1
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
2
|
Li H, Lv T, Wang B, Li M, Liu J, Wang C, Tang Z. Integrating Network Pharmacology and Experimental Models to Investigate the Mechanism of Huanglian Jiedu Decoction on Inflammatory Injury Induced by Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2135394. [PMID: 33519941 PMCID: PMC7817265 DOI: 10.1155/2021/2135394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023]
Abstract
Unlike single-target Western medicines, traditional Chinese medicines (TCMs) exhibit diverse curative effects against multiple diseases through their "multicomponent" and "multitarget" manifestations. However, the material basis of the major therapeutic diseases and TCM underlying molecular mechanisms remain to be challenged. In the current study, we applied, for the first time, an integrated strategy that combines network pharmacology and experimental evaluation and explored and demonstrated the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu Decoction (HLJD), in the treatment of cerebral ischemia. First, the herb compound, protein compound, and GO-BP and KEGG pathways were constructed to predict the material basis of HLJD in the treatment of cerebral ischemia and explore the underlying molecular mechanisms. Network pharmacology analysis showed that HLJD treats cerebral ischemia mainly through its anti-inflammatory effect. We used molecular docking to verify that HLJD components have good binding activities to the arachidonic acid pathway enzymes, cyclooxylipase-2 (COX-2) and 5-lipoxygenase (5-LOX). Next, based on the prediction by the network pharmacology analysis, the rat model of middle cerebral artery occlusion (MCAO) was established to verify the efficacy of HLJD. The results showed that HLJD reduces the degree of brain injury in MCAO rats, probably by inhibiting the expression of the 5-LOX pathway and inflammatory response. In conclusion, our study demonstrates the effectiveness of integrating network pharmacology with an experimental study for material basis of the major therapeutic diseases and the underlying molecular mechanisms of TCM.
Collapse
Affiliation(s)
- HuiMin Li
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Teng Lv
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Bin Wang
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - JiPing Liu
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chuan Wang
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - ZhiShu Tang
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| |
Collapse
|
3
|
Ahmed MAE, Ahmed AAE, El Morsy EM. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sci 2020; 260:118472. [PMID: 32971106 DOI: 10.1016/j.lfs.2020.118472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
AIMS Testicular torsion/detorsion (T/D) is a critical medical condition that necessitates prompt surgical intervention to avoid testicular atrophy and infertility. The use of natural compounds may protect against the associated detrimental oxidative stress and inflammatory responses. Interestingly, acetyl-11-keto-β-boswellic acid (AKBA), the main active constituent of Boswellia resin, has shown potent inhibitory effect on 5-lipoxygenase enzyme which converts arachidonic acid into inflammatory mediators. Therefore, this study was conducted to assess the protective mechanisms by which AKBA may protect against testicular T/D injury in rats. MAIN METHODS Male rats were randomly distributed into five groups: Sham, AKBA (50 mg/kg, p.o.), unilateral testicular T/D, AKBA at two dose levels (25 or 50 mg/kg for 15 successive days) followed by T/D. Histological examination and Johnsen's score were performed to assess testicular injury and perturbations in spermatogenesis. Biochemical parameters included markers of testicular function (serum testosterone), oxidant/antioxidant status (malondialdehyde, glutathione), inflammation (5-lipoxygenase, leukotriene-B4, myeloperoxidase, interleukin-1β, interleukin-6), apoptosis (Bax, Bcl2, caspase-3), DNA integrity (quantitative DNA fragmentation, DNA laddering, PARP-1), energy production (ATP), in addition to p38 MAPK and JNK protein expression. KEY FINDINGS In a dose dependent manner, AKBA significantly inhibited testicular T/D-induced upregulation of 5-LOX/LTB4 and p38-MAPK/JNK/Bax pathways and their associated downstream inflammatory and apoptotic cascades. These effects were accompanied with ATP replenishment and DNA preservation, resulting ultimately in salvage of the testis. SIGNIFICANCE Unprecedentedly, the present mechanistic study revealed the pathways by which AKBA may inhibit testicular T/D injury and offered a novel protective approach that may attenuate the severity of this condition.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| |
Collapse
|
4
|
Hijioka M, Futokoro R, Ohto-Nakanishi T, Nakanishi H, Katsuki H, Kitamura Y. Microglia-released leukotriene B 4 promotes neutrophil infiltration and microglial activation following intracerebral hemorrhage. Int Immunopharmacol 2020; 85:106678. [PMID: 32544870 DOI: 10.1016/j.intimp.2020.106678] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Intracerebral hemorrhage (ICH) from blood vessel rupture results in parenchymal hematoma formation and neuroinflammation, ultimately leading to neurodegeneration. Several lines of evidence suggest that the severity of ICH-induced neural damage is exacerbated by infiltration of T-cells, monocytes, and especially neutrophils into the hematoma. Neutrophil migration is regulated by chemokines, formyl peptides, and leukotriene B4 (LTB4), a metabolite of arachidonic acid. In this study, we demonstrate that LTB4 is a key signaling factor promoting microglial activity and