1
|
Liu B, Yan J, Li J, Xia W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. Int J Mol Sci 2023; 24:16019. [PMID: 38003209 PMCID: PMC10671747 DOI: 10.3390/ijms242216019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Early embryonic development relies on the maternal RNAs and newly synthesized proteins during oogenesis. Zygotic transcription is an important event occurring at a specific time after fertilization. If no zygotic transcription occurs, the embryo will die because it is unable to meet the needs of the embryo and continue to grow. During the early stages of embryonic development, the correct transcription, translation, and expression of genes play a crucial role in blastocyst formation and differentiation of cell lineage species formation among mammalian species, and any variation may lead to developmental defects, arrest, or even death. Abnormal expression of some genes may lead to failure of the embryonic zygote genome before activation, such as BDNF and YBX1; Decreased expression of CENPF, ZSCAN4, TEAD4, GLIS1, and USF1 genes can lead to embryonic development failure. This article reviews the results of studies on the timing and mechanism of gene expression of these genes in bovine fertilized eggs/embryos.
Collapse
Affiliation(s)
- Bingnan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Jiaxin Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| |
Collapse
|
2
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Patel MS, Mahmood S, Jung J, Rideout TC. Reprogramming of aerobic glycolysis in non-transformed mouse liver with pyruvate dehydrogenase complex deficiency. Physiol Rep 2021; 9:e14684. [PMID: 33400855 PMCID: PMC7785054 DOI: 10.14814/phy2.14684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
The Pyruvate Dehydrogenase Complex (PDC), a key enzyme in glucose metabolism, catalyzes an irreversible oxidative decarboxylation reaction of pyruvate to acetyl‐CoA, linking the cytosolic glycolytic pathway to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Earlier we reported a down‐regulation of several key hepatic lipogenic enzymes and their upstream regulators in liver‐specific PDC‐deficient mouse (L‐PDCKO model by deleting the Pdha1 gene). In this study we investigated gene expression profiles of key glycolytic enzymes and other proteins that respond to various metabolic stresses in liver from L‐PDCKO mice. Transcripts of several, such as hexokinase 2, phosphoglycerate kinase 1, pyruvate kinase muscle‐type 2, and lactate dehydrogenase B as well as those for the nonglycolysis‐related proteins, CD‐36, C/EBP homologous protein, and peroxisome proliferator‐activated receptor γ, were up‐regulated in L‐PDCKO liver whereas hypoxia‐induced factor‐1α, pyruvate dehydrogenase kinase 1 and Sirtuin 1 transcripts were down‐regulated. The protein levels of pyruvate kinase muscle‐type 2 and lactate dehydrogenase B were increased whereas that of lactate dehydrogenase A was decreased in PDC‐deficient mouse liver. Analysis of endoplasmic reticulum and oxidative stress indicators suggests that the L‐PDCKO liver showed evidence of the former but not the latter. These findings indicate that (i) liver‐specific PDC deficiency is sufficient to induce “aerobic glycolysis characteristic” in mouse liver, and (ii) the mechanism(s) responsible for these changes appears distinct from that which induces the Warburg effect in some cancer cells.
