1
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Noriega-Prieto JA, Araque A. Sensing and Regulating Synaptic Activity by Astrocytes at Tripartite Synapse. Neurochem Res 2021; 46:2580-2585. [PMID: 33837868 PMCID: PMC10159683 DOI: 10.1007/s11064-021-03317-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Astrocytes are recognized as more important cells than historically thought in synaptic function through the reciprocal exchange of signaling with the neuronal synaptic elements. The idea that astrocytes are active elements in synaptic physiology is conceptualized in the Tripartite Synapse concept. This review article presents and discusses recent representative examples that highlight the heterogeneity of signaling in tripartite synapse function and its consequences on neural network function and animal behavior.
Collapse
Affiliation(s)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Luo X, He T, Wang Y, Wang JL, Yan XB, Zhou HC, Wang RR, Du R, Wang XL, Chen J, Huang D. Ceftriaxone Relieves Trigeminal Neuropathic Pain Through Suppression of Spatiotemporal Synaptic Plasticity via Restoration of Glutamate Transporter 1 in the Medullary Dorsal Horn. Front Cell Neurosci 2020; 14:199. [PMID: 32714151 PMCID: PMC7340123 DOI: 10.3389/fncel.2020.00199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
Using a rat model of trigeminal neuropathic pain (TNP) produced by chronic compression of the infraorbital nerve (CCI-ION), we investigated the analgesic effect and the underlying mechanisms of ceftriaxone (Cef), a β-lactam antibiotic, that is thought to be a potent stimulator of glutamate transporter 1 (GLT-1). First, repeated intraperitoneal (i.p.) injections of Cef (200 mg/kg) for 5-days since Day 1 of CCI-ION could significantly relieve both mechanical and thermal pain hypersensitivity from day 10 after drug administration. Western blot and immunofluorescent results demonstrated that 5-days administration of Cef resulted in the restoration of GLT-1 expression to a level equivalent to the sham control which was dramatically lost under the TNP condition. Moreover, multi-electrode (8 × 8) array recordings of network field excitatory postsynaptic potentials (fEPSPs) were performed on the acutely dissociated medullary dorsal horn slice evoked by electrical stimulation of the trigeminal spinal tract. The results showed that the increased number of fEPSPs, induction rate, and maintenance of long-term potentiation caused by CCI-ION were significantly suppressed by 5-days administration of Cef. Taken together, the results indicate that Cef can relieve TNP through suppression of spatiotemporal synaptic plasticity via GLT-1 restoration in the medullary dorsal horn of the trigeminal nerve.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Pain Management, The Third Xiangya Hospital, Institute of Pain Medicine, Central South University, Changsha, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, China
| | - Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue-Bin Yan
- Department of Pain Management, The Third Xiangya Hospital, Institute of Pain Medicine, Central South University, Changsha, China
| | - Hao-Cheng Zhou
- Department of Pain Management, The Third Xiangya Hospital, Institute of Pain Medicine, Central South University, Changsha, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, China
| | - Dong Huang
- Department of Pain Management, The Third Xiangya Hospital, Institute of Pain Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Scofield MD. Exploring the Role of Astroglial Glutamate Release and Association With Synapses in Neuronal Function and Behavior. Biol Psychiatry 2018; 84:778-786. [PMID: 29258653 PMCID: PMC5948108 DOI: 10.1016/j.biopsych.2017.10.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022]
Abstract
Astrocytes are stellate cells whose appearance can resemble a pointed star, especially when visualizing glial fibrillary acidic protein, a canonical marker for astrocytes. Accordingly, there is a commonly made connection between the points of light that shine in the night sky and the diffuse and abundant cells that buffer ions and provide support for neurons. An exceptional amount of function has been attributed to, negated for, and potentially reaffirmed for these cells, especially regarding their ability to release neuroactive molecules and influence synaptic plasticity. This makes the precise role of astrocytes in tuning neural communication seem difficult to grasp. However, data from animal models of addiction demonstrate that a variety of drug-induced molecular adaptations responsible for relapse vulnerability take place in astrocyte systems that regulate glutamate uptake and release. These findings highlight astrocytes as a critical component of the neural systems responsible for addiction, serving as a key component of the plasticity responsible for relapse and drug seeking. Here I assemble recent findings that utilize genetic tools to selectively manipulate or measure flux of internal calcium in astrocytes, focusing on G protein-coupled receptor-mediated mobilization of calcium and the induction of glutamate release. Further, I compile evidence regarding astrocyte glutamate release as well as astrocyte association with synapses with respect to the impact of these cellular phenomena in shaping synaptic transmission. I also place these findings in the context of the previous studies of Scofield et al., who explored the role of astrocytes in the nucleus accumbens in the neural mechanisms underlying cocaine seeking.
