1
|
Santos EW, Khatoon S, Di Mise A, Zheng YM, Wang YX. Mitochondrial Dynamics in Pulmonary Hypertension. Biomedicines 2023; 12:53. [PMID: 38255160 PMCID: PMC10813473 DOI: 10.3390/biomedicines12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock. Hypoxia and nicotine exposure can cause dysfunctions in mitochondrial dynamics, increases in mitochondrial reactive oxygen species generation and calcium concentration, and decreases in ATP production. These mitochondrial changes contribute significantly to pulmonary vascular oxidative stress, inflammatory responses, contractile dysfunction, pathologic remodeling, and eventually pulmonary hypertension. In this review article, therefore, we primarily summarize recent advances in basic, translational, and clinical studies of circadian roles in mitochondrial metabolism in the pulmonary vasculature. This knowledge may not only be crucial to fully understanding the development of pulmonary hypertension, but also greatly help to create new therapeutic strategies for treating this devastating disease and other related pulmonary disorders.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Subika Khatoon
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| |
Collapse
|
2
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
3
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Casaril AM, Dantzer R, Bas-Orth C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front Neurosci 2021; 15:725547. [PMID: 34790089 PMCID: PMC8592286 DOI: 10.3389/fnins.2021.725547] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Depression is a leading cause of disability and affects more than 4% of the population worldwide. Even though its pathophysiology remains elusive, it is now well accepted that peripheral inflammation might increase the risk of depressive episodes in a subgroup of patients. However, there is still insufficient knowledge about the mechanisms by which inflammation induces alterations in brain function. In neurodegenerative and neuroinflammatory diseases, extensive studies have reported that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity, oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged mitochondria can release a wide range of damage-associated molecular patterns that are potent activators of the inflammatory response, creating a feed-forward cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal dysfunction. Surprisingly, the possible involvement of this vicious cycle in the pathophysiology of inflammation-associated depression remains understudied. In this mini-review we summarize the research supporting the association between neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-associated depression to highlight the relevance of further studies addressing this crosstalk.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 2021; 23:4-22. [PMID: 34782781 DOI: 10.1038/s41583-021-00535-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/14/2022]
Abstract
Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.
Collapse
|
6
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
7
|
Ryu MJ, Seo BJ, Choi YJ, Han MJ, Choi Y, Chung MK, Do JT. Mitochondrial and Metabolic Dynamics of Endometrial Stromal Cells During the Endometrial Cycle. Stem Cells Dev 2020; 29:1407-1415. [PMID: 32867608 DOI: 10.1089/scd.2020.0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The endometrial cycle in response to hormonal stimulation is essential for implantation. The female has endometrium that repeats this cycle through about half of a lifetime. The cycle includes three phases, proliferative, secretory, and menstrual, and each phase has distinct characteristics. The endometrial stromal cells (EnSCs) in each phase also have specialized characteristics, including cell cycle, morphologies, and cellular metabolic state. So we hypothesized that the cells in each phase have unique mitochondrial morphologies because they are generally linked to cellular metabolic state. To investigate the metabolic characteristics in each phase, we investigated the mitochondrial morphologies by transmission electron microscopy, oxygen consumption rate (OCR), and intracellular adenosine triphosphate (ATP) production. The decidualized EnSCs have shorter mitochondria than those in the proliferative phase. Besides, they also displayed distinct intracellular structural characteristics compared with the proliferative phase, such as ribosome-rich endoplasmic reticulum and increased formation of vesicles. OCR and luminescent ATP detection assay revealed that the basal respiration and ATP production in the decidualized EnSCs were lower than those in the proliferative phase. Thus, we concluded that morphological and intracellular structural changes were induced during the decidualization. Moreover, the decreased mitochondrial length was shown to correlate with decreased dependency on oxidative phosphorylation and ATP concentration in EnSCs.