Collapse
Affiliation(s)
- Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saleh Mahmood
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jiwon Jung
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
Klejbor I, Mahmood S, Melka N, Ebertowska A, Morys J, Stachowiak EK, Stachowiak MK, Patel MS. Phenylbutyrate administration reduces changes in the cerebellar Purkinje cells population in PDC-deficient mice. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Hori S, Hiramuki Y, Nishimura D, Sato F, Sehara-Fujisawa A. PDH‐mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice. FASEB J 2019; 33:8094-8109. [DOI: 10.1096/fj.201802479r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shimpei Hori
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Yosuke Hiramuki
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
- Human Biology DivisionFred Hutchinson Cancer Research Center Seattle Washington USA
| | - Daigo Nishimura
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Fuminori Sato
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth RegulationInstitute for Frontier Life and Medical SciencesKyoto University Kyoto Japan
| |
Collapse
|
7
|
Ghareghani M, Scavo L, Jand Y, Farhadi N, Sadeghi H, Ghanbari A, Mondello S, Arnoult D, Gharaghani S, Zibara K. Melatonin Therapy Modulates Cerebral Metabolism and Enhances Remyelination by Increasing PDK4 in a Mouse Model of Multiple Sclerosis. Front Pharmacol 2019; 10:147. [PMID: 30873027 PMCID: PMC6403148 DOI: 10.3389/fphar.2019.00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic disturbances have been implicated in demyelinating diseases including multiple sclerosis (MS). Melatonin, a naturally occurring hormone, has emerged as a potent neuroprotective candidate to reduce myelin loss and improve MS outcomes. In this study, we evaluated the effect of melatonin, at both physiological and pharmacological doses, on oligodendrocytes metabolism in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Results showed that melatonin decreased neurological disability scores and enhanced remyelination, significantly increasing myelin protein levels including MBP, MOG, and MOBP. In addition, melatonin attenuated inflammation by reducing pro-inflammatory cytokines (IL-1β and TNF-α) and increasing anti-inflammatory cytokines (IL-4 and IL-10). Moreover, melatonin significantly increased brain concentrations of lactate, N-acetylaspartate (NAA), and 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR). Pyruvate dehydrogenase kinase-4 (PDK-4) mRNA and protein expression levels were also increased in melatonin-treated, compared to untreated EAE mice. However, melatonin significantly inhibited active and total pyruvate dehydrogenase complex (PDC), an enzyme under the control of PDK4. In summary, although PDC activity was reduced by melatonin, it caused a reduction in inflammatory mediators while stimulating oligodendrogenesis, suggesting that oligodendrocytes are forced to use an alternative pathway to synthesize fatty acids for remyelination. We propose that combining melatonin and PDK inhibitors may provide greater benefits for MS patients than the use of melatonin therapy alone.
Collapse
Affiliation(s)
- Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC, Canada.,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Linda Scavo
- Platform of Research and Analysis in Sciences and Environment (PRASE), Lebanese University, Beirut, Lebanon.,INSERM U 1197, Laboratory of Stem Cells, Transplantation and Immunoregulation, Villejuif, France
| | - Yahya Jand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Farhadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Damien Arnoult
- INSERM U 1197, Laboratory of Stem Cells, Transplantation and Immunoregulation, Villejuif, France
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kazem Zibara
- Platform of Research and Analysis in Sciences and Environment (PRASE), Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Svensson K, Dent JR, Tahvilian S, Martins VF, Sathe A, Ochala J, Patel MS, Schenk S. Defining the contribution of skeletal muscle pyruvate dehydrogenase α1 to exercise performance and insulin action. Am J Physiol Endocrinol Metab 2018; 315:E1034-E1045. [PMID: 30153068 PMCID: PMC6293170 DOI: 10.1152/ajpendo.00241.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pyruvate dehydrogenase complex (PDC) converts pyruvate to acetyl-CoA and is an important control point for carbohydrate (CHO) oxidation. However, the importance of the PDC and CHO oxidation to muscle metabolism and exercise performance, particularly during prolonged or high-intensity exercise, has not been fully defined especially in mature skeletal muscle. To this end, we determined whether skeletal muscle-specific loss of pyruvate dehydrogenase alpha 1 ( Pdha1), which is a critical subunit of the PDC, impacts resting energy metabolism, exercise performance, or metabolic adaptation to high-fat diet (HFD) feeding. For this, we generated a tamoxifen (TMX)-inducible Pdha1 knockout (PDHmKO) mouse, in which PDC activity is temporally and specifically ablated in adult skeletal muscle. We assessed energy expenditure, ex vivo muscle contractile performance, and endurance exercise capacity in PDHmKO mice and wild-type (WT) littermates. Additionally, we studied glucose homeostasis and insulin sensitivity in muscle after 12 wk of HFD feeding. TMX administration largely ablated PDHα in skeletal muscle of adult PDHmKO mice but did not impact energy expenditure, muscle contractile function, or low-intensity exercise performance. Additionally, there were no differences in muscle insulin sensitivity or body composition in PDHmKO mice fed a control or HFD, as compared with WT mice. However, exercise capacity during high-intensity exercise was severely impaired in PDHmKO mice, in parallel with a large increase in plasma lactate concentration. In conclusion, although skeletal muscle PDC is not a major contributor to resting energy expenditure or long-duration, low-intensity exercise performance, it is necessary for optimal performance during high-intensity exercise.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Vitor F Martins
