1
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Maliha F, Adnan A. Mechanical Responses of a Single Myelin Layer: A Molecular Simulation Study. Biomolecules 2023; 13:1525. [PMID: 37892207 PMCID: PMC10605433 DOI: 10.3390/biom13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The myelin sheath provides insulation to the brain's neuron cells, which aids in signal transmission and communication with the body. Degenerated myelin hampers the connection between the glial cells, which are the front row responders during traumatic brain injury mitigation. Thus, the structural integrity of the myelin layer is critical for protecting the brain tissue from traumatic injury. At the molecular level, myelin consists of a lipid bilayer, myelin basic proteins (MBP), proteolipid proteins (PLP), water and ions. Structurally, the myelin sheath is formed by repeatedly wrapping forty or more myelin layers around an axon. Here, we have used molecular dynamic simulations to model and capture the tensile response of a single myelin layer. An openly available molecular dynamic solver, LAMMPS, was used to conduct the simulations. The interatomic potentials for the interacting atoms and molecules were defined using CHARMM force fields. Following a standard equilibration process, the molecular model was stretched uniaxially at a deformation rate of 5 Å/ps. We observed that, at around 10% applied strain, the myelin started to cohesively fail via flaw formation inside the bilayers. Further stretching led to a continued expansion of the defect inside the bilayer, both radially and transversely. This study provides the cellular-level mechanisms of myelin damage due to mechanical load.
Collapse
Affiliation(s)
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA;
| |
Collapse
|
3
|
Gargareta VI, Reuschenbach J, Siems SB, Sun T, Piepkorn L, Mangana C, Späte E, Goebbels S, Huitinga I, Möbius W, Nave KA, Jahn O, Werner HB. Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice. eLife 2022; 11:77019. [PMID: 35543322 PMCID: PMC9094742 DOI: 10.7554/elife.77019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Josefine Reuschenbach
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Carolina Mangana
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Inge Huitinga
- University of Amsterdam, Swammerdam Institute for Life Sciences, Brain Plasticity Group, Amsterdam, Netherlands.,Neuroimmunology Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Electron Microscopy Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
4
|
Nashiry MA, Sumi SS, Sharif Shohan MU, Alyami SA, Azad AKM, Moni MA. Bioinformatics and system biology approaches to identify the diseasome and comorbidities complexities of SARS-CoV-2 infection with the digestive tract disorders. Brief Bioinform 2021; 22:bbab126. [PMID: 33993223 PMCID: PMC8194728 DOI: 10.1093/bib/bbab126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), although most commonly demonstrates respiratory symptoms, but there is a growing set of evidence reporting its correlation with the digestive tract and faeces. Interestingly, recent studies have shown the association of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection with gastrointestinal symptoms in infected patients but any sign of respiratory issues. Moreover, some studies have also shown that the presence of live SARS-CoV-2 virus in the faeces of patients with COVID-19. Therefore, the pathophysiology of digestive symptoms associated with COVID-19 has raised a critical need for comprehensive investigative efforts. To address this issue we have developed a bioinformatics pipeline involving a system biological framework to identify the effects of SARS-CoV-2 messenger RNA expression on deciphering its association with digestive symptoms in COVID-19 positive patients. Using two RNA-seq datasets derived from COVID-19 positive patients with celiac (CEL), Crohn's (CRO) and ulcerative colitis (ULC) as digestive disorders, we have found a significant overlap between the sets of differentially expressed genes from SARS-CoV-2 exposed tissue and digestive tract disordered tissues, reporting 7, 22 and 13 such overlapping genes, respectively. Moreover, gene set enrichment analysis, comprehensive analyses of protein-protein interaction network, gene regulatory network, protein-chemical agent interaction network revealed some critical association between SARS-CoV-2 infection and the presence of digestive disorders. The infectome, diseasome and comorbidity analyses also discover the influences of the identified signature genes in other risk factors of SARS-CoV-2 infection to human health. We hope the findings from this pathogenetic analysis may reveal important insights in deciphering the complex interplay between COVID-19 and digestive disorders and underpins its significance in therapeutic development strategy to combat against COVID-19 pandemic.
Collapse
Affiliation(s)
- Md Asif Nashiry
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shauli Sarmin Sumi
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Salem A Alyami
- Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - A K M Azad
- iThree Institute, Faculty of Science, University Technology of Sydney, Australia
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Australia
- Healthy Ageing Theme, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
5
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
6
|
Kamjula V, Kanneganti A, Metla R, Nidamanuri K, Idupulapati S, Runthala A. Decoding the vital segments in human ATP-dependent RNA helicase. Bioinformation 2020; 16:160-170. [PMID: 32405168 PMCID: PMC7196165 DOI: 10.6026/97320630016160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/28/2022] Open
Abstract
An analysis of the ATP-dependent RNA helicase using known functionally close analogs helps disclose the structural and functional information of the enzyme. The enzyme plays several interlinked biological functions and there is an urgent need to interpret its key active-site residues to infer function and establish role. The human protein q96c10.1 is annotated using tools such as interpro, go and cdd. The physicochemical properties are estimated using the tool protparam. We describe the enzyme protein model developed using modeller to identify active site residues. We used consurf to estimate the structural conservation and is evolutionary relationship is inferred using known close sequence homologs. The active site is predicted using castp and its topological flexibility is estimated through cabs-flex. The protein is annotated as a hydrolase using available data and ddx58 is found as its top-ranked interacting protein partner. We show that about 124 residues are found to be highly conserved among 259 homologs, clustered in 7 clades with the active-site showing low sequence conservation. It is further shown that only 9 loci among the 42 active-site residues are conserved with limited structural fluctuation from the wild type structure. Thus, we document various useful information linked to function, sequence similarity and phylogeny of the enzyme for annotation as potential helicase as designated by uniprot. Data shows limited degree of conserved sequence segments with topological flexibility unlike in other subfamily members of the protein.
Collapse
Affiliation(s)
- Vandana Kamjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Ananya Kanneganti
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Rohan Metla
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Kusuma Nidamanuri
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sudarshan Idupulapati
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Ashish Runthala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| |
Collapse
|
7
|
Cathomas F, Azzinnari D, Bergamini G, Sigrist H, Buerge M, Hoop V, Wicki B, Goetze L, Soares S, Kukelova D, Seifritz E, Goebbels S, Nave KA, Ghandour MS, Seoighe C, Hildebrandt T, Leparc G, Klein H, Stupka E, Hengerer B, Pryce CR. Oligodendrocyte gene expression is reduced by and influences effects of chronic social stress in mice. GENES BRAIN AND BEHAVIOR 2018; 18:e12475. [DOI: 10.1111/gbb.12475] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Affiliation(s)
- F. Cathomas
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - D. Azzinnari
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - G. Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| | - H. Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - M. Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - V. Hoop
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Institute of Human Movement Sciences and Sport; ETH Zurich; Zurich Switzerland
| | - B. Wicki
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - L. Goetze
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - S. Soares
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - D. Kukelova
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - E. Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
| | - S. Goebbels
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Goettingen Germany
| | - K.-A. Nave
- Department of Neurogenetics; Max Planck Institute of Experimental Medicine; Goettingen Germany
| | - M. S. Ghandour
- Center of Neurochemistry, University of Strasbourg, UMR 7357; Strasbourg France
- Department of Anatomy and Neurobiology; Virginia Commonwealth University; Richmond Virginia
| | - C. Seoighe
- School of Mathematics, Statistics & Applied Mathematics; National University of Ireland; Galway Ireland
| | - T. Hildebrandt
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - G. Leparc
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - H. Klein
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - E. Stupka
- Target Discovery Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - B. Hengerer
- CNS Diseases Research Germany; Boehringer Ingelheim Pharma GmbH & Co. KG.; Biberach Germany
| | - C. R. Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric Hospital, University of Zurich; Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH Zurich; Zurich Switzerland
| |
Collapse
|
8
|
S Cassoli J, Brandão-Teles C, G Santana A, H M F Souza G, Martins-de-Souza D. Ion Mobility-Enhanced Data-Independent Acquisitions Enable a Deep Proteomic Landscape of Oligodendrocytes. Proteomics 2017; 17. [PMID: 28861932 DOI: 10.1002/pmic.201700209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes are a type of neuroglia that provide trophic support and insulation to axons in the central nervous system. The genesis and maturation of oligodendrocytes are essential processes for myelination and the course of CNS development. Using ion mobility-enhanced, data-independent acquisitions and 2D-nanoUPLC fractionation operating at nanoscale flow rates, we established a comprehensive data set of proteins expressed by the human oligodendroglia cell line MO3.13. The final dataset incorporating all fractions comprised 223 531 identified peptides assigned to 10 390 protein hits, an improvement of 4.5 times on identified proteins described previously by our group using the same cell line. Identified proteins play pivotal roles in many biological processes such as cell growth and development and energy metabolism, providing a rich resource for future studies on oligodendrocyte development, myelination, axonal support, and the regulation of such process. Our results can help further studies that use MO3.13 cells as a tool of investigation, not only in relation to oligodendrocyte maturation, but also to diseases that have oligodendrocytes as key players. All MS data have been deposited in the ProteomeXchange with identifier PXD004696.