Collapse
Affiliation(s)
- Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425 USA,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425 USA
| |
Collapse
|
8
|
Wang YF, Parpura V. Astroglial Modulation of Hydromineral Balance and Cerebral Edema. Front Mol Neurosci 2018; 11:204. [PMID: 29946238 PMCID: PMC6007284 DOI: 10.3389/fnmol.2018.00204] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of hydromineral balance (HB) is an essential condition for life activity at cellular, tissue, organ and system levels. This activity has been considered as a function of the osmotic regulatory system that focuses on hypothalamic vasopressin (VP) neurons, which can reflexively release VP into the brain and blood to meet the demand of HB. Recently, astrocytes have emerged as an essential component of the osmotic regulatory system in addition to functioning as a regulator of the HB at cellular and tissue levels. Astrocytes express all the components of osmoreceptors, including aquaporins, molecules of the extracellular matrix, integrins and transient receptor potential channels, with an operational dynamic range allowing them to detect and respond to osmotic changes, perhaps more efficiently than neurons. The resultant responses, i.e., astroglial morphological and functional plasticity in the supraoptic and paraventricular nuclei, can be conveyed, physically and chemically, to adjacent VP neurons, thereby influencing HB at the system level. In addition, astrocytes, particularly those in the circumventricular organs, are involved not only in VP-mediated osmotic regulation, but also in regulation of other osmolality-modulating hormones, including natriuretic peptides and angiotensin. Thus, astrocytes play a role in local/brain and systemic HB. The adaptive astrocytic reactions to osmotic challenges are associated with signaling events related to the expression of glial fibrillary acidic protein and aquaporin 4 to promote cell survival and repair. However, prolonged osmotic stress can initiate inflammatory and apoptotic signaling processes, leading to glial dysfunction and a variety of brain diseases. Among many diseases of brain injury and hydromineral disorders, cytotoxic and osmotic cerebral edemas are the most common pathological manifestation. Hyponatremia is the most common cause of osmotic cerebral edema. Overly fast correction of hyponatremia could lead to central pontine myelinolysis. Ischemic stroke exemplifies cytotoxic cerebral edema. In this review, we summarize and analyze the osmosensory functions of astrocytes and their implications in cerebral edema.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Birey F, Kokkosis AG, Aguirre A. Oligodendroglia-lineage cells in brain plasticity, homeostasis and psychiatric disorders. Curr Opin Neurobiol 2017; 47:93-103. [PMID: 29073529 DOI: 10.1016/j.conb.2017.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Adult oligodendrocyte progenitor cells are uniformly distributed in both gray and white matter, displaying robust proliferative and migratory potential during health and disease. Recently, developments in new experimental approaches have brought about several novel insights about NG2-glia and myelinating oligodendrocytes, indicating a diverse toolkit of functions in experience-dependent myelination and homeostasis in the adult CNS. In this review, we summarize some of the topical studies that highlight newly emerging findings implicating oligodendroglia-lineage cells in brain plasticity, homeostasis and pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- F Birey
- Stanford University, Department of Psychiatry and Behavioral Sciences, United States
| | - A G Kokkosis
- SUNY, Stony Brook, Department of Pharmacological Sciences, United States
| | - A Aguirre
- SUNY, Stony Brook, Department of Pharmacological Sciences, United States.
| |
Collapse
|
10
|
Parpura V, Sekler I, Fern R. Plasmalemmal and mitochondrial Na+-Ca2+exchange in neuroglia. Glia 2016; 64:1646-54. [DOI: 10.1002/glia.22975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology; Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham; Birmingham Alabama
| | - Israel Sekler
- Department of Physiology, Faculty of Health Science; Ben-Gurion University; Ben-Guion Av 84105 POB 653
| | - Robert Fern
- Peninsular School of Medicine and Dentistry; University of Plymouth; Plymouth PL6 8BU United Kingdom
| |
Collapse
|
11
|
Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study. Neural Plast 2016; 2016:7607924. [PMID: 27195153 PMCID: PMC4852535 DOI: 10.1155/2016/7607924] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 01/03/2023] Open
Abstract
Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol.