Collapse
Affiliation(s)
- Mi Jin Ryu
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
- Seoul Rachel Fertility Center, Seoul, Republic of Korea
| | - Bong Jong Seo
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | | | - Min Ji Han
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chronic Energy Depletion due to Iron Deficiency Impairs Dendritic Mitochondrial Motility during Hippocampal Neuron Development. J Neurosci 2018; 39:802-813. [PMID: 30523068 DOI: 10.1523/jneurosci.1504-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/25/2018] [Accepted: 11/25/2018] [Indexed: 11/21/2022] Open
Abstract
During development, neurons require highly integrated metabolic machinery to meet the large energy demands of growth, differentiation, and synaptic activity within their complex cellular architecture. Dendrites/axons require anterograde trafficking of mitochondria for local ATP synthesis to support these processes. Acute energy depletion impairs mitochondrial dynamics, but how chronic energy insufficiency affects mitochondrial trafficking and quality control during neuronal development is unknown. Because iron deficiency impairs mitochondrial respiration/ATP production, we treated mixed-sex embryonic mouse hippocampal neuron cultures with the iron chelator deferoxamine (DFO) to model chronic energetic insufficiency and its effects on mitochondrial dynamics during neuronal development. At 11 days in vitro (DIV), DFO reduced average mitochondrial speed by increasing the pause frequency of individual dendritic mitochondria. Time spent in anterograde motion was reduced; retrograde motion was spared. The average size of moving mitochondria was reduced, and the expression of fusion and fission genes was altered, indicating impaired mitochondrial quality control. Mitochondrial density was not altered, suggesting that respiratory capacity and not location is the key factor for mitochondrial regulation of early dendritic growth/branching. At 18 DIV, the overall density of mitochondria within terminal dendritic branches was reduced in DFO-treated neurons, which may contribute to the long-term deficits in connectivity and synaptic function following early-life iron deficiency. The study provides new insights into the cross-regulation between energy production and dendritic mitochondrial dynamics during neuronal development and may be particularly relevant to neuropsychiatric and neurodegenerative diseases, many of which are characterized by impaired brain iron homeostasis, energy metabolism and mitochondrial trafficking.SIGNIFICANCE STATEMENT This study uses a primary neuronal culture model of iron deficiency to address a gap in understanding of how dendritic mitochondrial dynamics are regulated when energy depletion occurs during a critical period of neuronal maturation. At the beginning of peak dendritic growth/branching, iron deficiency reduces mitochondrial speed through increased pause frequency, decreases mitochondrial size, and alters fusion/fission gene expression. At this stage, mitochondrial density in terminal dendrites is not altered, suggesting that total mitochondrial oxidative capacity and not trafficking is the main mechanism underlying dendritic complexity deficits in iron-deficient neurons. Our findings provide foundational support for future studies exploring the mechanistic role of developmental mitochondrial dysfunction in neurodevelopmental, psychiatric, and neurodegenerative disorders characterized by mitochondrial energy production and trafficking deficits.
Collapse
|
9
|
Abstract
Increasing evidence suggests a key role for tissue energy failure in the pathophysiology of multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE), a commonly used model of MS, have been instrumental in illuminating the mechanisms that may be involved in compromising energy production. In this article, we review recent advances in EAE research focussing on factors that conspire to impair tissue energy metabolism, such as tissue hypoxia, mitochondrial dysfunction, production of reactive oxygen/nitrogen species, and sodium dysregulation, which are directly affected by energy insufficiency, and promote cellular damage. A greater understanding of how inflammation affects tissue energy balance may lead to novel and effective therapeutic strategies that ultimately will benefit not only people affected by MS but also people affected by the wide range of other neurological disorders in which neuroinflammation plays an important role.
Collapse
Affiliation(s)
- Roshni A Desai
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Kenneth J Smith
- Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| |
Collapse
|
10
|
Guo F, Yue H, Wang L, Ding C, Wu L, Wu Y, Gao F, Qin G. Vitamin D supplement ameliorates hippocampal metabolism in diabetic rats. Biochem Biophys Res Commun 2017; 490:239-246. [DOI: 10.1016/j.bbrc.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 01/03/2023]
|
11
|
Caino MC, Altieri DC. Cancer cells exploit adaptive mitochondrial dynamics to increase tumor cell invasion. Cell Cycle 2016; 14:3242-7. [PMID: 26317663 DOI: 10.1080/15384101.2015.1084448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mitochondria are organelles that orchestrate a plethora of fundamental cellular functions that have been associated with various steps of tumor progression. However, we currently lack a mechanistic understanding of how mitochondrial dynamics, which reflects the organelles' exquisite heterogeneity in shape and spatial distribution, affects tumorigenesis. In a recent study, we uncovered a surprising new role of mitochondrial dynamics in response to PI3K therapy. We found that re-activation of Akt/mTOR signaling in tumor cells exposed to small molecule PI3K antagonists currently in the clinic triggered the transport of energetically active, elongated mitochondria to the cortical cytoskeleton of tumor cells. In turn, these repositioned mitochondria supported increased lamellipodia dynamics, faster turnover of focal adhesion complexes, heightened velocity and distance of random cell migration and increased tumor cell invasion. In this Extra View, we discuss the mechanistic basis of this paradoxical response to PI3K antagonists and propose possible strategies to disable mitochondrial adaptation.
Collapse
Affiliation(s)
- M Cecilia Caino
- a Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute ; Philadelphia , PA USA
| | - Dario C Altieri
- a Prostate Cancer Discovery and Development Program, Tumor Microenvironment and Metastasis Program, The Wistar Institute ; Philadelphia , PA USA
| |
Collapse
|
12
|
Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1909-17. [PMID: 27460705 DOI: 10.1016/j.bbadis.2016.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/12/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022]
Abstract
The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology.