Collapse
Affiliation(s)
- Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline G Santana
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo H M F Souza
- Mass Spectrometry Research and Development Laboratory, Health Sciences Department, Waters Corporation, São Paulo, SP, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil
| |
Collapse
|
9
|
Oishi S, Zalucki O, Premarathne S, Wood SA, Piper M. USP9X deletion elevates the density of oligodendrocytes within the postnatal dentate gyrus. NEUROGENESIS 2016; 3:e1235524. [PMID: 27830160 DOI: 10.1080/23262133.2016.1235524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022]
Abstract
Neural stem cells (NSCs) within the adult hippocampal dentate gyrus reside in the subgranular zone (SGZ). A dynamic network of signaling mechanisms controls the balance between the maintenance of NSC identity, and their subsequent differentiation into dentate granule neurons. Recently, the ubiquitin-specific protease 9 X-linked (USP9X) was shown to be important for hippocampal morphogenesis, as mice lacking this gene exhibited a higher proportion of proliferating NSCs, yet a decrease in neuronal numbers, within the postnatal dentate gyrus. Here we reveal that Usp9x-deficiency results in the upregulation of numerous oligodendrocytic and myelin-associated genes within the postnatal hippocampus. Moreover, cell counts reveal a significant increase in oligodendrocyte precursor cells and mature oligodendrocytes per unit volume of the mutant dentate gyrus. Collectively, these findings indicate that USP9X may regulate NSC lineage determination within the postnatal SGZ.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland , Brisbane, Queensland, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Susitha Premarathne
- The Eskitis Institute for Drug Discovery, Griffith University , Brisbane, Queensland, Australia
| | - Stephen A Wood
- The Eskitis Institute for Drug Discovery, Griffith University , Brisbane, Queensland, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Abstract
The diverse, structurally unrelated chemicals that cause toxic myelinopathies have been investigated and can be categorized into two types of primary demyelinators. Some demyelinating chemicals seem to leave intact the myeli-nating cells (oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system), while others damage the myelinating cells as well as the myelin. The significance between the two is that with the myelinating cells still in tact, repair of the myelin sheath can occur. However, if the myelinating cells are destroyed, repair and reversal of the neuropathy may not occur. Histologically, these chemicals produce an edema of the white matter of the brain, and in some cases the peripheral nervous system, that appears spongy by light microscopy. By electron microscopy, vacuoles can be seen in the myelin surrounding axons. These vacuoles are characterized as fluid-filled separations (splitting) of myelin lamellae at the intraperiod line. In some cases these vacuoles can degenerate further to full demyelination, affecting conduction through those axons. Regeneration of the myelin layers can occur, and in some cases occurs at the same time other axons are undergoing toxic demyelination. Several of these chemicals, however, have been shown to increase cerebrospinal fluid pressure in the brain, optic nerve, and spinal cord, and/or intraneuronal pressure in the perineurium surrounding the axons in the peripheral nervous system. This increased pressure has been correlated with decreased conduction capacity through the axon, ischemia to the neuronal tissue from decreased blood flow because of pressure against the blood vessels, and, if unrelieved, permanent axonal damage. Several of these chemicals havebeen shown to inhibit oxidative phosphorylation, while others uncouple oxidative phosphorylation. One chemical appears to inhibit an enzyme critical to cholesterol synthesis, thus destabilizing myelin. Another hypothesis for a mechanism of action may be in the ability of these compounds to alter membrane permeability.
Collapse
|
11
|
Li W, Lan X. Aptamer Oligonucleotides: Novel Potential Therapeutic Agents in Autoimmune Disease. Nucleic Acid Ther 2015; 25:173-9. [PMID: 25993618 DOI: 10.1089/nat.2014.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aptamers are single-stranded deoxyribonucleic acid or ribonucleic acid oligonucleotides generated in vitro based on affinity for certain target molecules by a process known as Systematic Evolution of Ligands by Exponential Enrichment. Aptamers can bind their target molecules with high specificity and selectivity by means of structure compatibility, stacking of aromatic rings, electrostatic and van der Waals interactions, and hydrogen bonding. With several advantages over monoclonal antibodies and other conventional small-molecule therapeutics, such as high specificity and affinity, negligible batch to batch variation, flexible modification and stability, lack of toxicity and low immunogenicity, aptamers are becoming promising novel diagnostic and therapeutic agents. This review focuses on the development of aptamers as potential therapeutics for autoimmune diseases, including diabetes mellitus, multiple sclerosis, rheumatoid arthritis, myasthenia gravis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Weibin Li
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Second Military Medical University , Fuzhou, China
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital of Nanjing Military Command, Second Military Medical University , Fuzhou, China
| |
Collapse
|
12
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
13
|
Rao Q, Hsieh YHP. Enhanced immunodetection of bovine central nervous tissue using an improved extraction method. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ozgen H, Kahya N, de Jonge JC, Smith GS, Harauz G, Hoekstra D, Baron W. Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:517-30. [DOI: 10.1016/j.bbamcr.2013.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/15/2022]
|
15
|
Takanashi JI, Nitta N, Iwasaki N, Saito S, Tanaka R, Barkovich AJ, Aoki I. Neurochemistry in shiverer mouse depicted on MR spectroscopy. J Magn Reson Imaging 2013; 39:1550-7. [DOI: 10.1002/jmri.24306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jun-ichi Takanashi
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
- Department of Pediatrics; Kameda Medical Center; Kamogawa Japan
- Department of Radiology; Toho University Sakura Medical Center; Sakura Japan
| | - Nobuhiro Nitta
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| | - Nobuaki Iwasaki
- Department of Pediatrics; Ibaraki Prefectural University of Health Sciences; Amimachi Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering; Graduate School of Medicine; Osaka University; Suita Japan
| | - Ryuta Tanaka
- Department of Pediatrics; University of Tsukuba; Tsukuba Japan
| | - A. James Barkovich
- Department of Radiology and Biomedical Imaging; University of California San Francisco; California USA
| | - Ichio Aoki
- Molecular Imaging Center; National Institute of Radiological Sciences; Chiba Japan
| |
Collapse
|
16
|
Kanno T, Sasaki S, Yamada N, Kawasako K, Tsuchitani M. Hexachlorophene and cuprizone induce the spongy change of the developing rat brain by different mechanisms: the role of 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). J Vet Med Sci 2012; 74:837-43. [PMID: 22313968 DOI: 10.1292/jvms.11-0469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this research was to identify mechanisms responsible for the spongy change induced in rats after repeated hexachlorophene (HCP) or cuprizone (CPZ) dosing. Rats were dosed with 35 mg/kg HCP for 5 days followed by drug withdrawal for 7 days suffered spongy changes to the white matter of the cerebrum, cerebellum, medulla oblongata, and spinal cord that were accompanied by degeneration of oligodendroglia. The severity of both lesions increased prominently on day 5; however, the spongy change decreased and degeneration of oligodendroglia reversed on day 12 (7 days after dosing ceased). On day 12, cerebral cortex oligodendroglia were stained strongly by anti-CNPase. Other rats were fed for 8 days with powdered chow containing 1% (w/w) CPZ, which was then withdrawn for 16 days. The rats exhibited the spongy change in the white matter of the cerebrum and cerebellum as well as oligodendroglial cell death from day 3. The severity of both lesions increased prominently on day 8. Cerebral cortex oligodendroglia were stained strongly by anti-CNPase on days 3 to 8 and decreased to the control levels by day 24 (16 days after dosing ceased). Electron microscopy revealed that oligodendroglia frequently displayed apoptotic morphology. These findings suggest that CNPase expression was induced in the course of restoration following HCP-induced insults to oligodendroglia and the myelin sheath, and in the course of demyelination by CPZ-induced damage to oligodendroglia. However, the role of CNPase on both courses is unclear.
