPs in fatty acid transport has been hypothesized for several decades, and the accumulated indirect and correlative evidence is largely supportive of this proposed function. In recent years, a number of experimental approaches which more directly examine the transport function of FABPs have been taken. These include molecular level in vitro modeling of fatty acid transfer mechanisms, whole cell studies of fatty acid uptake and intracellular transfer following genetic manipulation of FABP type and amount, and an examination of cells and tissues from animals engineered to lack expression of specific FABPs. Collectively, data from these studies have provided strong support for defining the FABPs as fatty acid transport proteins. Further studies are necessary to elucidate the fundamental mechanisms by which cellular fatty acid trafficking is modulated by the FABPs.
Collapse
Affiliation(s)
- J Storch
- Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08901-8525,USA.
| | | |
Collapse
|
28
|
Smith ER, Storch J. The adipocyte fatty acid-binding protein binds to membranes by electrostatic interactions. J Biol Chem 1999; 274:35325-30. [PMID: 10585398 DOI: 10.1074/jbc.274.50.35325] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adipocyte fatty acid-binding protein (AFABP) is believed to transfer unesterified fatty acids (FA) to phospholipid membranes via a collisional mechanism that involves ionic interactions between lysine residues on the protein surface and phospholipid headgroups. This hypothesis is derived largely from kinetic analysis of FA transfer from AFABP to membranes. In this study, we examined directly the binding of AFABP to large unilamellar vesicles (LUV) of differing phospholipid compositions. AFABP bound LUV containing either cardiolipin or phosphatidic acid, and the amount of protein bound depended upon the mol % anionic phospholipid. The K(a) for CL or PA in LUV containing 25 mol % of these anionic phospholipids was approximately 2 x 10(3) M(-1). No detectable binding occurred when AFABP was mixed with zwitterionic membranes, nor when acetylated AFABP in which surface lysines had been chemically neutralized was mixed with anionic membranes. The binding of AFABP to acidic membranes depended upon the ionic strength of the incubation buffer: >/=200 mM NaCl reduced protein-lipid complex formation in parallel with a decrease in the rate of FA transfer from AFABP to negatively charged membranes. It was further found that AFABP, but not acetylated AFABP, prevented cytochrome c, a well characterized peripheral membrane protein, from binding to membranes. These results directly demonstrate that AFABP binds to anionic phospholipid membranes and suggest that, although generally described as a cytosolic protein, AFABP may behave as a peripheral membrane protein to help target fatty acids to and/or from intracellular sites of utilization.
Collapse
Affiliation(s)
- E R Smith
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
29
|
Gericke A, Smith ER, Moore DJ, Mendelsohn R, Storch J. Adipocyte fatty acid-binding protein: interaction with phospholipid membranes and thermal stability studied by FTIR spectroscopy. Biochemistry 1997; 36:8311-7. [PMID: 9204877 DOI: 10.1021/bi970679s] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fatty acid-binding proteins (FABPs) found in many tissues constitute a family of low molecular weight proteins that are suggested to function as intracellular transporters of fatty acids. Studies of the transfer kinetics of fluorescent anthroyloxy-labeled long-chain fatty acids from FABP to model membranes led to the suggestion that the FABPs, typically considered to be cytosolic proteins, could nevertheless interact directly with membranes [Wootan, M. G., et al. (1993) Biochemistry 32, 8622-8627]. In the current study, the interaction of the adipocyte FABP (A-FABP) with vesicles of various phospholipids has been directly measured and confirmed with FTIR spectroscopy. The strength of this interaction was inferred from the lowering of the gel-liquid-crystal phase transition temperature as monitored from temperature-induced variations in the acyl chain CH2 stretching frequencies and from the intensities of the components of the CH2 wagging progressions. A-FABP interacts more strongly with anionic phospholipids (phosphatidylserine and cardiolipin) than with zwitterionic phosphatidylcholine. Unsaturation in the acyl chains leads to a greater reduction in Tm (stronger lipid-protein interaction). In contrast, neutralization of A-FABP surface charges by acetylation considerably weakens the interaction. Comparison of the shifts in lipid melting temperatures with those induced by other proteins suggests that A-FABP behaves like a typical peripheral membrane protein. The degree of membrane interaction correlates directly with the rate of fatty acid transfer, suggesting that contact between A-FABP and membranes is functionally related to its fatty acid transport properties. As expected, the protein exhibits a predominantly beta-sheet structure. It was found to aggregate with increasing temperature. With the exception of minor differences between the pure and lipid-associated A-FABP in the 1640-1660 cm-1 region, both the protein structure and thermal stability appeared essentially unchanged upon interaction with the lipid.
