1
|
Vitantonio AT, Dimovasili C, Mortazavi F, Vaughan KL, Mattison JA, Rosene DL. Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain. Neurobiol Aging 2024; 141:1-13. [PMID: 38788462 DOI: 10.1016/j.neurobiolaging.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
Collapse
Affiliation(s)
- Ana T Vitantonio
- Boston University Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology, and Biophysics, 700 Albany St., Room 308, Boston, MA 02118, USA; Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA.
| | - Christina Dimovasili
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Douglas L Rosene
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA; Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA 02215, USA
| |
Collapse
|
2
|
Jearjaroen P, Thangwong P, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J. Hexahydrocurcumin attenuated demyelination and improved cognitive impairment in chronic cerebral hypoperfusion rats. Inflammopharmacology 2024; 32:1531-1544. [PMID: 38153537 DOI: 10.1007/s10787-023-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chianqg Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Sharma R, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Targeted Treatment Strategies for Mitochondria Dysfunction: Correlation with Neurological Disorders. Curr Drug Targets 2024; 25:683-699. [PMID: 38910425 DOI: 10.2174/0113894501303824240604103732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are an essential intracellular organelle for medication targeting and delivery since they seem to create energy and conduct many other cellular tasks, and mitochondrial dysfunctions and malfunctions lead to many illnesses. Many initiatives have been taken to detect, diagnose, and image mitochondrial abnormalities, and to transport and accumulate medicines precisely to mitochondria, all because of special mitochondrial aspects of the pathophysiology of cancer. In addition to the negative membrane potential and paradoxical mitochondrial dynamics, they include high temperatures, high levels of reactive oxygen species, high levels of glutathione, and high temperatures. Neurodegenerative diseases represent a broad spectrum of debilitating illnesses. They are linked to the loss of certain groups of neurons based on an individual's physiology or anatomy. The mitochondria in a cell are generally accepted as the authority with respect to ATP production. Disruption of this system is linked to several cellular physiological issues. The development of neurodegenerative disorders has been linked to mitochondrial malfunction, according to pathophysiological studies. There seems to be substantial evidence connecting mitochondrial dysfunction and oxidative stress to the development of neurodegenerative disorders. It has been extensively observed that mitochondrial malfunction triggers autophagy, which plays a role in neurodegenerative disorders. In addition, excitotoxicity and mitochondrial dysfunction have been linked to the development of neurodegenerative disorders. The pathophysiology of neurodegenerative illnesses has been linked to increased apoptosis and necrosis, as well as mitochondrial malfunction. A variety of synthetic and natural treatments have shown efficacy in treating neurodegenerative illnesses caused by mitochondrial failure. Neurodegenerative illnesses can be effectively treated with existing drugs that target mitochondria, although their precise formulations are poorly understood. Therefore, there is an immediate need to focus on creating drug delivery methods specifically targeted at mitochondria in the treatment and diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rishav Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
- Era College of Pharmacy, Era University, Lucknow, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Zheng XS, Yang Q, Vazquez A, Cui XT. Imaging the stability of chronic electrical microstimulation using electrodes coated with PEDOT/CNT and iridium oxide. iScience 2022; 25:104539. [PMID: 35769881 PMCID: PMC9234710 DOI: 10.1016/j.isci.2022.104539] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic microstimulation is faced with challenges that require an additional understanding of stability and safety. We implanted silicon arrays coated with poly(3,4-ethylenedioxythiophene) (PEDOT)/Carbon Nanotubes (CNT), or PCand IrOx into the cortex of GCaMP6s mice and electrically stimulated them for up to 12 weeks. We quantified neuronal responses to stimulation using two-photon imaging and mesoscale fluorescence microscopy and characterized electrode performance over time. We observed dynamic changes in stimulation stability over time and a significant advantage in energy efficiency using PC coated electrodes over IrOx coated electrodes. In a subset of mice, we observed abnormal ictal cortical responses or cortical spreading depression using stimulation parameters commonly used in intracortical stimulation applications, suggesting the need to investigate the potential neuronal damage and redefine the stimulation safety limit. This study not only revealed the dynamic changes in stimulation efficiency after implantation but also reiterates the potential for PC as a high-efficiency material in chronic neuromodulation.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Qianru Yang
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Alberto Vazquez
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- Department of Radiology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, PA 15219, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
- Center for Neural Basis of Cognition, 115 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, 3025 East Carson Street, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Pham TK, Buczek WA, Mead RJ, Shaw PJ, Collins MO. Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:678837. [PMID: 34177463 PMCID: PMC8219902 DOI: 10.3389/fnmol.2021.678837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress appears to be a key feature of many neurodegenerative diseases either as a cause or consequence of disease. A range of molecules are subject to oxidation, but in particular, proteins are an important target and measure of oxidative stress. Proteins are subject to a range of oxidative modifications at reactive cysteine residues, and depending on the level of oxidative stress, these modifications may be reversible or irreversible. A range of experimental approaches has been developed to characterize cysteine oxidation of proteins. In particular, mass spectrometry-based proteomic methods have emerged as a powerful means to identify and quantify cysteine oxidation sites on a proteome scale; however, their application to study neurodegenerative diseases is limited to date. Here we provide a guide to these approaches and highlight the under-exploited utility of these methods to measure oxidative stress in neurodegenerative diseases for biomarker discovery, target engagement and to understand disease mechanisms.
Collapse
Affiliation(s)
- Trong Khoa Pham
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Weronika A. Buczek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Zheng XS, Tan C, Castagnola E, Cui XT. Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 2021; 10:e2100119. [PMID: 34029008 PMCID: PMC8257249 DOI: 10.1002/adhm.202100119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chao Tan
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Hemmati S, Sadeghi MA, Yousefi-Manesh H, Eslamiyeh M, Vafaei A, Foroutani L, Donyadideh G, Dehpour A, Rezaei N. Protective Effects of Leukadherin1 in a Rat Model of Targeted Experimental Autoimmune Encephalomyelitis (EAE): Possible Role of P47phox and MDA Downregulation. J Inflamm Res 2020; 13:411-420. [PMID: 32821147 PMCID: PMC7423460 DOI: 10.2147/jir.s258991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Reactive oxygen and nitrogen species (ROS and RNS) are involved in pathologic mechanisms underlying demyelination and exacerbation in multiple sclerosis (MS) lesions. P47phox is the most important subunit of an ROS-producing enzyme (NADPH oxidase) which is reportedly upregulated in MS plaques due to the intense activity of infiltrated immune cells and resident microglia. Leukadherin1 is a specific CD11b/CD18 agonist that inhibits signaling and transmigration of inflammatory cells to sites of injury. Based on this mechanism, we evaluated therapeutic effects of leukadherin1 in an animal model of targeted experimental autoimmune encephalomyelitis (EAE) through focal injection of inflammatory cytokines to the spinal cord. Methods For model induction, Lewis rats were first immunized with 15µg MOG 1–125 emulsion. Twenty days later, animals were subjected to stereotaxic injection of IFNγ and TNFα to the specific spinal area (T8). One day after injection, all animals presented EAE clinical signs, and their behaviors were monitored for eight days through open-field locomotion and grid-walking tests. Leukadherin1-treated animals received daily intraperitoneal injections of 1mg/kg of the drug. The specific spinal tissues were extracted on day 5 in order to measure nitric oxide (NO), malon di-aldehyde (MDA), and TNFα concentrations alongside P47phox real-time PCR analysis. In addition, spinal sections were prepared for immunohistochemical (IHC) observation of infiltrated leukocytes and activated microglia. Results Leukadherin1 exhibited promising improvements in EAE clinical scores and behavioral tests. Demyelination, CD45+ leukocyte infiltration, and Iba1+ microglia activation were reduced in spinal tissues of leukadherin1-treated animals. Furthermore, P47phox expression levels, MDA, and NO amounts were decreased in treated animals. However, TNFα concentrations did not differ following treatment. Conclusion Based on our results, we suggest that leukadherin1 may be used as a novel therapeutic agent in tackling the clinical challenge of multiple sclerosis, especially during the acute phase of the disease. This effect was possibly mediated through decreased leukocyte infiltration and oxidative stress.