Collapse
Affiliation(s)
- Takeshi Kanno
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., 14 Sunayama, Kamisu, Ibaraki 314-0255, Japan.
| | | | | | | | | |
Collapse
|
17
|
Nastasijevic B, Wright BR, Smestad J, Warrington AE, Rodriguez M, Maher LJ. Remyelination induced by a DNA aptamer in a mouse model of multiple sclerosis. PLoS One 2012; 7:e39595. [PMID: 22761835 PMCID: PMC3384608 DOI: 10.1371/journal.pone.0039595] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 05/28/2012] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler's encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler's virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment.
Collapse
Affiliation(s)
- Branislav Nastasijevic
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Brent R. Wright
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Arthur E. Warrington
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Moses Rodriguez
- Departments of Neurology and Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail: (LJM); (MR)
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail: (LJM); (MR)
| |
Collapse
|
18
|
Huyghe A, Horzinski L, Hénaut A, Gaillard M, Bertini E, Schiffmann R, Rodriguez D, Dantal Y, Boespflug-Tanguy O, Fogli A. Developmental splicing deregulation in leukodystrophies related to EIF2B mutations. PLoS One 2012; 7:e38264. [PMID: 22737209 PMCID: PMC3380860 DOI: 10.1371/journal.pone.0038264] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/03/2012] [Indexed: 11/19/2022] Open
Abstract
Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Laetitia Horzinski
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Alain Hénaut
- Systématique, Adaptation, Evolution, CNRS - Université Pierre et Marie Curie, Paris, France
| | - Marina Gaillard
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
| | - Enrico Bertini
- Division of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Department of Neuroscience, Bambino Gesu’Hospital Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, United States of America
| | - Diana Rodriguez
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Neuropédiatrie, Paris, France
- INSERM U676, Hopital Robert Debré, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Yann Dantal
- Soluscience, Faculté de Médecine, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- INSERM U676, Hopital Robert Debré, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Neuropédiatrie et Maladies Métaboliques, Paris, France
- Université Paris Diderot, Sorbonne Cité, Paris, France
| | - Anne Fogli
- Génétique, Reproduction et Développement (GReD) Faculté de Médecine, Clermont-Ferrand, France
- Université de Clermont, UFR Médecine, Clermont-Ferrand, France
- Centre Hospitalier Universitaire de Clermont-Ferrand, Service de Biochimie Médicale et Biologie Moléculaire, Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|
19
|
Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina B, Bonassi S. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radic Biol Med 2012; 52:2128-41. [PMID: 22542447 DOI: 10.1016/j.freeradbiomed.2012.03.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorders (ASDs) are rarely diagnosed in children younger than 2 years, because diagnosis is based entirely on behavioral tests. Oxidative damage may play a central role in this pathogenesis, together with the interconnected transmethylation cycle and transsulfuration pathway. In an attempt to clarify and quantify the relationship between oxidative stress-related blood biomarkers and ASDs, a systematic literature review was carried out. For each identified study, mean biomarker levels were compared in cases and controls providing a point estimate, the mean ratio, for each biomarker. After meta-analysis, the ASD patients showed decreased blood levels of reduced glutathione (27%), glutathione peroxidase (18%), methionine (13%), and cysteine (14%) and increased concentrations of oxidized glutathione (45%) relative to controls, whereas superoxide dismutase, homocysteine, and cystathionine showed no association with ASDs. For the C677T allele in the methylene tetrahydrofolate reductase gene (MTHFR), homozygous mutant subjects (TT) showed a meta-OR of 2.26 (95% CI 1.30-3.91) of being affected by ASD with respect to the homozygous nonmutant (CC). Case-control studies on blood levels of vitamins suggest a lack of association (folic acid and vitamin B12) or rare association (vitamins A, B6, C, D, E). Sparse results were available for other biomarkers (ceruloplasmin, catalase, cysteinylglycine, thiobarbituric acid-reactive substances, nitric oxide) and for polymorphisms in other genes. Existing evidence is heterogeneous and many studies are limited by small sample size and effects. In conclusion, existing evidence suggests a role for glutathione metabolism, the transmethylation cycle, and the transsulfuration pathway, although these findings should be interpreted with caution, and larger, more standardized studies are warranted.
Collapse
Affiliation(s)
- Alessandra Frustaci
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, 00166 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Eschenroeder AC, Vestal-Laborde AA, Sanchez ES, Robinson SE, Sato-Bigbee C. Oligodendrocyte responses to buprenorphine uncover novel and opposing roles of μ-opioid- and nociceptin/orphanin FQ receptors in cell development: implications for drug addiction treatment during pregnancy. Glia 2012; 60:125-36. [PMID: 22002899 PMCID: PMC3217102 DOI: 10.1002/glia.21253] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/20/2011] [Indexed: 01/09/2023]
Abstract
Although the classical function of myelin is the facilitation of saltatory conduction, this membrane and the oligodendrocytes, the cells that make myelin in the central nervous system (CNS), are now recognized as important regulators of plasticity and remodeling in the developing brain. As such, oligodendrocyte maturation and myelination are among the most vulnerable processes along CNS development. We have shown previously that rat brain myelination is significantly altered by buprenorphine, an opioid analogue currently used in clinical trials for managing pregnant opioid addicts. Perinatal exposure to low levels of this drug induced accelerated and increased expression of myelin basic proteins (MBPs), cellular and myelin components that are markers of mature oligodendrocytes. In contrast, supra-therapeutic drug doses delayed MBP brain expression and resulted in a decreased number of myelinated axons. We have now found that this biphasic-dose response to buprenorphine can be attributed to the participation of both the μ-opioid receptor (MOR) and the nociceptin/orphanin FQ receptor (NOP receptor) in the oligodendrocytes. This is particularly intriguing because the NOP receptor/nociceptin system has been primarily linked to behavior and pain regulation, but a role in CNS development or myelination has not been described before. Our findings suggest that balance between signaling mediated by (a) MOR activation and (b) a novel, yet unidentified pathway that includes the NOP receptor, plays a crucial role in the timing of oligodendrocyte maturation and myelin synthesis. Moreover, exposure to opioids could disrupt the normal interplay between these two systems altering the developmental pattern of brain myelination.