Collapse
Affiliation(s)
- A Gericke
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Schwann cells (SCs) are the myelin producing cells of the peripheral nervous system. During development, SCs cease proliferation and differentiate into either a myelin-forming or non-myelin forming mature phenotype. We are interested in the role of insulin-like growth factor-I (IGF-I) in SC development. We have shown previously SCs proliferate in response to IGF-I in vitro. In the current study, we investigated the role of IGF-I in SC differentiation. SC differentiation was determined by morphological criteria and expression of myelin proteins. Addition of 1 mM 8-bromo cyclic AMP (cAMP) or growth on Matrigel matrix decreased proliferation and induced differentiation of SCs. IGF-I enhanced both cAMP and Matrigel matrix-induced SC differentiation, as assessed by both morphological criteria and myelin gene expression. Cultured SCs also express IGF binding protein-5 (IGFBP-5), which can modulate the actions of IGF-I. We examined the expression of IGFBP-5 during SC differentiation. Both cAMP and Matrigel matrix treatment enhanced IGFBP-5 protein expression and cAMP increased IGFBP-5 gene expression five fold. These findings suggest IGF-I potentiates SC differentiation. The concomitant up-regulation of IGFBP-5 may play a role in targeting IGF-I to SCs and thus increase local IGF-I bioavailability.
Collapse
Affiliation(s)
- H L Cheng
- Department of Neurology, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- G J Snipes
- Department of Neuropathology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
32
|
Jessen KR, Brennan A, Morgan L, Mirsky R, Kent A, Hashimoto Y, Gavrilovic J. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 1994; 12:509-27. [PMID: 8155318 DOI: 10.1016/0896-6273(94)90209-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have characterized a cell, the Schwann cell precursor, that represents a distinct intermediate differentiation stage in the process by which Schwann cells are generated from neural crest cells. The Schwann cell precursor shows radical differences from Schwann cells which include death regulation, antigenic phenotype, pattern of cell-cell interaction, migratory behavior, and morphology. In the nerves of the rat hind limb, Schwann cells are irreversibly generated from these during a brief period, essentially embryonic days 15-17. We also provide evidence that the survival of Schwann cell precursors is regulated by neurons and identify basic fibroblast growth factor as a potential key regulator of apoptosis in Schwann cell precursors and of precursor to Schwann cell conversion. These findings have implications for our understanding of gliogenesis in the peripheral nervous system.