Collapse
Affiliation(s)
- Sara Hemmati
- Molecular Medicine Interest Group (MMIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Sadeghi
- Molecular Medicine Interest Group (MMIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Yousefi-Manesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Vafaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Foroutani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - AhmadReza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
8
|
Yu Y, Luo X, Li C, Ding F, Wang M, Xie M, Yu Z, Ransom BR, Wang W. Microglial Hv1 proton channels promote white matter injuries after chronic hypoperfusion in mice. J Neurochem 2019; 152:350-367. [PMID: 31769505 DOI: 10.1111/jnc.14925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Microglia are critical in damage/repair processes during ischemic white matter injury (WMI). Voltage-gated proton channel (Hv1) is expressed in microglia and contributes to nicotinamide adenine dinucleotide phosphate oxidase complex-dependent production of reactive oxygen species (ROS). Recent findings have shown that Hv1 is involved in regulating luminal pH of M1-polarized microglial phagosomes and inhibits endocytosis in microglia. We previously reported that Hv1 facilitated production of ROS and pro-inflammatory cytokines in microglia and enhanced damage to oligodendrocyte progenitor cells from oxygen and glucose deprivation. To investigate the role of Hv1 in hypoperfusion-induced WMI, we employed mice that were genetically devoid of Hv1 (Hv1-/- ), as well as a model of subcortical vascular dementia via bilateral common carotid artery stenosis. Integrity of myelin was assessed using immunofluorescent staining and transmission electron microscopy, while cognitive impairment was assessed using an eight-arm radial maze test. Hv1 deficiency was found to attenuate bilateral common carotid artery stenosis-induced disruption of white matter integrity and impairment of working memory. Immunofluorescent staining and western blotting were used to assay changes in oligodendrocytes, OPCs, and microglial polarization. Compared with that in wild-type (WT) mice, Hv1-/- mice exhibited reduced ROS generation, decreased pro-inflammatory cytokines production, and an M2-dominant rather than M1-dominant microglial polarization. Furthermore, Hv1-/- mice exhibited enhanced OPC proliferation and differentiation into oligodendrocytes. Results of mouse-derived microglia-OPC co-cultures suggested that PI3K/Akt signaling was involved in Hv1-deficiency-induced M2-type microglial polarization and concomitant OPC differentiation. These results suggest that microglial Hv1 is a promising therapeutic target for reducing ischemic WMI and cognitive impairment.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine HMC, Seattle, WA, USA
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Histopathological and Functional Evaluation of Radiation-Induced Sciatic Nerve Damage: Melatonin as Radioprotector. ACTA ACUST UNITED AC 2019; 55:medicina55080502. [PMID: 31430996 PMCID: PMC6722514 DOI: 10.3390/medicina55080502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Radiotherapy uses ionizing radiation for cancer treatment. One of the side effects of radiotherapy is peripheral neuropathy. After irradiation, the first stage of neuropathy involves electrophysiological, biochemical and histopathological variations, while the fibrosis of soft tissues surrounding the exposed nerve occurs in the second stage. The present study aimed to examine the radioprotective effects of melatonin against ionizing radiation-induced sciatic nerve damage. Materials and Methods: Sixty male Wistar rats were assigned to four groups: C (Control + Vehicle), M (Melatonin), R (Radiation + Vehicle), MR (Radiation + Melatonin). Their right legs were irradiated with a 30 Gy single dose of gamma rays. Then, 100 mg/kg melatonin was administered to the animals 30 min before irradiation once daily (5 mg/kg) until the day of rats' sacrifice. Their exposed nerve tissues were assessed using the sciatic functional index (SFI) and histological evaluation. Results: Four, 12 and 20 weeks post irradiation, the SFI results showed that irradiation led to partial loss of motor nerve function after 12 and 20 weeks. Histological evaluation showed the various stages of axonal degeneration and demyelination compared to the C and M groups. Scar-like tissues were detected around the irradiated nerves in the R group at 20 weeks, but were absent in the MR group. The SFI and histological results of the R group showed partial nerve lesion. However, in all cases, treatment with melatonin prevented these effects. Conclusions: Results showed that melatonin has the potential to improve functional and morphological features of exposed sciatic nerves. This could possibly improve the therapeutic window of radiotherapy.
Collapse
|
10
|
The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anat Sci Int 2019; 94:285-294. [DOI: 10.1007/s12565-019-00486-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
|
11
|
Srivastava D, Kukkuta Sarma GR, Dsouza DS, Muralidharan M, Srinivasan K, Mandal AK. Characterization of residue-specific glutathionylation of CSF proteins in multiple sclerosis - A MS-based approach. Anal Biochem 2018; 564-565:108-115. [PMID: 30367882 DOI: 10.1016/j.ab.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
Abstract
Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress. Using the nano-LC/ESI-MS platform, we adopted a modified proteomics approach and a targeted database search to investigate glutathionylation at the residue level of CSF proteins. Compared to patients with Intracranial hypertension, the following CSF proteins: Extracellular Superoxide dismutase (ECSOD) at Cys195, α1-antitrypsin (A1AT) at Cys232, Phospholipid transfer protein (PLTP) at Cys318, Alpha-2-HS-glycoprotein at Cys340, Ectonucleotide pyrophosphate (ENPP-2) at Cys773, Gelsolin at Cys304, Interleukin-18 (IL-18) at Cys38 and Ig heavy chain V III region POM at Cys22 were found to be glutathionylated in patients with multiple sclerosis during a relapse. ECSOD, A1AT, and PLTP were observed to be glutathionylated at the functionally important cysteine residues. In conclusion, in the present study using a modified proteomics approach we have identified and characterized glutathionylation of CSF proteins in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Deepsikha Srivastava
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Gosala Raja Kukkuta Sarma
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Delon Snehal Dsouza
- Department of Neurology, St. John's Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Monita Muralidharan
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Krishnamachari Srinivasan
- Department of Psychiatry, St. John's Medical College and Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Division of Molecular Medicine, Clinical Proteomics Unit, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
12
|
Reddan JM, White DJ, Macpherson H, Scholey A, Pipingas A. Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults. Front Aging Neurosci 2018; 10:49. [PMID: 29563868 PMCID: PMC5845902 DOI: 10.3389/fnagi.2018.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults.
Collapse
Affiliation(s)
- Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Pezzini I, Mattoli V, Ciofani G. Mitochondria and neurodegenerative diseases: the promising role of nanotechnology in targeted drug delivery. Expert Opin Drug Deliv 2016; 14:513-523. [PMID: 27467010 DOI: 10.1080/17425247.2016.1218461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) represent a group of different clinical entities that, despite the specific primary etiologies, share a common signature in terms of a general mitochondrial dysfunction with consequent oxidative stress accumulation. As these two events occur early during neurodegenerative process, they could be considered ideal therapeutic targets. Areas covered: This review describes the nanotechnologies explored for the specific targeted delivery of drugs, in order to precisely direct molecules into the intended site, where they can practice their therapeutic effects. Expert opinion: Conventional drug delivery systems cannot provide adequate restoration and connection patterns that are essential for a functional recovery in NDs. Since orally delivered antioxidants are easily destroyed by acids and enzymes, only a small portion of consumed antioxidants gets absorbed, leading to low bioavailability and low concentration at the target site. In this scenario, the identification of new proenergetic drugs, in combination with the development of methods for selectively delivering biologically active molecules into mitochondria, will potentially launch new therapeutic approaches for the treatment of NDs, where energetic imbalance plays a central role.
Collapse
Affiliation(s)
- Ilaria Pezzini
- a The BioRobotics Institute , Scuola Superiore Sant'Anna , Pisa , Italy.,b Istituto Italiano di Tecnologia , Center for Micro-BioRobotics @SSSA , Pisa , Italy
| | - Virgilio Mattoli
- b Istituto Italiano di Tecnologia , Center for Micro-BioRobotics @SSSA , Pisa , Italy
| | - Gianni Ciofani
- b Istituto Italiano di Tecnologia , Center for Micro-BioRobotics @SSSA , Pisa , Italy.,c Department of Mechanical and Aerospace Engineering , Politecnico di Torino , Torino , Italy
| |
Collapse
|
14
|
Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015; 89:209-26. [PMID: 26315960 DOI: 10.1016/j.neuint.2015.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/08/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023]
Abstract
Oxidative stress has for long been linked to the neuronal cell death in many neurodegenerative conditions. Conventional antioxidant therapies have been less effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Nanoparticle antioxidants constitute a new wave of antioxidant therapies for prevention and treatment of diseases involving oxidative stress. It is believed that nanoparticle antioxidants have strong and persistent interactions with biomolecules and would be more effective against free radical induced damage. Nanoantioxidants include inorganic nanoparticles possessing intrinsic antioxidant properties, nanoparticles functionalized with antioxidants or antioxidant enzymes to function as an antioxidant delivery system. Nanoparticles containing antioxidants have shown promise as high-performance therapeutic nanomedicine in attenuating oxidative stress with potential applications in treating and preventing neurodegenerative conditions. However, to realize the full potential of nanoantioxidants, negative aspects associated with the use of nanoparticles need to be overcome to validate their long term applications.