Collapse
|
13
|
Cogliati S, Enriquez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 2016; 41:261-273. [PMID: 26857402 DOI: 10.1016/j.tibs.2016.01.001] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023]
Abstract
Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain
| | - Jose A Enriquez
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain; Departamento de Bioquímica, Universidad Zaragoza, Zaragoza, Spain
| | - Luca Scorrano
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy; Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
14
|
Kif5 regulates mitochondrial movement, morphology, function and neuronal survival. Mol Cell Neurosci 2016; 72:22-33. [PMID: 26767417 DOI: 10.1016/j.mcn.2015.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/21/2022] Open
Abstract
Due to the unique architecture of neurons, trafficking of mitochondria throughout processes to regions of high energetic demand is critical to sustain neuronal health. It has been suggested that compromised mitochondrial trafficking may play a role in neurodegenerative diseases. We evaluated the consequences of disrupted kif5c-mediated mitochondrial trafficking on mitochondrial form and function in primary rat cortical neurons. Morphological changes in mitochondria appeared to be due to remodelling, a phenomenon distinct from mitochondrial fission, which resulted in punctate-shaped mitochondria. We also demonstrated that neurons displaying punctate mitochondria exhibited relatively decreased ROS and increased cellular ATP levels using ROS-sensitive GFP and ATP FRET probes, respectively. Somewhat unexpectedly, neurons overexpressing the dominant negative form of kif5c exhibited enhanced survival following excitotoxicity, suggesting that the impairment of mitochondrial trafficking conferred some form of neuroprotection. However, when neurons were exposed to H2O2, disruption of kif5c exacerbated cell death indicating that the effect on cell viability was dependent on the mode of toxicity. Our results suggest a novel role of kif5c. In addition to mediating mitochondrial transport, kif5c plays a role in the mechanism of regulating mitochondrial morphology. Our results also suggest that kif5c mediated mitochondrial dynamics may play an important role in regulating mitochondrial function and in turn cellular health. Moreover, our studies demonstrate an interesting interplay between the regulation of mitochondrial motility and morphology.
Collapse
|
15
|
Ko AR, Hyun HW, Min SJ, Kim JE, Kang TC. Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity. Mol Brain 2015; 8:58. [PMID: 26438559 PMCID: PMC4595180 DOI: 10.1186/s13041-015-0149-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recently, we have reported that LIM kinase 2 (LIMK2) involves programmed necrotic neuronal deaths induced by aberrant cyclin D1 expression following status epilepticus (SE). Up-regulation of LIMK2 expression induces neuronal necrosis by impairment of dynamin-related protein 1 (DRP1)-mediated mitochondrial fission. However, we could not elucidate the upstream effecter for LIMK2-mediated neuronal death. Thus, we investigated the role of endothelin-1 (ET-1) in LIMK2-mediated neuronal necrosis, since ET-1 involves neuronal death via various pathways. RESULTS Following SE, ET-1 concentration and its mRNA were significantly increased in the hippocampus with up-regulation of ETB receptor expression. BQ788 (an ETB receptor antagonist) effectively attenuated SE-induced neuronal damage as well as reduction in LIMK2 mRNA/protein expression. In addition, BQ788 alleviated up-regulation of Rho kinase 1 (ROCK1) expression and impairment of DRP1-mediated mitochondrial fission in CA1 neurons following SE. BQ788 also attenuated neuronal death and up-regulation of LIMK2 expression induced by exogenous ET-1 injection. CONCLUSION These findings suggest that ET-1 may be one of the upstream effectors for programmed neuronal necrosis through abnormal LIMK2 over-expression by ROCK1.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Hye-Won Hyun
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Su-Ji Min
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Ji-Eun Kim
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea.
| | - Tae-Cheon Kang
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea.
| |
Collapse
|
16
|
Bros H, Hauser A, Paul F, Niesner R, Infante-Duarte C. Assessing Mitochondrial Movement Within Neurons: Manual Versus Automated Tracking Methods. Traffic 2015; 16:906-17. [PMID: 25903548 DOI: 10.1111/tra.12291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/28/2022]
Abstract
Owing to the small size of mitochondria and the complexity of their motility patterns, mitochondrial tracking is technically challenging. Mitochondria are often tracked manually; however, this is time-consuming and prone to measurement error. Here, we examined the suitability of four commercial and open-source software alternatives for automated mitochondrial tracking in neurons compared with manual measurements. We show that all the automated tracking tools dramatically underestimated track length, mitochondrial displacement and movement duration, with reductions ranging from 45 to 77% of the values obtained manually. In contrast, mitochondrial velocity was generally overestimated. Only the number of motile mitochondria and their directionality were similar between strategies. Despite these discrepancies, we show that automated tools successfully detected transport alterations after applying an oxidant agent. Thus, automated methods appear to be suitable for assessing relative transport differences between experimental groups, but not for absolute quantification of mitochondrial dynamics. Although useful for objective and time-efficient measurements of mitochondrial movements, results provided by automated methods should be interpreted with caution.
