1
|
Retinal Genomic Fabric Remodeling after Optic Nerve Injury. Genes (Basel) 2021; 12:genes12030403. [PMID: 33799827 PMCID: PMC7999523 DOI: 10.3390/genes12030403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and analyzed the data from the genomic fabric paradigm (GFP) to bring additional insights into the molecular mechanisms of the retinal remodeling after induction of RGC degeneration. GFP considers three independent characteristics for the expression of each gene: level, variability, and correlation with each other gene. Thus, the 17,657 quantified genes in our study generated a total of 155,911,310 values to analyze. This represents 8830x more data per condition than a traditional transcriptomic analysis. ONC led to a 57% reduction in RGC numbers as detected by retrograde labeling with 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI). We observed a higher relative expression variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Predicted protein-protein interaction (PPI) analysis with STRING revealed axon and neuron projection as mostly decreased processes, consistent with RGC degeneration. Conversely, immune response PPIs were found among upregulated genes. Enrichment analysis showed that complement cascade and Notch signaling pathway, as well as oxidative stress and kit receptor pathway were affected after ONC. To expand our studies of altered molecular pathways, we examined the pairwise coordination of gene expressions within each pathway and within the entire transcriptome using Pearson correlations. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles mainly in complement cascade and Notch signaling pathway. This deep bioinformatic study provided novel insights beyond the regulation of individual gene expression and disclosed changes in the control of expression of complement cascade and Notch signaling functional pathways that may be relevant for both RGC degeneration and remodeling of the retinal tissue after ONC.
Collapse
|
2
|
Sawada R, Nakano-Doi A, Matsuyama T, Nakagomi N, Nakagomi T. CD44 expression in stem cells and niche microglia/macrophages following ischemic stroke. Stem Cell Investig 2020; 7:4. [PMID: 32309418 DOI: 10.21037/sci.2020.02.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Background CD44, an adhesion molecule in the hyaluronate receptor family, plays diverse and important roles in multiple cell types and organs. Increasing evidence is mounting for CD44 expression in various types of stem cells and niche cells surrounding stem cells. However, the precise phenotypes of CD44+ cells in the brain under pathologic conditions, such as after ischemic stroke, remain unclear. Methods In the present study, using a mouse model for cerebral infarction by middle cerebral artery (MCA) occlusion, we examined the localization and traits of CD44+ cells. Results In sham-mice operations, CD44 was rarely observed in the cortex of MCA regions. Following ischemic stroke, CD44+ cells emerged in ischemic areas of the MCA cortex during the acute phase. Although CD44 at ischemic areas was, in part, expressed in stem cells, it was also expressed in hematopoietic lineages, including activated microglia/macrophages, surrounding the stem cells. CD44 expression in microglia/macrophages persisted through the chronic phase following ischemic stroke. Conclusions These data demonstrate that CD44 is expressed in stem cells and cells in the niches surrounding them, including inflammatory cells, suggesting that CD44 may play an important role in reparative processes within ischemic areas under neuroinflammatory conditions; in particular, strokes.
Collapse
Affiliation(s)
- Rikako Sawada
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
3
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
4
|
CD44 Signaling Mediates High Molecular Weight Hyaluronan-Induced Antihyperalgesia. J Neurosci 2017; 38:308-321. [PMID: 29175954 DOI: 10.1523/jneurosci.2695-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
We studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH. HMWH also reverses the hyperalgesia induced by diverse pronociceptive mediators, prostaglandin E2, epinephrine, TNFα, and interleukin-6, and the neuropathic pain induced by the cancer chemotherapy paclitaxel. Although CD44 antisense has no effect on the hyperalgesia induced by inflammatory mediators or paclitaxel, it eliminates the antihyperalgesic effect of HMWH. HMWH also reverses the hyperalgesia induced by activation of intracellular second messengers, PKA and PKCε, indicating that HMWH-induced antihyperalgesia, although dependent on CD44, is mediated by an intracellular signaling pathway rather than as a competitive receptor antagonist. Sensitization of cultured small-diameter DRG neurons by prostaglandin E2 is also prevented and reversed by HMWH. These results demonstrate the central role of CD44 signaling in HMWH-induced antihyperalgesia, and establish it as a therapeutic target against inflammatory and neuropathic pain.SIGNIFICANCE STATEMENT We demonstrate that hyaluronan (HA) with different molecular weights produces opposing nociceptive effects. While low molecular weight HA increases sensitivity to mechanical stimulation, high molecular weight HA reduces sensitization, attenuating inflammatory and neuropathic hyperalgesia. Both pronociceptive and antinociceptive effects of HA are mediated by activation of signaling pathways downstream CD44, the cognate HA receptor, in nociceptors. These results contribute to our understanding of the role of the extracellular matrix in pain, and indicate CD44 as a potential therapeutic target to alleviate inflammatory and neuropathic pain.