Collapse
|
15
|
Kaufmann FN, Gazal M, Mondin TC, Cardoso TA, Quevedo LÁ, Souza LDM, Jansen K, Braganhol E, Oses JP, Pinheiro RT, Kaster MP, da Silva RA, Ghisleni G. Cognitive psychotherapy treatment decreases peripheral oxidative stress parameters associated with major depression disorder. Biol Psychol 2015; 110:175-81. [PMID: 26255227 DOI: 10.1016/j.biopsycho.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/17/2015] [Accepted: 08/01/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Studies have already pointed out the contribution of oxidative stress in the pathophysiology of major depressive disorder (MDD). The aim of the present study was to investigate the oxidative-antioxidative systems in MDD and in response to cognitive psychotherapies. Oxidative stress were analyzed in 49 MDD patients at baseline, post-treatment, and follow-up; and 49 control subjects without history of psychiatric disorders. RESULTS MDD subjects presented an increase in oxidative damage related to control subjects for thiobarbituric acid reactive species (TBARS), nitric oxide, and a decrease in total thiol content. Cognitive psychotherapies were able to counteract peripheral oxidative stress in MDD patients, reducing TBARS levels (p<0.001) in the follow-up, nitric oxide (p<0.001) in the post-treatment and follow-up, and increasing the total thiol content (p<0.01) in the post-treatment and follow-up. CONCLUSION Oxidative stress was associated with MDD and the regulation of these parameters might represent an important mechanism associated with the clinical improvement of cognitive psychotherapy.
Collapse
Affiliation(s)
- Fernanda N Kaufmann
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Marta Gazal
- Biologia Celular e Molecular-Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thaíse C Mondin
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Taiane A Cardoso
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Luciana Á Quevedo
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Luciano D M Souza
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Karen Jansen
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Bioquímica-Fundação Universidade Federal de Ciências da Saúde e de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Ricardo T Pinheiro
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Manuella P Kaster
- Departamento de Bioquímica-Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ricardo A da Silva
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil
| | - Gabriele Ghisleni
- Programa de Pós-Graduação em Saúde e Comportamento - Universidade Católica de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Luoma AM, Kuo F, Cakici O, Crowther MN, Denninger AR, Avila RL, Brites P, Kirschner DA. Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radic Biol Med 2015; 84:296-310. [PMID: 25801291 DOI: 10.1016/j.freeradbiomed.2015.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/25/2015] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin.
Collapse
Affiliation(s)
- Adrienne M Luoma
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Fonghsu Kuo
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Ozgur Cakici
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Michelle N Crowther
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Andrew R Denninger
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA
| | - Pedro Brites
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|
17
|
Choi BY, Kim JH, Kho AR, Kim IY, Lee SH, Lee BE, Choi E, Sohn M, Stevenson M, Chung TN, Kauppinen TM, Suh SW. Inhibition of NADPH oxidase activation reduces EAE-induced white matter damage in mice. J Neuroinflammation 2015; 12:104. [PMID: 26017142 PMCID: PMC4449958 DOI: 10.1186/s12974-015-0325-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the role of NADPH oxidase-mediated reactive oxygen species (ROS) production in multiple sclerosis pathogenesis, we examined the effects of apocynin, an NADPH oxidase assembly inhibitor, on experimental autoimmune encephalomyelitis (EAE). Methods EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG (35-55)) in C57BL/6 female mice. Three weeks after initial immunization, the mice were analyzed for demyelination, immune cell infiltration, and ROS production. Apocynin (30 mg/kg) was given orally once daily for the entire experimental course or after the typical onset of clinical symptom (15 days after first MOG injection). Results Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. The daily clinical symptoms of EAE mice were profoundly reduced by apocynin. The apocynin-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination, reduced infiltration by encephalitogenic immune cells including CD4, CD8, CD20, and F4/80-positive cells. Apocynin reduced MOG-induced pro-inflammatory cytokines in cultured microglia. Apocynin also remarkably inhibited EAE-associated ROS production and blood–brain barrier (BBB) disruption. Furthermore, the present study found that post-treatment with apocynin also reduced the clinical course of EAE and spinal cord demyelination. Conclusions These results demonstrate that apocynin inhibits the clinical features and neuropathological changes associated with EAE. Therefore, the present study suggests that inhibition of NADPH oxidase activation by apocynin may have a high therapeutic potential for treatment of multiple sclerosis pathogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - Jin Hee Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - In Yeol Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - Bo Eun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - Eunhi Choi
- Chuncheon Sacred Heart Hospital, Department of Rehabilitation Medicine, College of Medicine, Hallym University, Chuncheon, South Korea.
| | - Min Sohn
- Department of Nursing, Inha University, Incheon, South Korea.
| | - Mackenzie Stevenson
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | - Tae Nyoung Chung
- CHA Bundang Medical Center, School of Medicine, CHA University, Kyunggi do, South Korea.
| | - Tiina M Kauppinen
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Oxidative stress has become an exciting area of schizophrenia research, and provides ample opportunities and hope for a better understanding of its pathophysiology, which may lead to novel treatment strategies. This review describes how recent methodological advances have allowed the study of oxidative stress to tackle fundamental questions and have provided several conceptual breakthroughs to the field. RECENT FINDINGS Recent human studies support the notion that intrinsic susceptibility to oxidative stress may underlie the pathophysiology of schizophrenia. More than one animal model that may be relevant to study the biology of schizophrenia also shows sign of oxidative stress in the brain. SUMMARY These advances have made this topic of paramount importance to the understanding of schizophrenia and will play a role in advancing the treatment options. This review covers topics from the classic biochemical studies of human biospecimens to the use of magnetic resonance spectroscopy and novel mouse models, and focuses on highlighting the promising areas of research.
Collapse
|
19
|
Versace A, Andreazza AC, Young LT, Fournier JC, Almeida JRC, Stiffler RS, Lockovich JC, Aslam HA, Pollock MH, Park H, Nimgaonkar VL, Kupfer DJ, Phillips ML. Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: toward peripheral biomarkers of bipolar disorder. Mol Psychiatry 2014; 19:200-8. [PMID: 23358158 PMCID: PMC3640681 DOI: 10.1038/mp.2012.188] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/22/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
Abstract
Diffusion tensor imaging (DTI) studies consistently reported abnormalities in fractional anisotropy (FA) and radial diffusivity (RD), measures of the integrity of white matter (WM), in bipolar disorder (BD), that may reflect underlying pathophysiologic processes. There is, however, a pressing need to identify peripheral measures that are related to these WM measures, to help identify easily obtainable peripheral biomarkers of BD. Given the high lipid content of axonal membranes and myelin sheaths, and that elevated serum levels of lipid peroxidation are reported in BD, these serum measures may be promising peripheral biomarkers of underlying WM abnormalities in BD. We used DTI and probabilistic tractography to compare FA and RD in ten prefrontal-centered WM tracts, 8 of which are consistently shown to have abnormal FA (and/or RD) in BD, and also examined serum lipid peroxidation (lipid hydroperoxides, LPH and 4-hydroxy-2-nonenal, 4-HNE), in 24 currently euthymic BD adults (BDE) and 19 age- and gender-matched healthy adults (CONT). There was a significant effect of group upon FA in these a priori WM tracts (BDECONT: F[1,41]=10.3; P=0.003), and a significant between-group difference in LPH (BDE>CONT: t[40]=2.4; P=0.022), but not in 4-HNE. Multivariate multiple regression analyses revealed that LPH variance explained, respectively, 59 and 51% of the variance of FA and RD across all study participants. This is the first study to examine relationships between measures of WM integrity and peripheral measures of lipid peroxidation. Our findings suggest that serum LPH may be useful in the development of a clinically relevant, yet easily obtainable and inexpensive, peripheral biomarkers of BD.