leukocyte infiltration into hematoma and thus a potentially critical determinant of ICH pathogenesis and clinical outcome. Lipidomic analysis revealed markedly increased LTB4 concentration in the hematoma-containing brain tissues 6-24 h after experimental ICH in mice. Expression of 5-lipoxygenase, a rate-limiting enzyme for LTB4 production, was upregulated in activated microglia and neutrophils within the hematoma following ICH. Treatment of cultured BV-2 microglia with thrombin, which is abundant in hematoma, promoted activation, proinflammatory cytokine expression, and LTB4 secretion. Further, conditioned medium from thrombin-stimulated BV-2 cells potentiated the transwell migration of neutrophil-like cells, a response blocked by a LTB4 receptor antagonist. These results suggest that arachidonic acid conversion to LTB4 following ICH contributes to neuroinflammation and ensuing neural tissue damage by inducing microglial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Risa Futokoro
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Hiroki Nakanishi
- Lipidome Lab Co., Ltd., Akita 010-0825, Japan; Research Center for Biosignaling, Akita University, Akita 010-8543, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
5
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
6
|
Gu N, Wang J, Di Z, Liu Z, Jia X, Yan Y, Chen X, Zhang Q, Qian Y. The Effects of Intelectin-1 on Antioxidant and Angiogenesis in HUVECs Exposed to Oxygen Glucose Deprivation. Front Neurol 2019; 10:383. [PMID: 31040819 PMCID: PMC6477047 DOI: 10.3389/fneur.2019.00383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: Ischemic stroke leads to cellular death and tissue damage by depriving the areas of glucose and oxygen supplies. The effective treatment of stroke remains a challenge for modern medicine. This study used an oxygen-glucose deprivation (OGD) model of human umbilical vein endothelial cells (HUVECs) to mimic ischemic injuries and explored the role and mechanism of intelectin-1. Methods: Intelectin-1 was transduced into the HUVECs using a lentiviral vector. The PI3K/Akt signaling was examined in intelectin-induced eNOS phosphorylation. The PI3K inhibitor LY294002 was dealed in HUVECs. Results: Our results demonstrated an increase in capillary density, decrease in apoptotic cells, and increase in HIF-1α protein expression following intelectin-1 treatment. Real-time PCR and Western blotting revealed the increased intelectin-1 expression alongside eNOS and Akt phosphorylation with enhanced bcl-2 expression under OGD. Capillary density decreased significantly after LY294002 treatment. Conclusion: These results suggest intelectin-1 promotes angiogenesis, inhibits oxidative stress and reduces apoptosis by stimulating the Akt-eNOS signaling pathway in response to ischemia in vitro.
Collapse
Affiliation(s)
- Naibing Gu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Jun Wang
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zhengli Di
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Zhiqin Liu
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiaotao Jia
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yu'e Yan
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Xiaoshan Chen
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Quanzeng Zhang
- Department of Neurology, Xi'an Central Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Yihua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
7
|
Song Y, Bei Y, Xiao Y, Tong HD, Wu XQ, Chen MT. Edaravone, a free radical scavenger, protects neuronal cells’ mitochondria from ischemia by inactivating another new critical factor of the 5-lipoxygenase pathway affecting the arachidonic acid metabolism. Brain Res 2018; 1690:96-104. [DOI: 10.1016/j.brainres.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/15/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
|
8
|
Cysteinyl Leukotrienes as Potential Pharmacological Targets for Cerebral Diseases. Mediators Inflamm 2017; 2017:3454212. [PMID: 28607533 PMCID: PMC5451784 DOI: 10.1155/2017/3454212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid mediators widely known for their actions in asthma and in allergic rhinitis. Accumulating data highlights their involvement in a broader range of inflammation-associated diseases such as cancer, atopic dermatitis, rheumatoid arthritis, and cardiovascular diseases. The reported elevated levels of CysLTs in acute and chronic brain lesions, the association between the genetic polymorphisms in the LTs biosynthesis pathways and the risk of cerebral pathological events, and the evidence from animal models link also CysLTs and brain diseases. This review will give an overview of how far research has gone into the evaluation of the role of CysLTs in the most prevalent neurodegenerative disorders (ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis/experimental autoimmune encephalomyelitis, and epilepsy) in order to understand the underlying mechanism by which they might be central in the disease progression.
Collapse
|
9
|
Neuroprotective effect of noscapine on cerebral oxygen–glucose deprivation injury. Pharmacol Rep 2015; 67:281-8. [DOI: 10.1016/j.pharep.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
|
10
|
Gouix E, Buisson A, Nieoullon A, Kerkerian-Le Goff L, Tauskela JS, Blondeau N, Had-Aissouni L. Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacol Res 2014; 87:8-17. [DOI: 10.1016/j.phrs.2014.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
|
11
|
Kang KH, Liou HH, Hour MJ, Liou HC, Fu WM. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology 2013; 73:380-7. [PMID: 23800665 DOI: 10.1016/j.neuropharm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease.