Collapse
Affiliation(s)
- Helena Bros
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A joint cooperation between the Charité-Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anja Hauser
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, A joint cooperation between the Charité-Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, A joint cooperation between the Charité-Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
17
|
Vasconcelos AR, Kinoshita PF, Yshii LM, Marques Orellana AM, Böhmer AE, de Sá Lima L, Alves R, Andreotti DZ, Marcourakis T, Scavone C, Kawamoto EM. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus. Neurobiol Aging 2015; 36:1914-23. [PMID: 25818175 DOI: 10.1016/j.neurobiolaging.2015.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 12/16/2014] [Accepted: 02/05/2015] [Indexed: 01/18/2023]
Abstract
Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lidia Mitiko Yshii
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Ana Elisa Böhmer
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Rosana Alves
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Diana Zukas Andreotti
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| | - Elisa Mitiko Kawamoto
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Lin MY, Sheng ZH. Regulation of mitochondrial transport in neurons. Exp Cell Res 2015; 334:35-44. [PMID: 25612908 DOI: 10.1016/j.yexcr.2015.01.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023]
Abstract
Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to unique morphological features, neurons face exceptional challenges to maintain ATP and Ca(2+) homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal areas where energy and Ca(2+) buffering are in high demand, such as synapses and axonal branches. These distal compartments also undergo development- and activity-dependent remodeling, thereby altering mitochondrial trafficking and distribution. Mitochondria move bi-directionally, pause briefly, and move again, frequently changing direction. In mature neurons, only one-third of axonal mitochondria are motile. Stationary mitochondria serve as local energy sources and buffer intracellular Ca(2+). The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Furthermore, neurons are postmitotic cells surviving for the lifetime of the organism; thus, mitochondria need to be removed when they become aged or dysfunction. Mitochondria also alter their motility under stress conditions or when their integrity is impaired. Therefore, regulation of mitochondrial transport is essential to meet altered metabolic requirements and to remove aged and damaged mitochondria or replenish healthy ones to distal terminals. Defects in mitochondrial transport and altered distribution are implicated in the pathogenesis of several major neurological disorders. Thus, research into the mechanisms regulating mitochondrial motility is an important emerging frontier in neurobiology. This short review provides an updated overview on motor-adaptor machineries that drive and regulate mitochondrial transport and docking receptors that anchor axonal mitochondria in response to the changes in synaptic activity, metabolic requirement, and altered mitochondrial integrity. The review focuses on microtubule (MT)-based mitochondrial trafficking and anchoring. Additional insight from different perspectives can be found in other in-depth reviews.
Collapse
Affiliation(s)
- Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
19
|
Khacho M, S. Slack R. Mitochondrial dynamics in neurodegeneration: from cell death to energetic states. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
21
|
Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 2014; 11:85. [PMID: 24886300 PMCID: PMC4041059 DOI: 10.1186/1742-2094-11-85] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. METHODS Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. RESULTS Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. CONCLUSIONS Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-900, Brazil.
| | | |
Collapse
|
22
|
Khacho M, Tarabay M, Patten D, Khacho P, MacLaurin JG, Guadagno J, Bergeron R, Cregan SP, Harper ME, Park DS, Slack RS. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nat Commun 2014; 5:3550. [PMID: 24686499 PMCID: PMC3988820 DOI: 10.1038/ncomms4550] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/05/2014] [Indexed: 02/07/2023] Open
Abstract
Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. In hypoxic conditions, cells depend on anaerobic respiration, which results in extracellular acidosis. Khacho et al. find that acidosis serves a protective function, enhancing mitochondrial respiratory capacity and sustaining ATP synthesis despite limited oxygen availability, by both promoting mitochondrial fusion and inhibiting fission.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Michelle Tarabay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David Patten
- 1] Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada [2]
| | - Pamela Khacho
- 1] Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada [2]
| | - Jason G MacLaurin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jennifer Guadagno
- Department of Physiology and Pharmacology, J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Richard Bergeron
- 1] Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada [2] Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8M5, Canada
| | - Sean P Cregan
- Department of Physiology and Pharmacology, J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
23
|
Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, Nori SL, Calissano P. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 2014; 6:18. [PMID: 24600391 PMCID: PMC3927396 DOI: 10.3389/fnagi.2014.00018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/27/2014] [Indexed: 01/12/2023] Open
Abstract
Evidence suggests a striking causal relationship between changes in quality control of neuronal mitochondria and numerous devastating human neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Contrary to replicating mammalian cells with a metabolism essentially glycolytic, post-mitotic neurons are distinctive owing to (i) their exclusive energetic dependence from mitochondrial metabolism and (ii) their polarized shape, which entails compartmentalized and distinct energetic needs. Here, we review the recent findings on mitochondrial dynamics and mitophagy in differentiated neurons focusing on how the exceptional characteristics of neuronal populations in their morphology and bioenergetics needs make them quite different to other cells in controlling the intracellular turnover of these organelles.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology - National Research Council Rome, Italy ; European Brain Research Institute Rome, Italy
| | - Veronica Corsetti
- Institute of Translational Pharmacology - National Research Council Rome, Italy
| | | | - Anna Atlante
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Antonella Bobba
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Science, University of Trieste Trieste, Italy
| | - Stefania L Nori
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | | |
Collapse
|
24
|
Chakraborty J, Rajamma U, Mohanakumar KP. A mitochondrial basis for Huntington's disease: therapeutic prospects. Mol Cell Biochem 2013; 389:277-91. [PMID: 24374792 DOI: 10.1007/s11010-013-1951-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant disease, with overt movement dysfunctions. Despite focused research on the basis of neurodegeneration in HD for last few decades, the mechanism for the site-specific lesion of neurons in the brain is not clear. All the explanations that partially clarify the phenomenon of neurodegeneration leads to one organelle, mitochondrion, which is severely affected in HD at the level of electron transport chain, Ca(2+) buffering efficiency and morphology. But, with the existing knowledge, it is not clear whether the cell death processes in HD initiate from mitochondria, though the Huntingtin (Htt) aggregates show close proximity to this organelle, or do some extracellular stimuli like TNFα or FasL trigger the process. Mainly because of the disparity in the different available experimental models, the results are quite confusing or at least inconsistent to a great extent. The fact remains that the mutant Htt protein was seen to be associated with mitochondria directly, and as the striatum is highly enriched with dopamine and glutamate, it may make the striatal mitochondria more vulnerable because of the presence of dopa-quinones, and due to an imbalance in Ca(2+). The current therapeutic strategies are based on symptomatic relief, and, therefore, mainly target neurotransmitter(s) and their receptors to modulate behavioral outputs, but none of them targets mitochondria or try to address the basic molecular events that cause neurons to die in discrete regions of the brain, which could probably be resulting from grave mitochondrial dysfunctions. Therefore, targeting mitochondria for their protection, while addressing symptomatic recovery, holds a great potential to tone down the progression of the disease, and to provide better relief to the patients and caretakers.