Collapse
Affiliation(s)
- A Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A C Andreazza
- 1] Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, Ontario, Canada [2] Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - L T Young
- 1] Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, Ontario, Canada [2] Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J C Fournier
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J R C Almeida
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J C Lockovich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H A Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M H Pollock
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H Park
- 1] Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, Ontario, Canada [2] Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - V L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D J Kupfer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M L Phillips
- 1] Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Psychological Medicine, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
20
|
Dinc C, Iplikcioglu AC, Atabey C, Eroglu A, Topuz K, Ipcioglu O, Demirel D. Comparison of deferoxamine and methylprednisolone: protective effect of pharmacological agents on lipid peroxidation in spinal cord injury in rats. Spine (Phila Pa 1976) 2013; 38:E1649-55. [PMID: 24108296 DOI: 10.1097/brs.0000000000000055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Experimental study. OBJECTIVE To investigate the protective effect of deferoxamine (DFO) administration in comparison with methylprednisolone (MP) on lipid peroxidation and antioxidants after spinal cord injury (SCI) in rats. SUMMARY OF BACKGROUND DATA DFO is used for treating an iron-chelating agent, which is also used in the treatment of iron poisoning and thalassaemia. The neuroprotective effect of DFO was evaulated as a therapeutic agent for SCI. METHODS Forty Wistar rats were randomly divided into 5 groups as sham laminectomy (n = 8), laminectomy with SCI (n = 8), laminectomy with SCI and 0.9% saline intraperitoneal (i.p.) (n = 8), laminectomy with SCI and 30 mg/kg MP i.p. (n = 8), and laminectomy with SCI and 30 mg/kg DFO i.p. (n = 8). Neurological deficits were examined 24 hours after trauma, and all rats were killed. Spinal cord segments were harvested for both biochemical and histopathological evaluation. RESULTS At 24 hours post-SCI, whereas malondialdehyde levels were increased, superoxide dismutase, catalase, and glutathione peroxidase levels were decreased in groups I, II, and III. MP and DFO treatment decreased MDA levels and increased superoxide dismutase CAT, and glutathione peroxidase levels in control and study groups. There was no statistically significant difference between treatment with MP and DFO (P> 0.05). All rats were paraplegic after SCI, except in the sham group. Histopathological improvement was observed in control and study groups. CONCLUSION This study indicates that beneficial effects may be provided and further studies need to investigate the dose-dependent beneficial and side effects of DFO in SCI. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Cem Dinc
- *Department of Neurosurgery, Eyup Government Hospital, Istanbul, Turkey †Department of Neurosurgery, Bayindir Icerenkoy Hospital, Istanbul, Turkey; and Departments of ‡Neurosurgery §Biochemistry; and ¶Pathology, Haydarpasa Training Hospital, Gulhane Military Medical Academy, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
21
|
Miyamoto N, Maki T, Pham LDD, Hayakawa K, Seo JH, Mandeville ET, Mandeville JB, Kim KW, Lo EH, Arai K. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke 2013; 44:3516-21. [PMID: 24072001 DOI: 10.1161/strokeaha.113.002813] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE White matter injury caused by cerebral hypoperfusion may contribute to the pathophysiology of vascular dementia and stroke, but the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that oxidative stress interferes with endogenous white matter repair by disrupting renewal processes mediated by oligodendrocyte precursor cells (OPCs). METHODS In vitro, primary rat OPCs were exposed to sublethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Then, OPC proliferation/differentiation was assessed. In vivo, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. Then, reactive oxygen species production, myelin density, oligodendrocyte versus OPC counts, and cognitive function were evaluated. To block oxidative stress, OPCs and mice were treated with the radical scavenger edaravone. RESULTS Prolonged chemical hypoxic stress suppressed OPC differentiation in vitro. Radical scavenging with edaravone ameliorated these effects. After 28 days of cerebral hypoperfusion in vivo, reactive oxygen species levels were increased in damaged white matter, along with the suppression of OPC-to-oligodendrocyte differentiation and loss of myelin staining. Concomitantly, mice showed functional deficits in working memory. Radical scavenging with edaravone rescued OPC differentiation, ameliorated myelin loss, and restored working memory function. CONCLUSIONS Our proof-of-concept study demonstrates that after prolonged cerebral hypoperfusion, oxidative stress interferes with white matter repair by disrupting OPC renewal mechanisms. Radical scavengers may provide a potential therapeutic approach for white matter injury in vascular dementia and stroke.
Collapse
Affiliation(s)
- Nobukazu Miyamoto
- From the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (N.M., T.M., L.-D.D.P., K.H., J.H.S., E.T.M., E.H.L., K.A.); Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA (J.B.M.); and NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences (J.H.S., K.-W.K.) and Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology (K.-W.K.), Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kaya Y, Sarikcioglu L, Yildirim FB, Aslan M, Demir N. Does circadian rhythm disruption induced by light-at-night has beneficial effect of melatonin on sciatic nerve injury? J Chem Neuroanat 2013; 53:18-24. [PMID: 23969081 DOI: 10.1016/j.jchemneu.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/21/2022]
Abstract
Melatonin stimulates peripheral nerve regeneration. However, the precise effect of Melatonin on nerve repair in dark period have not been clarified. The aim of the present study was to investigate the effect of melatonin on sciatic nerve injury after melatonin was given to rats in the morning or evening by means of combined analysis. This is the first study to investigate the influence of melatonin on sciatic nerve in cut injury two different times of the day. 60 adult female Wistar rats were divided into 4 groups: control (Group 1), sham-operated (Group 2), sciatic nerve cut+melatonin treatment in light (Group 3), sciatic nerve cut+melatonin treatment in dark (Group 4). Melatonin was administered intraperitoneally at dose of 50 mg/kg/day for six weeks. Recovery of function was analyzed by structural (biochemical properties of the antioxidant levels and ultrastructural analysis) and functional analyses (Sciatic function index, pinch test). The data demonstrated beneficial effect of melatonin in light period. However significant beneficial effect of melatonin was detected on the recovery of the cut sciatic nerve in dark period. Melatonin treatment was unable to influence on the recovery of the cut sciatic nerve in dark period. This means that the effect of melatonin the recovery of the cut injured sciatic nerve depends on the time of treatment may be attributed to its circadian rhythm.
Collapse
Affiliation(s)
- Yasemin Kaya
- Department of Anatomy, Akdeniz University Faculty of Medicine, 07070 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
23
|
Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Childs Nerv Syst 2013; 29:389-401. [PMID: 23053363 DOI: 10.1007/s00381-012-1936-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Following tissue injury, melatonin is known to reduce detrimental effects of free radicals by stimulating antioxidant enzymes and also to inhibit posttraumatic polymorphonuclear infiltration. Beneficial effects after peripheral nerve injury have been suggested, but not studied in detail. Therefore, we aimed to elucidate the effects of melatonin on the recovery of the lesioned rat sciatic nerve by means of combined analysis. METHODS A total number of 90 rats were randomly distributed into six groups: control (group 1), sham-operated (group 2), sciatic nerve cut (group 3), sciatic nerve cut + melatonin treatment (group 4), sciatic nerve crush (group 5), and sciatic nerve crush + melatonin treatment (group 6). Melatonin was administered intraperitoneally at a dose of 50 mg/kg/day for 6 weeks. Recovery of function was analyzed by assessment of the sciatic functional index based on walking track analysis, somatosensory evoked potentials, biochemical quantification of malondialdehyde, antioxidant enzymes levels, and ultrastructural analysis. RESULTS Our data showed the beneficial effect of melatonin on sciatic nerve recovery. Rats treated with melatonin demonstrated better structural preservation of the myelin sheaths compared to the nontreated group. The biochemical analysis confirmed the beneficial effects of melatonin displaying lower lipid peroxidation and higher superoxide dismutase, catalase, and glutathione peroxidase activities in sciatic nerve samples in comparison to nontreated groups. CONCLUSIONS The beneficial effects of melatonin administration on the recovery of the cut and crush injured sciatic nerve may be attributed to its antioxidant properties. Based on these investigations, we think that our data would be helpful for clinicians who deal with peripheral nerve injuries.