Collapse
|
5
|
Pinner E, Gruper Y, Ben Zimra M, Kristt D, Laudon M, Naor D, Zisapel N. CD44 Splice Variants as Potential Players in Alzheimer’s Disease Pathology. J Alzheimers Dis 2017; 58:1137-1149. [DOI: 10.3233/jad-161245] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Micha Ben Zimra
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Don Kristt
- Molecular Pathology Unit, Rabin Medical Center, Petah Tikva, Israel
| | | | - David Naor
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nava Zisapel
- Neurim Pharmaceuticals Ltd, Tel-Aviv, Israel
- Department of Neurobiology Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Huang D, Chen YS, Rupenthal ID. Hyaluronic Acid Coated Albumin Nanoparticles for Targeted Peptide Delivery to the Retina. Mol Pharm 2017; 14:533-545. [DOI: 10.1021/acs.molpharmaceut.6b01029] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Huang
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ying-Shan Chen
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics
Unit, Department of Ophthalmology, New Zealand National Eye Centre,
Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Stanic K, Saldivia N, Förstera B, Torrejón M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat 2016; 10:89. [PMID: 27733818 PMCID: PMC5039192 DOI: 10.3389/fnana.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Natalia Saldivia
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Benjamín Förstera
- Department of Physiology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Concepción, Chile
| |
Collapse
|
8
|
Barzilay R, Ventorp F, Segal-Gavish H, Aharony I, Bieber A, Dar S, Vescan M, Globus R, Weizman A, Naor D, Lipton J, Janelidze S, Brundin L, Offen D. CD44 Deficiency Is Associated with Increased Susceptibility to Stress-Induced Anxiety-like Behavior in Mice. J Mol Neurosci 2016; 60:548-558. [DOI: 10.1007/s12031-016-0835-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
9
|
Koenig B, Pape D, Chao O, Bauer J, Grimpe B. Long term study of deoxyribozyme administration to XT-1 mRNA promotes corticospinal tract regeneration and improves behavioral outcome after spinal cord injury. Exp Neurol 2016; 276:51-8. [PMID: 26428904 DOI: 10.1016/j.expneurol.2015.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/18/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) affects approximately 3 million people around the world, who are desperately awaiting treatment. The pressing need for the development of therapeutics has spurred medical research for decades. To respond to this pressing need, our group developed a potential therapeutic to reduce the presence of proteoglycans at the injury site after acutely traumatizing the spinal cord of rats. With the aid of a DNA enzyme against the mRNA of xylosyltransferase-1 (DNAXT-1as) we adjourn the glycosylation and prevent the assembly of the proteoglycan core protein into the extracellular matrix. Hence, endogenous repair is strengthened due to the allocation of a more growth permissive environment around the lesion site. Here, we present data on a long term study of animals with a dorsal hemisection treated with DNAXT-1as, DNAXT-1mb (control DNA enzyme) or PBS via osmotic minipumps. After successful digestion of the XT-1 mRNA shown by qPCR we observed an overall behavioral improvement of DNAXT-1as treated rats at 8, 10 and 14 weeks after insult to the spine compared to the control animals. This is accompanied by the growth of the cortical spinal tract (CST) in DNAXT-1as treated animals after a 19 week survival period. Furthermore, after evaluating the lesion size tissue-protective effects in the DNAXT-1as treated animals compared to DNAXT-1mb and PBS treated rats are revealed. The results yield new insights into the regeneration processes and provide confirmation to involve DNA enzyme administration in future therapeutic strategies to medicate SCI.