Collapse
Affiliation(s)
- J Chakraborty
- Laboratory of Clinical and Experimental Neuroscience, Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Rooms 117&119, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | | | | |
Collapse
|
25
|
Lawrence EJ, Mandato CA. Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS One 2013; 8:e72886. [PMID: 23991162 PMCID: PMC3749163 DOI: 10.1371/journal.pone.0072886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/21/2013] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple cellular functions, including ATP production, calcium buffering, and lipid biosynthesis. Several studies have shown that mitochondrial positioning is regulated by the cytoskeleton during cell division in several eukaryotic systems. However, the distribution of mitochondria during mammalian cytokinesis and whether the distribution is regulated by the cytoskeleton has not been examined. Using live spinning disk confocal microscopy and quantitative analysis of mitochondrial fluorescence intensity, we demonstrate that mitochondria are recruited to the cleavage furrow during cytokinesis in HeLa cells. After anaphase onset, the mitochondria are recruited towards the site of cleavage furrow formation, where they remain enriched as the furrow ingresses and until cytokinesis completion. Furthermore, we show that recruitment of mitochondria to the furrow occurs in multiple mammalian cells lines as well as in monopolar, bipolar, and multipolar divisions, suggesting that the mechanism of recruitment is conserved and robust. Using inhibitors of cytoskeleton dynamics, we show that the microtubule cytoskeleton, but not actin, is required to transport mitochondria to the cleavage furrow. Thus, mitochondria are specifically recruited to the cleavage furrow in a microtubule-dependent manner during mammalian cytokinesis. Two possible reasons for this could be to localize mitochondrial function to the furrow to facilitate cytokinesis and / or ensure accurate mitochondrial inheritance.
Collapse
Affiliation(s)
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Mitochondrial mechanisms of neuroglobin's neuroprotection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:756989. [PMID: 23634236 PMCID: PMC3619637 DOI: 10.1155/2013/756989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/24/2012] [Accepted: 02/21/2013] [Indexed: 01/18/2023]
Abstract
Neuroglobin (Ngb) is an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke and related neurological disorders. However, the underlying mechanisms of Ngb's neuroprotection remain largely undefined. Mitochondria play critical roles in multiple physiological pathways including cell respiration, energy production, free radical generation, and cellular homeostasis and apoptosis. Mitochondrial dysfunction is widely involved in the pathogenesis of stroke and neurodegenerative diseases including Alzheimer's, Parkinson's, and Huntington's diseases. Accumulating evidence showed that elevated Ngb level is associated with preserved mitochondrial function, suggesting that Ngb may play neuroprotective roles through mitochondria-mediated pathways. In this paper we briefly discuss the mitochondria-related mechanisms in Ngb's neuroprotection, especially those involved in ATP production, ROS generation and scavenging, and mitochondria-mediated cell death signaling pathways.
Collapse
|
27
|
Larráyoz IM, Martínez A. Proadrenomedullin N-terminal 20 peptide increases kinesin's velocity both in vitro and in vivo. Endocrinology 2012; 153:1734-42. [PMID: 22334720 DOI: 10.1210/en.2011-1685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intracellular cargo transport relies on microtubules and motor proteins such as kinesins and dyneins. Currently we have ample knowledge of the mechanisms by which motor proteins propel themselves along the microtubules, but little is known about intracellular factors that regulate motor speed. Here we show that proadrenomedullin N-terminal 20 peptide (PAMP) increases kinesin velocity and ATP consumption in a dose-dependent manner, using a variety of human kinesins. Structure-activity studies found that the terminal amide of PAMP is required for modulating kinesin activity and that the smallest peptide fragment retaining this role is PAMP₁₂₋₂₀. On the other hand, peptide fragments as small as PAMP₁₈₋₂₀ maintained the ability of delaying tubulin polymerization, another function previously described for PAMP, indicating that these two activities depend on different regions of the molecule. To demonstrate that these observations are also relevant in vivo, hippocampal neurons were isolated from mice lacking the gene coding for PAMP and from wild type littermates. Intravital stains followed by time-lapse microscopy analysis revealed that mitochondrial speed inside neurons lacking PAMP was significantly slower than in cells expressing the peptide. External addition of synthetic PAMP reversed this phenotype in PAMP-null neurons. Besides the obvious implications for better understanding cell biology, these results may be also relevant for the rapidly evolving discipline of nanotechnology because PAMP may be used as an accelerator of nanodevices based on microtubules and motor proteins.