Collapse
|
24
|
Kallenborn-Gerhardt W, Schröder K, Geisslinger G, Schmidtko A. NOXious signaling in pain processing. Pharmacol Ther 2012; 137:309-17. [PMID: 23146925 DOI: 10.1016/j.pharmthera.2012.11.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Chronic pain affects millions of people and often causes major health problems. Accumulating evidence indicates that the production of reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, is increased in the nociceptive system during chronic inflammatory and neuropathic pain, and that ROS can act as specific signaling molecules in pain processing. Reduction of ROS levels by administration of scavengers or antioxidant compounds attenuated the nociceptive behavior in various animal models of chronic pain. However, the sources of increased ROS production during chronic pain and the role of ROS in pain processing are poorly understood. Current work revealed pain-relevant functions of the Nox family of NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. In particular, significant expression of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system has been discovered. Studies using knockout mice suggest that these Nox enzymes specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. Accordingly, targeting Nox1, Nox2, and Nox4 could be a novel strategy for the treatment of chronic pain. Currently selective inhibitors of Nox enzymes are being developed. Here, we introduce the distinct roles of Nox enzymes in pain processing, we summarize recent findings in the understanding of ROS-dependent signaling pathways in the nociceptive system, and we discuss potential analgesic properties of currently available Nox inhibitors.
Collapse
Affiliation(s)
- Wiebke Kallenborn-Gerhardt
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
Reactive oxygen species (ROS) contribute to sensitization of pain pathways during neuropathic pain, but little is known about the primary sources of ROS production and how ROS mediate pain sensitization. Here, we show that the NADPH oxidase isoform Nox4, a major ROS source in somatic cells, is expressed in a subset of nonpeptidergic nociceptors and myelinated dorsal root ganglia neurons. Mice lacking Nox4 demonstrated a substantially reduced late-phase neuropathic pain behavior after peripheral nerve injury. The loss of Nox4 markedly attenuated injury-induced ROS production and dysmyelination processes of peripheral nerves. Moreover, persisting neuropathic pain behavior was inhibited after tamoxifen-induced deletion of Nox4 in adult transgenic mice. Our results suggest that Nox4 essentially contributes to nociceptive processing in neuropathic pain states. Accordingly, inhibition of Nox4 may provide a novel therapeutic modality for the treatment of neuropathic pain.
Collapse
|
26
|
The Electrochemistry of Charge Injection at the Electrode/Tissue Interface. IMPLANTABLE NEURAL PROSTHESES 2 2010. [DOI: 10.1007/978-0-387-98120-8_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Khanzode SS, Muddeshwar MG, Khanzode SD, Dakhale GN. Antioxidant Enzymes and Lipid Peroxidation in Different Stages of Breast Cancer. Free Radic Res 2009; 38:81-5. [PMID: 15061657 DOI: 10.1080/01411590310001637066] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Oxidative stress resulting from an imbalance between pro-oxidants and anti-oxidants seems to play an important role in human breast carcinogenesis. There are conflicting reports regarding the tissue levels of malondialdehyde (MDA), ascorbic acid and superoxide dismutase (SOD) in breast cancer patients whereas few blood values have been reported. The present study was carried out to observe the changes in serum MDA, serum SOD and plasma ascorbic acid with the stage-wise progression of the disease. Serum MDA and serum SOD levels were found to be increased gradually from Stage I to Stage IV as compared to control group (p < 0.001). The maximum rise was in Stage IV patients. In contrast, mean plasma ascorbic acid levels were low in all stages compared to control group (p < 0.001). The decrease was more pronounced in Stage III and Stage IV. The study would be of immense help for establishing blood based biochemical marker in breast cancer patients.
Collapse
|
28
|
Arévalo-Martín Á, García-Ovejero D, Gómez O, Rubio-Araiz A, Navarro-Galve B, Guaza C, Molina-Holgado E, Molina-Holgado F. CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies. Br J Pharmacol 2008; 153:216-25. [PMID: 17891163 PMCID: PMC2219542 DOI: 10.1038/sj.bjp.0707466] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 12/21/2022] Open
Abstract
Amongst the various demyelinating diseases that affect the central nervous system, those induced by an inflammatory response stand out because of their epidemiological relevance. The best known inflammatory-induced demyelinating disease is multiple sclerosis, but the immune response is a common pathogenic mechanism in many other less common pathologies (e.g., acute disseminated encephalomyelitis and acute necrotizing haemorrhagic encephalomyelitis). In all such cases, modulation of the immune response seems to be a logical therapeutic approach. Cannabinoids are well known immunomodulatory molecules that act through CB1 and CB2 receptors. While activation of CB1 receptors has a psychotropic effect, activation of CB2 receptors alone does not. Therefore, to bypass the ethical problems that could result from the treatment of inflammation with psychotropic molecules, considerable effort is being made to study the potential therapeutic value of activating CB2 receptors. In this review we examine the current knowledge and understanding of the utility of cannabinoids as therapeutic molecules for inflammatory-mediated demyelinating pathologies. Moreover, we discuss how CB2 receptor activation is related to the modulation of immunopathogenic states.
Collapse
Affiliation(s)
- Á Arévalo-Martín
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - D García-Ovejero
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - O Gómez
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - A Rubio-Araiz
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - B Navarro-Galve
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - C Guaza
- Neuroimmunology Group, Instituto Cajal (CSIC) Madrid, Spain
| | - E Molina-Holgado
- Laboratory of Neuroinflammation, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos (SESCAM), 45071 Toledo, Spain-Research Unit associated to the Instituto Cajal (CSIC) Madrid, Spain
| | - F Molina-Holgado
- King's College London, The Wolfson Centre for Age-Related Diseases London, UK
| |
Collapse
|
29
|
Shokouhi G, Tubbs RS, Shoja MM, Hadidchi S, Ghorbanihaghjo A, Roshangar L, Farahani RM, Mesgari M, Oakes WJ. Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury. Childs Nerv Syst 2008; 24:111-7. [PMID: 17503055 DOI: 10.1007/s00381-007-0366-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 04/21/2007] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Melatonin, the secretory product of the pineal gland, has potent antioxidant properties. The aim of this study was to compare the effects of low-dose (10 mg/kg) vs high-dose (50 mg/kg) melatonin on early lipid peroxidation levels and ultrastructural changes in experimental blunt sciatic nerve injury (SNI). We believe this to be the first study to assess the dose-dependent neuroprotective effects of melatonin after a blunt peripheral nerve injury. MATERIALS AND METHODS Rats were randomly allocated into 5 groups of 10 animals each. The SNI only rats underwent a nerve injury procedure. The SNI plus vehicle group received SNI and intraperitoneal injection of vehicle (diluted ethanol) as a placebo. The SNI plus low-dose or high-dose melatonin groups received intraperitoneal melatonin at doses of 10 mg/kg or 50 mg/kg, respectively. Controls had no operation, melatonin or vehicle injection. SNI was induced by clamping the sciatic nerve at the upper border of the quadratus femoris for 2 min. RESULTS Sciatic nerve samples were harvested 6 h after nerve injury and processed for biochemical and ultrastructural analysis. Trauma increased the lipid peroxidation of the sciatic nerve by 3.6-fold (153.85 +/- 18.73 in SNI only vs 41.73 +/- 2.23 in control rats, P < 0.01). Low (P = 0.02) and high (P < 0.01) doses of melatonin attenuated the nerve lipid peroxidation by 25% and 57.25%, respectively (65.76 +/- 2.47 in high-dose vs 115.08 +/- 7.03 in low-dose melatonin groups). DISCUSSION Although low-dose melatonin reduced trauma-induced myelin breakdown and axonal changes in the sciatic nerve, high-dose melatonin almost entirely neutralized any ultrastructural changes. CONCLUSION Our results suggest that melatonin, especially at a dose of 50 mg/kg, has a potent neuroprotective effect and can preserve peripheral neural fibers from lipid peroxidative damage after blunt trauma. With further investigations, we hope that these data may prove useful to clinicians who treat patients with nerve injuries.