Collapse
Affiliation(s)
- Andrew C. Eschenroeder
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298-0614
| | - Allison A. Vestal-Laborde
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298-0614
| | - Emilse S. Sanchez
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298-0614
| | - Susan E. Robinson
- Institute for Drug and Alcohol Studies and Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0310
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, 23298-0614
| |
Collapse
|
21
|
Ueki T, Tsuruo Y, Yamamoto Y, Yoshimura K, Takanaga H, Seiwa C, Motojima K, Asou H, Yamamoto M. A new monoclonal antibody, 4F2, specific for the oligodendroglial cell lineage, recognizes ATP-dependent RNA helicase Ddx54: possible association with myelin basic protein. J Neurosci Res 2011; 90:48-59. [PMID: 21932369 DOI: 10.1002/jnr.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/07/2022]
Abstract
Recent research in neural development has highlighted the importance of markers to discriminate phenotypic alterations of neural cells at various developmental stages. We isolated a new monoclonal antibody, 4F2, which was shown to be specific for an oligodendrocyte lineage. In primary cultures of oligodendroglial and mixed neural cells, the 4F2 antibody labeled a large proportion of Sox2(+) , Sox10(+) , A2B5(+) , NG2(+) , Olig2(+) , O4(+) , and myelin basic protein (MBP)(+) cells but did not label any GFAP(+) or NeuN(+) cells. In immunohistochemisty of rat embryos, the 4F2 antibody labeled a portion of neuroepithelial cells of the neural tube at embryonic day 9. The 4F2-positive cells were located initially in the ventricular zone as Musashi1(+) Tuj1(-) populations and distributed throughout the striatum; thereafter, they populated the whole brain and spinal cord. These cells showed ramified processes during embryonal development. The 4F2 antigen was associated with all four isoforms of MBP in coimmunoprecipitation experiments using brain homogenates or cell lysates of cultured oligodendrocytes. Immunoscreening of a brain cDNA library identified the antigen as DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 (Ddx54), a member of the DEAD box family of RNA helicases involved in RNA metabolism, transcription, and translation. Cotransfection of the Ddx54 gene with MBP isoform genes increased the nuclear localization of the 21.5-kDa MBP isoform, which has been reported to function as a nuclear signal transduction molecule. These data indicate that Ddx54 might be not only a useful marker for investigating the ontogeny of oligodendrocytes but also an important factor in oligodendrocyte differentiation and myelination.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Neuro-Glia Cell Biology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gotoh H, Ueda T, Uno A, Ohuchi H, Ikenaka K, Ono K. Expression of myelin genes in the developing chick retina. Gene Expr Patterns 2011; 11:471-5. [PMID: 21872683 DOI: 10.1016/j.gep.2011.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/25/2022]
Abstract
In submammalian animals including chicks, the retina contains oligodendrocytes (OLs), and axons in the optic fiber layer are wrapped with compact myelin within the retina; however, the expression of myelin genes in the chick retina has not been demonstrated yet. In the present study, we examined the expression of three myelin genes (proteolipid protein, PLP; myelin basic protein, MBP; cyclic nucleotide phosphodiesterase, CNP) and PLP in the developing chick retina, in comparison to the localization of Mueller cells. In situ hybridization demonstrated that all three myelin genes began to be expressed at E14 in the chick embryo retina. They are mostly restricted to the ganglion cell layer and the optic fiber layer, with a few exceptions in the inner nuclear layer where Mueller cells reside; however, PLP mRNA+ cells do not express glutamine synthetase, or vice versa. The present results elucidate that myelin genes are expressed only by OLs that are mostly localized in the innermost layer of the developing chick retina.
Collapse
Affiliation(s)
- Hitosh Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Pons-Vázquez S, Gallego-Pinazo R, Galbis-Estrada C, Zanon-Moreno V, Garcia-Medina JJ, Vila-Bou V, Sanz-Solana P, Pinazo-Durán MD. Combined Pre- and Postnatal Ethanol Exposure in Rats Disturbs the Myelination of Optic Axons†. Alcohol Alcohol 2011; 46:514-22. [DOI: 10.1093/alcalc/agr063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
24
|
Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals. Drug Alcohol Depend 2011; 114:159-68. [PMID: 21075564 PMCID: PMC3062648 DOI: 10.1016/j.drugalcdep.2010.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/20/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023]
Abstract
Current cocaine-dependent users show reductions in white matter (WM) integrity, especially in cortical regions associated with cognitive control that have been associated with inhibitory dysfunction. A key question is whether these white matter differences are present following abstinence from drug use. To address this, WM integrity was examined using diffusion tensor imaging (DTI) obtained on 43 cocaine abstinent patients (abstinence duration ranged between five days and 102 weeks) and 43 non-using controls. Additionally, a cross-sectional comparison separated the patients into three groups (short-term, mid-term and long-term) based upon duration of cocaine abstinence. The 43 cocaine abstinent patients showed lower fractional anisotropy (FA) in the left anterior callosal fibers, left genu of the corpus callosum, right superior longitudinal fasciculus, right callosal fibers and the superior corona radiata bilaterally when compared against non-using controls. Higher FA in the cocaine abstinent patients was observed in the splenium of the corpus callosum and right superior longitudinal fasciculus. Differences between the cocaine abstinent groups were observed bilaterally in the inferior longitudinal fasciculus, right anterior thalamic radiation, right ventral posterolateral nucleus of the thalamus, left superior corona radiata, superior longitudinal fasciculus bilaterally, right cingulum and the WM of the right precentral gyrus. The results identified WM differences between cocaine abstinent patients and controls as well as distinct differences between abstinent subgroups. The findings suggest that specific white matter differences persist throughout abstinence while other, spatially distinct, differences discriminate as a function of abstinence duration. These differences may, therefore, represent brain changes that mark recovery from addiction.
Collapse
|
25
|
Quaking I controls a unique cytoplasmic pathway that regulates alternative splicing of myelin-associated glycoprotein. Proc Natl Acad Sci U S A 2010; 107:19061-6. [PMID: 20956316 DOI: 10.1073/pnas.1007487107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Precise control of alternative splicing governs oligodendrocyte (OL) differentiation and myelination in the central nervous system (CNS). A well-known example is the developmentally regulated expression of splice variants encoding myelin-associated glycoprotein (MAG), which generates two protein isoforms that associate with distinct cellular components crucial for axon-glial recognition during myelinogenesis and axon-myelin stability. In the quakingviable (qk(v)) hypomyelination mutant mouse, diminished expression of isoforms of the selective RNA-binding protein quaking I (QKI) leads to severe dysregulation of MAG splicing. The nuclear isoform QKI-5 was previously shown to bind an intronic element of MAG and modulate alternative exon inclusion from a MAG minigene reporter. Thus, QKI-5 deficiency was thought to underlie the defects of MAG splicing in the qk(v) mutant. Surprisingly, we found that transgenic expression of the cytoplasmic isoform QKI-6 in the qk(v) OLs completely rescues the dysregulation of MAG splicing without increasing expression or nuclear abundance of QKI-5. In addition, cytoplasmic QKI-6 selectively associates with the mRNA that encodes heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a well-characterized splicing factor. Furthermore, QKI deficiency in the qk(v) mutant results in abnormally enhanced hnRNPA1 translation and overproduction of the hnRNPA1 protein but not hnRNPA1 mRNA, which can be successfully rescued by the QKI-6 transgene. Finally, we show that hnRNPA1 binds MAG pre-mRNA and modulates alternative inclusion of MAG exons. Together, these results reveal a unique cytoplasmic pathway in which QKI-6 controls translation of the splicing factor hnRNPA1 to govern alternative splicing in CNS myelination.