Collapse
Affiliation(s)
- Ignacio M Larráyoz
- Angiogenesis Study Group, Oncology Area, Center for Biomedical Research of La Rioja, 26006 Logroño, Spain
| | | |
Collapse
|
28
|
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder preferentially affecting the longest corticospinal axons. More than 40 HSP genetic loci have been identified, among them SPG10, an autosomal dominant HSP caused by point mutations in the neuronal kinesin heavy chain protein KIF5A. Constitutive KIF5A knockout (KIF5A–/–) mice die early after birth. In these mice, lungs were unexpanded, and cell bodies of lower motor neurons in the spinal cord swollen, but the pathomechanism remained unclear. To gain insights into the pathophysiology, we characterized survival, outgrowth, and function in primary motor and sensory neuron cultures from KIF5A–/– mice. Absence of KIF5A reduced survival in motor neurons, but not in sensory neurons. Outgrowth of axons and dendrites was remarkably diminished in KIF5A–/– motor neurons. The number of axonal branches was reduced, whereas the number of dendrites was not altered. In KIF5A–/– sensory neurons, neurite outgrowth was decreased but the number of neurites remained unchanged. In motor neurons maximum and average velocity of mitochondrial transport was reduced both in anterograde and retrograde direction. Our results point out a role of KIF5A in process outgrowth and axonal transport of mitochondria, affecting motor neurons more severely than sensory neurons. This gives pathophysiological insights into KIF5A associated HSP, and matches the clinical findings of predominant degeneration of the longest axons of the corticospinal tract.
Collapse
|
29
|
Rousset CI, Baburamani AA, Thornton C, Hagberg H. Mitochondria and perinatal brain injury. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:35-8. [PMID: 22348594 DOI: 10.3109/14767058.2012.666398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Secondary brain injury after hypoxia-ischemia is associated with delayed loss of high energy phosphates implicating bioenergetic mitochondrial failure at least partly related to deregulation of the energy sensor adenosine monophosphate-activated protein kinase. Furthermore, the toxic intracellular environment (accumulation of reactive oxygen/nitrosative species and intracellular calcium) during post-ischemic reperfusion triggers Bax-dependent mitochondrial permeabilization (MP) leading to activation of caspase-dependent and apoptosis-inducing factor dependent cell death. We still do not understand how MP is induced but some data suggest that mitochondrial fusion/fission as well as migration play a critical role. Mitochondrial dynamics also seem critical for brain development as genetic deficiency of proteins involved in mitochondrial fusion and fission results in malformations including microcephaly, abnormal brain development and dysmyelination. In this brief review, we update the critical role of mitochondria in brain development and the decision of cell fate after hypoxia-ischemia in the immature CNS.
Collapse
Affiliation(s)
- Catherine I Rousset
- Centre for the Developing Brain, Institute of Reproductive and Developmental biology, Department of Surgery & Cancer, Imperial College, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
30
|
Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13:77-93. [PMID: 22218207 DOI: 10.1038/nrn3156] [Citation(s) in RCA: 609] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria have a number of essential roles in neuronal function. Their complex mobility patterns within neurons are characterized by frequent changes in direction. Mobile mitochondria can become stationary or pause in regions that have a high metabolic demand and can move again rapidly in response to physiological changes. Defects in mitochondrial transport are implicated in the pathogenesis of several major neurological disorders. Research into the mechanisms that regulate mitochondrial transport is thus an important emerging frontier.
Collapse
|
31
|
Xu J, Rong S, Xie B, Sun Z, Deng Q, Bao W, Wang D, Yao P, Huang F, Liu L. Changes in the Nitric Oxide System Contribute to Effect of Procyanidins Extracted from the Lotus Seedpod Ameliorating Memory Impairment in Cognitively Impaired Aged Rats. Rejuvenation Res 2011; 14:33-43. [DOI: 10.1089/rej.2010.1076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jiqu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Wei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Di Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, P.R. China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
32
|
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1171-7. [PMID: 20153717 DOI: 10.1016/j.bbabio.2010.02.011] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/02/2010] [Accepted: 02/07/2010] [Indexed: 12/20/2022]
Abstract
It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondria's central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O2] sensors, convey signals to HIF-1 directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F0 ATPase in the hypoxia-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
33
|
Control of mitochondrial transport and localization in neurons. Trends Cell Biol 2009; 20:102-12. [PMID: 20006503 DOI: 10.1016/j.tcb.2009.11.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondria play an essential role in ATP generation, calcium buffering and apoptotic signalling. In neurons, the transport of mitochondria to specific locations where they are needed has emerged as an important process for correct nerve cell function. Recent studies have shed light on the mechanisms that control mitochondrial transport and localization in neurons. We describe the machinery that is important for constitutive transport of mitochondria throughout the cell, and highlight recent advances in our understanding of how signalling pathways can converge on this machinery and allow for rapid activity-dependent control of mitochondrial trafficking and localization. Regulation of mitochondrial trafficking might work in concert with mitochondrial tethering systems to give precise control of mitochondrial delivery and localization to regions of high energy and calcium buffering requirements within neurons.