Collapse
Affiliation(s)
- Kai-Hsiang Kang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Zhang XY, Wang XR, Xu DM, Yu SY, Shi QJ, Zhang LH, Chen L, Fang SH, Lu YB, Zhang WP, Wei EQ. HAMI 3379, a CysLT2 Receptor Antagonist, Attenuates Ischemia-Like Neuronal Injury by Inhibiting Microglial Activation. J Pharmacol Exp Ther 2013; 346:328-41. [DOI: 10.1124/jpet.113.203604] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
5-Lipoxygenase Inhibitor Zileuton Inhibits Neuronal Apoptosis Following Focal Cerebral Ischemia. Inflammation 2013; 36:1209-17. [DOI: 10.1007/s10753-013-9657-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Fang SH, Lin KN, Huang XQ, Lu YB, Zhang WP, Wei EQ. Nuclear translocation of cysteinyl leukotriene receptor 1 is involved in oxygen-glucose deprivation-induced damage to endothelial cells. Acta Pharmacol Sin 2012; 33:1511-7. [PMID: 23085741 DOI: 10.1038/aps.2012.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Cysteinyl leukotriene receptor 1 (CysLT(1) receptor) is located in epithelial cells, and translocates from the plasma membrane to the nucleus in a ligand-dependent manner. Here, we investigated whether CysLT(1) receptors translocated to the nucleus in endothelial cells after ischemic insult in vitro and whether it was involved in ischemic injury to endothelial cells. METHODS EA.hy926 cell line, derived from human umbilical vein endothelial cells, was subjected to oxygen-glucose deprivation (OGD). The expression and distribution of CysLT(1) receptors were detected by immunofluorescent staining, immunogold labeling and immunoblotting analyses. Cell viability was evaluated using MTT reduction assay. Necrosis and apoptosis were determined by double fluorescent staining with propidium iodide and Hoechst 33342. RESULTS CysLT(1) receptors were primarily distributed in the cytoplasm and nucleus in EA.hy926 cells, and few was found in the cell membrane. OGD induced the translocation of CysLT(1) receptors from the cytoplasm to the nucleus in a time-depen dent manner, with a peak reached at 6 h. OGD-induced nuclear translocation of CysLT(1) receptors was inhibited by pretreatment with the CysLT(1) receptor antagonist pranlukast (10 μmol/L), or by preincubation with NLS-pep, a peptide corresponding to the nuclear localization sequence of CysLT(1) receptor (10 μg/mL). However, zileuton, an inhibitor of 5-lipoxygenase that was a key enzyme in cysteinyl leukotriene generation, did not inhibit the nuclear translocation of CysLT(1) receptors. Moreover, preincubation with NLS-pep (0.4 μg/mL) significantly ameliorated OGD-induced cell viability reduction and necrosis. CONCLUSION CysLT(1) receptors in endothelial cells translocate to the nucleus in a ligand-independent manner after ischemic insult in vitro, and it is involved in the ischemic injury.
Collapse
|
15
|
Huang XQ, Zhang XY, Wang XR, Yu SY, Fang SH, Lu YB, Zhang WP, Wei EQ. Transforming growth factor β1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation 2012; 9:145. [PMID: 22734808 PMCID: PMC3419068 DOI: 10.1186/1742-2094-9-145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/17/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transforming growth factor-β 1 (TGF-β 1) is an important regulator of cell migration and plays a role in the scarring response in injured brain. It is also reported that 5-lipoxygenase (5-LOX) and its products, cysteinyl leukotrienes (CysLTs, namely LTC₄, LTD₄ and LTE₄), as well as cysteinyl leukotriene receptor 1 (CysLT₁R) are closely associated with astrocyte proliferation and glial scar formation after brain injury. However, how these molecules act on astrocyte migration, an initial step of the scarring response, is unknown. To clarify this, we determined the roles of 5-LOX and CysLT₁R in TGF-β 1-induced astrocyte migration. METHODS In primary cultures of rat astrocytes, the effects of TGF-β 1 and CysLT receptor agonists on migration and proliferation were assayed, and the expression of 5-LOX, CysLT receptors and TGF-β1 was detected. 5-LOX activation was analyzed by measuring its products (CysLTs) and applying its inhibitor. The role of CysLT₁R was investigated by applying CysLT receptor antagonists and CysLT₁R knockdown by small interfering RNA (siRNA). TGF-β 1 release was assayed as well. RESULTS TGF-β 1-induced astrocyte migration was potentiated by LTD₄, but attenuated by the 5-LOX inhibitor zileuton and the CysLT₁R antagonist montelukast. The non-selective agonist LTD₄ at 0.1 to 10 nM also induced a mild migration; however, the selective agonist N-methyl-LTC₄ and the selective antagonist Bay cysLT2 for CysLT₂R had no effects. Moreover, CysLT₁R siRNA inhibited TGF-β 1- and LTD₄-induced astrocyte migration by down-regulating the expression of this receptor. However, TGF-β 1 and LTD4 at various concentrations did not affect astrocyte proliferation 24 h after exposure. On the other hand, TGF-β 1 increased 5-LOX expression and the production of CysLTs, and up-regulated CysLT1R (not CysLT₂R), while LTD4 and N-methyl-LTC4 did not affect TGF-β 1 expression and release. CONCLUSIONS TGF-β 1-induced astrocyte migration is, at least in part, mediated by enhanced endogenous CysLTs through activating CysLT₁R. These findings indicate that the interaction between the cytokine TGF-β 1 and the pro-inflammatory mediators CysLTs in the regulation of astrocyte function is relevant to glial scar formation.