Collapse
|
12
|
Lee W, Parpura V. Spatio-temporal characteristics of metabotropic glutamate receptor 5 traffic at or near the plasma membrane in astrocytes. Glia 2016; 64:1050-65. [PMID: 27014856 DOI: 10.1002/glia.22982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
Astrocytes can sense extracellular glutamate and respond to it by elevating their intracellular Ca(2+) levels via the activation of G-protein coupled receptors, such as metabotropic glutamate receptor 5 (mGluR5), which, during early postnatal development, is the primary receptor responsible for glutamatergic signaling in astrocytes. However, the detailed spatio-temporal characteristics of mGluR5 traffic at or near the plasma membrane of astrocytes are not well understood. To address this issue, we expressed recombinant fluorescent protein chimera of mGluR5 and used total internal reflection fluorescence microscopy on rat visual cortical astrocytes in culture. We used astrocytes lacking major processes, otherwise posing as a diffusion barrier, to infer into the general dynamics of this receptor. We found that plasmalemmal mGluR5 clusters in distinct areas, the size, and initial spatio-temporal level of occupancy of which dictated mGluR5 trafficking characteristics upon glutamate stimulation. These findings will be valuable in the interpretation of point-to-point information transfer and volume transmission between astrocytes and neurons, as well as that of paracrine signaling within astrocytic networks.
Collapse
Affiliation(s)
- William Lee
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy and Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy and Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama
| |
Collapse
|
13
|
Akanuma SI, Zakoji N, Kubo Y, Hosoya KI. In Vitro Study of L-Glutamate and L-Glutamine Transport in Retinal Pericytes: Involvement of Excitatory Amino Acid Transporter 1 and Alanine-Serine-Cysteine Transporter 2. Biol Pharm Bull 2016; 38:901-8. [PMID: 26027831 DOI: 10.1248/bpb.b15-00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Glutamate (L-Glu) is known to be a relaxant of pericytes and to induce changes in microcirculatory hemodynamics. Since the concentration of L-Glu which induces the dilation of retinal capillaries is reported to be high compared with the estimated concentration in the retinal interstitial fluid, it is hypothesized that some systems involving concentrative L-Glu release are present in retinal pericytes. The purpose of this study was to investigate the existence of L-Glu-storing systems, which contribute to autocrine L-Glu release, in retinal pericytes using conditionally immortalized rat retinal pericytes (TR-rPCT1 cells), which express mRNAs of L-Glu-synthesizing enzymes from L-glutamine (L-Gln). TR-rPCT1 cells express the mRNAs of vesicular L-Glu transporter 1 (VGLUT1), indicating that L-Glu in the cytoplasm is taken up into VGLUT1-expressing vesicles of retinal pericytes. L-Glu and L-Gln are taken up into TR-rPCT1 cells via Na(+)-dependent saturable process(es) with a Km value of 22.4 µM and 163 µM, respectively. The [(3)H]L-Glu uptake was inhibited by ca. 50% in the presence of D-aspartate, a substrate of excitatory amino acid transporter (EAAT) subtypes, whereas substrates of alanine-serine-cysteine transporter (ASCT) subtypes exhibited only a weak inhibitory effect on [(3)H]L-Glu uptake compared with D-aspartate. Regarding the L-Gln uptake by TR-rPCT1 cells, the inhibitory effect of ASCT substrates on the [(3)H]L-Gln uptake was stronger than that of substrates of other neutral amino acid transport systems. Consequently, it was determined that EAAT1 and ASCT2 play a role in the transport of L-Glu and L-Gln, respectively, from retinal interstitial fluid to the cytoplasm of retinal pericytes.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | |
Collapse
|
14
|
da Silva LB, Poulsen JN, Arendt-Nielsen L, Gazerani P. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J Cell Mol Med 2015; 19:1900-9. [PMID: 25754332 PMCID: PMC4549040 DOI: 10.1111/jcmm.12562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
This study investigated the presence of cell membrane docking proteins synaptosomal-associated protein, 25 and 23 kD (SNAP-25 and SNAP-23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time- and calcium-dependent manner following calcium-ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose-dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre-incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin-stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP-25 and SNAP-23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP-25 and/or SNAP-23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non-neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA.
