1
|
Radlowski EC, Johnson RW. Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 2013; 7:585. [PMID: 24065908 PMCID: PMC3779843 DOI: 10.3389/fnhum.2013.00585] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency is the most common form of nutrient deficiency worldwide. It is highly prevalent due to the limited availability of high quality food in developing countries and poor dietary habits in industrialized countries. According to the World Health Organization, it affects nearly 2 billion people and up to 50% of women who are pregnant. Maternal anemia during pregnancy is especially burdensome to healthy neurodevelopment in the fetus because iron is needed for proper neurogenesis, development, and myelination. Maternal anemia also increases the risk of low birth weight, either due to premature birth or fetal growth restriction, which is associated with delayed neurocognitive development and even psychiatric illness. As rapid neurodevelopment continues after birth infants that received sufficient iron in utero, but that receive a low iron diet after 6 months of age, also show deficits in neurocognitive development, including impairments in learning and memory. Unfortunately, the neurocognitive complications of iron deficiency during critical pre- and postnatal periods of brain development are difficult to remedy, persisting into adulthood. Thus, preventing iron deficiency in the pre- and postnatal periods is critical as is devising new means to recapture cognitive function in individuals who experienced early iron deficiency. This review will discuss the prevalence of pre- and postnatal iron deficiency, the mechanism, and effects of iron deficiency on brain and cognitive development.
Collapse
Affiliation(s)
- Emily C Radlowski
- 1Department of Animal Sciences, University of Illinois Urbana, IL, USA ; 2Division of Nutritional Sciences, University of Illinois Urbana, IL, USA
| | | |
Collapse
|
2
|
McClung JP, Murray-Kolb LE. Iron Nutrition and Premenopausal Women: Effects of Poor Iron Status on Physical and Neuropsychological Performance. Annu Rev Nutr 2013; 33:271-88. [DOI: 10.1146/annurev-nutr-071812-161205] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James P. McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts 01760;
| | - Laura E. Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
3
|
Espinosa-Jeffrey A, Hitoshi S, Zhao P, Awosika O, Agbo C, Olaniyan E, Garcia J, Valera R, Thomassian A, Chang-Wei R, Yamaguchi M, de Vellis J, Ikenaka K. Functional central nervous system myelin repair in an adult mouse model of demyelination caused by proteolipid protein overexpression. J Neurosci Res 2010; 88:1682-94. [PMID: 20127853 DOI: 10.1002/jnr.22334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two types of interventions to remyelinate the adult demyelinated central nervous system were investigated in heterozygous transgenic mice overexpressing the proteolipid protein gene. 1) A cocktail of trophic factors, "TS1," was directed toward the activation of the endogenous pool of neural progenitors to increase the number of myelinating oligodendrocytes (OL) in the brain. 2) A combinatorial approach in which OL progenitors were coinjected with TS1 into the corpus callosum of wild-type and He4e transgenic mice that displayed hindlimb paralysis. The levels of locomotor ability in these mice were evaluated after a single treatment. The data showed that a single administration of either one of the interventions had similar therapeutic effects, alleviating the symptoms of demyelination and leading to the recovery of hindlimb function. Histological and immunofluorescent examination of brain sections showed extensive remyelination that was sufficient to reverse hindlimb paralysis in transgenic mice. When the interventions were administered prior to hindlimb paralysis, He4e mice were able to walk up to 1 year of age without paralysis.
Collapse
Affiliation(s)
- A Espinosa-Jeffrey
- IDDRCsp, Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grünblatt E, Bartl J, Riederer P. The link between iron, metabolic syndrome, and Alzheimer's disease. J Neural Transm (Vienna) 2010; 118:371-9. [PMID: 20556444 DOI: 10.1007/s00702-010-0426-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/22/2010] [Indexed: 01/07/2023]
Abstract
Both Alzheimer's disease (AD), the most common form of dementia, and type-2 diabetes mellitus (T2DM), a disease associated with metabolic syndrome (MetS), affect a great number of the world population and both have increased prevalence with age. Recently, many studies demonstrated that pre-diabetes, MetS, and T2DM are risk factors in the development of AD and have many common mechanisms. The main focus of studies is the insulin resistance outcome found both in MetS as well as in brains of AD subjects. However, oxidative stress (OS)-related mechanisms, which are well known to be involved in AD, including mitochondrial dysfunction, elevated iron concentration, reactive oxygen species (ROS), and stress-related enzyme or proteins (e.g. heme oxygenase-1, transferrin, etc.), have not been elucidated in MetS or T2DM brains although OS and iron are involved in the degeneration of the pancreatic islet β cells. Therefore, this review sets to cover the current literature regarding OS and iron in MetS and T2DM and the similarities to mechanisms in AD both in human subjects as well as in animal models.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry, University of Zurich, Neumuensterallee 9, 8032, Zurich, Switzerland.
| | | | | |
Collapse
|
5
|
Youdim MBH. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox Res 2009; 14:45-56. [PMID: 18790724 DOI: 10.1007/bf03033574] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
While iron deficiency is not perceived as a life threatening disorder, it is the most prevalent nutritional abnormality in the world, and a better understanding of modes and sites of action, can help devise better treatment programs for those who suffer from it. Nowhere is this more important than in infants and children that make up the bulk of iron deficiency in society. Although the effects of iron deficiency have been extensively studied in systemic organs, until very recently little attention was paid to its effects on brain function. The studies of Oski at Johns Hopkin Medical School in 1974, demonstrating the impairment of learning in young school children with iron deficiency, prompted us to study its relevance to brain biochemistry and function in an animal model of iron deficiency. Indeed, rats made iron deficient have lowered brain iron and impaired behaviours including learning. This can become irreversible especially in newborns, even after long-term iron supplementation. We have shown that in this condition it is the brain striatal dopaminergic-opiate system which becomes defective, resulting in alterations in circadian behaviours, cognitive impairment and neurochemical changes closely associated with them. More recently we have extended these studies and have established that cognitive impairment may be closely associated with neuroanatomical damage and zinc metabolism in the hippocampus due to iron deficiency, and which may result from abnormal cholinergic function. The hippocampus is the focus of many studies today, since this brain structure has high zinc concentration and is highly involved in many forms of cognitive deficits as a consequence of cholinergic deficiency and has achieved prominence because of dementia in ageing and Alzheimer's disease. Thus, it is now apparent that cognitive impairment may not be attributed to a single neurotransmitter, but rather, alterations and interactions of several systems in different brain regions. In animal models of iron deficiency it is apparent that dopaminergic interaction with the opiate system and cholinergic neurotransmission may be defective.