Collapse
Affiliation(s)
- Xue-Qin Huang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K, Zeng P, Xiong J, Li HH, Wu Q, Cai L, Ye DY. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci 2012; 48:185-200. [PMID: 22661361 DOI: 10.1007/s12031-012-9807-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022]
Abstract
Lipoxin A(4) (LXA(4)), a biologically active eicosanoid with anti-inflammatory and pro-resolution properties, was recently found to have neuroprotective effects in brain ischemia. As 5-lipoxygenase (5-LOX) and leukotrienes are generally considered to aggravate cerebral ischemia/reperfusion (I/R) injury, we investigated their effects on LXA(4)-mediated neuroprotection by studying middle cerebral artery occlusion (MCAO)/reperfusion in rats and oxygen-glucose deprivation (OGD)/recovery in neonatal rat astrocyte primary cultures. LXA(4) effectively reduced infarct volumes and brain edema, and improved neurological scores in the MCAO/reperfusion experiments; this effect was partially blocked by butoxycarbonyl-Phe-Leu-Phe-Leu-Phe (Boc2), a specific antagonist of the LXA(4) receptor (ALXR). Total 5-LOX expression did not change, regardless of treatment, but LXA(4) could inhibit nuclear translocation induced by MCAO or OGD. We also found that LXA(4) inhibits the upregulation of both leukotriene B(4) (LTB(4)) and leukotriene C(4) (LTC(4)) and the phosphorylation of extracellular signal-regulated kinase (ERK) induced by MCAO or OGD. The phosphorylation of the 38-kDa protein kinase (p38) and c-Jun N-terminal kinase (JNK) was not altered throughout the experiment. These results suggest that the neuroprotective effects of LXA(4) are probably achieved by anti-inflammatory mechanisms that are partly mediated by ALXR and through an ERK signal transduction pathway.
Collapse
Affiliation(s)
- Le Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Esculetin inhibits N-methyl-D-aspartate neurotoxicity via glutathione preservation in primary cortical cultures. Lab Anim Res 2011; 27:259-63. [PMID: 21998617 PMCID: PMC3188735 DOI: 10.5625/lar.2011.27.3.259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 11/21/2022] Open
Abstract
Recently, loss of endogenous glutathione during N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxic injury, and the resultant overproduction of reactive oxygen species (ROS) through an arachidonic acid cascade process in brain, have been implicated in neuronal damage in various neurodegenerative diseases. Glutathione depletion induced by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of glutathione synthesis, is known to cause arachidonic acid-mediated excitotoxicity in primary mixed cortical cultures. The aim of this study was to investigate whether esculetin (6,7-dihydroxycoumarin), an inhibitor of lipoxygenase, protects against neurotoxicity induced by NMDA or BSO. We observed that neurotoxicity induced by NMDA but not kainic acid was attenuated by esculetin. At the same concentration (100 µM), esculetin attenuated the (45)Ca(2+) uptake elevation induced by NMDA. Free radical-mediated neuronal injury induced by H(2)O(2) and xanthine/xanthine oxidase was concentration-dependently blocked by esculetin. Esculetin (1-30 µM) dose-dependently inhibited BSO-induced neuronal injury. In addition, arachidonate-induced neurotoxicity was completely blocked by esculetin. BSO also reduced glutathione peroxidase (GPx) activity, but did not change glutathione reductase (GR) activity 24 h after treatment. Esculetin dose-dependently increased GR activity, but did not alter GPx activity. These findings suggest that esculetin can contribute to the rescue of neuronal cells from NMDA neurotoxicity and that this protective effect occurs partly through NMDA receptor modulation and the sparing of glutathione depletion.