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Abha Sathe
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London , London , United Kingdom
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego , La Jolla, California
- Biomedical Sciences Graduate Program, University of California San Diego , La Jolla, California
| |
Collapse
|
9
|
Abstract
West syndrome (WS) is an early life epileptic encephalopathy associated with infantile spasms, interictal electroencephalography (EEG) abnormalities including high amplitude, disorganized background with multifocal epileptic spikes (hypsarrhythmia), and often neurodevelopmental impairments. Approximately 64% of the patients have structural, metabolic, genetic, or infectious etiologies and, in the rest, the etiology is unknown. Here we review the contribution of etiologies due to various metabolic disorders in the pathology of WS. These may include metabolic errors in organic molecules involved in amino acid and glucose metabolism, fatty acid oxidation, metal metabolism, pyridoxine deficiency or dependency, or acidurias in organelles such as mitochondria and lysosomes. We discuss the biochemical, clinical, and EEG features of these disorders as well as the evidence of how they may be implicated in the pathogenesis and treatment of WS. The early recognition of these etiologies in some cases may permit early interventions that may improve the course of the disease.
Collapse
Affiliation(s)
- Seda Salar
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
10
|
Della-Flora Nunes G, Mueller L, Silvestri N, Patel MS, Wrabetz L, Feltri ML, Poitelon Y. Acetyl-CoA production from pyruvate is not necessary for preservation of myelin. Glia 2017; 65:1626-1639. [PMID: 28657129 DOI: 10.1002/glia.23184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes and Schwann cells not only form myelin in the central and peripheral nervous system, but also provide metabolic and trophic support to the axons they ensheathe. Acetyl-CoA is potentially a key molecule in Schwann cells and oligodendrocytes because it is at the crossroads of cellular lipid biosynthesis and energy generation. The main route for acetyl-CoA production is the oxidation of pyruvate by the pyruvate dehydrogenase complex (PDC). PDC deficiency in humans results in neurodegeneration and developmental impairments in both white and gray matter structures. To address the importance of PDC in myelinating glia, we deleted Pdha1 gene specifically in oligodendrocytes and Schwann cells. Surprisingly, sciatic and optic nerve morphology and the motor performance of Pdha1f/Y; CnpCre/+ mice are undistinguishable from those of controls at 1 month of age. In addition, myelin is stably maintained for at least 10 months. However, Pdha1f/Y; CnpCre/+ mice showed reduced fiber density and signs of axonal degeneration in both sciatic and optic nerves from 6 months of age. In contrast, 10 month-old mice bearing a floxed Pdha1 gene with either P0-Cre (expressed only by Schwann cells) or NG2-CreER (expressed in oligodendrocyte precursor cells) do not show any sign of axonal pathology or alterations in myelin structure or thickness. This indicates that the axonopathy is specific to the Pdha1f/Y; CnpCre/+ mice. Taken together, these results suggest that acetyl-CoA derived from pyruvate is not necessary for myelin maintenance and, thus, myelin-forming cells are not likely to contribute to the pathophysiology of PDC deficiency.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, 14203.,Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203
| | - Lauren Mueller
- Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203
| | - Nicholas Silvestri
- Deptartment of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14203
| | - Mulchand S Patel
- Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, 14203.,Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203.,Deptartment of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14203
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, 14203.,Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203.,Deptartment of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, 14203
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York, 14203.,Department of Biochemistry, University at Buffalo, Buffalo, New York, 14203
| |
Collapse
|
11
|
Vanderperre B, Herzig S, Krznar P, Hörl M, Ammar Z, Montessuit S, Pierredon S, Zamboni N, Martinou JC. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet. PLoS Genet 2016; 12:e1006056. [PMID: 27176894 PMCID: PMC4866774 DOI: 10.1371/journal.pgen.1006056] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.