Collapse
Affiliation(s)
- Larissa Bittencourt da Silva
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Jeppe Nørgaard Poulsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Parisa Gazerani
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
- Laboratory for Cancer Biology, Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| |
Collapse
|
15
|
Abstract
Astrocytes have been found to play important roles in physiology being fundamental for ionic homeostasis and glutamate clearance from the synaptic cleft by their plasma membrane glutamate transporters. Astrocytes are electrically non-excitable, but they exhibit Ca(2+) signaling, which now has been demonstrated to serve as an indirect mediator of neuron-glia bidirectional interactions through gliotransmission via tripartite synapses and to modulate synaptic function and plasticity. Spontaneous astrocytic Ca(2+) signaling was observed in vivo. Intercellular Ca(2+) waves in astrocytes can be evoked by a variety of stimulations. Astrocytes are critically involved in many pathological conditions including ischemic stroke. For example, it is well known that astrocytes become reactive and form glial scar after stroke. In animal models of some brain disorders, astrocytes have been shown to exhibit enhanced Ca(2+) excitability featured as regenerative intercellular Ca(2+) waves. This chapter briefly summarizes astrocytic Ca(2+) signaling pathways under normal conditions and in experimental in vitro and in vivo ischemic models. It discusses the possible mechanisms and therapeutic implication underlying the enhanced astrocytic Ca(2+) excitability in stroke.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Bioengineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA,
| |
Collapse
|
16
|
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul) 2014; 20:1-18. [PMID: 24116269 PMCID: PMC3792192 DOI: 10.4062/biomolther.2012.20.1.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specific changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.
Collapse
Affiliation(s)
- Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
17
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
18
|
Abstract
Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron-glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellular Ca2+ waves in astrocytes can be evoked by a variety of stimulations. In animal models of some brain disorders, astrocytes can exhibit enhanced Ca2+ excitability featured as regenerative intercellular Ca2+ waves. This review first briefly summarizes the astrocytic Ca2+ signaling pathway and the procedure of in vivo two-photon Ca2+ imaging of astrocytes. It subsequently summarizes in vivo astrocytic Ca2+ signaling in health and brain disorders from experimental studies of animal models, and discusses the possible mechanisms and therapeutic implications underlying the enhanced Ca2+ excitability in astrocytes in brain disorders. Finally, this review summarizes molecular genetic approaches used to selectively manipulate astrocyte function in vivo and their applications to study the role of astrocytes in synaptic plasticity and brain disorders.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Parpura V, Verkhratsky A. Astrocytes revisited: concise historic outlook on glutamate homeostasis and signaling. Croat Med J 2013; 53:518-28. [PMID: 23275317 PMCID: PMC3541578 DOI: 10.3325/cmj.2012.53.518] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astroglia is a main type of brain neuroglia, which includes many cell sub-types that differ in their morphology and physiological properties and yet are united by the main function, which is the maintenance of brain homeostasis. Astrocytes employ a variety of mechanisms for communicating with neuronal networks. The communication mediated by neurotransmitter glutamate has received a particular attention. Glutamate is de novo synthesized exclusively in astrocytes; astroglia-derived glutamine is the source of glutamate for neurons. Glutamate is released from both neurons and astroglia through exocytosis, although various other mechanisms may also play a role. Glutamate-activated specific receptors trigger excitatory responses in neurons and astroglia. Here we overview main properties of glutamatergic transmission in neuronal-glial networks and identify some future challenges facing the field.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294-0021, USA.