Collapse
Affiliation(s)
- M B H Youdim
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| |
Collapse
|
6
|
Oxidative injury in the cerebral cortex and subplate neurons in periventricular leukomalacia. J Neuropathol Exp Neurol 2008; 67:677-86. [PMID: 18596545 DOI: 10.1097/nen.0b013e31817e5c5e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously identified immunocytochemical evidence of nitrative and oxidative injury in premyelinating oligodendrocytes in periventricular leukomalacia (PVL). Here, we tested the hypothesis that free radical injury occurs in the overlying cerebral cortex and subplate neurons in PVL. We immunostained for nitrotyrosine, malondialdehyde, and hydroxynonenal adducts and scored neuron staining density in PVL (n = 11) and non-PVL (n = 15) cases (postconceptional ages from 34 to 109 weeks). Analysis of covariance controlled for age. Mean malondialdehyde scores in PVL cases were increased over controls (p = 0.005). Hydroxynonenal scores increased with age only in PVL cases (diagnosis vs age interaction; p = 0.024). Nitrotyrosine scores were not significantly increased. In 11 PVL and 23 control cases between 20 and 183 postconceptional weeks, cells morphologically consistent with subplate and Cajal-Retzius neurons showed qualitatively increased free radical modification in PVL over control cases with statistically significant odds ratios for hydroxynonenal and nitrotyrosine in both subplate neurons and Cajal-Retzius cells. Glial fibrillary acidic protein and CD68 scores for reactive astrocytes and microglia, respectively, were not significantly increased, suggesting a minimal inflammatory response. Thus, oxidative/nitrative damage to cortical and "pioneer" neurons, although mild overall, may contribute to cortical volume loss and cognitive/behavioral impairment in survivors of prematurity.
Collapse
|
7
|
Lozoff B, Beard J, Connor J, Felt B, Georgieff M, Schallert T. Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy. Nutr Rev 2008. [DOI: 10.1111/j.1753-4887.2006.tb00243.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Expression of transferrin binding protein in the capillaries of the brain in the developing chick embryo. Neurochem Res 2008; 33:2288-93. [PMID: 18459044 DOI: 10.1007/s11064-008-9716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Transferrin-binding protein (TfBP) has been shown to be a novel protein, structurally related to the chicken heat shock protein 108. The physiological function of this protein, however, has not yet been established. Antiserum to TfBP selectively stains transferrin- and iron-rich oligodendrocytes and choroidal epithelium in the adult and embryonic chick brain, suggesting a role for this protein in transferrin and iron storage in these cells. In this study, we further demonstrate TfBP-immunoreactivity (IR) in the blood vessels of the embryonic chick central nervous system. A strong TfBP-IR was present in blood vessels from E6, declined from E10 and was absent by E18. Thus, the expression of the TfBP in the blood vessels precedes its expression in the oligodendrocytes. At the subcellular level, TfBP-IR was confined to the cytoplasm of capillary pericytes while the Tf-receptor IR was associated with the capillary endothelium of the brain. The up-regulated expression of TfBP, together with the Tf-receptor of the brain capillaries, suggests that pericytes may be associated with the high iron uptake required for the metabolic demands of the developing brain.
Collapse
|
9
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1549] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
10
|
Sow A, Lamant M, Bonny JM, Larvaron P, Piaud O, Lécureuil C, Fontaine I, Saleh MC, Garcia Otin AL, Renou JP, Baron B, Zakin M, Guillou F. Oligodendrocyte differentiation is increased in transferrin transgenic mice. J Neurosci Res 2006; 83:403-14. [PMID: 16400659 DOI: 10.1002/jnr.20741] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transferrin (Tf), the iron transport glycoprotein found in biological fluids of vertebrates, is synthesized mainly by hepatocytes. Tf is also synthesized by oligodendrocytes (Ol), and several lines of evidence indicate that brain Tf could be involved in myelinogenesis. Because Tf is postnatally expressed in the brain, we sought to investigate whether Tf could intervene in Ol differentiation. For this purpose, we analyzed transgenic mice overexpressing the complete human Tf gene in Ol. We show that the hTf transgene was expressed only from 5 days postpartum onward. In the brain of 14-day-old transgenic mice, the DM-20 mRNA level was decreased, whereas the PLP, MBP, CNP, and MAG mRNA levels were increased. We counted a higher proportion of Ol expressing the O4 (Ol-specific antigens) and PLP in brain cells cultured from transgenic mice. These results support the idea that overexpressing Tf in the brain accelerates the oligodendrocyte lineage maturation. Accordingly, by NMR imaging acquisition of diffusion tensor in hTf transgenic mice, we observed early maturation of the cerebellum and spinal cord and more myelination in the corpus callosum. In addition, hTf overexpression led to an increase in Sox10 mRNA and protein. Increases in Sox10 and in Tf expression occur simultaneously during brain development. The Olig1 mRNA level also increased, but long after the rise of hTf and Sox10. The Olig2 mRNA level remained unchanged in the brain of transgenic mice. Our findings suggest that Tf could influence oligodendrocyte progenitor differentiation in the CNS.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Blotting, Western/methods
- Body Weight/genetics
- Brain/cytology
- Cell Count/methods
- Cell Differentiation/genetics
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay/methods
- Gene Expression Regulation, Developmental/genetics
- Humans
- Immunohistochemistry/methods
- Magnetic Resonance Imaging/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic/physiology
- Myelin Basic Protein/genetics
- Myelin Basic Protein/metabolism
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/metabolism
- Myelin-Associated Glycoprotein
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligodendroglia/cytology
- Oligodendroglia/physiology
- RNA, Messenger/isolation & purification
- Radioimmunoassay/methods
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Transferrin/genetics
- Transferrin/metabolism
Collapse
Affiliation(s)
- Amina Sow
- Unité Physiologie de la Reproduction et des Comportements (PRC), Institut National de la Recherche Agronomique, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 2006; 64:S34-43; discussion S72-91. [PMID: 16770951 PMCID: PMC1540447 DOI: 10.1301/nr.2006.may.s34-s43] [Citation(s) in RCA: 602] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Infants are at high risk for iron deficiency and iron-deficiency anemia. This review summarizes evidence of long-term effects of iron deficiency in infancy. Follow-up studies from preschool age to adolescence report poorer cognitive, motor, and social-emotional function, as well as persisting neurophysiologic differences. Research in animal models points to mechanisms for such long-lasting effects. Potential mechanisms relate to effects of iron deficiency during brain development on neurometabolism, myelination, and neurotransmitter function.
Collapse
Affiliation(s)
- Betsy Lozoff
- Center for Human Growth and Development and the Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor 48109, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Back SA. Perinatal white matter injury: The changing spectrum of pathology and emerging insights into pathogenetic mechanisms. ACTA ACUST UNITED AC 2006; 12:129-40. [PMID: 16807910 DOI: 10.1002/mrdd.20107] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and diffuses myelination disturbances. Recent neuroimaging studies support that the incidence of PVL is declining, whereas focal or diffuse noncystic injury is emerging as the predominant lesion. Factors that predispose to PVL during prematurity include hypoxia, ischemia, and maternal-fetal infection. In a significant number of infants, PWMI appears to be initiated by perturbations in cerebral blood flow that reflect anatomic and physiological immaturity of the vasculature. Ischemic cerebral white matter is susceptible to pronounced free radical-mediated injury that particularly targets immature stages of the oligodendrocyte lineage. Emerging experimental data supports that pronounced ischemia in the periventricular white matter is necessary, but not sufficient to generate PWMI. The developmental predilection for PWMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible oligodendrocyte progenitors. Injury to oligodendrocyte progenitors may contribute to the pathogenesis of PWMI by disrupting the maturation of myelin-forming oligodendrocytes. Chemical mediators that may contribute to white-matter injury include reactive oxygen species glutamate, cytokines, and adenosine. As our understanding of the pathogenesis of PWMI improves, it is anticipated that new strategies for directly preventing brain injury in premature infants will develop.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health & Sciences University, Portland, Oregon, USA.