Collapse
|
34
|
Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta Mol Basis Dis 2009; 1802:143-50. [PMID: 19747973 DOI: 10.1016/j.bbadis.2009.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 01/05/2023]
Abstract
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot-Marie-Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Gordon L Rintoul
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | | |
Collapse
|
35
|
Nitric oxide alters GABAergic synaptic transmission in cultured hippocampal neurons. Brain Res 2009; 1297:23-31. [PMID: 19699726 DOI: 10.1016/j.brainres.2009.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
Abstract
Nitric oxide (NO) production increases during hypoxia/ischemia-reperfusion in the immature brain and is associated with neurotoxicity. NO at physiologic concentrations has been shown to modulate GABAergic (gamma-aminobutyric acid) synaptic transmission in the adult brain. However, the effects of neurotoxic concentrations of NO (relevant to hypoxia-ischemia) on GABAergic synaptic transmission remain unknown. The present study tests the hypothesis that nNOS is expressed at GABAergic synapses and that exposure to neurotoxic concentrations of NO results in enhanced GABAergic synaptic transmission in cultured hippocampal neurons (days-in-vitro 10-14) prepared from fetal rats. Using double immunocytochemistry techniques, we were able to demonstrate that nNOS is co-localized to both presynaptic and postsynaptic markers of GABAergic synapses. The effects of NO on GABAergic synaptic transmission were then studied using whole cell patch-clamp electrophysiology. Spontaneous and miniature inhibitory postsynaptic currents (sIPSCS and mIPSCs) were recorded prior to and after exposure to 250 microM of the NO donor diethyleneamine/nitric oxide adduct (DETA-NO). Exposure to DETA-NO resulted in increased sIPSCs and mIPSCs frequency, indicating that neurotoxic concentrations of NO enhance GABAergic synaptic transmission in cultured hippocampal neurons. Because GABA synapses appear to be excitatory in the immature brain, this effect may contribute to overall enhanced synaptic transmission and hyperexcitability. We speculate that NO represents one of the mechanisms by which hypoxia-ischemia increases seizure susceptibility in the immature brain.
Collapse
|
36
|
Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA. HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. ACTA ACUST UNITED AC 2009; 185:1065-81. [PMID: 19528298 PMCID: PMC2711615 DOI: 10.1083/jcb.200811033] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, Center for Neural Development and Disease, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
37
|
Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy. Mol Neurodegener 2009; 4:26. [PMID: 19534794 PMCID: PMC2711937 DOI: 10.1186/1750-1326-4-26] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD). Mitochondria supply the adenosine triphosphate (ATP) needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT). The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC) enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT). Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2) for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. RESULTS The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM) was significantly reduced (p < 0.02) compared to mitochondrial movement in disease free CNT cybrid neuronal cells (0.232 +/- 0.017 SEM). For two hours after LLLT, the average velocity of mitochondrial movement in PD cybrid neurites was significantly (p < 0.003) increased (to 0.224 +/- 0.02 SEM) and restored to levels comparable to CNT. Mitochondrial movement in CNT cybrid neurites was unaltered by LLLT (0.232 +/- 0.017 SEM). Assembly of complexes in the mtETC was reduced and oxygen utilization was altered in PD cybrid neuronal cells. PD cybrid neuronal cell lines with the most dysfunctional mtETC assembly and oxygen utilization profiles were least responsive to LLLT. CONCLUSION The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.
Collapse
Affiliation(s)
- Patricia A Trimmer
- University of Virginia, Morris K Udall Parkinson's Research Center of Excellence and Department of Neurology, Charlottesville, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, Masliah E. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. J Neurochem 2009; 108:1561-74. [PMID: 19166511 DOI: 10.1111/j.1471-4159.2009.05932.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by accumulation of alpha-synuclein (alpha-syn) and degeneration of neuronal populations in cortical and subcortical regions. Mitochondrial dysfunction has been considered a potential unifying factor in the pathogenesis of the disease. Mutations in genes linked to familial forms of PD, including SNCA encoding alpha-syn and Pten-induced putative kinase 1 (PINK1), have been shown to disrupt mitochondrial activity. We investigated the mechanisms through which mutant Pink1 might disrupt mitochondrial function in neuronal cells with alpha-syn accumulation. For this purpose, a neuronal cell model of PD was infected with virally-delivered Pink1, and was analyzed for cell survival, mitochondrial activity and calcium flux. Mitochondrial morphology was analyzed by confocal and electron microscopy. These studies showed that mutant (W437X) but not wildtype Pink1 exacerbated the alterations in mitochondrial function promoted by mutant (A53T) alpha-syn. This effect was associated with increased intracellular calcium levels. Co-expression of both mutant Pink1 and alpha-syn led to alterations in mitochondrial structure and neurite outgrowth that were partially ameliorated by treatment with cyclosporine A, and completely restored by treatment with the mitochondrial calcium influx blocker Ruthenium Red, but not with other cellular calcium flux blockers. Our data suggest a role for mitochondrial calcium influx in the mechanisms of mitochondrial and neuronal dysfunction in PD. Moreover, these studies support an important function for Pink1 in regulating mitochondrial activity under stress conditions.