Collapse
Affiliation(s)
- K R Jessen
- Department of Anatomy and Developmental Biology, University College London, England
| | | | | | | | | | | | | |
Collapse
|
33
|
Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA. Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. ADVANCES IN PROTEIN CHEMISTRY 1994; 45:89-151. [PMID: 8154375 DOI: 10.1016/s0065-3233(08)60639-7] [Citation(s) in RCA: 342] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L Banaszak
- Department of Biochemistry, University of Minnesota, Minneapolis 55455
| | | | | | | | | | | |
Collapse
|
34
|
Bharucha VA, Peden KW, Subach BR, Narayanan V, Tennekoon GI. Characterization of the cis-acting elements of the mouse myelin P2 promoter. J Neurosci Res 1993; 36:508-19. [PMID: 7511696 DOI: 10.1002/jnr.490360503] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myelin P2 is a basic protein of an apparent molecular weight of 14,800. Expression of P2 has been found largely in the cytosol of Schwann cells in the peripheral nervous system. Although the function of P2 is unknown, its striking homology to a family of fatty acid binding proteins has led to the idea that P2 may function as a fatty acid transport molecule. To investigate the DNA elements that control the expression of P2, sequences 5' to the coding region were cloned upstream of the cat reporter gene. A series of 3' and 5' promoter mutants was constructed and their activity determined following transfection into secondary Schwann cells and the MT4H1 Schwann cell line. Using this strategy, we have identified a 217 bp silencer region and a 142 bp positive regulatory region. In addition, we have localized the 5' flanking sequences in the promoter that are responsive to cAMP induction and to the transcription factor CCAAT/enhancer binding protein (C/EBP).
Collapse
Affiliation(s)
- V A Bharucha
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor 48109-0570
| | | | | | | | | |
Collapse
|
35
|
Mechanism of free fatty acid transfer from rat heart fatty acid-binding protein to phospholipid membranes. Evidence for a collisional process. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88664-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Jessen KR, Mirsky R, Morgan L. Role of cyclic AMP and proliferation controls in Schwann cell differentiation. Ann N Y Acad Sci 1991; 633:78-89. [PMID: 1665043 DOI: 10.1111/j.1749-6632.1991.tb15597.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- K R Jessen
- Department of Anatomy and Developmental Biology, University College, London, UK
| | | | | |
Collapse
|
37
|
Langner C, Birkenmeier E, Roth K, Bronson R, Gordon J. Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99050-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Kanda T, Odani S, Tomoi M, Matsubara Y, Ono T. Primary structure of a 15-kDa protein from rat intestinal epithelium. Sequence similarity to fatty-acid-binding proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:759-68. [PMID: 2029905 DOI: 10.1111/j.1432-1033.1991.tb15968.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An abundant and novel cytosolic protein was purified from the rat intestinal epithelium by gel filtration, ion-exchange and hydroxylapatite chromatography. The protein was eluted into two different positions (fractions 1 and 2) on DEAE-cellulose chromatography. We have completed the primary structure of the protein of fraction 1 by Edman degradation. The protein (144565 Da) contains 127 amino acid residues and has an acetylated alanine at its NH2-terminus. Comparison of the primary structure of the protein with porcine gastrotropin [Walz, A. D., Wider, M. D., Snow, J. W., Dass, C. & Desiderio, D. M. (1988) J. Biol. Chem. 263, 14189-14195] and rat hepatic fatty-acid-binding protein revealed that identical residues within these proteins are found in 90 and 54 out of a total of 127 positions, respectively. Bioactivity studies demonstrated that neither the protein nor liver and intestinal fatty-acid-binding proteins influence gastric acid secretory activity in rats with gastric fistulas compared to pentagastrin. The protein showed very low affinity for palmitic-acid-binding in vitro assay system and only trace amounts of endogenous fatty acids were detected from the protein. The protein, rat intestinal 15-kDa protein is considered to be a new member of the fatty-acid-binding protein family based on its structural features.
Collapse
Affiliation(s)
- T Kanda
- Department of Biochemistry, Niigata University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
39
|
Abstract
Neurofibromatosis type 1 (NF-1, von Recklinghausen's disease) is characterized by the focal accumulation of Schwann-like cells (SLC) to form subcutaneous and plexiform neurofibromas and schwannomas. The aim of the present study was to determine whether NF-SLC are competent to differentiate in the presence of axons. Five dermal neurofibromas from five patients with NF-type 1 were enzymatically dissociated and the resultant cells were co-cultured with fetal rat dorsal root ganglion neurons. The cultures were studied by indirect immunofluorescence microscopy using antibodies against galactocerebroside (galC), P0 glycoprotein, human nerve growth factor receptor (NGFR) and human myelin-associated glycoprotein (MAG). SLC were strongly NGFR+ but galC- and MAG-SLC for the 2 weeks of coculture. After 3 weeks in vitro, SLC-NGFR was down-regulated but some of the spindle shaped cells had become galC+. MAG-SLC first appeared after 5 weeks in vitro but P0 glycoprotein was never detected when studied up to 6 weeks. Our data demonstrate that axons induce SLC to down-regulate surface NGFR and to express some myelin components in a qualitatively normal fashion.