| |
Collapse
|
13
|
Abstract
Muscle cells grow by proliferation and protein accumulation. During the initial stages of development the participation of nerves is not always required. Myoblasts and satellite cells proliferate, fusing to form myotubes which further differentiate to muscle fibers. Myotubes and muscle fibers grow by protein accumulation and fusion with other myogenic cells. Muscle fibers finally reach a quasi-steady state which is then maintained for a long period. The mechanism of maintenance is not well understood. However, it is clear that protein metabolism plays a paramount role. The role played by satellite cells in the maintenance of muscle fibers is not known. Growth and maintenance of muscle cells are under the influence of various tissues and substances. Among them are Tf and the motor nerve, the former being the main object of this review and essential for both DNA and protein synthesis. Two sources of Tf have been proposed, i.e., the motor nerve and the tissue fluid. The first proposal is that the nervous trophic influence on muscle cells is mediated by Tf which is released from the nerve terminals. In this model, the sole source of Tf which is donated to muscle cells should be the nerve, and Tf should not be provided for muscle fiber at sites other than the synaptic region; otherwise, denervation atrophy would not occur, since Tf provided from TfR located at another site would cancel the effect of denervation. The second proposal is that Tf is provided from tissue fluid. This implies that an adequate amount of Tf is transferred from serum to tissue fluid; in this case TfR may be distributed over the entire surface of the cells. The trophic effects of the motor neuron have been studied in vivo, but its effects of myoblast proliferation have not been determined. There are few experiments on its effects on myotubes. Most work has been made on muscle fibers, where innervation is absolutely required for their maintenance. Without it, muscle fibers atrophy, although they do not degenerate. In contrast, almost all the work on Tf has been performed in vitro. Its effects on myoblast proliferation and myotube growth and maintenance have been established; myotubes degenerate following Tf removal. But its effects on mature muscle fibers in vivo are not well understood. Muscle fibers possess TfR all over on their cell surface and contain a variety of Fe-binding proteins, such as myoglobin. It is entirely plausible that muscle fibers require an amount of Tf, and that this is provided by TfR scattered on the cell surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
14
|
Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005; 23:1-25. [PMID: 15733784 DOI: 10.1016/j.mri.2004.10.001] [Citation(s) in RCA: 736] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 10/07/2004] [Indexed: 02/06/2023]
Abstract
For the last century, there has been great physiological interest in brain iron and its role in brain function and disease. It is well known that iron accumulates in the brain for people with Huntington's disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis, chronic hemorrhage, cerebral infarction, anemia, thalassemia, hemochromatosis, Hallervorden-Spatz, Down syndrome, AIDS and in the eye for people with macular degeneration. Measuring the amount of nonheme iron in the body may well lead to not only a better understanding of the disease progression but an ability to predict outcome. As there are many forms of iron in the brain, separating them and quantifying each type have been a major challenge. In this review, we present our understanding of attempts to measure brain iron and the potential of doing so with magnetic resonance imaging. Specifically, we examine the response of the magnetic resonance visible iron in tissue that produces signal changes in both magnitude and phase images. These images seem to correlate with brain iron content, perhaps ferritin specifically, but still have not been successfully exploited to accurately and precisely quantify brain iron. For future quantitative studies of iron content we propose four methods: correlating R2' and phase to iron content; applying a special filter to the phase to obtain a susceptibility map; using complex analysis to extract the product of susceptibility and volume content of the susceptibility source; and using early and late echo information to separately predict susceptibility and volume content.
Collapse
Affiliation(s)
- E Mark Haacke
- The MRI Institute for Biomedical Research, 440 East Ferry Street, Detroit, MI 48202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ortiz E, Pasquini JM, Thompson K, Felt B, Butkus G, Beard J, Connor JR. Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models. J Neurosci Res 2004; 77:681-9. [PMID: 15352214 DOI: 10.1002/jnr.20207] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several observations suggest that iron is an essential factor in myelination and oligodendrocyte biology. However, the specific role of iron in these processes remains to be elucidated. This role could be as an essential cofactor in metabolic processes or as a transcriptional or translational regulator. In this study, we used animals models each with a unique defect in iron availability, storage, or transfer to test the hypothesis that disruptions in these mechanisms affect myelinogenesis and myelin composition. Disruption of iron availability either by limiting dietary iron or by altering iron storage capacity resulted in a decrease in myelin proteins and lipids but not the iron content of myelin. Among the integral myelin proteins, proteolipid protein was most consistently affected, suggesting that limiting iron to oligodendrocytes results not only in hypomyelination but also in a decrease in myelin compaction. Mice deficient in transferrin must receive transferrin injections beginning at birth to remain viable, and these mice had increases in all of the myelin components and in the iron content of the myelin. This finding indicates that the loss of endogenous iron mobility in oligodendrocytes could be overcome by application of exogenous transferrin. Overall, the results of this study demonstrate how myelin composition can be affected by loss of iron homeostasis and reveal specific chronic changes in myelin composition that may affect behavior and attempts to rescue myelin deficits.
Collapse
Affiliation(s)
- E Ortiz
- Biological Chemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Approximately 10% of newborns are born prematurely. Of these children, more than 10% will sustain neurological injuries leading to significant learning disabilities, cerebral palsy, or mental retardation, with very low birth weight infants having an even higher incidence of brain injury. Whereas intraventricular hemorrhage was the most common form of serious neurological injury a decade ago, periventricular white matter injury (PWMI) is now the most common cause of brain injury in preterm infants. The spectrum of chronic PWMI includes focal cystic necrotic lesions (periventricular leukomalacia; PVL) and diffuse myelination disturbances. Recent neuroimaging studies support that the incidence of PVL is declining, whereas diffuse cerebral white matter injury is emerging as the predominant lesion. Factors that predispose to PVL include prematurity, hypoxia, ischemia, and inflammation. It is believed that injury to oligodendrocyte (OL) progenitors contributes to the pathogenesis of myelination disturbances in PWMI by disrupting the maturation of myelin-myelin-forming oligodendrocytes. Other potential mechanisms of injury include activation of microglia and axonal damage. Chemical mediators that may contribute to white matter injury include reactive oxygen (ROS) and nitrogen species (RNS), glutamate, cytokines, and adenosine. As our understanding of the pathogenesis of PWMI improves, it is anticipated that new strategies for directly preventing brain injury in premature infants will evolve.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health Science University, Portland, OR, USA
| | | |
Collapse
|
17
|
Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, Volpe JJ, Kinney HC. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 2004; 63:990-9. [PMID: 15453097 DOI: 10.1093/jnen/63.9.990] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Periventricular leukomalacia (PVL) involves free radical injury to developing oligodendrocytes (OLs), resulting from ischemia/reperfusion, particularly between 24 and 32 gestational weeks. Using immunocytochemistry and Western blots, we tested the hypothesis that this vulnerability to free radical toxicity results, in part, from developmental lack of superoxide dismutases (SOD)-1 and -2, catalase, and glutathione peroxidase (GPx) in the telencephalic white matter of the human fetus. During the period of greatest PVL risk and through term (> or = 37 weeks), expression of both SODs (for conversion of O2- to H2O2) significantly lagged behind that of catalase and GPx (for breakdown of H2O2), which, in contrast, superseded adult levels by 30 gestational weeks. Our data indicate that a developmental "mismatch" in the sequential antioxidant enzyme cascade likely contributes to the vulnerability to free radical toxicity of the immature cerebral white matter, which is "unprepared" for the transition from a hypoxic intrauterine to an oxygen-rich postnatal environment. All enzymes, localized to astrocytes and OLs, had higher-than-adult expression at 2 to 5 postnatal months (peak of myelin sheath synthesis), suggesting an adaptive mechanism to protect against lipid peroxidation during myelin sheath (lipid) synthesis. The previously unrecognized dissociation between the expression of the SODs and that of catalase and GPx in the fetal period has potential implications for future antioxidant therapy in PVL.