Collapse
Affiliation(s)
- Brigitte Koenig
- Molecular Neurobiology, Heinrich Heine University, Düsseldorf, 40225, Germany.
| | - Daniel Pape
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| | - Owen Chao
- Center for Behavioral Neuroscience, Heinrich Heine University, Düsseldorf, 40225, Germany.
| | - Jordana Bauer
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.
| | - Barbara Grimpe
- Applied Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany; Corresponding author at: Applied Neurobiology, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf 40225, Germany..
| |
Collapse
|
10
|
Dzwonek J, Wilczynski GM. CD44: molecular interactions, signaling and functions in the nervous system. Front Cell Neurosci 2015; 9:175. [PMID: 25999819 PMCID: PMC4423434 DOI: 10.3389/fncel.2015.00175] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
CD44 is the major surface hyaluronan (HA) receptor implicated in intercellular and cell-matrix adhesion, cell migration and signaling. It is a transmembrane, highly glycosylated protein with several isoforms resulting from alternative gene splicing. The CD44 molecule consists of several domains serving different functions: the N-terminal extracellular domain, the stem region, the transmembrane domain and the C-terminal tail. In the nervous system, CD44 expression occurs in both glial and neuronal cells. The role of CD44 in the physiology and pathology of the nervous system is not entirely understood, however, there exists evidence suggesting it might be involved in the axon guidance, cytoplasmic Ca2+ clearance, dendritic arborization, synaptic transmission, epileptogenesis, oligodendrocyte and astrocyte differentiation, post-traumatic brain repair and brain tumour development.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology Warsaw, Poland
| |
Collapse
|
11
|
Skupien A, Konopka A, Trzaskoma P, Labus J, Gorlewicz A, Swiech L, Babraj M, Dolezyczek H, Figiel I, Ponimaskin E, Wlodarczyk J, Jaworski J, Wilczynski GM, Dzwonek J. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. J Cell Sci 2014; 127:5038-51. [PMID: 25300795 DOI: 10.1242/jcs.154542] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.
Collapse
Affiliation(s)
- Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - PaweI Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Adam Gorlewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Lukasz Swiech
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Matylda Babraj
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Hubert Dolezyczek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Catanzariti JF, Agnani O, Guyot MA, Wlodyka-Demaille S, Khenioui H, Donze C. Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med 2014; 57:465-79. [DOI: 10.1016/j.rehab.2014.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
|
13
|
Lemmon VP, Ferguson AR, Popovich PG, Xu XM, Snow DM, Igarashi M, Beattie CE, Bixby JL. Minimum information about a spinal cord injury experiment: a proposed reporting standard for spinal cord injury experiments. J Neurotrauma 2014; 31:1354-61. [PMID: 24870067 DOI: 10.1089/neu.2014.3400] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lack of reproducibility in many areas of experimental science has a number of causes, including a lack of transparency and precision in the description of experimental approaches. This has far-reaching consequences, including wasted resources and slowing of progress. Additionally, the large number of laboratories around the world publishing articles on a given topic make it difficult, if not impossible, for individual researchers to read all of the relevant literature. Consequently, centralized databases are needed to facilitate the generation of new hypotheses for testing. One strategy to improve transparency in experimental description, and to allow the development of frameworks for computer-readable knowledge repositories, is the adoption of uniform reporting standards, such as common data elements (data elements used in multiple clinical studies) and minimum information standards. This article describes a minimum information standard for spinal cord injury (SCI) experiments, its major elements, and the approaches used to develop it. Transparent reporting standards for experiments using animal models of human SCI aim to reduce inherent bias and increase experimental value.