Collapse
Affiliation(s)
- Ghaffar Shokouhi
- Department of Neurosurgery and Anatomy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dubinina EE, Pustygina AV. Free radical processes in aging, neurodegenerative diseases and other pathological states. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807040026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Ates O, Cayli SR, Gurses I, Turkoz Y, Tarim O, Cakir CO, Kocak A. Comparative neuroprotective effect of sodium channel blockers after experimental spinal cord injury. J Clin Neurosci 2007; 14:658-65. [PMID: 17532502 DOI: 10.1016/j.jocn.2006.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Accepted: 03/27/2006] [Indexed: 10/23/2022]
Abstract
Spinal cord injury (SCI) results in loss of function below the lesion. Secondary injury following the primary impact includes a number of biochemical and cellular alterations leading to tissue necrosis and cell death. Influx of Na(+) ions into cells has been postulated to be a key early event in the pathogenesis of secondary traumatic and ischemic central nervous system injury. Previous studies have shown that some voltage-sensitive sodium channel blockers provide powerful neuroprotection. The purpose of the present study was to compare the neuroprotective effect of three sodium channel blockers-mexiletine, phenytoin and riluzole--after SCI. Ninety rats were randomly and blindly divided into five groups of 18 rats each: sham-operated group, trauma group (bolus injection of 1 mL physiological saline intraperiteonally [i.p.]), mexiletine treatment group (80 mg/kg, i.p.), phenytoin treatment group (200 mg/kg, i.p.) and riluzole treatment group (8 mg/kg, i.p.). Twenty-four hours after injury, the rats were killed for determination of spinal cord water content and malondialdehyde (MDA) levels. Motor function scores of six rats from each group were evaluated weekly for six weeks. Then the rats were killed for histopathological assessment. Although all the treatment groups revealed significantly lower MDA levels and spinal cord edema than the trauma group (p<0.05), the riluzole and mexiletine treatment groups were better than the phenytoin treatment group. In the chronic stage, riluzole and mexiletine treatment achieved better results for neurobehavioral and histopathological recovery than phenytoin treatment. In conclusion, all the tested Na(+) blockers had a neuroprotective effect after SCI; riluzole and mexiletine were superior to phenytoin.
Collapse
Affiliation(s)
- Ozkan Ates
- Inonu University, School of Medicine, Department of Neurosurgery, Turgut Ozal Medical Center, 44069 Malatya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
32
|
Gray M, Palispis W, Popovich PG, van Rooijen N, Gupta R. Macrophage depletion alters the blood-nerve barrier without affecting Schwann cell function after neural injury. J Neurosci Res 2007; 85:766-77. [PMID: 17266098 DOI: 10.1002/jnr.21166] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work has shown that, during the early phases of chronic nerve compression (CNC) injury, axonal pathology is absent while Schwann cells undergo a dramatic process of cellular turnover with marked proliferation. It is known that macrophages may release Schwann cell mitogens, so we sought to explore the role of macrophages in CNC injury by selectively depleting the population of hematogenously derived macrophages in nerves undergoing CNC injury by injecting clodronate liposomes at days 1, 3, and 6 postinjury and evaluating both the integrity of the blood-nerve barrier (BNB) and Schwann cell function. Integrity of the BNB was evaluated by intravenously injecting Evans blue albumin (EBA), and Schwann cell number was determined via stereologic techniques. The BNB was clearly altered by 2 weeks postinjury and continued to disintegrate at later time points. Macrophage depletion attenuated this response at all observed time points. Quantification of Schwann cell nuclei in CNC nerves showed no differences between compressed sections of macrophage-depleted and nondepleted animals. Although macrophages are largely responsible for the increased vascular permeability associated with CNC injury, it is likely that the Schwann cell response to CNC injury is not influenced by macrophage-derived mitogenic signals but rather must be mediated via alternative mechanisms.
Collapse
Affiliation(s)
- Michael Gray
- Department of Orthopaedic Surgery, University of California, Irvine, Irvine, California, USA
| | | | | | | | | |
Collapse
|
33
|
Gül S, Celik SE, Kalayci M, Taşyürekli M, Cokar N, Bilge T. Dose-dependent neuroprotective effects of melatonin on experimental spinal cord injury in rats. ACTA ACUST UNITED AC 2005; 64:355-61. [PMID: 16231427 DOI: 10.1016/j.surneu.2005.03.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND This report examines the dose-dependent effects of melatonin on early lipid peroxidation levels, ultrastructural changes, and neurological function in experimental spinal cord injury (SCI) by comparing them with therapeutic levels of methylprednisone in rats. METHODS SCI was performed by an aneurysm clip placed extradurally at the level of T10. Rats were randomly divided into six groups of 10 rats each. Group 1 (sham) received only laminectomy; group 2 (control) received SCI; group 3 (placebo) received SCI and physiological saline; group 4 received methylprednisone (30 mg/kg); groups 5 and 6 received melatonin at doses of 50 or 100 mg/kg, respectively, after SCI. Rats were neurologically tested 24 hours after trauma. Spinal cord samples were harvested for both lipid peroxidation levels and ultrastructural histopathological evaluation. RESULTS Neurological scores of rats were not different in SCI groups. Lipid peroxidation levels are significantly restricted only in methylprednisone group at 24 hours. Melatonin-treated groups showed more ultrastructural improvement on electron microscope studies when compared with methylprednisone group. However, the therapeutic effects of melatonin were mainly observed on white matter of spinal cord in ultrastructural investigation. There was significant difference between melatonin dose groups increasing with dose. CONCLUSIONS Results showed that melatonin has no significant dose-dependent effects on early lipid peroxidation bur rather some neuroprotective effects on both axons and myelin sheaths of white matter in ultrastructural observations when compared with methylprednisone. These effects significantly augmented with dose increase.
Collapse
Affiliation(s)
- Sanser Gül
- Department of Neurosurgery, Karaelmas University, Medical Faculty, Zonguldak 67100, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
Duce JA, Hollander W, Jaffe R, Abraham CR. Activation of early components of complement targets myelin and oligodendrocytes in the aged rhesus monkey brain. Neurobiol Aging 2005; 27:633-44. [PMID: 15992964 DOI: 10.1016/j.neurobiolaging.2005.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 02/16/2005] [Accepted: 03/09/2005] [Indexed: 02/03/2023]
Abstract
The disruption and loss of myelin in the white matter are some of the major changes that occur in the brain with age. In vitro studies suggest a role of the complement system in the catabolic breakdown of myelin membranes. This study presents findings on activation of the early components of complement cascade in the brains of both young and aged rhesus monkeys with evidence of increased complement activation in aged animals. Complement containing oligodendrocytes (CAOs) containing C3d and C4d complement activation products bound to oligodendrocytes and myelinated fibers were found in the brain of normal young and old animals. The CAOs, which also contained activated microglia, were distributed throughout the whole brain and in significantly greater numbers in the aged monkeys. These findings, together with the demonstration of covalent binding of the C3 fragments to myelin, suggest the initiation of the complement cascade by myelin and oligodendrocytes, which are known classical complement activators. Activation of terminal complement components was not demonstrable in the CAOs. Taken together the findings support the concept that activation of early components of complement in the brain may be a normal biological process that involves the metabolism of myelin and oligodendrocytes and up-regulates with age.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, K620, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
35
|
Kayali H, Ozdag MF, Kahraman S, Aydin A, Gonul E, Sayal A, Odabasi Z, Timurkaynak E. The antioxidant effect of beta-Glucan on oxidative stress status in experimental spinal cord injury in rats. Neurosurg Rev 2005; 28:298-302. [PMID: 15864722 DOI: 10.1007/s10143-005-0389-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 10/26/2004] [Accepted: 02/19/2005] [Indexed: 11/26/2022]
Abstract
This study was performed to investigate the antioxidant effect of beta-Glucan in experimental spinal cord injury (SCI). Injury was produced using weight-drop technique in rats. beta-Glucan was given by intraperitoneal injection following trauma. The rats were sacrificed at the sixth day of injury. Oxidative stress status was assessed by measuring the spinal cord tissue content of Malonyldialdehyde (MDA), Superoxide Dismutase (SOD) and Gluthatione Peroxidase (GSH-Px) activities. No effect of beta-Glucan on SOD and MDA activities was found but, GSH-Px levels were found to decrease to the baseline (preinjury) levels when it was compared to untreated group (U=0.000; p=0.002). According to our results, beta-Glucan works like a scavenger and has an antioxidant effect on lipid peroxidation in spinal cord injury.