| | | |
Collapse
|
20
|
Wang YF, Sun MY, Hou Q, Parpura V. Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 2013; 61:529-38. [PMID: 23361961 DOI: 10.1002/glia.22453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Prolonged hyposmotic challenge (HOC) has a dual effect on vasopressin (VP) secretion [Yagil and Sladek (1990) Am J Physiol 258(2 Pt 2):R492-R500]. We describe an electrophysiological correlate of this phenomenon, whereby in vitro HOC transiently reduced the firing activity of VP neurons within the supraoptic nucleus of brain slices, which was followed by a rebound increase of their activity; this was paralleled by changes in the level of proteins relevant to astroglia-neuronal interactions. Hence, in vitro HOC transiently (at 5 min) increased the level of astrocyte-specific glial fibrillary acidic protein (GFAP), which then declined to control or base level (at 20 min); this was blocked by the gliotoxin L-aminoadipic acid, but not by tetanus toxin, which was used to inhibit neurotransmission. Similarly, in vivo HOC led to changes in GFAP level, which after an early increase (10 min) returned to normal (30 min). Immunoassays revealed that neuronal, but not astrocytic, expression of serine racemase (SR) was increased at the late stage of HOC in vivo, whereas at an early stage there was a transient increase in level of the astrocyte-specific glutamine synthetase (GS). Furthermore, there was an increased molecular association between GFAP and GS at 10 min, whereas SR increased its association with the neuronal nuclear antigen NeuN at 30 min. These results suggest that the dual effect of HOC on VP neuronal secretion/activity could be related to metabolic/signaling changes in astrocytes (glutamate-glutamine conversion) and neurons (D-serine synthesis/ammonia production), which may account for the rebound in VP neuronal activity, presumably by promoting the activation of neuronal glutamate receptors.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
21
|
De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E. Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 2012; 6:98. [PMID: 23267326 PMCID: PMC3528083 DOI: 10.3389/fncom.2012.00098] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/06/2012] [Indexed: 01/08/2023] Open
Abstract
The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function.
Collapse
Affiliation(s)
- Maurizio De Pittà
- School of Physics and Astronomy, Tel Aviv University Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Rapid Elevation of Calcium Concentration in Cultured Dorsal Spinal Cord Astrocytes by Corticosterone. Neurochem Res 2012. [DOI: 10.1007/s11064-012-0929-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Gottipati MK, Kalinina I, Bekyarova E, Haddon RC, Parpura V. Chemically functionalized water-soluble single-walled carbon nanotubes modulate morpho-functional characteristics of astrocytes. NANO LETTERS 2012; 12:4742-4747. [PMID: 22924813 DOI: 10.1021/nl302178s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the use of chemically functionalized water-soluble single-walled carbon nanotubes (ws-SWCNTs) for the modulation of morpho-functional characteristics of astrocytes. When added to the culturing medium, ws-SWCNTs were able to make astrocytes larger and stellate/mature, changes associated with the increase in glial fibrillary acidic protein immunoreactivity. Thus, ws-SWCNTs could have more beneficial effects at the injury site than previously thought; by affecting astrocytes, they could provide for a more comprehensive re-establishment of the brain computational power.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, Alabama 35294, United States
| | | | | | | | | |
Collapse
|
24
|
Parpura V, Verkhratsky A. The astrocyte excitability brief: From receptors to gliotransmission. Neurochem Int 2012; 61:610-21. [DOI: 10.1016/j.neuint.2011.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/14/2011] [Accepted: 12/01/2011] [Indexed: 01/23/2023]
|
25
|
Ballesteros-Yáñez I, Castillo CA, Amo-Salas M, Albasanz JL, Martín M. Differential Effect of Caffeine Consumption on Diverse Brain Areas of Pregnant Rats. JOURNAL OF CAFFEINE RESEARCH 2012; 2:90-98. [PMID: 24761269 DOI: 10.1089/jcr.2012.0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It has previously been shown that during gestation, the mother's brain has an increase in glial fibrillary acidic protein (GFAP)-immunoreactivity (-ir) and a decrease in the mRNA level of A1 adenosine receptor. Little is known about the A2A adenosine receptor in the maternal brain, and whether caffeine consumption throughout gestational period modifies GFAP and adenosine receptor density in specific brain areas. This study was undertaken to investigate the protein density of GFAP and adenosine receptors (A1 and A2A subtypes) in different regions of pregnant rat brain and the possible effect of caffeine on these proteins. METHODS For this purpose, we examined the GFAP-, A1- and A2A-ir in the cingulate cortex (Cg2), dentate gyrus (DG), medial preoptic area (mPOA), secondary somatosensory cortex (S2), and striatum (Str) of pregnant Wistar rats (drug-free tap water or water with 1g/L diluted caffeine). RESULTS We show a consistent and highly significant reduction of GFAP-ir in caffeine-treated pregnant rats in most of the areas analyzed. Our data demonstrate that caffeine consumption induces a significant increase of A2A-ir in Str. Concerning A1 receptor, the observed changes are dependent on the region analyzed; this receptor density is increased in Cg2, DG, and mPOA and decreased in the somatosensory cortex and Str. The results were confirmed by Western blotting. CONCLUSIONS Our results suggest that chronic caffeine exposure could modify the physiolological situation of gestation by a reorganization of the neural circuits and the adenosine neuromodulator system.