Collapse
Affiliation(s)
- Rebecca D Folkerth
- From Departments of Pathology (Neuropathology), Children's Hospital, Boston, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- James R Connor
- Department of Neuroscience & Anatomy, M.S. Hershey Medical Center, Penn State University College of Medicine, Hershey, PA 17000, USA.
| |
Collapse
|
19
|
Abstract
Iron deficiency in early life is associated with delayed development as assessed by a number of clinical trials using similar global scales of development; this poor development during infancy persists in most cases after iron therapy has corrected iron status. If iron deficiency occurs in preschool and older children, the consequences appear reversible with treatment. The biologic understanding of this relationship between development, brain iron status, and functioning is sparse though animal studies repeatedly demonstrate alterations in dopamine metabolism and in the myelination process. Dietary iron deficiency can rapidly deplete brain iron concentrations and repletion is able to normalize them. Residual alterations in striatal dopamine metabolism and myelin production persist if neonatal animals are used. Future studies with more specific measures of neurodevelopment in iron-deficient human infants, and animal models, will allow investigators to more clearly define causal roles of brain iron in neural development and functioning.
Collapse
Affiliation(s)
- John L Beard
- Department of Nutritional Sciences The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
20
|
Marta CB, Paez P, Lopez M, Pellegrino de Iraldi A, Soto EF, Pasquini JM. Morphological changes of myelin sheaths in rats intracranially injected with apotransferrin. Neurochem Res 2003; 28:101-10. [PMID: 12587668 DOI: 10.1023/a:1021604413737] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous findings from our laboratories indicate that the intracranial injection of apotransferrin (aTf) in neonatal rats produces an accelerated oligodendrocyte maturation and an enhanced production and deposition of myelin membranes in the brain. To evaluate the anatomical distribution and the morphological characteristics of the myelin in these rats, we analyzed the optic nerves, cerebellum, and selected areas of brain sections from aTf-treated and control rats by both light and electron microscopy. Microscopic identification of myelin using a specific staining procedure, showed that in aTf-injected rats, in coincidence with previous biochemical studies, there was an increased deposition of myelin in selected areas of the nervous system. Qualitative and quantitative analysis of electron micrographs from areas showing increased myelinaton, such as the optic nerves and the corpus callosum, showed that among other changes, the intracranial treatment with aTf produces ultrastructural evidences of myelin decompaction, consisting of an enlargement in the distance between adjacent major dense lines, a decreased density of the intraperiod line, and an increased electron density of the major dense line, accompanied by a significant increase in its width. The intracranial administration of aTf induces an increased deposition of myelin by oligodeudroglial cells (OLGc), and these myelin membranes, in spite of the changes in composition and in morphology, appear to function normally. Apotransferrin can be considered as a differentiation factor that could be used to stimulate remyelination in cases in which myelin has been destroyed by various pathological processes.
Collapse
Affiliation(s)
- Cecilia B Marta
- Departamento de Quimica Biológica and Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), UBA-CONICET, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Iron deficiency is a common disorder in pediatric patients. Although the most common manifestation is that of anemia, iron deficiency is frequently the source of a host of neurologic disorders presenting to general pediatric neurologic practices. These disorders include developmental delay, stroke, breath-holding episodes, pseudotumor cerebri, and cranial nerve palsies. Although frequent, the identification of iron deficiency as part of the differential diagnosis in these disorders is uncommon and frequently goes untreated. The purpose of the current review is to highlight what is understood regarding iron deficiency and it's underlying pathophysiology as it relates to the brain, and the association of iron deficiency with common neurologic pediatric disease.
Collapse
Affiliation(s)
- Jerome Y Yager
- Department of Pediatrics, University of Saskatchewan;, Saskatoon, Canada
| | | |
Collapse
|
22
|
Moos T, Oates PS, Morgan EH. Expression of transferrin mRNA in rat oligodendrocytes is iron-independent and changes with increasing age. Nutr Neurosci 2002; 4:15-23. [PMID: 11842873 DOI: 10.1080/1028415x.2001.11747347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As transferrin in the brain may originate principally from synthesis by three different cell types, i.e. hepatocytes, oligodendrocytes and choroid plexus, this study employed a morphological analysis to specifically address oligodendrocytic expression of transferrin mRNA in young (P17) and adult (P50) rats. In spite of a lowering of the concentration of brain iron by approximately 22% in the young iron deficient rats transferrin mRNA expression in oligodendrocytes was not affected when measured by quantitative densitometry. In adult rats, the baseline transferrin mRNA expression in oligodendrocytes was higher than in the young animals, but did not change in spite of a reduction in brain iron by approximately 19%. Brain iron and transferrin mRNA expression in oligodendrocytes were unaltered in iron overloaded rats when compared to age-matched controls. As transferrin expression was lower in the young rat, when constituents from the blood have a relatively higher concentration in the brain than during adulthood, it seems unlikely that blood-borne factors such as transition metals act as inducers of transferrin gene expression in oligodendrocytes. Instead, the higher but constitutive expression of transferrin mRNA at later ages, when the blood-brain barrier segregates the brain from other body parts, may indicate that molecules released from the brain interior are responsible for regulating transcription of the transferrin gene.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
23
|
Abstract
The ability of the brain to store a readily bioavailable source of iron is essential for normal neurologic function because both iron deficiency and iron excess in the brain have serious neurologic consequences. The blood-brain barrier presents unique challenges to timely and adequate delivery of iron to the brain. The regional compartmentalization of neurologic function and a myriad of cell types provide additional challenges. Furthermore, iron-dependent events within the central nervous system (CNS) are age dependent (e.g., myelination) or region specific (e.g., dopamine synthesis). Thus the mechanisms for maintaining the delicate balance of CNS iron concentration must be considered on a region-specific and age-specific basis. Confounding factors that influence brain iron acquisition in addition to age-specific and region-specific requirements are dietary factors and disease. This article raises and addresses the novel concept of regional regulation of brain iron uptake by reviewing the developmental patterns of iron accumulation and expression of proteins responsible for maintaining iron homeostasis in a region-specific and cell-specific manner. Understanding these mechanisms is essential for generating insights into diseases such as Hallervorden-Spatz syndrome, in which excess iron accumulation in the brain plays a significant role in the disease process, and should also unveil windows of opportunity for replenishing the brain in a state of iron deficiency.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
24
|
Viola H, Marta CB, Medina JH, Soto EF, Pasquini JM. Anxiolytic-like behavior in rats is induced by the neonatal intracranial injection of apotransferrin. J Neurosci Res 2001; 63:196-9. [PMID: 11169629 DOI: 10.1002/1097-4547(20010115)63:2<196::aid-jnr1011>3.0.co;2-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine whether neonatal intracranial injection of apotransferrin (aTf), which increases myelin deposition, has behavioral effects in rats, 3-day-old rats were intracranially injected with 350 ng of aTf and tested at 25 and 60 days of age. An anxiolytic-like behavior was observed in aTf-treated rats, evidenced by an increase in the exploration of open arms in the plus maze test without changes in the locomotor activity. This behavioral profile persists until adulthood. Intraperitoneal injection of 0.75 mg/kg of picrotoxin, a GABA(A) receptor channel antagonist, abolished this anxiolytic-like behavior, indicating that neonatal aTf induces a long-lasting increase in GABA(A) receptor functionality.