Collapse
Affiliation(s)
- P Baron
- Neurology Research, Children's Hospital of Philadelphia, PA 19104
| | | |
Collapse
|
40
|
Veerkamp JH, Peeters RA, Maatman RG. Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1081:1-24. [PMID: 1991151 DOI: 10.1016/0005-2760(91)90244-c] [Citation(s) in RCA: 294] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J H Veerkamp
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
41
|
Abstract
During development of peripheral nerves, an apparently homogeneous pool of embryonic Schwann cells gives rise to two morphologically and antigenically distinct mature Schwann cell types. These are the myelin-forming cells associated with axons of larger diameter and the non-myelin-forming cells associated with axons of smaller diameter. The development of these cells from precursors that can be identified in early embryonic nerves can be followed with the help of antigenic differentiation markers. This development depends on Schwann cells retaining a close association with axons. The effect of axons can be mimicked in vitro by agents that elevate cAMP levels. This has given rise to the idea that the effects of axon-associated signals in Schwann cell development are to a significant extent mediated via elevation in Schwann cell cAMP levels. In vitro, the cAMP induced progression of cells from a premyelination state to a myelination state depends on withdrawal from the cell cycle. It is therefore possible that in vivo, the timing of myelin formation by individual Schwann cells is determined by signals that suppress proliferation.
Collapse
Affiliation(s)
- K R Jessen
- Department of Anatomy and Developmental Biology, University College London, U.K
| | | |
Collapse
|
42
|
Gillespie CS, Trapp BD, Colman DR, Brophy PJ. Distribution of myelin basic protein and P2 mRNAs in rabbit spinal cord oligodendrocytes. J Neurochem 1990; 54:1556-61. [PMID: 1691276 DOI: 10.1111/j.1471-4159.1990.tb01204.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelin basic protein (MBP) and P2 protein are small positively charged proteins found in oligodendrocytes of rabbit spinal cord. Both proteins become incorporated into compact myelin. We have begun investigations into the mechanisms by which MBP and P2 become incorporated into the myelin membrane. We find that P2, like the MBPs, is synthesized on free polysomes in rabbit spinal cord. Cell fractionation experiments reveal that rabbit MBP mRNAs are preferentially segregated to the peripheral myelinating regions whereas P2 mRNAs are predominantly localized within the perikaryon of the cell. In vitro synthesized rabbit MBP readily associates with membranes added to translation mixtures, whereas P2 protein does not. It is possible that P2 requires a "receptor" molecule, perhaps a membrane-anchored protein, for association with the cytoplasmic face of the myelin membrane.
Collapse
Affiliation(s)
- C S Gillespie
- Division of Cell Biology and Biochemistry, School of Molecular and Biological Sciences, University of Stirling, Scotland
| | | | | | | |
Collapse
|
43
|
Sedzik J, Bergfors T, Jones TA, Weise M. Bovine P2 myelin basic protein crystallizes in three different forms. J Neurochem 1988; 50:1908-13. [PMID: 2453613 DOI: 10.1111/j.1471-4159.1988.tb02496.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P2 protein is a minor component of the myelin membrane. We have crystallized this protein for high-resolution crystallographic study. Three crystal morphologies are available. Two of them are from ammonium sulfate, and one is from polyethyleneglycol (PEG). The unit cell of the most suitable crystals from PEG 4000 has the dimensions a = 91.3 A, b = 99.8 A, c = 56.0 A; is of space group P2(1)2(1)2(1); and contains up to four molecules per asymmetric unit. The limit of resolution is 2.7 A.