Collapse
|
18
|
Li RC, Haribabu B, Mathis SP, Kim J, Gozal D. Leukotriene B4 receptor-1 mediates intermittent hypoxia-induced atherogenesis. Am J Respir Crit Care Med 2011; 184:124-31. [PMID: 21493735 DOI: 10.1164/rccm.201012-2039oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Obstructive sleep apnea, which is characterized by intermittent hypoxia (IH) during sleep, has emerged as an independent risk factor for cardiovascular disease, including atherosclerosis. Leukotriene B4 (LTB4) production is increased in patients with obstructive sleep apnea and negatively correlates to hypoxic levels during sleep, with continuous positive airway pressure therapy decreasing LTB4 production. OBJECTIVES Determine the potential role of LTB4 in IH-induced atherosclerosis in a monocyte cellular model and a murine model. METHODS THP-1 cells were exposed to IH for 3, 6, 24, and 48 hours. Macrophage transformation and foam cell formation were assessed after IH exposures. Apolipopotein E (ApoE)(-/-) or BLT1(-/-)/ApoE(-/-) mice were fed an atherogenic diet and exposed to IH (alternating 21% and 5.7% O(2) from 7 am to 7 PM each day) for 10 weeks. Atherosclerotic lesion formation in en face aorta was examined by oil red O staining. MEASUREMENTS AND MAIN RESULTS IH increased production of LTB4 and the expression of 5-lipoxygenase and leukotriene A4 hydrolase, the key enzymes for producing LTB4. IH was associated with transformation of monocytes to activated macrophages, as evidenced by increased expression of CD14 and CD68. In addition, IH exposures promoted increased cellular cholesterol accumulation and foam cell formation. The LTB4 receptor 1 (BLT1) antagonist U-75302 markedly attenuated IH-induced changes. Furthermore, IH promoted atherosclerotic lesion formation in ApoE(-/-) mice. IH-induced lesion formation was markedly attenuated in BLT1(-/-)/ApoE(-/-) mice. CONCLUSIONS BLT1-dependent pathways underlie IH-induced atherogenesis, and may become a potential novel therapeutic target for obstructive sleep apnea-associated cardiovascular disease.
Collapse
Affiliation(s)
- Richard C Li
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
19
|
Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. ACTA ACUST UNITED AC 2011; 63:550-7. [PMID: 21401607 DOI: 10.1111/j.2042-7158.2010.01238.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Previously we demonstrated the neuroprotective effect of montelukast, a cysteinyl leukotriene receptor-1 (CysLT(1) ) antagonist, on acute brain injury after focal cerebral ischaemia in mice. In this study, we have determined its effect on chronic brain injury after focal cerebral ischaemia in mice and rats. METHODS After transient focal cerebral ischaemia was induced by middle cerebral artery occlusion, montelukast was intraperitoneally injected in mice or orally administered to rats for five days. Behavioural dysfunction, brain infarct volume, brain atrophy and neuron loss were determined to evaluate brain lesions. KEY FINDINGS Montelukast (0.1 mg/kg) attenuated behavioural dysfunction, brain infarct volume, brain atrophy and neuron loss in mice, which was similar to pranlukast, another CysLT(1) receptor antagonist. Oral montelukast (0.5 mg/kg) was effective in rats and was more effective than edaravone, a free radical scavenger. CONCLUSION Montelukast protected mice and rats against chronic brain injury after focal cerebral ischaemia, supporting the therapeutic potential of CysLT(1) receptor antagonists.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmacology, School of Medicine, Zhejiang University Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou Department of Physiology and Department of Neurobiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | |
Collapse
|
20
|
Choi DK, Koppula S, Choi M, Suk K. Recent developments in the inhibitors of neuroinflammation and neurodegeneration: inflammatory oxidative enzymes as a drug target. Expert Opin Ther Pat 2010; 20:1531-46. [PMID: 20939683 DOI: 10.1517/13543776.2010.525220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Increasing evidence indicates that glial cells play a pivotal role in a wide range of brain diseases. As glial cells orchestrate inflammatory responses in the CNS, recent studies have focused on glial cells and neuroinflammation as drug targets for the treatment of neuroinflammatory and neurodegenerative diseases. AREAS COVERED IN THIS REVIEW In this review, we aim to give an overview of the current literature and patents for inhibitors of inflammatory oxidative enzymes in glia such as NADPH oxidase, myeloperoxidase, COX-2 and 5-lipooxygenase. WHAT THE READER WILL GAIN Recent literature and patents on natural products or small molecule-based inhibitors of glial oxidative enzymes are reviewed. TAKE HOME MESSAGE Extensive studies and patents recently reported in this field suggest that glial inhibitors may soon proceed to clinical trials. However, before glial inhibitors can serve as novel drugs for the treatment of neuroinflammatory disorders, the neurotoxic and neuroprotective effects of glial neuroinflammatory responses need to be better dissected.
Collapse
Affiliation(s)
- Dong Kug Choi
- Konkuk University, Department of Biotechnology, Chungju, 380-701, Korea.
| | | | | | | |
Collapse
|
21
|
Pranlukast attenuates ischemia-like injury in endothelial cells via inhibiting reactive oxygen species production and nuclear factor-kappaB activation. J Cardiovasc Pharmacol 2010; 53:77-85. [PMID: 19129732 DOI: 10.1097/fjc.0b013e318196736c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The anti-inflammatory effects of pranlukast, an antagonist of cysteinyl leukotriene receptor 1, may be rendered not only by antileukotriene activity but also by other pharmacological activities. Previous studies indicate that pranlukast reduces ischemic tissue injury partially through decreasing vascular permeability, but its effect on ischemic injury in endothelial cells is not known. Thus, in this study, we investigated the effect of pranlukast on ischemia-like injury induced by oxygen-glucose deprivation (OGD) in EA.hy926 cells, a human endothelial cell line, and the possible mechanisms. We found that cell viability was reduced, lactate dehydrogenase release was increased 4-8 hours after OGD, and necrosis was induced 8 hours after OGD. Production of reactive oxygen species (ROS) increased by 211%, 176%, and 128%, respectively, 0.5, 1, and 2 hours after OGD. Nuclear factor-kappaB (NF-kappaB) was translocated to the nuclei 4-8 hours after OGD. Pranlukast ameliorated the reduced viability, the increased lactate dehydrogenase release, and necrosis after OGD. It also reduced ROS production and inhibited NF-kappaB nuclear translocation after OGD. The ROS scavenger, edaravone, inhibited OGD-induced nuclear translocation of NF-kappaB as well. Edaravone and pyrrolidine dithiocarbamate (a specific NF-kappaB inhibitor) protected endothelial cells from the OGD-induced injury. However, zileuton, a 5-lipoxygenase inhibitor, did not affect the cell injury, ROS production, and NF-kappaB nuclear translocation after OGD. The exogenous leukotriene D4 did not induce cell injury, ROS production, and NF-kappaB translocation. Thus, we conclude that pranlukast protects endothelial cells from ischemia-like injury via decreasing ROS production and inhibiting NF-kappaB activation, which is leukotriene independent.