Collapse
Affiliation(s)
- Vance P Lemmon
- 1 Miami Project to Cure Paralysis, University of Miami School of Medicine , Miami, Florida
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Catanzariti JF, Guyot MA, Agnani O, Demaille S, Kolanowski E, Donze C. Eye-hand laterality and right thoracic idiopathic scoliosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23:1232-6. [PMID: 24633781 DOI: 10.1007/s00586-014-3269-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 02/01/2023]
Abstract
PURPOSE The adolescent idiopathic scoliosis (AIS) pathogenesis remains unknown. Certain studies have shown that there is a correlation between manual laterality and scoliotic deviation. A full study of manual laterality needs to be paired with one for visual dominance. With the aim of physiopathological research, we have evaluated the manual and visual laterality in AIS. METHODS A retrospective study from prospective data collection is used to evaluate the distribution of eye-hand laterality (homogeneous or crossed) of 65 right thoracic AIS (mean age 14.8 ± 1.8 years; mean Cobb angle: 32.8°) and a control group of 65 sex and age-matched (mean age 14.6 ± 1.8 years). The manual laterality was defined by the modified Edinburgh Handedness Inventory. The evaluation of the visual laterality is done using three tests (kaleidoscope test, hole-in-the-card test, distance-hole-in-the-card test). RESULTS The group of right thoracic AIS presents a significantly higher frequency of crossed eye-hand laterality (63 %) than the control group (63 vs. 29.2 %; p < 0.001). In the AIS group, the most frequent association, within crossed laterality is "right hand dominant-left eye dominant" (82.9 %). There is no relationship with the Cobb angle. CONCLUSIONS Those with right thoracic AIS show a higher occurrence of crossed eye-hand laterality. This could point physiopathological research of AIS towards functional abnormality of the optic chiasma through underuse of cross visual pathways, and in particular accessory optic pathways. It would be useful to explore this by carrying out research on AISs through neuroimaging and neurofunctional exploration.
Collapse
Affiliation(s)
- Jean-François Catanzariti
- Physical Medecine and Rehabilitation Département, Centre de Rééducation Pédiatrique Marc Sautelet, 10 rue du Petit Boulevard, BP 20127, 59653, Villeneuve d'Ascq Cedex, France,
| | | | | | | | | | | |
Collapse
|
15
|
de Winter F, Hoyng S, Tannemaat M, Eggers R, Mason M, Malessy M, Verhaagen J. Gene therapy approaches to enhance regeneration of the injured peripheral nerve. Eur J Pharmacol 2013; 719:145-152. [DOI: 10.1016/j.ejphar.2013.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/26/2023]
|
16
|
Proregenerative properties of ECM molecules. BIOMED RESEARCH INTERNATIONAL 2013; 2013:981695. [PMID: 24195084 PMCID: PMC3782155 DOI: 10.1155/2013/981695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/04/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
After traumatic injuries to the nervous system, regrowing axons encounter a complex microenvironment where mechanisms that promote regeneration compete with inhibitory processes. Sprouting and axonal regrowth are key components of functional recovery but are often counteracted by inhibitory molecules. This review covers extracellular matrix molecules that support neuron axonal outgrowth.
Collapse
|
17
|
Chen K, Deng S, Lu H, Zheng Y, Yang G, Kim D, Cao Q, Wu JQ. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PLoS One 2013; 8:e72567. [PMID: 23951329 PMCID: PMC3739761 DOI: 10.1371/journal.pone.0072567] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/13/2013] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disease without effective treatment. To generate a comprehensive view of the mechanisms involved in SCI pathology, we applied RNA-Sequencing (RNA-Seq) technology to characterize the temporal changes in global gene expression after contusive SCI in mice. We sequenced tissue samples from acute and subacute phases (2 days and 7 days after injury) and systematically characterized the transcriptomes with the goal of identifying pathways and genes critical in SCI pathology. The top enriched functional categories include “inflammation response,” “neurological disease,” “cell death and survival” and “nervous system development.” The top enriched pathways include LXR/RXR Activation and Atherosclerosis Signaling, etc. Furthermore, we developed a systems-based analysis framework in order to identify key determinants in the global gene networks of the acute and sub-acute phases. Some candidate genes that we identified have been shown to play important roles in SCI, which demonstrates the validity of our approach. There are also many genes whose functions in SCI have not been well studied and can be further investigated by future experiments. We have also incorporated pharmacogenomic information into our analyses. Among the genes identified, the ones with existing drug information can be readily tested in SCI animal models. Therefore, in this study we have described an example of how global gene profiling can be translated to identifying genes of interest for functional tests in the future and generating new hypotheses. Additionally, the RNA-Seq enables splicing isoform identification and the estimation of expression levels, thus providing useful information for increasing the specificity of drug design and reducing potential side effect. In summary, these results provide a valuable reference data resource for a better understanding of the SCI process in the acute and sub-acute phases.