Collapse
Affiliation(s)
- J Sedzik
- Department of Molecular Biology, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
Abstract
Single crystals of bovine P2 myelin protein have been grown in polyethylene glycol 4000 by the hanging-drop vapor diffusion method. Crystals belonging to space group P2(1)2(1)2(1) with cell dimensions a = 91.8 A, b = 99.5 A, c = 56.5 A (1 A = 0.1 nm). The diffraction pattern extends to better than 2.3 A resolution.
Collapse
Affiliation(s)
- T Bergfors
- Department of Molecular Biology, Biomedical Centre, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Hahn AF, Whitaker JN, Kachar B, Webster HD. P2, P1, and P0 myelin protein expression in developing rat sixth nerve: a quantitative immunocytochemical study. J Comp Neurol 1987; 260:501-12. [PMID: 2440915 DOI: 10.1002/cne.902600404] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myelination and the expression of myelin proteins P2, P1, and P0 were studied quantitatively in the rat sixth cranial nerve during development. The postnatal development and growth of all myelin sheaths in this nerve have been studied morphometrically in a companion paper. Epon-embedded blocks with closely matched topography in the transverse plane were selected from rats perfused at ages 1-4, 8, 15, and 20 days. From each block, serial semithin sections were cut, etched, and immunostained according to the peroxidase-antiperoxidase method with well-characterized polyclonal antisera that reacted specifically with P0 glycoprotein and the basic proteins P1 and P2. The immunoreactivities of individual myelin sheaths were measured by densitometry. Numbers of compact myelin lamellae, myelin spiral lengths, and axon diameters were determined on electronmicrographs of adjacent thin sections. At birth anti-P0 immunoreactivity was found on sheaths with two and more compact lamellae; neither P1 nor P2 immunoreactivity was observed. On day 2, myelin sheaths with five and eight lamellae were stained respectively by anti-P1 and anti-P2. On day 3 the percentages of myelin sheaths stained were substantially higher: P0 95%, P1 78%, P2 15%. By day 4, anti-P0 and anti-P1 immunoreactivity was present in 95% of myelin sheaths; 35% were stained by anti-P2. For P2, staining intensity and percentage of myelin sheaths stained continued to increase and by day 20, 85% were anti-P2-positive. The density of immunoreactivity was not uniform in all myelin sheaths. At young ages staining varied with all three proteins. The variability decreased as myelin sheaths thickened; it persisted longest for anti-P2. We conclude that the density and distribution of immunoreactivities of P0, P1, and P2 reflect their relative concentrations during myelin sheath development and growth. We attribute lack of detectable anti-P2 immunoreactivity in some small sheaths at 20 days to their early stage of myelination and also to limitations of the method. We infer from our observations that all myelin-forming Schwann cells express P2 basic protein.
Collapse
|
46
|
Wekerle H, Schwab M, Linington C, Meyermann R. Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes. Eur J Immunol 1986; 16:1551-7. [PMID: 2434335 DOI: 10.1002/eji.1830161214] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schwann cells (SC) isolated from neonatal rat sciatic nerves are shown to immunogenically present foreign and exogenous autoantigen to antigen-specific syngeneic T line cells in vitro. The antigen-presenting SC express Ia antigens on their membranes upon treatment with interferon gamma and contact with syngeneic T line cells. Monoclonal antibodies against Ia block specific antigen presentation, but not polyclonal mitogenic T cell activation. The antigen-presenting SC bind antibodies specific for astrocytic glial fibrillary acidic protein and may thus be related to the nonmyelinating glia cells of the peripheral nerve. Furthermore, SC isolated from 6-day-old rats activate rat myelin basic protein (MBP)-specific syngeneic T line cells in the absence of exogenous MBP. In contrast, they activate purified protein derivative of tuberculin (PPD)-specific T cells only in the presence of PPD. Since the MBP-specific T line cells are not activated by syngeneic professional antigen-presenting cells in the absence of MBP, endogenous MBP produced in the 6-day-old sciatic nerves appears to be presented by autochthonous SC to the autoreactive T cells.