Collapse
|
26
|
Lafrenaye AD, Fuss B. Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes. J Neurochem 2010; 115:269-82. [PMID: 20649846 DOI: 10.1111/j.1471-4159.2010.06926.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During development cells of the oligodendrocyte lineage undergo significant changes in morphology when they differentiate from migratory oligodendrocyte progenitors, which are mostly bipolar, into post-migratory pre-myelinating oligodendrocytes, which extend complex and expanded process networks, and then finally into mature oligodendrocytes, which generate myelin sheaths required for efficient signal propagation within the nervous system. This extensive morphological remodeling occurs in the context of a complex extracellular environment and requires significant rearrangement of the cell's cytoskeleton. The molecular mechanisms underlying this intricate integration of signals, however, remain poorly understood. A key regulator of extracellular matrix to cytoskeleton signaling is the non-receptor tyrosine kinase FAK (focal adhesion kinase). Here, we report that FAK can regulate the morphology of differentiating post-migratory pre-myelinating oligodendrocytes in a unique and opposing fashion that is dependent on the nature of the extracellular matrix and mediated largely by FAK's catalytic activity. More specifically, FAK was found to restrict process network expansion in the presence of fibronectin but to promote morphological maturation in the presence of laminin-2. In addition, FAK's restraining role predominated for postnatal day 3-derived cells, while its maturation promoting role prevailed for postnatal day 5-derived cells. Taken together, our findings reveal a complex role of FAK in regulating the morphology of post-migratory pre-myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
27
|
Kanno T, Kurotaki T, Yamada N, Yamashita K, Wako Y, Tsuchitani M. Activity of 2′, 3′-Cyclic Nucleotide 3′-Phosphodiesterase (CNPase) in Spinal Cord with Spongy Change Induced by a Single Oral Dose of Aniline in Rats. Toxicol Pathol 2010; 38:359-65. [DOI: 10.1177/0192623310362245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A spongy change in the spinal cord white matter was observed in four-week-old rats treated with aniline. Although this change was found to be a result of the myelin sheath splitting at the ultrastructural level, the mechanism is unknown. This study was conducted to identify the mechanism of the spongy change in aniline-treated rats. The spongy change in the spinal cord white matter was first detected on day 5 in the histopathologic examination. The incidence and severity of the lesions, especially in the lateral and ventral funiculi of the thoracic spinal cord white matter, increased prominently from day 8 to day 10. In all rats, immunohistochemical staining by anti-2′, 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) occurred along the cytoplasmic boundaries of the normal oligodendroglia. However, mild to moderate anti-CNPase staining extended to the swollen cytoplasm of the oligodendroglia in the aniline-treated rats from day 2 to day 4. In the electron microscopic examination, free ribosomes and rough endoplasmic reticula in the cytoplasm of the oligodendroglia increased on days 3 and 4. These changes were considered to be related to CNPase expression. However, CNPase expression decreased, whereas the spongy changes were detected from day 5. The reduction in CNPase expression may contribute to the changes in the myelin morphology observed in aniline intoxication.
Collapse
Affiliation(s)
- Takeshi Kanno
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., Kamisu-shi, Ibaraki-ken, Japan
| | - Tetsuro Kurotaki
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Naoaki Yamada
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., Kamisu-shi, Ibaraki-ken, Japan
| | - Kotaro Yamashita
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., Kamisu-shi, Ibaraki-ken, Japan
| | - Yumi Wako
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., Kamisu-shi, Ibaraki-ken, Japan
| | - Minoru Tsuchitani
- Kashima Laboratory, Mitsubishi Chemical Medience Corp., Kamisu-shi, Ibaraki-ken, Japan
| |
Collapse
|
28
|
Coelho RP, Yuelling LM, Fuss B, Sato-Bigbee C. Neurotrophin-3 targets the translational initiation machinery in oligodendrocytes. Glia 2009; 57:1754-64. [PMID: 19455580 PMCID: PMC4300950 DOI: 10.1002/glia.20888] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurotrophin-3 (NT-3) regulates oligodendrocyte (OLG) differentiation by mechanisms that remain poorly understood. Exposure of OLGs to NT-3 induces a significant increase in the levels of myelin basic protein (MBP). However, we found that this stimulation occurs in the absence of measurable effects on MBP gene promoter activation or mRNA expression, suggesting that NT-3 upregulates MBP protein expression by a posttranscriptional mechanism. Furthermore, NT-3 also causes an increase in the levels of myelin-associated glycoprotein (MAG) and myelin OLG glycoprotein (MOG), raising the possibility of a more general effect on myelin protein synthesis. Surprisingly, (35)S-methionine incorporation into total OLG proteins demonstrated a 50% increase in labeling following only a brief, 15-min treatment with NT-3. Such a remarkably fast response is unlikely due to transcriptional activation, reinforcing the possibility that NT-3 may play a crucial role in regulating protein expression by a posttranscriptional mechanism. In support of this idea, we found that NT-3 stimulates the phosphorylation of essential regulators of the initiation machinery, eukaryotic initiation factor 4E (eIF4E), and its inhibitory binding partner 4E binding protein 1 (4EBP1), two crucial players in controlling cap-dependent protein synthesis. This stimulation involves the activation of pathways mediated by ERK1/2 and PI3K/mTOR, implicating these two kinase systems as modulators of protein synthesis in developing OLGs. Altogether, these observations show for the first time that NT-3 has the capacity of targeting the translational machinery and suggest a potential stimulatory effect of this neurotrophin on myelination by direct action on protein translation in the OLGs.
Collapse
Affiliation(s)
- Rochelle P. Coelho
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Larra M. Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Coelho RP, Saini HS, Sato-Bigbee C. Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat 2009; 91:139-44. [PMID: 19808013 DOI: 10.1016/j.prostaglandins.2009.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 11/18/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates a wide variety of biological effects in different cells and tissues. This review discusses the effects of S1P signaling in oligodendrocytes, the myelin making cells of the central nervous system (CNS). Results from different laboratories have uncovered direct actions of S1P at different maturational stages along the oligodendroglial lineage. There is also evidence for the existence in oligodendrocytes of interactions between S1P and signaling by factors which, like neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF), have profound effects on oligodendrocyte development and myelination. Moreover, S1P signaling in oligodendrocytes may not only play an important role during normal CNS development but also offer new therapeutic avenues to stimulate remyelination in demyelinating diseases like multiple sclerosis.
Collapse
Affiliation(s)
- Rochelle P Coelho
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
30
|
Pouw MH, Hosman AJF, van Middendorp JJ, Verbeek MM, Vos PE, van de Meent H. Biomarkers in spinal cord injury. Spinal Cord 2009; 47:519-25. [PMID: 19153591 DOI: 10.1038/sc.2008.176] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
STUDY DESIGN Literature review. OBJECTIVES In traumatic spinal cord injury (SCI), much effort has been put into the evaluation of SCI severity and the prediction of recovery potential. An accurate prediction of the initial damage of the spinal cord that differentiates between the severities of SCI however, may help physicians in choosing a particular neuroprotective treatment in the acute phase. Neurochemical biomarkers may possibly fulfil these requirements. The aim of this review was to describe (1) the current status of neurochemical biomarkers in SCI; (2) their potential diagnostic role in SCI. METHODS MEDLINE was searched from 1966 to 2008 to identify publications concerning biomarkers in traumatic SCI. RESULTS The biomarkers S-100beta, neuron-specific enolase, neurofilament light chain, and Glial fibrillary acidic protein are significantly increased in cases of (experimental) spinal cord injury. Furthermore, increased serum concentrations of S-100beta have been correlated with an unfavourable functional outcome. Although biomarkers in SCI show promising results, considerations and shortcomings, such as polytrauma, haemolysis, extracerebral sources, and poor resuscitation, must be studied in greater detail before biomarkers can be utilised in the clinical care of SCI. CONCLUSIONS Quantitative standards for determining the extent of SCI during the acute phase must be developed and validated. Even though increased concentrations of neurochemical biomarkers have been identified in patients with SCI, these do not yet provide a sensitive prognostic tool. Considering the limited availability of sensitive prognostic tools, neurochemical biomarkers of SCI should be evaluated and validated in future clinical trials.
Collapse
Affiliation(s)
- M H Pouw
- Department of Orthopedic Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Kristiansen LV, Bannon MJ, Meador-Woodruff JH. Expression of transcripts for myelin related genes in postmortem brain from cocaine abusers. Neurochem Res 2009; 34:46-54. [PMID: 18357522 PMCID: PMC2615829 DOI: 10.1007/s11064-008-9655-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022]
Abstract
Chronic abuse of cocaine is known to cause neuroadaptive changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). In addition, altered expression of the myelin-related genes MBP, MOBP, PLP1 as well as of MAL2 in NAc was recently reported by gene array analysis in brains from cocaine abusers. In the present study we used in situ hybridization to quantify transcript expression of these four genes, as well as for the myelin-related transcripts encoding quaking, EDG2, claudin-11, transferrin, CNP, and MAG in caudate, putamen, internal capsule, and NAc in postmortem brain from cocaine abusers and matched comparison subjects. Most transcripts were not different between these groups in these striatal regions, and contrary to previous reports, we did not detect any changes in the NAc. However, expression of the transcript encoding PLP1 was significantly decreased in ventral and dorsal regions of the caudate, putamen, and in the internal capsule. Additionally, expression of claudin-11 and transferrin was decreased in the caudate and internal capsule, respectively. PLP1 is expressed at very high levels in oligodendrocytes and is essential in maintaining stability of myelin sheets. Based on these findings, altered expression of PLP1 in most areas of the striatum suggests that widespread changes to the myelin structure could be associated with the adaptive changes following chronic cocaine abuse.