Collapse
Affiliation(s)
- H Viola
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
25
|
Abstract
Restless Legs Syndrome (RLS) is a disorder of sensation with a prevalence of around 2-5% of the population. Relevant to understanding the possible pathophysiological mechanism is the fact that RLS is extremely responsive to dopaminergic agents. A second issue is that iron deficiency states may precipitate RLS in as much as 25-30% of people with iron deficiency. Studies looking at basal ganglia dopaminergic function using PET and SPECT techniques have shown a decrease in binding potential for the dopamine receptor and transporter. Similar phenomena occurs in iron-deficient animals. Using MRI techniques and CSF analysis of iron-related protein, studies have suggested a reduction in brain iron concentration occurs in RLS patients. The relevance of CNS iron metabolism to the pathophysiology of RLS is discussed.
Collapse
Affiliation(s)
- C J Earley
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- M B Youdim
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research, and Technion-Faculty of Medicine, Department of Pharmacology, Rappaport Family Research Institute, Haifa, Israel.
| |
Collapse
|
27
|
Papanastasiou DA, Vayenas DV, Vassilopoulos A, Repanti M. Concentration of iron and distribution of iron and transferrin after experimental iron overload in rat tissues in vivo: study of the liver, the spleen, the central nervous system and other organs. Pathol Res Pract 2000; 196:47-54. [PMID: 10674272 DOI: 10.1016/s0344-0338(00)80021-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to estimate the iron concentration in the liver, spleen and brain of control rats and rats overloaded with iron and to determine the distribution of iron and of transferrin (TF). Iron was administered to Wistar rats by food supplemented with 3% carbonyl iron for 3 months, or intraperitoneally, or intraveneously as iron polymaltose for 4 months (total administered dose: 300 or 350 mg/rat, respectively). Iron concentration was estimated by atomic absorption spectrophotometry and iron- and TF-distribution histochemically and immunohistochemically, respectively. In control rats the organ with the highest iron content was the spleen, followed by the liver and brain. After iron loading the increase of iron in the liver was greater than that of the spleen; iron concentration in the brain did not change significantly. Distribution of iron in the liver was in Kupffer cells throughout the lobule and in hepatocytes at its periphery. No difference in the number of positive cells or staining intensity for TF was observed between control rats and iron overloaded animals in the liver or central nervous system (CNS); the spleen was negative for TF. Distribution of TF in the liver showed a centrilobular localisation in hepatocytes. TF reaction in the brain occurred in oligodendrocytes, vessel walls, choroid plexus epithelial cells and some neurons. In conclusion, experimental iron overload in rats leads to iron uptake mainly by reticuloendothelial (RE) cells and hepatocytes, indicating that hepatocytes are of particular importance for iron metabolism. Iron uptake by the brain was not significant, probably because the brain is protected against iron overload. Iron overload did not influence location and quantity of TF in the liver and CNS, whereas the visualisation of iron and TF did not coincide. This indicates that TF may have other functions beyond iron transport.
Collapse
Affiliation(s)
- D A Papanastasiou
- Department of Pediatrics, School of Medicine, University of Patras, Greece
| | | | | | | |
Collapse
|
28
|
Abstract
1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation. 2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood-brain, blood-CSF, and cellular-plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells. 3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood-brain barrier have been proposed. One is that the Fe-transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe-transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms. 4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood-CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood-CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms. 5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood-brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status. 6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood-brain and blood-CSF barriers and the cell membranes of neurons and glial cells.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
29
|
Moos T, Oates PS, Morgan EH. Iron-independent neuronal expression of transferrin receptor mRNA in the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 72:231-4. [PMID: 10529482 DOI: 10.1016/s0169-328x(99)00226-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuronal transferrin receptor protein expression is highly upregulated widely in CNS following iron deficiency. Using the medial habenular nucleus as a model of neuronal transferrin receptor mRNA expression, the present study examined 17-day-old rats subjected to variations in dietary iron. Changing the iron availability resulted in alterations in plasma and cerebrospinal fluid (CSF) levels of transferrin and iron. The iron-binding capacity of transferrin in CSF was exceeded in normal and iron-overloaded rats. In spite of a lowering of the concentration of brain iron by approximately 22% in iron-deficient rats, neuronal transferrin receptor mRNA was not affected when measured by quantitative densitometry. Brain iron and neuronal transferrin receptor mRNA expression was unaltered in iron overloaded rats. The absence of a rise in transferrin receptor mRNA during iron deficiency suggests that neuronal transferrin receptor mRNA expression is regulated by another mechanism than the post-transcriptional regulation mechanism, which has been attributed to cells of non-neural tissue.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy, Section C, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
30
|
Abstract
The metals iron (Fe) and manganese (Mn) are essential for normal functioning of the brain. This review focuses on recent developments in the literature pertaining to Fe and Mn transport. These metals are treated together because they appear to share several transport mechanisms. In addition, several neurological diseases such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease are all associated with Fe mismanagement in the brain, particularly in the striatum and basal ganglia. Similarly, Mn accumulation in brain also appears to target the same brain regions. Therefore, stringent regulation of the concentration of these metals in the brain is essential. The homeostatic mechanisms for these metals must be understood in order to design neurotoxicity prevention strategies.
Collapse
Affiliation(s)
- E A Malecki
- Department of Neuroscience and Anatomy, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|
31
|
Espinosa de los Monteros A, Kumar S, Zhao P, Huang CJ, Nazarian R, Pan T, Scully S, Chang R, de Vellis J. Transferrin is an essential factor for myelination. Neurochem Res 1999; 24:235-48. [PMID: 9972870 DOI: 10.1007/s11064-004-1826-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been established that oligodendrocytes, the myelin forming cells, participate in iron homeostasis through the synthesis and secretion of transferrin. Here we investigated whether a correlation exists between myelination, the commonly studied function of oligodendrocytes, and that of transferrin synthesis and secretion. We used a proteolipid protein mutant, the myelin deficient rat, whose condition is characterized by severe hypomyelination. We compared the ontogenic profile for transferrin gene expression in mutants with that of unaffected rat pups through northern blot analysis and in situ hybridization. Surprisingly, transferrin synthesis was null in mutant oligodendrocytes. Next, we demonstrated that a single apo-transferrin intraparenchymal injection administered to P5 rat pups enabled mutant oligodendrocytes to synthesize myelin basic protein and to myelinate axons, indicating that transferrin effects mutant oligodendrocyte maturation regardless of its source. Thus, transferrin availability is essential for oligodendrocyte maturation and function, and oligodendrocytes are most vulnerable to transferrin deficiency during the premyelinating stage.