Collapse
Affiliation(s)
| | - Sébastien Herzig
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Petra Krznar
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Manuel Hörl
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Zeinab Ammar
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Sylvie Montessuit
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Sandra Pierredon
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
12
|
Pliss L, Jatania U, Patel MS. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency. Mol Genet Metab Rep 2016; 7:78-86. [PMID: 27331005 PMCID: PMC4901178 DOI: 10.1016/j.ymgmr.2016.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. Methods A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Results Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. Conclusion The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.
Collapse
Key Words
- Brain development
- E18, embryonic day 18
- Glucose metabolism
- HF, high fat
- High fat diet
- LC, laboratory chow
- Mouse model
- P15, postnatal day 15
- PDC, pyruvate dehydrogenase complex
- PDH, pyruvate dehydrogenase
- PDHA1, human gene that encodes α subunit of PDH
- Pdha1, murine orthologue of PDHA1
- Prenatal treatment
- Pyruvate dehydrogenase complex deficiency
- flox8, Pdha1 floxed allele
- wt, wild-type Pdha1 allele
- Δex8, Pdha1 null allele
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Urvi Jatania
- Department of Exercise and Nutrition, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Corresponding author at: Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 140 Farber Hall, Buffalo, NY 14214, USA.Department of BiochemistryJacobs School of Medicine and Biomedical SciencesUniversity at Buffalo140 Farber HallBuffaloNY14214USA
| |
Collapse
|
13
|
Takahashi K, Sakurai N, Emura N, Hashizume T, Sawai K. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J Reprod Dev 2015; 61:369-74. [PMID: 26074126 PMCID: PMC4623141 DOI: 10.1262/jrd.2015-029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Krüppel-like protein Gli-similar 1 (GLIS1) is known as a direct reprogramming factor for the generation of induced pluripotent stem cells. The objective of this study was to investigate the role of GLIS1 in the preimplantation development of bovine embryos. GLIS1 transcripts in in vitro-matured oocytes and 1-cell to 4-cell stage embryos were detected, but they were either absent or at trace levels at the 8-cell to blastocyst stages. We attempted GLIS1 downregulation of bovine early embryos by RNA interference and evaluated developmental competency and gene transcripts, which are involved in zygotic gene activation (ZGA) in GLIS1-downregulated embryos. Injection of specific siRNA resulted in a distinct decrease in GLIS1 transcript in bovine embryos at the 4-cell stage. Although the bovine embryos injected with GLIS1-siRNA could develop to the 16-cell stage, these embryos had
difficulty in developing beyond the 32-cell stage. Gene transcripts of PDHA1 and HSPA8, which are transcribed after ZGA, showed lower level in GLIS1 downregulated embryos. It is possible that GLIS1-downregulated embryos fail to initiate ZGA. Our results indicated that GLIS1 is an important factor for the preimplantation development of bovine embryos.
Collapse
|
14
|
Pliss L, Hausknecht KA, Stachowiak MK, Dlugos CA, Richards JB, Patel MS. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency. PLoS One 2013; 8:e67473. [PMID: 23840713 PMCID: PMC3694023 DOI: 10.1371/journal.pone.0067473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 05/17/2013] [Indexed: 12/29/2022] Open
Abstract
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Kathryn A. Hausknecht
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Cynthia A. Dlugos
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Jerry B. Richards
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Mulchand S. Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Smith S, Witkowski A, Moghul A, Yoshinaga Y, Nefedov M, de Jong P, Feng D, Fong L, Tu Y, Hu Y, Young SG, Pham T, Cheung C, Katzman SM, Brand MD, Quinlan CL, Fens M, Kuypers F, Misquitta S, Griffey SM, Tran S, Gharib A, Knudsen J, Hannibal-Bach HK, Wang G, Larkin S, Thweatt J, Pasta S. Compromised mitochondrial fatty acid synthesis in transgenic mice results in defective protein lipoylation and energy disequilibrium. PLoS One 2012; 7:e47196. [PMID: 23077570 PMCID: PMC3471957 DOI: 10.1371/journal.pone.0047196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 12/19/2022] Open
Abstract