Collapse
Affiliation(s)
- Roberta Marongiu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Soane L, Kahraman S, Kristian T, Fiskum G. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 2008; 85:3407-15. [PMID: 17847081 PMCID: PMC2570316 DOI: 10.1002/jnr.21498] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Altered mitochondrial energy metabolism contributes to the pathophysiology of acute brain injury caused by ischemia, trauma, and neurotoxins and by chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Although much evidence supports that the electron transport chain dysfunction in these metabolic abnormalities has both genetic and intracellular environmental causes, alternative mechanisms are being explored. These include direct, reversible inhibition of cytochrome oxidase by nitric oxide, release of mitochondrial cytochrome c, oxidative inhibition of mitochondrial matrix dehydrogenases and adenine nucleotide transport, the availability of NAD for dehydrogenase reactions, respiratory uncoupling by activities such as that of the permeability transition pore, and altered mitochondrial structure and intracellular trafficking. This review focuses on the catabolism of neuronal NAD and the release of neuronal mitochondrial NAD as important contributors to metabolic dysfunction. In addition, the relationship between apoptotic signaling cascades and disruption of mitochondrial energy metabolism is considered in light of the fine balance between apoptotic and necrotic neural cell death.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sibel Kahraman
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
- Correspondence to: Dr. Gary Fiskum, Department of Anesthesiology, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 5.34, Baltimore, MD 21201. E-mail:
| |
Collapse
|
40
|
Abstract
Mitochondria form a dynamic network responsible for energy production, calcium homeostasis and cell signaling. Appropriate distribution of the mitochondrial network contributes to organelle function and is essential for cell survival. Highly polarized cells, including neurons and budding yeast, are particularly sensitive to defects in mitochondrial movement and have emerged as model systems for studying mechanisms that regulate organelle distribution. Mitochondria in multicellular eukaryotes move along microtubule tracks. Actin, the primary cytoskeletal component used for transport in yeast, has more subtle functions in other organisms. Kinesin, dynein and myosin isoforms drive motor-based movement along cytoskeletal tracks. Milton and syntabulin have recently been identified as potential organelle-specific adaptor molecules for microtubule-based motors. Miro, a conserved GTPase, may function with Milton to regulate transport. In yeast, Mmr1p and Ypt11p, a Rab GTPase, are implicated in myosin V-based mitochondrial movement. These potential adaptors could regulate motor activity and therefore determine individual organelle movements. Anchoring of stationary mitochondria also contributes to organelle retention at specific sites in the cell. Together, movement and anchoring ultimately determine mitochondrial distribution throughout the cell.
Collapse
Affiliation(s)
- Rebecca L Frederick
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
41
|
Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007; 8:939-44. [PMID: 17721437 PMCID: PMC2002551 DOI: 10.1038/sj.embor.7401062] [Citation(s) in RCA: 794] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 12/22/2022] Open
Abstract
Opposing mitochondrial fission and fusion reactions determine the shape and interconnectivity of mitochondria. Dynamin-related protein 1 (Drp1) is an ancient mechanoenzyme that uses GTP hydrolysis to power the constriction and division of mitochondria. Although Drp1-mediated mitochondrial fragmentation is recognized as an early event in the apoptotic programme, acute regulation of Drp1 activity is poorly understood. Here, we identify a crucial phosphorylation site that is conserved in all metazoan Drp1 orthologues. Ser 656 is phosphorylated by cyclic AMP-dependent protein kinase and dephosphorylated by calcineurin, and its phosphorylation state is controlled by sympathetic tone, calcium levels and cell viability. Pseudophosphorylation of Drp1 by mutation of Ser 656 to aspartic acid leads to the elongation of mitochondria and confers resistance to various pro-apoptotic insults. Conversely, the constitutively dephosphorylated Ser656Ala mutant Drp1 promotes mitochondrial fragmentation and increases cell vulnerability. Thus, Drp1 phosphorylation at Ser 656 provides a mechanism for the integration of cAMP and calcium signals in the control of mitochondrial shape, apoptosis and other aspects of mitochondrial function.
Collapse
Affiliation(s)
- J Thomas Cribbs
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
- Tel: +1 319 384 4439; Fax: +1 319 335 8930; E-mail:
| |
Collapse
|
42
|
Abstract
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center Molecular Physiology of the Brain, Department of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
43
|
Beltran-Parrazal L, López-Valdés HE, Brennan KC, Díaz-Muñoz M, de Vellis J, Charles AC. Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium. Am J Physiol Cell Physiol 2006; 291:C1193-7. [PMID: 16885395 DOI: 10.1152/ajpcell.00230.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 μM. The average velocity was 0.52 μm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 μM) or bicuculline (10 μM), or sustained elevations of [Ca2+]i evoked by glutamate (10 μM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 μM) or a cocktail of CNQX (10 μM) and MK801 (10 μM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores.
Collapse
Affiliation(s)
- Luis Beltran-Parrazal
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80:241-68. [PMID: 17188795 DOI: 10.1016/j.pneurobio.2006.09.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/21/2022]
Abstract
Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Diane T W Chang
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|