Collapse
Affiliation(s)
- A Espinosa de los Monteros
- Mental Retardation Research Center, Department of Neurobiology, Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90024-1759, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dickinson TK, Connor JR. Immunohistochemical analysis of transferrin receptor: regional and cellular distribution in the hypotransferrinemic (hpx) mouse brain. Brain Res 1998; 801:171-81. [PMID: 9729367 DOI: 10.1016/s0006-8993(98)00575-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The hypotransferrinemic (hpx) mouse mutant produces <1% of the normal circulating level of transferrin (Tf). Heterozygote animals of this strain (hpx/+) have approximately 50% of normal plasma Tf levels. In this study we examine the cellular and regional distribution of Tf receptor (Tf-R) in the brain of wild type, hpx/+ and mutant (hpx/hpx) mice. Also, using slot-blot (immunoblot) analysis, we describe the relative amount of Tf-R in brain microvessels of hpx/+ animals compared with wild type. Tf-R was seen primarily in neurons throughout the brains of wild type, hpx/+ and hpx/hpx animals. Gray matter areas immunoreacted more robustly than white matter areas. Oligodendrocytes and third ventricle tanycytes, both of which we have previously described as iron-positive, did not immunoreact for Tf-R. Tf-R immunohistochemical reaction in wild type, hpx/+ and hpx/hpx brains appeared similar. Immunoblot analysis of isolated cortical microvessels from wild type and hpx/+ animals revealed no upregulation of Tf-R expression in hpx/+ (relative to normal) despite a 50% decrease in circulating Tf levels. These results indicate that Tf-R is primarily expressed by neurons and that half normal levels of Tf (hpx/+) or transferrin supplementation (hpx/hpx) are apparently sufficient for normal expression and distribution of Tf-R. Because of the lack of circulating Tf, but unaltered Tf-R expression, hpx mice could serve as a model for delivery of therapeutic agents via the Tf/Tf-R system.
Collapse
Affiliation(s)
- T K Dickinson
- Division of Natural Sciences, Keuka College, Keuka Park, NY 14478, USA
| | | |
Collapse
|
33
|
Moos T, Morgan EH. Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res 1998; 790:115-28. [PMID: 9593852 DOI: 10.1016/s0006-8993(98)00055-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the kinetics and distribution of [59Fe-125I] rat Tf and unlabelled human Tf injected into a lateral cerebral ventricle (i.c. v. injection) in the rat. [56Fe-131I]Tf injected intravenously served as a control of blood-brain barrier (BBB) integrity. In CSF of adult rats, 59Fe and [125I]Tf decreased to only 2.5% of the dose injected after 4 h. In brain parenchyma, [125I]Tf had disappeared after 24 h, whereas approximately 18% of i.c.v.-injected 59Fe was retained even after 72 h. The elimination pattern of [125I]Tf from the CSF corresponded to that of [131I]albumin injected i.c.v., suggesting a nonselective washout of CSF proteins. [131I]Tf was hardly detectable in the brain, reflecting an unimpaired BBB during the experiments. Morphologically, 59Fe and i.c.v. injected human Tf were confined to the ventricular surface and meningeal areas, whereas grey matter regions at distances more than 2-3 mm from the ventricles and the subarachnoid space were unlabelled. However, accumulation of 59Fe was observed in the anterior thalamic and the medial habenular nuclei, and in brain regions with synaptic communications to these areas. In the newborn rats aged 7 days (P7) injected i.c.v. with [59Fe-125I]Tf and examined after 24 h, the amounts of [125I]Tf in CSF were approximately 3.5 times higher than in adult rats collected after the same time interval, whereas the amounts of 59Fe in CSF were at the same level in P7 and adult rats. In the brain tissue of the i.c.v. injected P7 rats, both [125I]Tf and 59Fe were retained to a significantly higher degree compared to that seen in adult brains. The rapid washout and lack of capability for i.c.v. injected [125I]Tf to penetrate deeply into the brain parenchyma of the adult brain question the importance of Tf of the CSF, and choroid plexus-derived Tf, for Fe neutralization and delivery of Fe-Tf to TfR-containing neurons and other cells in the CNS. However, it may serve these functions in young animals due to a lower rate of turnover of CSF.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy A, The Panum Institute, The University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Ozawa H, Takashima S. Immunocytochemical development of transferrin and ferritin immunoreactivity in the human pons and cerebellum. J Child Neurol 1998; 13:59-63. [PMID: 9512304 DOI: 10.1177/088307389801300203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The distribution and development of transferrin-positive cells in the pons and cerebellum of human fetuses to adults were examined immunohistochemically, compared with those of ferritin-positive cells. Transferrin was present in oligodendrocytes, astrocytes, and neurons. Transferrin-positive neurons appeared at 18 weeks of gestation in Purkinje cells and the pontine reticular formation. In the pontine nuclei, transferrin-positive neurons appeared at 22 weeks of gestation. On the other hand, transferrin-positive glia also appeared at 18 weeks of gestation in the reticular formation, and at 24 weeks of gestation in the cerebellar white matter and pontine nuclei. Transferrin-positive glia and cells appeared earlier in the reticular formation of the pons than ferritin, but the order of its appearance was similar to that of ferritin and myelination. Because iron is involved in the syntheses and functions of dopamine, serotonin, and gamma-aminobutyric acid (GABA), transferrin may be carried for various iron uses from an early fetal stage.
Collapse
Affiliation(s)
- H Ozawa
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | |
Collapse
|
35
|
|
36
|
Abstract
Oligodendrocytes are the predominant iron-containing cells in the brain. Iron-containing oligodendrocytes are found near neuronal cell bodies, along blood vessels, and are particularly abundant within white matter tracts. Iron-positive cells in white matter are present from birth and eventually reside in defined patches of cells in the adult. These patches of iron-containing cells typically have a blood vessel in their center. Ferritin, the iron storage protein, is also expressed early in development in oligodendrocytes in a regional and cellular pattern similar to that seen for iron. Recently, the functionally distinct subunits of ferritin have been analyzed; only heavy (H)-chain ferritin is found in oligodendrocytes early in development. H-ferritin is associated with high iron utilization and low iron storage. Consistent with the expression of H-ferritin is the expression of transferrin receptors (for iron acquisition) on immature oligodendrocytes. Transferrin protein accumulation and mRNA expression in the brain are both dependent on a viable population of oligodendrocytes and may have an autocrine function to assist oligodendrocytes in iron acquisition. Although apparently the majority of oligodendrocytes in white matter tracts contain ferritin, transferrin, and iron, not all of them do, indicating that there is a subset of oligodendrocytes in white matter tracts. The only known function of oligodendrocytes is myelin production, and both a direct and indirect relationship exists between iron acquisition and myelin production. Iron is directly involved in myelin production as a required co-factor for cholesterol and lipid biosynthesis and indirectly because of its requirement for oxidative metabolism (which occurs in oligodendrocytes at a higher rate than other brain cells). Factors (such as cytokines) and conditions such as iron deficiency may reduce iron acquisition by oligodendrocytes and the susceptibility of oligodendrocytes to oxidative injury may be a result of their iron-rich cytoplasm. Thus, the many known phenomena that decrease oligodendrocyte survival and/or myelin production may mediate their effect through a final common pathway that involves disruptions in iron availability or intracellular management of iron.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, M.S. Hershey Medical Center, Pennsylvania State University College of Medicine 17033, USA
| | | |
Collapse
|
37
|
|
38
|
Dickinson TK, Connor JR. Cellular distribution of iron, transferrin, and ferritin in the hypotransferrinemic (Hp) mouse brain. J Comp Neurol 1995; 355:67-80. [PMID: 7636015 DOI: 10.1002/cne.903550109] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hypotransferrinemic (Hp) mice have a point mutation or small deletion in the transferrin (Tf) gene, resulting in defective splicing of precursor Tf mRNA. Hp animals produce < 1% of normal Tf levels and require supplemental serum or purified Tf for survival. Because of the lack of endogenous brain Tf, we examined regional and cellular distributions of iron and iron regulatory proteins (Tf and ferritin) in selected brain regions of Hp mice. The regional distribution of iron, Tf, and ferritin in Hp brain was similar to normal except for the pattern of iron staining in hippocampus. The cellular distribution of iron, ferritin, and Tf was similar between Hp and normal animals. The predominant cell type staining for Tf and iron was oligodendrocytes. Qualitative observations suggest that the number of cells staining for iron was similar between Hp and normal mice, whereas the number of Hp Tf-positive cells was reduced. Ferritin immunostaining was similar in both cases. However, ferritin-positive cells were predominantly astrocytes, an observation unique to mice among species studied previously. Western blot analysis revealed that Tf present in Hp brain was of exogenous origin (from supplemental injections). Presumably, Tf transports the iron found in Hp oligodendrocytes. These data demonstrate that, despite reduced endogenous Hp brain Tf, iron and plasma Tf migrate or are transported to the appropriate cells (oligodendrocytes), bringing into question the role of endogenous brain Tf in extracellular iron transport.