Collapse
Affiliation(s)
- Hakan Kayali
- Department of Neurosurgery, Gulhane Military Medical Academy, 06018 Etlik, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, Acikgoz B. Neuroprotective Effects of Ebselen on Experimental Spinal Cord Injury in Rats. Neurochem Res 2005; 30:403-10. [PMID: 16018585 DOI: 10.1007/s11064-005-2615-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) results in rapid and significant oxidative stress. This study was aimed to investigate the possible beneficial effects of Ebselen in comparison with Methylprednisolone in experimental SCI. Thirty six Wistar albino rats (200-250 g) were divided in to six groups; A (control), B (only laminectomy), C (Trauma; laminectomy + spinal trauma), D (Placebo group; laminectomy + spinal trauma + serum physiologic), E (Methylprednisolone group; laminectomy + spinal trauma + Methylprednisolone treated), F (Ebselen group; laminectomy + spinal trauma + Ebselen treated), containing 6 rats each. Spinal cord injury (SCI) was performed by placement of an aneurysm clip, extradurally at the level of T11-12. After this application, group A, B and C were not treated with any drug. Group D received 1 ml serum physiologic. Group E received 30 mg/kg Methylprednisolone and, Group F received 10 mg/kg Ebselen intraperitoneally (i.p.). Rats were neurologically examined 24 h after trauma and spinal cord tissue samples had been harvested for both biochemical and histopathological evaluation. All rats were paraplegic after SCI except the ones in group A and B. Neurological scores were not different in traumatized rats than that of non-traumatized ones. SCI significantly increased spinal cord tissue malondialdehyde (MDA) and protein carbonyl (PC) levels and also decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) enzyme activities compared to control. Methylprednisolone and Ebselen treatment decreased tissue MDA and PC levels and prevented inhibition of the enzymes SOD, GSH-Px and CAT in the tissues. However, the best results were obtained with Ebselen. In groups C and D, the neurons of the spinal cord tissue became extensively dark and degenerated with picnotic nuclei. The morphology of neurons in groups E and F were very well protected, but not as good as the control group. The number of neurons in the spinal cord tissues of the groups C and D were significantly less than the groups A, B, E and F. We concluded that the use of Ebselen treatment might have potential benefits in spinal cord tissue damage on clinical grounds.
Collapse
Affiliation(s)
- Murat Kalayci
- Faculty of Medicine, Department of Neurosurgery, Zonguldak Karaelmas University, Zonguldak, Turkey
| | | | | | | | | | | | | |
Collapse
|
37
|
Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 2005; 141:171-98. [PMID: 15661300 DOI: 10.1016/j.jneumeth.2004.10.020] [Citation(s) in RCA: 1122] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/26/2022]
Abstract
The physical basis for electrical stimulation of excitable tissue, as used by electrophysiological researchers and clinicians in functional electrical stimulation, is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface. Faradaic and non-Faradaic charge transfer mechanisms are presented and contrasted. An electrical model of the electrode/tissue interface is given. The physical basis for the origin of electrode potentials is given. Various methods of controlling charge delivery during pulsing are presented. Electrochemical reversibility is discussed. Commonly used electrode materials and stimulation protocols are reviewed in terms of stimulation efficacy and safety. Principles of stimulation of excitable tissue are reviewed with emphasis on efficacy and safety. Mechanisms of damage to tissue and the electrode are reviewed.
Collapse
Affiliation(s)
- Daniel R Merrill
- Department of Bioengineering, University of Utah, 20 South 2030 East, Biomedical Polymers Research Building, Room 108G, Salt Lake City, UT 84112-9458, USA.
| | | | | |
Collapse
|
38
|
Bizzozero OA, DeJesus G, Callahan K, Pastuszyn A. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res 2005; 81:687-95. [PMID: 16007681 DOI: 10.1002/jnr.20587] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oxidative stress has been implicated in the pathophysiology of multiple sclerosis (MS). Increased levels of reactive oxygen species (ROS) derived from infiltrating macrophages and microglial cells have been shown to reduce the levels of endogenous antioxidants and to cause the oxidation of various substrates within the MS plaque. To determine whether oxidative damage takes place beyond visible MS plaques, the occurrence of total carbonyls (TCOs) and protein carbonyls (PCOs) in the normal-appearing white matter (NAWM) and gray matter (NAGM) of eight MS brains was assessed and compared with those of four control brains. The data show that most (7/8) of the MS-WM samples contain increased amounts of PCOs as determined by reaction with 2,4-dinitrophenylhydrazine and Western blot analysis. These samples also have high levels of glial fibrilary acidic protein (GFAP), suggesting that oxidative damage is related to the presence of small lesions. In contrast, we detected no evidence of protein thiolation (glutathionylation and cysteinylation) in the diseased tissue. To our surprise, MS-NAGM specimens with high GFAP content also showed three times the concentration of TCOs and PCOs as the controls. The increase in PCOs is likely to be a consequence of reduced levels of antioxidants, in that the concentration of nonprotein thiols in both MS-WM and -GM decreased by 30%. Overall, our data support the current view that both NAWM and -GM from MS brains contain considerable biochemical alterations. The involvement of GM in MS was also supported by the decrease in the levels of neurofilament light protein in all the specimens analyzed. To the best of our knowledge, this is the first study demonstrating the presence of increased protein carbonylation in post-mortem WM and GM tissue of MS patients.
Collapse
Affiliation(s)
- Oscar A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131-5218, USA.
| | | | | | | |
Collapse
|
39
|
Gupta R, Gray M, Chao T, Bear D, Modafferi E, Mozaffar T. Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury. Muscle Nerve 2005; 31:452-60. [PMID: 15685607 DOI: 10.1002/mus.20272] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To better understand the pathogenesis of chronic nerve compression injuries, we investigated the possibility that Schwann cell production of vascular endothelial growth factor (VEGF) is responsible for the increased vascularity and Schwann cell proliferation associated with chronic nerve injury. In situ hybridization was used to evaluate VEGF mRNA production with immunohistochemistry to further localize the production of VEGF and its receptor proteins in an animal model of chronic nerve compression injury. VEGF mRNA and protein expression increased within Schwann cells as early as 2 weeks after compression and peaked by 1 month with a subsequent marked increase in the number of blood vessels. Thus, chronic nerve compression injury induces Schwann cells to increase VEGF production, which may be responsible for changes in neural vasculature secondary to chronic nerve compression injury. With a better understanding of these nerve injuries, more effective treatments may be developed to help patients with these impairments.
Collapse
Affiliation(s)
- Ranjan Gupta
- Peripheral Nerve Research Laboratory, Department of Orthopedic Surgery, Medical Sciences I, Room B120, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Khanzode SD, Dakhale GN, Khanzode SS, Saoji A, Palasodkar R. Oxidative damage and major depression: the potential antioxidant action of selective serotonin re-uptake inhibitors. Redox Rep 2004; 8:365-70. [PMID: 14980069 DOI: 10.1179/135100003225003393] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is evidence of derangement of oxidant and antioxidant defense systems in depression. The present study examined the effects of fluoxetine and citalopram, standard selective serotonin re-uptake inhibitors, on lipid peroxidation, superoxide dismutase (SOD) activity and ascorbic acid concentrations. For this, a prospective open-labeled, randomized design was utilized. Patients with major depression (n = 62) were compared with age- and sex-matched healthy volunteers (n = 40). There was a significant increase in serum SOD, serum MDA and decrease in plasma ascorbic acid levels in patients of major depression as compared to control subjects. The trend reversed significantly after treatment with fluoxetine and citalopram. Results indicate a greater reduction in oxidative stress with citalopram than fluoxetine. The Hamilton Rating Scale for Depression (HRSD) score also improved with fluoxetine and citalopram treatment. These findings indicate that major depression is associated with increased levels of serum SOD, serum MDA and decreased levels of plasma ascorbic acid. Treatment with fluoxetine and citalopram reversed these biochemical parameters. This study can be used as a predictor of drug response by fluoxetine and citalopram in major depression.
Collapse
Affiliation(s)
- Suchet D Khanzode
- Department of Pharmacology, Government Medical College, Nagpur, India.
| | | | | | | | | |
Collapse
|
41
|
Nevison CM, Armstrong S, Beynon RJ, Humphries RE, Hurst JL. The ownership signature in mouse scent marks is involatile. Proc Biol Sci 2003; 270:1957-63. [PMID: 14561310 PMCID: PMC1691453 DOI: 10.1098/rspb.2003.2452] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Male house mice advertise their territory ownership through urinary scent marks and use individual-specific patterns of major urinary proteins (MUPs) to discriminate between their own scent and that of other males. It is not clear whether recognition occurs through discrimination of the non-volatile proteins or protein-ligand complexes (direct model), or by the detection of volatile ligands that are released from MUPs (indirect model). To examine the mechanism underlying individual scent mark signatures, we compared investigatory and countermarking responses of male laboratory mice presented with male scent marks from a strain with a different MUP pattern, when they could contact the scent or when contact was prevented by a porous nitrocellulose sheet to which proteins bind. Mice investigated scent marks from other males whether these were covered or not, and biochemical analysis confirmed that the porous cover did not prevent the release of volatiles from scent marks. Having gained information through investigation, mice increased their own scent marking only if they had direct contact with another male's urine, failing to do this when contact was prevented. Individual signatures in scent marks thus appear to be carried by non-volatile proteins or by non-volatile protein-ligand complexes, rather than by volatiles emanating from the scent.