Collapse
Affiliation(s)
- Kenian Chen
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Shuyun Deng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Hezuo Lu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Guodong Yang
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Dong Kim
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
| | - Qilin Cao
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, UT Brown Institution of Molecular Medicine, Houston, Texas, United States of America
- * E-mail: ; (JQW) (QC)
| |
Collapse
|
18
|
Romero-Alemán MDM, Monzón-Mayor M, Santos E, Yanes CM. Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti). J Anat 2013; 223:22-37. [PMID: 23656528 DOI: 10.1111/joa.12053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 12/14/2022] Open
Abstract
We analysed the astroglia response that is concurrent with spontaneous axonal regrowth after optic nerve (ON) transection in the lizard Gallotia galloti. At different post-lesional time points (0.5, 1, 3, 6, 9 and 12 months) we used conventional electron microscopy and specific markers for astrocytes [glial fibrillary acidic protein (GFAP), vimentin (Vim), sex-determining region Y-box-9 (Sox9), paired box-2 (Pax2)¸ cluster differentiation-44 (CD44)] and for proliferating cells (PCNA). The experimental retina showed a limited glial response since the increase of gliofilaments was not significant when compared with controls, and proliferating cells were undetectable. Conversely, PCNA(+) cells populated the regenerating ON, optic tract (OTr) and ventricular wall of both the hypothalamus and optic tectum (OT). Subpopulations of these PCNA(+) cells were identified as GFAP(+) and Vim(+) reactive astrocytes and radial glia. Reactive astrocytes up-regulated Vim at 1 month post-lesion, and both Vim and GFAP at 12 months post-lesion in the ON-OTr, indicating long-term astrogliosis. They also expressed Pax2, Sox9 and CD44 in the ON, and Sox9 in the OTr. Concomitantly, persistent tissue cavities and disorganised regrowing fibre bundles reaching the OT were observed. Our ultrastructural data confirm abundant gliofilaments in reactive astrocytes joined by desmosomes. Remarkably, they also accumulated myelin debris and lipid droplets until late stages, indicating their participation in myelin removal. These data suggest that persistent mammalian-like astrogliosis in the adult lizard ON contributes to a permissive structural scaffold for long-term axonal regeneration and provides a useful model to study the molecular mechanisms involved in these beneficial neuron-glia interactions.
Collapse
Affiliation(s)
- María del Mar Romero-Alemán
- Departamento de Morfología (Biología Celular), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | |
Collapse
|
19
|
Osteopontin is upregulated after mechanical brain injury and stimulates neurite growth from hippocampal neurons through β1 integrin and CD44. Neuroreport 2012; 23:647-52. [PMID: 22692550 DOI: 10.1097/wnr.0b013e328355380e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain trauma induces a multitude of reactions at molecular, cellular, and tissue levels, some of which are beneficial to recovery, whereas others are detrimental. Osteopontin (OPN), a glycosylated phosphoprotein, can be found in both the soluble form and as an extracellular matrix constituent in several tissues in the vertebrate body, but its function after brain injury is largely unknown. In this study, the expression of OPN after an experimental traumatic brain injury in rats was examined and its effects on hippocampal neurons and cortical astrocytes were studied using cell-culture techniques. OPN had no influence astrocyte behavior in a scratch assay. However, hippocampal neurons grew well on an OPN substrate with growth comparable to that seen on laminin, but showed a higher degree of primary neurites. Finally, growth on OPN was mediated through β1 intregrins and CD44. These findings indicate that injury-induced OPN may support neurite sprouting, suggesting a role for this molecule in recovery from central nervous system trauma.