Collapse
Affiliation(s)
- Lars V Kristiansen
- Department of Psychiatry & Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | |
Collapse
|
32
|
Sanchez ES, Bigbee JW, Fobbs W, Robinson SE, Sato-Bigbee C. Opioid addiction and pregnancy: perinatal exposure to buprenorphine affects myelination in the developing brain. Glia 2008; 56:1017-27. [PMID: 18381654 DOI: 10.1002/glia.20675] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Buprenorphine is a mu-opioid receptor partial agonist and kappa-opioid receptor antagonist currently on trials for the management of pregnant opioid-dependent addicts. However, little is known about the effects of buprenorphine on brain development. Oligodendrocytes express opioid receptors in a developmentally regulated manner and thus, it is logical to hypothesize that perinatal exposure to buprenorphine could affect myelination. To investigate this possibility, pregnant rats were implanted with minipumps to deliver buprenorphine at 0.3 or 1 mg/kg/day. Analysis of their pups at different postnatal ages indicated that exposure to 0.3 mg/kg/day buprenorphine caused an accelerated and significant increase in the brain expression of all myelin basic protein (MBP) splicing isoforms. In contrast, treatment with the higher dose caused a developmental delay in MBP expression. Examination of corpus callosum at 26-days of age indicated that both buprenorphine doses cause a significant increase in the caliber of the myelinated axons. Surprisingly, these axons have a disproportionately thinner myelin sheath, suggesting alterations at the level of axon-glial interactions. Analysis of myelin associated glycoprotein (MAG) expression and glycosylation indicated that this molecule may play a crucial role in mediating these effects. Co-immunoprecipitation studies also suggested a mechanism involving a MAG-dependent activation of the Src-family tyrosine kinase Fyn. These results support the idea that opioid signaling plays an important role in regulating myelination in vivo and stress the need for further studies investigating potential effects of perinatal buprenorphine exposure on brain development.
Collapse
Affiliation(s)
- Emilse S Sanchez
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0614, USA
| | | | | | | | | |
Collapse
|
33
|
Bockbrader K, Feng Y. Essential function, sophisticated regulation and pathological impact of the selective RNA-binding protein QKI in CNS myelin development. FUTURE NEUROLOGY 2008; 3:655-668. [PMID: 19727426 DOI: 10.2217/14796708.3.6.655] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The selective RNA-binding protein QKI play a key role in advancing oligodendrocyte-dependent myelination, which is essential for the function and development of the CNS. The emerging evidence that QKI abnormalities are associated with schizophrenia and may underlie myelin impairment in this devastating disease has greatly increased interest in understanding the function of QKI. Despite the discovery of the biochemical basis for QKI-RNA interaction, a comprehensive model is currently missing regarding how QKI regulates its mRNA ligands to promote normal myelinogenesis and how deficiency of the QKI pathway is involved in the pathogenesis of human diseases that affect CNS myelin. In this review, we will focus on the role of QKI in regulating distinct mRNA targets at critical developmental steps to promote oligodendrocyte differentiation and myelin formation. In addition, we will discuss molecular mechanisms that control QKI expression and activity during normal myelinogenesis as well as the pathological impact of QKI deficiency in dysmyelination mutant animals and in human myelin disorders.
Collapse
Affiliation(s)
- Katrina Bockbrader
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA, Tel.: +1 404 727 0351, ,
| | | |
Collapse
|
34
|
Nogaroli L, Yuelling LM, Dennis J, Gorse K, Payne SG, Fuss B. Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes. Neurochem Res 2008; 34:182-93. [PMID: 18594965 DOI: 10.1007/s11064-008-9772-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 06/03/2008] [Indexed: 11/29/2022]
Abstract
During development, differentiating oligodendrocytes progress in distinct maturation steps from premyelinating to myelinating cells. Such maturing oligodendrocytes express both the receptors mediating signaling via extracellular lysophosphatidic acid (LPA) and the major enzyme generating extracellular LPA, namely phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX). However, the biological role of extracellular LPA during the maturation of differentiating oligodendrocytes is currently unclear. Here, we demonstrate that application of exogenous LPA induced an increase in the area occupied by the oligodendrocytes' process network, but only when PD-Ialpha/ATX expression was down-regulated. This increase in network area was caused primarily by the formation of membranous structures. In addition, LPA increased the number of cells positive for myelin basic protein (MBP). This effect was associated by an increase in the mRNA levels coding for MBP but not myelin oligodendrocyte glycoprotein (MOG). Taken together, these data suggest that LPA may play a crucial role in regulating the later stages of oligodendrocyte maturation.
Collapse
Affiliation(s)
- Luciana Nogaroli
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, PO Box 980709, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
35
|
Zhang Y, Feng Y. Distinct molecular mechanisms lead to diminished myelin basic protein and 2′,3′-cyclic nucleotide 3′-phosphodiesterase in qkv dysmyelination. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00224.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Abstract
The role of immune-mediated axonal injury in the induction of nonremitting functional deficits associated with multiple sclerosis is an area of active research that promises to substantially alter our understanding of the pathogenesis of this disease and modify or change our therapeutic focus. This review summarizes the current state of research regarding changes in axonal function during demyelination, provides evidence of axonal dysmorphia and degeneration associated with demyelination, and identifies the cellular and molecular effectors of immune-mediated axonal injury. Finally, a unifying hypothesis that links neuronal stress associated with demyelination-induced axonal dysfunction to immune recognition and immunopathology is provided in an effort to shape future experimentation.
Collapse
|
37
|
Oji T, Kamishina H, Cheeseman JA, Clemmons RM. Measurement of myelin basic protein in the cerebrospinal fluid of dogs with degenerative myelopathy. Vet Clin Pathol 2007; 36:281-4. [PMID: 17806078 DOI: 10.1111/j.1939-165x.2007.tb00225.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Analysis of cerebrospinal fluid (CSF) is part of a routine clinical workup in veterinary patients when neurologic disease is suspected. However, knowledge of particular protein markers of disease in CSF is limited. The concentration of myelin basic protein (MBP) in CSF is used as a biochemical marker in humans to evaluate demyelinating lesions in the central nervous system (CNS). OBJECTIVE The purpose of this study was to evaluate an ELISA for determination of MBP concentration in the CSF of German shepherd dogs with degenerative myelopathy (GSDM). METHODS Cross-reactivity of the anti-human polyclonal antibody used in a commercial ELISA (Active MBP ELISA, Diagnostic Systems Laboratories Inc, Webster, TX, USA) was tested with canine MBP by immunoblotting. CSF samples were collected from both the cisterna magna and the lumbar cistern of 8 clinically healthy control dogs and 8 German shepherd dogs clinically diagnosed with GSDM. MBP concentrations were measured in all CSF samples using the ELISA. RESULTS The mean MBP concentration in CSF from the lumbar cistern of dogs with GSDM (3.13 -/+ 0.46 ng/mL) was significantly higher than that in the cisterna magna (0.70 -/+ 0.06 ng/mL) and from both cisternal (0.47 -/+ 0.07 ng/mL) and lumbar (0.94 -/+ 0.37 ng/mL) samples from control dogs. CONCLUSION The MBP ELISA has potential as a supplemental test of CSF to diagnose demyelinating disorders in dogs.