Collapse
|
22
|
Li CT, Zhang WP, Fang SH, Lu YB, Zhang LH, Qi LL, Huang XQ, Huang XJ, Wei EQ. Baicalin attenuates oxygen-glucose deprivation-induced injury by inhibiting oxidative stress-mediated 5-lipoxygenase activation in PC12 cells. Acta Pharmacol Sin 2010; 31:137-44. [PMID: 20139896 DOI: 10.1038/aps.2009.196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To determine whether the flavonoid baicalin attenuates oxygen-glucose deprivation (OGD)-induced injury by inhibiting oxidative stress-mediated 5-lipoxygenase (5-LOX) activation in PC12 cells. METHODS The effects of baicalin and the 5-LOX inhibitor zileuton on the changes induced by OGD/recovery or H(2)O(2) (an exogenous reactive oxygen species [ROS]) in green fluorescent protein-5-LOX-transfected PC12 cells were compared. RESULTS Both baicalin and zileuton attenuated OGD/recovery- and H(2)O(2)-induced injury and inhibited OGD/recovery-induced production of 5-LOX metabolites (cysteinyl leukotrienes) in a concentration-dependent manner. However, baicalin did not reduce baseline cysteinyl leukotriene levels. Baicalin also reduced OGD/recovery-induced ROS production and inhibited 5-LOX translocation to the nuclear envelope and p38 phosphorylation induced by OGD/recovery and H(2)O(2). In contrast, zileuton did not show these effects. CONCLUSION Baicalin can inhibit 5-LOX activation after ischemic injury, which may partly result from inhibition of the ROS/p38 mitogen-activated protein kinase pathway.
Collapse
|
23
|
Yang ZH, Sun K, Yan ZH, Suo WH, Fu GH, Lu Y. Panaxynol protects cortical neurons from ischemia-like injury by up-regulation of HIF-1α expression and inhibition of apoptotic cascade. Chem Biol Interact 2010; 183:165-71. [DOI: 10.1016/j.cbi.2009.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/07/2009] [Accepted: 09/22/2009] [Indexed: 01/30/2023]
|
24
|
Li CT, Zhang WP, Lu YB, Fang SH, Yuan YM, Qi LL, Zhang LH, Huang XJ, Zhang L, Chen Z, Wei EQ. Oxygen-glucose deprivation activates 5-lipoxygenase mediated by oxidative stress through the p38 mitogen-activated protein kinase pathway in PC12 cells. J Neurosci Res 2009; 87:991-1001. [DOI: 10.1002/jnr.21913] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Huang XJ, Zhang WP, Li CT, Shi WZ, Fang SH, Lu YB, Chen Z, Wei EQ. Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation. Glia 2008; 56:27-37. [PMID: 17910051 DOI: 10.1002/glia.20588] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently found that 5-lipoxygenase (5-LOX) is activated to produce cysteinyl leukotrienes (CysLTs), and CysLTs may cause neuronal injury and astrocytosis through activation of CysLT(1) and CysLT(2) receptors in the brain after focal cerebral ischemia. However, the property of astrocyte responses to in vitro ischemic injury is not clear; whether 5-LOX, CysLTs, and their receptors are also involved in the responses of ischemic astrocytes remains unknown. In the present study, we performed oxygen-glucose deprivation (OGD) followed by recovery to induce ischemic-like injury in the cultured rat astrocytes. We found that 1-h OGD did not injure astrocytes (sub-lethal OGD) but induced astrocyte proliferation 48 and 72 h after recovery; whereas 4-h OGD moderately injured the cells (moderate OGD) and led to death 24-72 h after recovery. Inhibition of phospholipase A(2) and 5-LOX attenuated both the proliferation and death. Sub-lethal and moderate OGD enhanced the production of CysLTs that was inhibited by 5-LOX inhibitors. Sub-lethal OGD increased the expressions of CysLT(1) receptor mRNA and protein, while moderate OGD induced the expression of CysLT(2) receptor mRNA. Exogenously applied leukotriene D(4) (LTD(4)) induced astrocyte proliferation at 1-10 nM and astrocyte death at 100-1,000 nM. The CysLT(1) receptor antagonist montelukast attenuated astrocyte proliferation, the CysLT(2) receptor antagonist BAY cysLT2 reversed astrocyte death, and the dual CysLT receptor antagonist BAY u9773 exhibited both effects. In addition, LTD(4) (100 nM) increased the expression of CysLT(2) receptor mRNA. Thus, in vitro ischemia activates astrocyte 5-LOX to produce CysLTs, and CysLTs result in CysLT(1) receptor-mediated proliferation and CysLT(2) receptor-mediated death.