Collapse
|
20
|
Romero-Alemán MM, Monzón-Mayor M, Santos E, Lang DM, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol 2012; 520:2163-84. [PMID: 22173915 DOI: 10.1002/cne.23034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the histogenesis of the lizard visual system (E30 to adulthood) by using a selection of immunohistochemical markers that had proved relevant for other vertebrates. By E30, the Pax6(+) pseudostratified retinal epithelium shows few newborn retinal ganglion cells (RGCs) in the centrodorsal region expressing neuron- and synaptic-specific markers such as betaIII-tubulin (Tuj1), synaptic vesicle protein-2 (SV2), and vesicular glutamate transporter-1 (VGLUT1). Concurrently, pioneer RGC axons run among the Pax2(+) astroglia in the optic nerve and reach the superficial optic tectum. Between E30 and E35, the optic chiasm and optic tract remain acellular, but the latter contains radial processes with subpial endfeet expressing vimentin (Vim). From E35, neuron- and synaptic-specific stainings spread in the retina and optic tectum, whereas retinal Pax6, and Tuj1/SV2 in RGC axons decrease. Müller glia and abundant optic nerve glia express a variety of glia-specific markers until adulthood. Subpopulations of optic nerve glia are also VGLUT1(+) and cluster differentiation-44 (CD44)-positive but cytokeratin-negative, unlike the case in other regeneration-competent species. Specifically, coexpression of CD44/Vim and glutamine synthetase (GS)/VGLUT1 reflects glial specialization, insofar as most CD44(+) glia are GS(-). In the adult optic tract and tectum, radial glia and free astroglia coexist. The latter show different immunocharacterization (Pax2(-)/CD44(-) /Vim(-)) compared with that in the optic nerve. We conclude that upregulation of Tuj1 and SV2 is required for axonal outgrowth and search for appropriate targets, whereas Pax2(+) optic nerve astroglia and Vim(+) radial glia may aid in early axonal guidance. Spontaneous axonal regrowth seems to succeed despite the heterogeneous mammalian-like glial environment in the lizard optic nerve.
Collapse
Affiliation(s)
- M M Romero-Alemán
- Departamento de Morfología (Biología Celular), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Canary Islands, Spain.
| | | | | | | | | |
Collapse
|
21
|
Gensel J, Kigerl K, Mandrekar-Colucci S, Gaudet A, Popovich P. Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell Tissue Res 2012; 349:201-13. [PMID: 22592625 PMCID: PMC10881271 DOI: 10.1007/s00441-012-1425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.
Collapse
Affiliation(s)
- J.C. Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - K.A. Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - S. Mandrekar-Colucci
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - A.D. Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - P.G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
22
|
Verhaagen J, Van Kesteren RE, Bossers KAM, Macgillavry HD, Mason MR, Smit AB. Molecular target discovery for neural repair in the functional genomics era. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:595-616. [PMID: 23098739 DOI: 10.1016/b978-0-444-52137-8.00037-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A comprehensive understanding of the molecular pathways activated by traumatic neural injury is of major importance for the development of treatments for spinal cord injury (SCI). High-throughput gene expression profiling is a powerful approach to reveal genome-wide changes in gene expression during a specific biological process. Microarray analysis of injured nerves or neurons would ideally generate new hypotheses concerning the progression or deregulation of injury- and repair-related biological processes, such as neural scar formation and axon regeneration. These hypotheses should subsequently be tested experimentally and would eventually provide the molecular substrates for the development of novel therapeutics. Over the last decade, this approach has elucidated numerous extrinsic (mostly neural scar-associated) as well as neuron-intrinsic genes that are regulated following an injury. To date, the main challenge is to translate the observed injury-induced gene expression changes into a mechanistic framework to understand their functional implications. To achieve this, research on neural repair will have to adopt the conceptual advances and analytical tools provided by the functional genomics and systems biology revolution. Based on progress made in bioinformatics, high-throughput and high-content functional cellular screening, and in vivo gene transfer technology, we propose a multistep "roadmap" that provides an integrated strategy for molecular target discovery for repair of the injured spinal cord.