A mouse model with compromised mitochondrial fatty acid synthesis has been engineered in order to assess the role of this pathway in mitochondrial function and overall health. Reduction in the expression of mitochondrial malonyl CoA-acyl carrier protein transacylase, a key enzyme in the pathway encoded by the nuclear Mcat gene, was achieved to varying extents in all examined tissues employing tamoxifen-inducible Cre-lox technology. Although affected mice consumed more food than control animals, they failed to gain weight, were less physically active, suffered from loss of white adipose tissue, reduced muscle strength, kyphosis, alopecia, hypothermia and shortened lifespan. The Mcat-deficient phenotype is attributed primarily to reduced synthesis, in several tissues, of the octanoyl precursors required for the posttranslational lipoylation of pyruvate and α-ketoglutarate dehydrogenase complexes, resulting in diminished capacity of the citric acid cycle and disruption of energy metabolism. The presence of an alternative lipoylation pathway that utilizes exogenous free lipoate appears restricted to liver and alone is insufficient for preservation of normal energy metabolism. Thus, de novo synthesis of precursors for the protein lipoylation pathway plays a vital role in maintenance of mitochondrial function and overall vigor.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, Oakland, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet (13)C NMR of the adult mouse brain. Neurochem Int 2012; 61:1036-43. [PMID: 22884585 DOI: 10.1016/j.neuint.2012.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/22/2022]
Abstract
The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the (13)C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-(13)C(2)]glucose (oxidized by both neurons and glia) and [1,2-(13)C(2)]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by (13)C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of (13)C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The (13)C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-(13)C]acetate relative to [1,6-(13)C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain.
Collapse
|
17
|
Choi CS, Ghoshal P, Srinivasan M, Kim S, Cline G, Patel MS. Liver-Specific Pyruvate Dehydrogenase Complex Deficiency Upregulates Lipogenesis in Adipose Tissue and Improves Peripheral Insulin Sensitivity. Lipids 2010; 45:987-95. [DOI: 10.1007/s11745-010-3470-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
|
18
|
Stacpoole PW, Kurtz TL, Han Z, Langaee T. Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 2008; 60:1478-87. [PMID: 18647626 DOI: 10.1016/j.addr.2008.02.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 02/06/2023]
Abstract
Dichloroacetate (DCA) is an investigational drug for the treatment of genetic mitochondrial diseases. Its primary site of action is the pyruvate dehydrogenase (PDH) complex, which it stimulates by altering its phosphorylation state and stability. DCA is metabolized by and inhibits the bifunctional zeta-1 family isoform of glutathione transferase/maleylacetoacetate isomerase. Polymorphic variants of this enzyme differ in their kinetic properties toward DCA, thereby influencing its biotransformation and toxicity, both of which are also influenced by subject age. Results from open label studies and controlled clinical trials suggest chronic oral DCA is generally well-tolerated by young children and may be particularly effective in patients with PDH deficiency. Recent in vitro data indicate that a combined DCA and gene therapy approach may also hold promise for the treatment of this devastating condition.
Collapse
|
19
|
Sidhu S, Gangasani A, Korotchkina LG, Suzuki G, Fallavollita JA, Canty JM, Patel MS. Tissue-specific pyruvate dehydrogenase complex deficiency causes cardiac hypertrophy and sudden death of weaned male mice. Am J Physiol Heart Circ Physiol 2008; 295:H946-H952. [PMID: 18586888 DOI: 10.1152/ajpheart.00363.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) plays an important role in energy homeostasis in the heart by catalyzing the oxidative decarboxylation of pyruvate derived primarily from glucose and lactate. Because various pathophysiological states can markedly alter cardiac glucose metabolism and PDC has been shown to be altered in response to chronic ischemia, cardiac physiology of a mouse model with knockout of the alpha-subunit of the pyruvate dehydrogenase component of PDC in heart/skeletal muscle (H/SM-PDCKO) was investigated. H/SM-PDCKO mice did not show embryonic lethality and grew normally during the preweaning period. Heart and skeletal muscle of homozygous male mice had very low PDC activity (approximately 5% of wild-type), and PDC activity in these tissues from heterozygous females was approximately 50%. Male mice did not survive for >7 days after weaning on a rodent chow diet. However, they survived on a high-fat diet and developed left ventricular hypertrophy and reduced left ventricular systolic function compared with wild-type male mice. The changes in the heterozygote female mice were of lesser severity. The deficiency of PDC in H/SM-PDCKO male mice greatly compromises the ability of the heart to oxidize glucose for the generation of energy (and hence cardiac function) and results in cardiac pathological changes. This mouse model demonstrates the importance of glucose oxidation in cardiac energetics and function under basal conditions.