Collapse
Affiliation(s)
- C M Nevison
- Animal Behaviour Group, Faculty of Veterinary Science, University of Liverpool, Leahurst, Neston CH64 7TE, UK
| | | | | | | | | |
Collapse
|
42
|
Hendriks JJA, de Vries HE, van der Pol SMA, van den Berg TK, van Tol EAF, Dijkstra CD. Flavonoids inhibit myelin phagocytosis by macrophages; a structure-activity relationship study. Biochem Pharmacol 2003; 65:877-85. [PMID: 12628496 DOI: 10.1016/s0006-2952(02)01609-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Demyelination is a characteristic hallmark of the neuro-inflammatory disease multiple sclerosis. During demyelination, macrophages phagocytose myelin and secrete inflammatory mediators that worsen the disease. Here, we investigated whether flavonoids, naturally occurring immunomodulating compounds, are able to influence myelin phagocytosis by macrophages in vitro. The flavonoids luteolin, quercetin and fisetin most significantly decreased the amount of myelin phagocytosed by a macrophage cell line without affecting its viability. IC(50) values for these compounds ranged from 20 to 80 microM. The flavonoid structure appeared to be essential for observed effects as flavonoids containing hydroxyl groups at the B-3 and B-4 positions in combination with a C-2,3 double bond were most effective. The capacity of the various flavonoids to inhibit phagocytosis correlated well with their potency as antioxidant, which is in line with the requirement of reactive oxygen species for the phagocytosis of myelin by macrophages. Our results implicate that flavonoids may be able to limit the demyelination process during multiple sclerosis.
Collapse
Affiliation(s)
- Jerome J A Hendriks
- Department of Molecular Cell Biology, VU Medical Centre, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Lucas M, Rodríguez MC, Gata JM, Zayas MD, Solano F, Izquierdo G. Regulation by interferon beta-1a of reactive oxygen metabolites production by lymphocytes and monocytes and serum sulfhydryls in relapsing multiple sclerosis patients. Neurochem Int 2003; 42:67-71. [PMID: 12441169 DOI: 10.1016/s0197-0186(02)00057-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The activation of lymphocytes and monocytes and the concentration of reduction equivalents in serum were studied in a cohort of multiple sclerosis (MS) patients undergoing weekly treatment with 30 microg intramuscular interferon beta-1a for 2 years. The degree of activation of monocytes and lymphocytes and reactive oxygen species (ROS) production was higher in MS patients than in healthy controls and decreased in the course of interferon beta-1a treatment approaching control values. The concentration of reduced sulfhydryls in the serum of MS patients was lower than in healthy controls and the treatment with interferon beta-1a (IFNbeta-1a) raised the levels approaching the values of healthy controls.
Collapse
Affiliation(s)
- Miguel Lucas
- Molecular Biology Service of the Virgen Macarena University Hospital, Avda. Dr. Fedriani 3, 41071 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Penkowa M, Espejo C, Martínez-Cáceres EM, Poulsen CB, Montalban X, Hidalgo J. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 2001; 119:248-60. [PMID: 11585628 DOI: 10.1016/s0165-5728(01)00357-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- A van der Goes
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Van den Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, De Vries HE. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J 2001; 15:1852-4. [PMID: 11481252 DOI: 10.1096/fj.00-0881fje] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A Van der Goes
- Department of Molecular Cell Biology and Immunology, VUMC, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Penkowa M, Hidalgo J. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE). Exp Neurol 2001; 170:1-14. [PMID: 11421579 DOI: 10.1006/exnr.2001.7675] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE. However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE in vivo and that MT-II might be a potentially useful factor for treatment of EAE/MS.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | | |
Collapse
|
48
|
Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 2001; 64:109-27. [PMID: 11240209 DOI: 10.1016/s0301-0082(00)00060-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrophage-mediated segmental demyelination is the pathological hallmark of autoimmune demyelinating polyneuropathies, including the demyelinating form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. Macrophages serve a multitude of functions throughout the entire pathogenetic process of autoimmune neuropathy. Resident endoneurial macrophages are likely to act as local antigen-presenting cells by their capability to express major histocompatibility complex antigens and costimulatory B7-molecules, and may thus be critical in triggering the autoimmune process. Hematogenous infiltrating macrophages then find their way into the peripheral nerve together with T-cells by the concerted action of adhesion molecules, matrix metalloproteases and chemotactic signals. Within the nerve, macrophages regulate inflammation by secreting several pro-inflammatory cytokines including IL-1, IL-6, IL-12 and TNF-alpha. Autoantibodies are likely to guide macrophages towards their myelin or primarily axonal targets, which then attack in a complement-dependent and receptor-mediated manner. In addition, non-specific tissue damage occurs through the secretion of toxic mediators and cytokines. Later, macrophages contribute to the termination of inflammation by promoting T-cell apoptosis and expressing anti-inflammatory cytokines including TGF-beta1 and IL-10. During recovery, they are tightly involved in allowing Schwann cell proliferation, remyelination and axonal regeneration to proceed. Macrophages, thus, play dual roles in autoimmune neuropathy, being detrimental in attacking nervous tissue but also salutary, when aiding in the termination of the inflammatory process and the promotion of recovery.
Collapse
Affiliation(s)
- R Kiefer
- Department of Neurology, Westfälische Wilhelms-Universität, Albert-Schweitzer-Strasse 33, D-48129 Münster, Germany.
| | | | | | | |
Collapse
|
49
|
Abstract
We examined the expression and roles of neuroprotective metallothionein-I+II (MT-I+II) in the rat CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for the human autoimmune disease, multiple sclerosis (MS). EAE caused significant macrophage activation, T-lymphocyte infiltration, and astrogliosis in spinal cord, brain stem, and cerebellum, which peaked 14-18 days after immunization. The remission of symptoms and histopathological changes began at days 19-21 and were completed by days 30-40. MT-I+II expression was increased significantly in EAE infiltrates. In order to study the effects of increased MT levels, we administered Zn-MT-II intraperitoneally (i.p.) to rats during EAE. Clinically, Zn-MT-II treatment reduced the severity of EAE symptoms and mortality in a time- and dose-dependent manner. Histopathologically, Zn-MT-II increased reactive astrogliosis and decreased macrophages and T lymphocytes significantly in the CNS. In spleen sections, the number of macrophages both in control and EAE-sensitized rats was reduced by Zn-MT-II, while the number of lymphocytes remained unaltered by Zn-MT-II. Therefore, we suggest that MT-II has peripheral mechanisms of action on macrophages, while T lymphocytes are affected locally in the CNS. During EAE, oxidative stress was decreased by Zn-MT-II, which could contribute to the diminished clinical scores observed. None of the effects caused by Zn-MT-II could be attributable to the zinc content. These results suggest MT-I+II as potentially useful factors for the treatment of EAE/MS.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
50
|
Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 2000; 177:95-103. [PMID: 10980305 DOI: 10.1016/s0022-510x(00)00343-9] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Soluble products of activated immune cells include reactive oxygen species (ROS) and nitric oxide (NO) with a high potential to induce biochemical modifications and degenerative changes in areas of inflammation in the central nervous system (CNS). Previously, we demonstrated an increased production of ROS by activated mononuclear cells (MNC) of patients with multiple sclerosis (MS) compared to those of controls, and development of oxidative damage to total DNA in association with inflammation in chronic active plaques. The current study aimed to determine whether mitochondrial (mt)DNA is affected by oxidative damage, and whether oxidative damage to mitochondrial macromolecules (including mtDNA) is associated with a decline in the activity of mitochondrial enzyme complexes. Using molecular and biochemical methods we demonstrate a trend for impaired NADH dehydrogenase (DH) activity and a possible compensatory increase in complex IV activity in association with oxidative damage to mtDNA in chronic active plaques. Immunohistochemistry confirms the increase of oxidative damage to DNA predominantly located in the cytoplasmic compartment of cells in chronic active plaques. These observations suggest that oxidative damage to macromolecules develops in association with inflammation in the CNS, and may contribute to a decline of energy metabolism in affected cells. As observed in neurodegenerative diseases of non-inflammatory origin, decreased ATP synthesis can ultimately lead to cell death or degeneration. Therefore, elucidation of this pathway in MS deserves further studies which may identify neuroprotective strategies to prevent tissue degeneration and the associated clinical disability.
Collapse
Affiliation(s)
- F Lu
- Department of Neurology, MS 406 MCP-Hahnemann University, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|