Collapse
|
47
|
Linington C, Wekerle H, Meyermann R. T lymphocyte autoimmunity in peripheral nervous system autoimmune disease. AGENTS AND ACTIONS 1986; 19:256-65. [PMID: 2435116 DOI: 10.1007/bf01971223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Abstract
A complex forms when bovine P2 protein is added to single-bilayer vesicles created by sonicating myelin lipids. The complex was studied by biochemical analysis, freeze-fracture (FF) and thin-section electron microscopy (EM), and by X-ray diffraction. Smaller amounts of P2 cause the vesicles to aggregate and fuse whereas larger amounts (greater than or equal to 4 wt%) cause multilayers to form. Binding saturates at 15 wt% P2. FF EM shows that large, flat multilayers form within 15 min of addition of P2. Only smooth fracture faces are seen, as expected for a peripheral membrane protein. X-ray diffraction shows a constant repeating distance in the multilayers: 86.0 +/- 0.7 A between the centers of bilayers in the range 4 wt% less than or equal to P2/(P2 + lipid) less than or equal to 15 wt%. Assuming a 53 A-thick bilayer, the space between bilayers is 33 A wide. This is a wider space than for myelin basic protein (MBP) (20-25 A wide). The respective widths are consistent with a compact, globular structure for P2 and a flattened shape for MBP. Calculated electron-density profiles of the lipids with and without P2 reveal the protein largely in the interbilayer spaces, with a small part possibly inserted into the lipid headgroup layers. The different proportions of P2 in the sciatic nerve of various species are tentatively correlated with the different average widths observed by X-ray diffraction for the cytoplasmic space (major period line) between bilayers in the respective sciatic myelins.
Collapse
|
49
|
Trapp BD, Quarles RH. Immunocytochemical localization of the myelin-associated glycoprotein. Fact or artifact? J Neuroimmunol 1984; 6:231-49. [PMID: 6203932 DOI: 10.1016/0165-5728(84)90011-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Immune staining for the myelin-associated glycoprotein (MAG) by the peroxidase-antiperoxidase technique in vibratome, paraffin and Epon sections of peripheral nerve resulted in a periaxonal ring of immune reaction product and an absence of staining over compact myelin. The thickness of the periaxonal rings of staining in Epon sections were similar when axons were surrounded by single Schwann cell processes and when they were surrounded by compact myelin sheaths. Thicker rings of periaxonal staining were present when axons were surrounded by multiple layers of uncompacted Schwann cell membranes. When swelling of the Schwann cell periaxonal cytoplasm separated the periaxonal Schwann cell membrane from compact myelin by distances that could be readily resolved in the light microscope, immune staining for MAG was found over the periaxonal Schwann cell membrane but not over compact myelin. Biochemical experiments in which myelin or MAG was treated with sodium ethoxide and hydrogen peroxide, under conditions similar to those used for etching Epon sections prior to immune staining, showed that the immune reactivity of MAG was stable to these treatments. Finally, a pre-embedding technique for immune staining at the electron-microscopic level showed MAG reaction product on the cytoplasmic side of Schwann cell periaxonal membranes and the membranes of Schmidt-Lanterman incisures and paranodal loops. These results confirm and strengthen the evidence from previous reports indicating that MAG is confined to periaxonal membranes, Schmidt-Lanterman incisures, paranodal loops, and the outer mesaxon of myelinating Schwann cells and is absent from compact myelin. These results are discussed in reference to a recent report apparently showing the presence of MAG in compact CNS myelin. Based on the data presented and discussed in this paper, it is concluded that MAG is located in specific non-compact regions of central and peripheral myelin sheaths and not in compact myelin lamellae.
Collapse
|