Collapse
Affiliation(s)
- Xiao-Jia Huang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Farias SE, Zarini S, Precht T, Murphy RC, Heidenreich KA. Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells. J Neurochem 2007; 103:1310-8. [PMID: 17711426 DOI: 10.1111/j.1471-4159.2007.04830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.
Collapse
Affiliation(s)
- Santiago E Farias
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, and the Denver VA Medical Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
27
|
Gaspar AF, Prado WA. Comparison of pre- versus post-incision administration of intraplantar indomethacin and MK886 in a rat model of postoperative pain. Braz J Med Biol Res 2007; 40:1141-7. [PMID: 17665052 DOI: 10.1590/s0100-879x2006005000136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 05/03/2007] [Indexed: 11/22/2022] Open
Abstract
The amplification of pain long after the initial stimulus may be avoided if the treatment of pain is introduced before its initiation. However, conflicting evidence exists about the efficacy of such preemptive analgesia for the management of postoperative pain. This study compares the efficacy of intraplantar administration of indomethacin (a non-selective inhibitor of cyclooxygenase) and MK886 (an inhibitor of 5-lipoxygenase-activating protein), separately or in combination to produce preemptive analgesia in a model of surgical incisional pain in male Wistar rats. All incised rats (5 to 6 rats per group) had allodynia at 2, 6, and 24 h after surgery as evaluated using von Frey filaments. MK886, but not indomethacin (50 to 200 microg/paw), reduced the allodynia when injected either 1 h before or 1 h after surgery. The effect of preoperative MK886 (160 microg/paw) against incisional allodynia had a magnitude apparently similar to that produced by postoperative MK886. Pre-, but not postoperative MK886 (80 microg/paw) reduced the allodynia but the effect was seen only at 6 h after surgery. In contrast, MK886 (40 microg/paw) intensified the allodynia observed 2 h after the incision either injected before or after surgery. MK886 or indomethacin alone did not provide preemptive analgesia in the model of incisional pain. In contrast, the combination of MK886 with indomethacin reduced the allodynia more effectively when used before than after surgery, thus fulfilling the criteria for preemptive analgesia. In conclusion, preoperative inhibition of the local generation of both prostaglandins and leukotrienes by surgical incision may be an alternative to provide preemptive analgesia.
Collapse
Affiliation(s)
- A F Gaspar
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
28
|
Imbesi M, Zavoreo I, Uz T, Sharma RP, Dimitrijevic N, Manev H, Manev R. 5-Lipoxygenase inhibitor MK-886 increases GluR1 phosphorylation in neuronal cultures in vitro and in the mouse cortex in vivo. Brain Res 2007; 1147:148-53. [PMID: 17349982 DOI: 10.1016/j.brainres.2007.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Modifications of AMPA glutamate receptor GluR1 phosphorylation are critical for neuroplastic mechanisms. Previous in vitro studies in brain slices employed MK-886, a functional inhibitor of the enzyme 5-lipoxygenase (5-LOX), and found increased GluR1 phosphorylation. Since slice preparations have accompanying postmortem phosphorylation changes, e.g., decreased GluR1 phosphorylation, it remains to be clarified whether MK-886 can affect GluR1 phosphorylation in intact neurons and in the brain in vivo. We used primary neuronal cultures prepared from embryonic mouse brain and in vivo drug administration to investigate the effects of MK-886 on GluR1 phosphorylation using quantitative Western immunoblotting assays. In vitro, MK-886 increased GluR1 phosphorylation at both serine 831 and serine 845. In vivo, repeated but not a single MK-886 injection increased GluR1 phosphorylation in the prefrontal cortex. These findings indicate that MK-886 has an intrinsic effect on neuronal phosphorylation both in vitro and in vivo and support the use of MK-886 as a pharmacological tool in studies of not only the 5-LOX pathway but also neuronal GluR1 functioning.