Collapse
Affiliation(s)
- T K Dickinson
- George M. Leader Family Laboratory For Alzheimer's Disease Research, Department of Neuroscience and Anatomy, Pennsylvania State University, College of Medicine, M.S. Hershey Medical Center, Hershey 17033, USA
| | | |
Collapse
|
39
|
Connor JR, Pavlick G, Karli D, Menzies SL, Palmer C. A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 1995; 355:111-23. [PMID: 7636007 DOI: 10.1002/cne.903550112] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The establishment of normal iron levels in the neonatal brain is critical for normal neurological development. Studies have shown that both iron uptake and iron concentration in the brain are relatively high during neonatal development. This histochemical study was undertaken to determine the pattern of iron development at the cellular level in the rat forebrain. Iron-stained cells were observed as early as postnatal day (PND) 3, which was the earliest time point examined. At PND 3, there were four major foci of iron-containing cells: the subventricular zone and three areas within the subcortical white matter. These latter foci are associated with myelinogenic regions. The blood vessels were prominently stained for iron throughout the brain. At PND 7, as in PND 3, the majority of the iron-containing cells were in white matter. However, there were also patches of iron staining located specifically in the layer IV of the somatosensory cortex. These cortical patches were no longer visible by PND 14. At PND 14, numerous iron-stained cells were dispersed throughout white matter regions and the tanycytes aligning the third ventricle were prominently stained. The blood vessel staining was less prominent than at earlier time periods. By PND 28, the adult pattern of iron staining was emerging. Iron-stained cells were aligned in rows in white matter and had an apparent preference for a location near blood vessels. This clustering of iron-positive cells around blood vessels gave the white matter a "patchy" appearance. The pattern of development, cell distribution, and morphological appearance of the iron-stained cells are consistent with that reported for oligodendrocytes. That iron-positive cells in the neonate may be oligodendrocytes is consistent with the reports for iron staining in adult brains. The recent reports that oligodendrocytes are highly susceptible to oxidative damage would be consistent with the high iron levels found in these cells. These results indicate that oligodendrocytes play a major role in the development of iron homeostasis in the brain. The role of iron in oligodendrocytes may be associated with metabolic demands of myelinogenesis, including cholesterol and fatty acid synthesis. However, these cells may be a morphologically similar but functionally distinct subset of oligodendrocytes whose function is to regulate the availability of iron in the brain.
Collapse
Affiliation(s)
- J R Connor
- George M. Leader Family Laboratory for Alzheimer's Disease Research, Department of Neuroscience and Anatomy, Pennsylvania State University School of Medicine, M.S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
40
|
Ozawa H, Nishida A, Mito T, Takashima S. Ferritin immunohistochemical study on pontine nuclei from infants with pontosubicular neuron necrosis. Brain Dev 1995; 17:20-3. [PMID: 7762757 DOI: 10.1016/0387-7604(94)00106-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunohistochemical ferritin staining was performed on pontine nuclei of the brains of 17 infants with pontosubicular neuron necrosis (PSN), aged 23 to 42 weeks of gestation. Ferritin-positive cells were increased in cases of karyorrhexis with spongy changes and gliosis, but not in those of selective karyorrhexis. Ferritin-positive cells were more increased in the cases with extensive karyorrhectic neurons. Iron may be released to the damaged pontine tissue as a catalyst and microglia may play an important role in the repair of the tissue.
Collapse
Affiliation(s)
- H Ozawa
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Ozawa H, Nishida A, Mito T, Takashima S. Immunohistochemical study of ferritin-positive cells in the cerebellar cortex with subarachnoidal hemorrhage in neonates. Brain Res 1994; 651:345-8. [PMID: 7922586 DOI: 10.1016/0006-8993(94)90717-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ferritin immunohistochemistry was performed on the cerebellar cortex with subarachnoidal hemorrhage (SAH) in preterm and term neonates, in comparison with anti-glial fibrillary acidic protein (GFAP) for astrocytes and Ricinus communis agglutinin-1 (RCA-1) immunostaining for microglia. The ferritin-positive cells were increased in the cortex with SAH. The predominant cell type which was labeled with antiserum to ferritin in the human cerebellar molecular layer with SAH was the microglia, which were stained with RCA-1 but not with GFAP. Ferritin-positive microglia may be induced by ischemia with vasospasms, and be related to the loss of Purkinje cells.
Collapse
Affiliation(s)
- H Ozawa
- Department of Neonatology, Tokyo Metropolitan Hachioji Children's Hospital, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
This study utilizes a mutant mouse line (Hp) in which an established essential trophic factor, transferrin (Tf), is deficient due to a splicing defect in the processing of Tf precursor mRNA. As this mouse mutant is new to neurological research, the initial stage of the investigation, histological analysis of the brain and spinal cord, is reported here. Using a number of standard histological stains, such as hematoxylin and eosin, luxol fast blue/cresyl violet and silver staining, we see a decrease in the amount of white matter and neurofilament staining and altered neuronal morphology throughout the brain and spinal cord. Regions in which postnatal development is significant such as the hippocampus and cerebellum are particularly affected in this mutant. The cells of the dentate gyrus and Ammon's horn of the hippocampus are smaller, more densely packed and the normal orderly appearance of the CA3 and CA4 regions of Ammon's horn is disrupted. The cerebellum has a decrease in white matter and the molecular, Purkinje cell and granule cell layers all show decreased silver staining for neurofilament and appear less ordered than normal. The results demonstrate that neurohistological alterations exist in the adult hypotransferrinemic mice despite systemic replacement of transferrin. Furthermore, these data suggest certain brain regions are particularly sensitive to disruption in iron delivery. The results of this initial study indicate the Hp animal may be an interesting model for investigating specific aspects of neural development and has considerable potential for examining the importance of iron regulation in the brain.