Collapse
Affiliation(s)
- Sukhdeep Sidhu
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Pliss L, Mazurchuk R, Spernyak JA, Patel MS. Brain MR imaging and proton MR spectroscopy in female mice with pyruvate dehydrogenase complex deficiency. Neurochem Res 2007; 32:645-54. [PMID: 17342409 DOI: 10.1007/s11064-007-9295-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/09/2006] [Indexed: 01/28/2023]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder that causes neurological abnormalities. In this report, a murine model of PDC deficiency was analyzed using histology, magnetic resonance (MR) imaging and MR spectroscopy (MRS) and the results compared to PDC-deficient female patients. Histological analysis of brains from PDC-deficient mice revealed defects in neuronal cytoarchitecture in grey matter and reduced size of white matter structures. MR results were comparable to previously published clinical MR findings obtained from PDC-deficient female patients. Specifically, a 15.4% increase in relative lactate concentration, 64.4% loss of N-acetylaspartate concentration and a near complete loss of discernable glutamine plus glutamate concentration were observed in a PDC deficient mouse compared to wild-type control. Lower apparent diffusion coefficients (ADCs) were observed within the brain consistent with atrophy. These results demonstrate the usefulness of this murine model to systematically evaluate the beneficial effects of dietary and pharmacological interventions.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine, Biomedical Sciences, State University of New York, 140 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
21
|
Han Z, Gorbatyuk M, Thomas J, Lewin AS, Srivastava A, Stacpoole PW. Down-regulation of expression of rat pyruvate dehydrogenase E1alpha gene by self-complementary adeno-associated virus-mediated small interfering RNA delivery. Mitochondrion 2007; 7:253-9. [PMID: 17392036 PMCID: PMC1973157 DOI: 10.1016/j.mito.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/08/2007] [Indexed: 11/24/2022]
Abstract
Mutations in the E1alpha subunit gene (PDHA1) of the pyruvate dehydrogenase complex (PDC) are common causes of congenital lactic acidosis. An animal model of E1alpha deficiency could provide insight into the pathological consequences of mutations and serve to test potential therapies. Small interfering RNAs (siRNAs) were designed to cleave the messenger RNA (mRNA) of the E1alpha subunit and were tested in vitro to assess the feasibility of producing a gene knockdown in rats. HEK 293 cells were co-transfected with a rat PDHA1 expression vector and eight naked siRNAs that specifically targeted rat E1alpha mRNA. Quantitative PCR (qPCR) analyses showed that four siRNAs reduced rat PDHA1 RNA levels up to 85% by 24h and up to 65% by 56h, compared to negative and positive controls. Since oligonucleotide-mediated siRNA delivery provided only transient suppression, we next selected two siRNA candidates and generated self-complementary, double-stranded adeno-associated virus (scAAV) vectors (serotypes 2 and 5) expressing a rat short hairpin siRNA expression cassette (scAAVsi-PDHA1). Rat lung fibroblast (RLF) cultures were infected with scAAVsi-PDHA1 vectors. The RLF PDHA1 mRNA level was reduced 53-80% 72h after infection and 54-70% 10 days after infection in RLF cultures. The expression of E1alpha and the specific activity of pyruvate dehydrogenase were also decreased at 10 days after infection in RLF cultures. Thus, scAAV siRNA-mediated knockdown of PDHA1 gene expression provides a strategy that may be applied to create a useful animal model of PDC deficiency.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Pediatrics (Division of Cellular and Molecular Therapy), University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Marina Gorbatyuk
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - James Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Arun Srivastava
- Department of Pediatrics (Division of Cellular and Molecular Therapy), University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- the General Clinical Research Center, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology and Metabolism), University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- the General Clinical Research Center, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|