Collapse
Affiliation(s)
- Takashi Oji
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
38
|
Allamargot C, Gardinier MV. Alternative isoforms of myelin/oligodendrocyte glycoprotein with variable cytoplasmic domains are expressed in human brain. J Neurochem 2007; 101:298-312. [PMID: 17402967 DOI: 10.1111/j.1471-4159.2006.04296.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human myelin/oligodendrocyte glycoprotein (MOG) gene is encoded by 10 exons that exhibit a complex pattern of alternative splicing. This report demonstrates that several MOG-specific alternative splice variants are indeed expressed in human oligodendrocytes (OLs) and myelin during perinatal development and are retained through adulthood. While all forms possess the common extracellular Ig-like domain, these alternative MOG structures differ significantly in their respective cytoplasmic domains. Peptide-specific antibodies were generated to facilitate detection of these different MOG moieties. The fidelity of these antibodies is shown using N20 OLs expressing individual MOG variants. These antibodies also only co-localize with another well-characterized marker of OLs and myelin--PLP/DM20 proteins. Among the human tissue samples tested, very limited expression occurred by 36 weeks gestation for 2-3 MOG variants, and the remaining MOG isoforms were not evident until shortly after birth. This study represents the first evidence of alternative translation products from the MOG gene. To date, it is believed that alternative splicing of MOG is limited to primates. Recent completion of various genome projects has revealed that alternative splicing is much more prevalent than originally estimated, and species-specific alternative splicing is now being shown to be highly relevant to expanding proteomic diversity.
Collapse
Affiliation(s)
- Chantal Allamargot
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
39
|
Aruga J, Yoshikawa F, Nozaki Y, Sakaki Y, Toyoda A, Furuichi T. An oligodendrocyte enhancer in a phylogenetically conserved intron region of the mammalian myelin gene Opalin. J Neurochem 2007; 102:1533-1547. [PMID: 17442045 DOI: 10.1111/j.1471-4159.2007.04583.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opalin is a transmembrane protein detected specifically in mammalian oligodendrocytes. Opalin homologs are found only in mammals and not in the genome sequences of other animal classes. We first determined the nucleotide sequences of Opalin orthologs and their flanking regions derived from four prosimians, a group of primitive primates. A global comparison revealed that an evolutionarily conserved region exists in the first intron of Opalin. When the conserved domain was assayed for its enhancer activity in transgenic mice, oligodendrocyte-directed expression was observed. In an oligodendroglial cell line, Oli-neu, the conserved domain showed oligodendrocyte-directed expression. The conserved domain is composed of eight subdomains, some of which contain binding sites for Myt1 and cAMP-response element binding protein (CREB). Deletion analysis and cotransfection experiments revealed that the subdomains have critical roles in Opalin gene expression. Over-expression of Myt1, treatment of the cell with leukemia inhibitory factor (LIF), and cAMP analog (CREB activator) enhanced the expression of endogenous Opalin in Oli-neu cells and activated the oligodendrocyte enhancer. These results suggest that LIF, cAMP signaling cascades and Myt1 play significant roles in the differentiation of oligodendrocytes through their action on the Opalin oligodendrocyte enhancer.
Collapse
Affiliation(s)
- Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Fumio Yoshikawa
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Yayoi Nozaki
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Yoshiyuki Sakaki
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Atsushi Toyoda
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| | - Teiichi Furuichi
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanLaboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako-shi, Saitama, JapanSequence Technology Team, RIKEN Genomic Science Center, Yokohama, Japan
| |
Collapse
|
40
|
DeBruin LS, Haines JD, Bienzle D, Harauz G. Partitioning of myelin basic protein into membrane microdomains in a spontaneously demyelinating mouse model for multiple sclerosisThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:993-1005. [PMID: 17215885 DOI: 10.1139/o06-180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have characterized the lipid rafts in myelin from a spontaneously demyelinating mouse line (ND4), and from control mice (CD1 background), as a function of age and severity of disease. Myelin was isolated from the brains of CD1 and ND4 mice at various ages, and cold lysed with 1.5% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulphonate). The lysate was separated by low-speed centrifugation into supernatant and pellet fractions, which were characterized by Western blotting for myelin basic protein (MBP) isoforms and their post-translationally modified variants. We found that, with maturation and with disease progression, there was a specific redistribution of the 14–21.5 kDa MBP isoforms (classic exon-II-containing vs exon-II-lacking) and phosphorylated forms into the supernatant and pellet. Further fractionation of the supernatant to yield detergent-resistant membranes (DRMs), representing coalesced lipid rafts, showed these to be highly enriched in exon-II-lacking MBP isoforms, and deficient in methylated MBP variants, in mice of both genotypes. The DRMs from the ND4 mice appeared to be enriched in MBP phosphorylated by MAP kinase at Thr95 (murine 18.5 kDa numbering). These studies indicate that different splice isoforms and post-translationally modified charge variants of MBP are targeted to different microdomains in the myelin membrane, implying multifunctionality of this protein family in myelin maintenance.
Collapse
Affiliation(s)
- Lillian S DeBruin
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
41
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
42
|
Khattari Z, Ruschel Y, Wen HZ, Fischer A, Fischer TM. Compactification of a Myelin Mimetic Langmuir Monolayer upon Adsorption and Unfolding of Myelin Basic Protein. J Phys Chem B 2005; 109:3402-7. [PMID: 16851371 DOI: 10.1021/jp045493z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The surface shear viscosity of a myelin mimetic Langmuir monolayer is investigated upon adsorption of myelin basic protein (MBP). We measure an increase of the surface shear viscosity at picomolar concentrations of the protein, suggesting that the globular conformation of MBP changes upon adsorption at the monolayer. The conformational change enables hydrodynamic interactions of the proteins, with a typical separation of hundreds of nanometers. This unfolding is essential for the compactification of the myelin sheath, serving an enhanced saltatory signal transduction in vertebrates. The viscometry used extends the sensitivity of standard surface viscometers toward lower viscosities.
Collapse
Affiliation(s)
- Z Khattari
- Institut für Röntgenphysik, Universität Göttingen, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
43
|
Hobson GM, Huang Z, Sperle K, Sistermans E, Rogan PK, Garbern JY, Kolodny E, Naidu S, Cambi F. Splice-site contribution in alternative splicing ofPLP1 andDM20: molecular studies in oligodendrocytes. Hum Mutat 2005; 27:69-77. [PMID: 16287154 DOI: 10.1002/humu.20276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the proteolipid protein 1 (PLP1) gene cause the X-linked dysmyelinating diseases Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia 2 (SPG2). We examined the severity of the following mutations that were suspected of affecting levels of PLP1 and DM20 RNA, the alternatively spliced products of PLP1: c.453G>A, c.453G>T, c.453G>C, c.453+2T>C, c.453+4A>G, c.347C>A, and c.453+28_+46del (the old nomenclature did not include the methionine codon: G450A, G450T, G450C, IVS3+2T>C, IVS3+4A>G, C344A, and IVS3+28-+46del). These mutations were evaluated by information theory-based analysis and compared with mRNA expression of the alternatively spliced products. The results are discussed relative to the clinical severity of disease. We conclude that the observed PLP1 and DM20 splicing patterns correlated well with predictions of information theory-based analysis, and that the relative strength of the PLP1 and DM20 donor splice sites plays an important role in PLP1 alternative splicing.
Collapse
Affiliation(s)
- Grace M Hobson
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children's Clinic, Wilmington, Delaware, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abromson-Leeman S, Bronson R, Luo Y, Berman M, Leeman R, Leeman J, Dorf M. T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1519-33. [PMID: 15509523 PMCID: PMC1618652 DOI: 10.1016/s0002-9440(10)63410-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two distinct clinical phenotypes of experimental autoimmune encephalomyelitis are observed in BALB interferon-gamma knockout mice immunized with encephalitogenic peptides of myelin basic protein. Conventional disease, characterized by ascending weakness and paralysis, occurs with greater frequency after immunizing with a peptide comprising residues 59 to 76. Axial-rotatory disease, characterized by uncontrolled axial rotation, occurs with greater frequency in mice immunized with a peptide corresponding to exon 2 of the full length 21.5-kd protein. The two clinical phenotypes are histologically distinguishable. Conventional disease is characterized by inflammation and demyelination primarily in spinal cord, whereas axial-rotatory disease involves inflammation and demyelination of lateral medullary areas of brain. Both types have infiltrates in which neutrophils are a predominating component. By isolating T cells and transferring disease to naive recipients, we show here that the type of disease is determined entirely by the inducing T cell. Furthermore, studies using CXCR2 knockout recipients, unable to recruit neutrophils to inflammatory sites, show that although neutrophils are critical for some of these T cells to effect disease, there are also interferon-gamma-deficient T cells that induce disease in the absence of both interferon-gamma and neutrophils. These results highlight the multiplicity of T-cell-initiated effector pathways available for inflammation and demyelination.