Collapse
Affiliation(s)
- T K Dickinson
- George M. Leader Family Laboratory For Alzheimer's Disease Research, Department of Neuroscience and Anatomy, Pennsylvania State University, College of Medicine, M.S. Hershey Medical Center, Hershey 17033
| | | |
Collapse
|
43
|
Connor JR. Iron regulation in the brain at the cell and molecular level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 356:229-38. [PMID: 7887227 DOI: 10.1007/978-1-4615-2554-7_25] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J R Connor
- Department of Neuroscience & Anatomy, M.S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| |
Collapse
|
44
|
Connor JR, Roskams AJ, Menzies SL, Williams ME. Transferrin in the central nervous system of the shiverer mouse myelin mutant. J Neurosci Res 1993; 36:501-7. [PMID: 7511695 DOI: 10.1002/jnr.490360502] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transferrin, the iron mobilization protein, and its mRNA are normally present in oligodendrocytes. Previous reports using myelin mutants have shown both a decrease in transferrin protein and mRNA when the oligodendrocyte population is compromised. In this study the shiverer mouse mutant in which the oligodendrocyte population is numerically normal, but has both quantitatively diminished and qualitatively abnormal myelin was used. This animal model was chosen to address the question whether expression of the transferrin message and/or protein correlated more closely to the number of oligodendrocytes (normal) or the amount of myelin (abnormally low). A 1/2 to 2/3 decrease in transferrin protein occurred in all brain regions examined except for the spinal cord in the shiverer group compared to both heterozygous littermates and wild type controls. Levels of transferrin transcripts in the brain are not affected by the shiverer mutation. These results taken with previous reports from this laboratory indicate that the presence of oligodendrocytes is a requirement for normal expression of transferrin mRNA in brain but is not sufficient for normal values of the protein. The level of Tf protein correlates more closely with the amount of myelin present than it does with the numbers of oligodendrocytes present. These data are consistent with previous reports from our laboratory that transferrin accumulation by oligodendrocytes is associated with myelin production by these cells. These data further suggest transferrin mRNA may be constitutively expressed by oligodendrocytes and that the protein expression is regulated at the level of translation.
Collapse
Affiliation(s)
- J R Connor
- Department of Neuroscience and Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | | | |
Collapse
|
45
|
Benkovic SA, Connor JR. Ferritin, transferrin, and iron in selected regions of the adult and aged rat brain. J Comp Neurol 1993; 338:97-113. [PMID: 8300902 DOI: 10.1002/cne.903380108] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Iron is necessary for normal neural function but it must be stringently regulated to avoid iron-induced oxidative injury. The regulation of systemic iron is through the proteins transferrin (iron mobilization) and ferritin (iron sequestration). This study examines the cellular and regional distribution of iron and the iron-related proteins ferritin and transferrin in selected regions of the adult and aged rat brain. This information is a necessary prerequisite to understanding the mechanism by which iron homeostasis is maintained in the brain. The predominant cell type containing ferritin, transferrin, and iron throughout the brain at all ages is the oligodendrocyte. Neurons in most brain regions contain granular iron deposits which become more apparent with age. Ferritin and iron are also present in microglial cells in all brain regions, but are particularly abundant in the hippocampus. These latter cells visibly increase in number in all brain regions as the animal approaches senescence. Another area in which immunostaining is notable is surrounding the III ventricle, where transferrin is found in the choroid plexus and ependyma and ferritin and iron are present in tanycytes. The results of this study indicate an important role for neuroglia in the regulation of iron in the brain and also implies that a transport system may exist for the transfer of iron between the brain and cerebrospinal fluid. In the normal rodent brain, the principal cell of iron regulation is the oligodendrocyte; however, the role of microglial cells in the sequestration and detoxification of iron may be significant, particularly as the animal ages. With age there is an increase in stainable iron in neurons without a concomitant increase in neuronal ferritin immunostaining, suggesting a ferritin independent accumulation of neuronal iron with age.
Collapse
Affiliation(s)
- S A Benkovic
- George M. Leader Family Laboratory for Alzheimer's Disease Research, Department of Neuroscience and Anatomy, Pennsylvania State University, M.S. Hershey Medical Center, Hershey 17033
| | | |
Collapse
|
46
|
Abstract
The location and function of iron in the central nervous system are reviewed with particular emphasis on human biology. Iron is distributed to different cell types in the brain in a heterogeneous fashion through the action of transferrin, transferrin receptors, and the metabolic needs of those cells. The function of this iron and its storage is documented in states of growth and development as well as during pathological states associated with aging. The information relating this biology to current observations of attention deficits in iron-deficient humans is also reviewed.
Collapse
Affiliation(s)
- J L Beard
- Nutrition Department, Hershey Medical Center, PA
| | | | | |
Collapse
|
47
|
Abstract
The role of oligodendrocyte-derived transferrin in the transport and regional accumulation of iron has been studied in myelin-deficient (md) rats, which lack functional oligodendrocytes and have an almost complete depletion of transferrin in the brain, although they have normal peripheral levels of transferrin. The regional uptake of 59Fe into the brain has been studied autoradiographically in md and littermate control rats. Differences in uptake were found in only three of the 28 regions studied. These results suggest that the uptake and distribution of iron is not impaired in the md rat despite a markedly reduced level of brain transferrin. The choroid plexus contains high levels of transferrin mRNA and it is therefore likely that transferrin synthesized by choroid plexus epithelial cells can mediate the transport of iron within the brain.
Collapse
Affiliation(s)
- A Gocht
- Abteilung für Neuroanatomie, Universitäts Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
48
|
Connor JR. Cellular and regional maintenance of iron homeostasis in the brain: normal and diseased states. KEY TOPICS IN BRAIN RESEARCH 1993. [DOI: 10.1007/978-3-7091-9322-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Phillips TM. Measurement of recombinant interferon levels by high performance immunoaffinity chromatography in body fluids of cancer patients on interferon therapy. Biomed Chromatogr 1992; 6:287-90. [PMID: 1286286 DOI: 10.1002/bmc.1130060608] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The technique of high performance immunoaffinity chromatography was used to measure the levels of recombinant interferon in chronic lymphocytic leukaemia patients enrolled in a phase II recombinant interferon clinical trial. The technique employed a short high pressure chromatography column packed with minute glass beads which had monoclonal antibody, directed against recombinant alpha interferon, immobilized to their surface. This system was used to measure interferon levels in a variety of different human body fluids. A good correlation was found when interferon levels, detected by chromatographic separation, were compared to levels obtained by a conventional radioimmunoassay.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal
- Bacterial Proteins/immunology
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- Female
- Humans
- Indicators and Reagents
- Interferon Type I/analysis
- Interferon Type I/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Radioimmunoassay
- Recombinant Proteins
- Reference Standards
- Saliva/chemistry
- Spectrophotometry, Ultraviolet
- Streptavidin
Collapse
Affiliation(s)
- T M Phillips
- Immunochemistry Laboratory, George Washington University Medical Center, Washington, D.C. 20037
| |
Collapse
|
50
|
Morris CM, Candy JM, Keith AB, Oakley AE, Taylor GA, Pullen RG, Bloxham CA, Gocht A, Edwardson JA. Brain iron homeostasis. J Inorg Biochem 1992; 47:257-65. [PMID: 1431885 DOI: 10.1016/0162-0134(92)84071-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.
Collapse
Affiliation(s)
- C M Morris
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|