Collapse
Affiliation(s)
- Joost Verhaagen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Grimpe B. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Cell Tissue Res 2011; 349:181-200. [PMID: 22190188 PMCID: PMC7087747 DOI: 10.1007/s00441-011-1291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/17/2011] [Indexed: 11/28/2022]
Abstract
For over 100 years, scientists have tried to understand the mechanisms that lead to the axonal growth seen during development or the lack thereof during regeneration failure after spinal cord injury (SCI). Deoxyribozyme technology as a potential therapeutic to treat SCIs or other insults to the brain, combined with a bioinformatics approach to comprehend the complex protein-protein interactions that occur after such trauma, is the focus of this review. The reader will be provided with information on the selection process of deoxyribozymes and their catalytic sequences, on the mechanism of target digestion, on modifications, on cellular uptake and on therapeutic applications and deoxyribozymes are compared with ribozymes, siRNAs and antisense technology. This gives the reader the necessary knowledge to decide which technology is adequate for the problem at hand and to design a relevant agent. Bioinformatics helps to identify not only key players in the complex processes that occur after SCI but also novel or less-well investigated molecules against which new knockdown agents can be generated. These two tools used synergistically should facilitate the pursuit of a treatment for insults to the central nervous system.
Collapse
Affiliation(s)
- Barbara Grimpe
- Applied Neurobiology, Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Shimada A, Hasegawa-Ishii S. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence. Aging Dis 2011; 2:414-435. [PMID: 22396891 PMCID: PMC3295080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 05/31/2023] Open
Abstract
The Senescence-Accelerated Mouse (SAM) represents a group of inbred mouse strains developed as a model for the study of human aging and age-related diseases. Senescence-prone (SAMP) strains exhibit an early onset of age-related decline in the peripheral immunity such as thymic involution, loss of CD4(+) T cells, impaired helper T cell function, decreased antibody-forming capacity, dysfunction of antigen-presenting cells, decreased natural killer activity, increased auto-antibodies, and susceptibility to virus infection. Senescence-prone SAMP10 mice undergo age-related changes in the brain such as brain atrophy, shrinkage and loss of cortical neurons, retraction of cortical neuronal dendrites, loss of dendritic spines, loss of synapses, impaired learning and memory, depressive behavior, accumulation of neuronal DNA damage, neuronal ubiquitinated inclusions, reduced hippocampal cholinergic receptors, decreased neurotrophic factors, decreased hippocampal zinc and zinc transporters, increased sphyngomyelinase, and elevated oxidative-nitrative stress. Recent data indicating increased pro-inflammatory cytokines in the brain of SAMP10 mice are directing investigators toward an integration of immune and neural abnormalities to enhance understanding of the principles of brain aging. We highlight how mouse brain cells adopt cytokine-mediated responses and how SAMP10 mice are defective in these responses. SAMP10 model would be useful to study how age-related disturbances in peripheral immunity have an impact on dysregulation of brain tissue homeostasis, resulting in age-related neurodegeneration.
Collapse
Affiliation(s)
- Atsuyoshi Shimada
- Correspondence should be addressed to: Dr. Atsuyoshi Shimada, Department of Pathology, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan.
| | | |
Collapse
|
25
|
Mourlevat S, Galizzi JP, Guigal-Stéphan N, Courtade-Gaïani S, Rolland-Valognes G, Rodriguez M, Barbet F, Bourrier C, Catesson S, Chomel A, Danober L, Villain N, Caignard DH, Pirotte B, Lestage P, Lockhart BP. Molecular characterization of the AMPA-receptor potentiator S70340 in rat primary cortical culture: Whole-genome expression profiling. Neurosci Res 2011; 70:349-60. [DOI: 10.1016/j.neures.2011.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
26
|
Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes. PLoS One 2011; 6:e18626. [PMID: 21547082 PMCID: PMC3081876 DOI: 10.1371/journal.pone.0018626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression.