Collapse
Affiliation(s)
- Sara Abromson-Leeman
- Department of Pathology, Harvard Medical School, New Research Building, 77 Louis Pasteur Ave., Boston, MA 02115, USA. sara@
| | | | | | | | | | | | | |
Collapse
|
45
|
Lu Z, Ku L, Chen Y, Feng Y. Developmental abnormalities of myelin basic protein expression in fyn knock-out brain reveal a role of Fyn in posttranscriptional regulation. J Biol Chem 2004; 280:389-95. [PMID: 15528192 DOI: 10.1074/jbc.m405973200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fyn protein-tyrosine kinase (PTK), a member of the Src-PTK family, is essential for myelin development in the central nervous system (CNS). The absence of Fyn activity results in defects in the morphogenesis of oligodendrocyte precursors (OPCs) and CNS hypomyelination. However, molecular mechanisms for Fyn to control CNS myelinogenesis remain elusive. Here we show that Fyn-PTK is significantly up-regulated in early OPC differentiation, concentrated in the compact myelin, and declines during myelin development. Despite the high levels of Fyn-PTK expression during early OPC differentiation, Fyn deficiency does not affect the expression of mRNAs that encode myelin structural proteins, including that for the myelin basic protein (MBP), until postnatal day 13 (P13). However, the accumulation rate of MBP mRNA is significantly attenuated during the most active period of myelinogenesis (P13 and P20). Interestingly, the absence of Fyn causes a preferential reduction of the exon-2 containing MBP mRNA isoforms derived from alternative splicing, providing the first evidence that Fyn is required for posttranscriptional regulation of MBP. Consistent with this idea, Fyn phosphorylates the selective RNA-binding protein QKI, which likely modulates the activity of QKI in binding and stabilizing the MBP mRNA. Furthermore, Fyn deficiency exerts an opposing influence on MBP isoform patterning in comparison to that by QKI deficiency. These observations collectively suggest that Fyn plays critical roles in promoting accelerated MBP expression during myelinogenesis in a MBP isoform-preferential manner, and QKI may act in the same pathway downstream of Fyn for MBP mRNA homeostasis.
Collapse
Affiliation(s)
- Zifan Lu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
46
|
Vourc'h P, Andres C. Oligodendrocyte myelin glycoprotein (OMgp): evolution, structure and function. ACTA ACUST UNITED AC 2004; 45:115-24. [PMID: 15145622 DOI: 10.1016/j.brainresrev.2004.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2004] [Indexed: 12/16/2022]
Abstract
The oligodendrocyte myelin glycoprotein (OMgp) is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system (CNS). Although the precise function of OMgp is yet to be determined in vivo, recent in vitro studies suggested roles for this protein in both the developing and adult central nervous system. In vitro experiments demonstrated the participation of OMgp in growth cone collapse and inhibition of neurite outgrowth through its interaction with NgR, the receptor for Nogo. This function requires its leucine-rich repeat domain, a highly conserved region in OMgp during mammal evolution. OMgp leucine-rich repeat domain is also implicated in the inhibition of cell proliferation. Based on its developmental expression, localization and structure, OMgp may also be involved in the formation and maintenance of myelin sheaths. Cell proliferation, neuronal sprouting and myelination are crucial processes involved in brain development and regeneration after injury. Here, we review the information available on the structure and evolution of OMgp, summarize its tissue expression and discuss its putative role(s) during the development and in adult CNS.
Collapse
Affiliation(s)
- Patrick Vourc'h
- Génétique et physiopathologie de l'autisme et des déficiences mentales, INSERM U619, CHRU Tours and Faculté de Médecine, 2 bis Bd Tonnellé, 37032 Tours Cedex, France
| | | |
Collapse
|
47
|
Takahashi R, Goto S. Altered gene expression in the brain of senescence accelerated mouse SAMP8. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0531-5131(03)01606-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Lockhart PJ, O'Farrell CA, Farrer MJ. It's a double knock-out! The quaking mouse is a spontaneous deletion of parkin and parkin co-regulated gene (PACRG). Mov Disord 2003; 19:101-4. [PMID: 14743368 DOI: 10.1002/mds.20000] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutations in the parkin gene (PRKN) are the commonest cause of juvenile and early-onset parkinsonism. However, the pathogenic mechanism by which loss of parkin protein results in degeneration of dopaminergic neurons remains elusive. Animal models provide a useful tool for the study of development and disease, and the recent production of transgenic fly and mouse parkin deficient models allows investigation of the molecular role of parkin in dopamine regulation and nigrostriatal function. We have identified the mouse mutant Quaking as a spontaneously occurring PRKN knockout. The quaking mutation is a deletion of approximately 1.17 Mb of mouse chromosome 17, resulting in the deletion of the entire promoter and first five coding exons of PRKN In addition, the recently described Parkin Co-Regulated Gene (PACRG) is completely deleted. Homozygous Quaking mice show a complete loss of PRKN and PACRG mRNA and protein. These mice will constitute a useful additional model for studies of the molecular role of parkin and PACRG in neurodegeneration.
Collapse
|
49
|
Radja F, Kay DG, Albrecht S, Jolicoeur P. Oligodendrocyte-specific expression of human immunodeficiency virus type 1 Nef in transgenic mice leads to vacuolar myelopathy and alters oligodendrocyte phenotype in vitro. J Virol 2003; 77:11745-53. [PMID: 14557659 PMCID: PMC229323 DOI: 10.1128/jvi.77.21.11745-11753.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Accepted: 07/23/2003] [Indexed: 11/20/2022] Open
Abstract
Vacuolar myelopathy (VM) is a frequent central nervous system complication of human immunodeficiency virus type 1 (HIV-1) infection. We report here that transgenic (Tg) mice expressing even low levels of Nef in oligodendrocytes under the regulation of the myelin basic protein (MBP) promoter (MBP/HIV(Nef)) developed VM similar to the human disease in its appearance and topography. The spinal cords of these Tg mice showed lower levels of the myelin proteins MAG and CNPase and of the 21-kDa isoform of MBP prior to the development of vacuoles. In addition, Tg oligodendrocytes in primary in vitro cultures appeared morphologically more mature but, paradoxically, exhibited a less mature phenotype based on O4, O1, CNPase, and MBP staining. In particular, mature CNPase(+) MBP(+) Tg oligodendrocytes were less numerous than non-Tg oligodendrocytes. Therefore, Nef appears to affect the proper differentiation of oligodendrocytes. These data suggest that even low levels of Nef expression in human oligodendrocytes may be responsible for the development of VM in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Fatiha Radja
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | |
Collapse
|
50
|
Matheus L, Blair GE. Identification and characterisation of a cDNA encoding a 17-kDa isoform of rat myelin basic protein. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE STRUCTURE AND EXPRESSION 2003; 1630:47-53. [PMID: 14580679 DOI: 10.1016/j.bbaexp.2003.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The myelin basic proteins (MBPs) are the major proteins of the myelin membrane. Multiple MBP mRNAs and protein isoforms are generated by alternative RNA splicing. Here we describe the isolation and characterisation of a cDNA clone encoding a 17-kDa MBP isoform from the rat (Rattus norvegicus). The isoform is a 158-amino acid protein consisting of exons 1, 3, 4, 6 and 7 of the MBP gene. RT-PCR analysis of brain mRNA showed that transcripts encoding the 17-kDa isoform were expressed at higher levels early in post-natal development, up to 7 days post-partum.
Collapse
Affiliation(s)
- Luisa Matheus
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|