Collapse
Affiliation(s)
- Marta Imbesi
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC912, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ding Q, Wei EQ, Zhang YJ, Zhang WP, Chen Z. Cysteinyl leukotriene receptor 1 is involved in N-methyl-D-aspartate-mediated neuronal injury in mice. Acta Pharmacol Sin 2006; 27:1526-36. [PMID: 17112405 DOI: 10.1111/j.1745-7254.2006.00438.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To determine whether cysteinyl leukotriene receptor 1 (CysLT1 receptor) is involved in N-methyl-D-aspartate (NMDA)-induced excitotoxic injury in the mouse brain. METHODS Brain injury was induced by NMDA microinjection (50-150 nmol in 0.5 microL) into the cerebral cortex. The changes in CysLT1 receptor expression 24 h after NMDA injection and the effects of a CysLT1 receptor antagonist, pranlukast (0.01 and 0.1 mg/kg), an NMDA receptor antagonist, ketamine (30 mg/kg), and an antioxidant, edaravone (9 mg/kg) were observed. RESULTS In the NMDA-injured brain, the CysLT1 receptor mRNA, and protein expression were upregulated, and the receptor was mainly localized in the neurons and not in the astrocytes. Pranlukast, ketamine and edaravone decreased NMDA-induced injury; pranlukast (0.1 mg/kg) and ketamine inhibited the upregulated expression of the CysLT1 receptor. CONCLUSION CysLT1 receptor expression in neurons is upregulated after NMDA injection, and NMDA-induced responses are inhibited by CysLT1 receptor antagonists, indicating that the increased CysLT1 receptor is involved in NMDA excitotoxicity.
Collapse
Affiliation(s)
- Qian Ding
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
30
|
Zhang L, Zhang WP, Chen KD, Qian XD, Fang SH, Wei EQ. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci 2006; 80:530-7. [PMID: 17074364 DOI: 10.1016/j.lfs.2006.09.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/26/2006] [Accepted: 09/29/2006] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury induces neuron damage in early phase, and astrogliosis and the formation of the glial scar in late phase. Caffeic acid (3, 4-dihydroxycinnamic acid), one of the natural phenolic compounds, exerts neuroprotective effects against ischemic brain injuries with anti-oxidant and anti-inflammatory properties, and by scavenging reactive species. However, whether caffeic acid has protective effects against traumatic brain injury is unknown. Therefore, we determined the effect of caffeic acid on the lesion in the early (1 day) and late phases (7 to 28 days) of cryoinjury in mice. We found that caffeic acid (10 and 50 mg/kg, i.p., for 7 days after cryoinjury) reduced the lesion area and attenuated the neuron loss around the lesion core 1 to 28 days, but attenuated the neuron loss in the lesion core only 1 day after cryoinjury. Moreover, caffeic acid attenuated astrocyte proliferation, glial scar wall formation and glial fibrillary acidic protein (GFAP) protein expression in the late phase of cryoinjury (7 to 28 days). Caffeic acid also inhibited the reduction of superoxide dismutase activity and the increase in malondialdehyde content in the brain 1 day after cryoinjury. These results indicate that caffeic acid exerts a protective effect in traumatic brain injury, especially on glial scar formation in the late phase, which at least is associated with its anti-oxidant ability.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, 388, Yu Hang Tang Road, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Zhou Y, Wei EQ, Fang SH, Chu LS, Wang ML, Zhang WP, Yu GL, Ye YL, Lin SC, Chen Z. Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats. Life Sci 2006; 79:1645-56. [PMID: 16824548 DOI: 10.1016/j.lfs.2006.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/13/2006] [Accepted: 05/23/2006] [Indexed: 12/29/2022]
Abstract
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pharmacology, School of Medicine, Zhejiang University, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou Y, Fang SH, Ye YL, Chu LS, Zhang WP, Wang ML, Wei EQ. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats. Acta Pharmacol Sin 2006; 27:1103-10. [PMID: 16923329 DOI: 10.1111/j.1745-7254.2006.00406.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. METHODS Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. RESULTS Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. CONCLUSION Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Sheng WW, Li CT, Zhang WP, Yuan YM, Hu H, Fang SH, Zhang L, Wei EQ. Distinct roles of CysLT1 and CysLT2 receptors in oxygen glucose deprivation-induced PC12 cell death. Biochem Biophys Res Commun 2006; 346:19-25. [PMID: 16756959 DOI: 10.1016/j.bbrc.2006.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 12/29/2022]
Abstract
Cysteinyl leukotrienes are involved in ischemic brain injury, and their receptors (CysLT(1) and CysLT(2)) have been cloned. To clarify which subtype mediates the ischemic neuronal injury, we performed permanent transfection to increase CysLT(1) and CysLT(2) receptor expressions in PC12 cells. Oxygen glucose deprivation (OGD)-induced cell death was detected by Hoechst 33258 and propidium iodide fluorescent staining as well as by flow cytometry. OGD induced late phase apoptosis mainly and necrosis minimally. Over-expression of CysLT(1) receptor decreased and over-expression of CysLT(2) receptor increased OGD-induced cell death. An agonist LTD(4) (10(-7)M) also induced apoptosis, especially in CysLT(2) receptor over-expressing cells. A selective CysLT(1) receptor antagonist montelukast did not affect OGD-induced apoptosis; while non-selective CysLT receptor antagonist Bay u9773 inhibited OGD-induced apoptosis, especially in CysLT(2) receptor over-expressing cells. Thus, CysLT(1) and CysLT(2) receptors play distinct roles in OGD-induced PC12 cell death; CysLT(1) attenuates while CysLT(2) facilitates the cell death.
Collapse
Affiliation(s)
- Wen-Wen Sheng
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | | | | | | | | | | | | | | |
Collapse
|