Collapse
|
27
|
Inhibition of the plasma membrane Ca2+ pump by CD44 receptor activation of tyrosine kinases increases the action potential afterhyperpolarization in sensory neurons. J Neurosci 2011; 31:2361-70. [PMID: 21325503 DOI: 10.1523/jneurosci.5764-10.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytoplasmic Ca(2+) clearance rate affects neuronal excitability, plasticity, and synaptic transmission. Here, we examined the modulation of the plasma membrane Ca(2+) ATPase (PMCA) by tyrosine kinases. In rat sensory neurons grown in culture, the PMCA was under tonic inhibition by a member of the Src family of tyrosine kinases (SFKs). Ca(2+) clearance accelerated in the presence of selective tyrosine kinase inhibitors. Tonic inhibition of the PMCA was attenuated in cells expressing a dominant-negative construct or shRNA directed to message for the SFKs Lck or Fyn, but not Src. SFKs did not appear to phosphorylate the PMCA directly but instead activated focal adhesion kinase (FAK). Expression of constitutively active FAK enhanced and dominant-negative or shRNA knockdown of FAK attenuated tonic inhibition. Antisense knockdown of PMCA isoform 4 removed tonic inhibition of Ca(2+) clearance, indicating that FAK acts on PMCA4. The hyaluronan receptor CD44 activates SFK-FAK signaling cascades and is expressed in sensory neurons. Treating neurons with a CD44-blocking antibody or short hyaluronan oligosaccharides, which are produced during injury and displace macromolecular hyaluronan from CD44, attenuated tonic PMCA inhibition. Ca(2+)-activated K(+) channels mediate a slow afterhyperpolarization in sensory neurons that was inhibited by tyrosine kinase inhibitors and enhanced by knockdown of PMCA4. Thus, we describe a novel kinase cascade in sensory neurons that enables the extracellular matrix to alter Ca(2+) signals by modulating PMCA-mediated Ca(2+) clearance. This signaling pathway may influence the excitability of sensory neurons following injury.
Collapse
|
28
|
Saul KE, Koke JR, García DM. Activating transcription factor 3 (ATF3) expression in the neural retina and optic nerve of zebrafish during optic nerve regeneration. Comp Biochem Physiol A Mol Integr Physiol 2009; 155:172-82. [PMID: 19896551 DOI: 10.1016/j.cbpa.2009.10.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 10/17/2009] [Accepted: 10/26/2009] [Indexed: 12/13/2022]
Abstract
Fish, unlike mammals, can regenerate axons in the optic nerve following optic nerve injury. We hypothesized that using microarray analysis to compare gene expression in fish which had experienced optic nerve lesion to fish which had undergone a similar operation but without optic nerve injury would reveal genes specifically involved in responding to optic nerve injury (including repair), reducing detection of genes involved in the general stress and inflammatory responses. We discovered 120 genes were significantly (minimally two-fold with a P-value < or = 0.05) differentially expressed (up or down) at one or more time point. Among these was ATF3, a member of the cAMP-response element binding protein family. Work by others has indicated that elevated cAMP could be important in axon regeneration. We investigated ATF3 expression further by qRT-PCR, in situ hybridization and immunohistochemistry and found ATF3 expression is significantly upregulated in the ganglion cell layer of the retina, the nerve fiber layer and the optic nerve of the injured eye. The upregulation in retina is detectable by qRT-PCR by 24 h after injury, at which time ATF-3 mRNA levels are 8-fold higher than in retinas from sham-operated fish. We conclude ATF3 may be an important mediator of optic nerve regeneration-promoting gene expression in fish, a role which merits further investigation.
Collapse
Affiliation(s)
- Katherine E Saul
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA.
| | | | | |
Collapse
|