Collapse
Affiliation(s)
- Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Carlos Alberto Castillo
- Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Nursing, Faculty of Nursing, Occupational and Speech Therapies, University of Castilla-La Mancha , Talavera de la Reina, Spain
| | - Mariano Amo-Salas
- Department of Mathematics, Faculty of Medicine, University of Castilla-La Mancha , Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| |
Collapse
|
26
|
Verkhratsky A, Rodríguez JJ, Parpura V. Neurotransmitters and integration in neuronal-astroglial networks. Neurochem Res 2012; 37:2326-38. [PMID: 22476701 DOI: 10.1007/s11064-012-0765-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Two major neural cell types, glia, astrocytes in particular, and neurones can release chemical transmitters that act as soluble signalling compounds for intercellular communication. Exocytosis, a process which depends on an increase in cytosolic Ca(2+) levels, represents a common denominator for release of neurotransmitters, stored in secretory vesicles, from these neural cells. While neurones rely predominately on the immediate entry of Ca(2+) from the extracellular space to the cytosol in this process, astrocytes support their cytosolic Ca(2+) increases by appropriating this ion from the intracellular endoplasmic reticulum store and extracellular space. Additionally, astrocytes can release neurotransmitters using a variety of non-vesicular pathways which are mediated by an assortment of plasmalemmal channels and transporters. Once a neuronal and/or astrocytic neurotransmitter is released into the extracellular space, it can activate plasma membrane neurotransmitter receptors on neural cells, causing autocrine and/or paracrine signalling. Moreover, chemical transmission is essential not only for homocellular, but also for heterocellular bi-directional communication in the brain. Further detailed understanding of chemical transmission will aid our comprehension of the brain (dys)function in heath and disease.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | |
Collapse
|
27
|
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A. Glial cells in (patho)physiology. J Neurochem 2012; 121:4-27. [PMID: 22251135 DOI: 10.1111/j.1471-4159.2012.07664.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Filosa JA, Naskar K, Perfume G, Iddings JA, Biancardi VC, Vatta MS, Stern JE. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity. J Neuroendocrinol 2012; 24:378-92. [PMID: 22007724 DOI: 10.1111/j.1365-2826.2011.02243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.
Collapse
Affiliation(s)
- J A Filosa
- Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro 2012; 4:AN20110059. [PMID: 22268447 PMCID: PMC3284767 DOI: 10.1042/an20110059] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).
Collapse
|
30
|
Ding S. In vivo imaging of Ca²⁺ signaling in astrocytes using two-photon laser scanning fluorescent microscopy. Methods Mol Biol 2012; 814:545-54. [PMID: 22144331 PMCID: PMC3339031 DOI: 10.1007/978-1-61779-452-0_36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes are the predominant nonneuronal cell type in the central nervous system. Although they are electrically nonexcitable, they have been found to play an active role in modulation of neuronal function and plasticity through Ca(2+) excitability. Thus, Ca(2+) signaling in astrocytes serves as a mediator of bidirectional interactions between neurons and astrocytes. Although astrocytic Ca(2+) signaling has been extensively studied in cultured cells, the recent development of two-photon laser scanning fluorescent microscopy and astrocyte-specific dye labeling make it possible to study astrocytic Ca(2+) signaling in live animals. Here we describe a detailed protocol for in vivo Ca(2+) imaging of astrocytes in mice.
Collapse
Affiliation(s)
- Shinghua Ding
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
31
|
Stout RF, Parpura V. Voltage-gated calcium channel types in cultured C. elegans CEPsh glial cells. Cell Calcium 2011; 50:98-108. [PMID: 21684004 DOI: 10.1016/j.ceca.2011.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 05/12/2011] [Accepted: 05/15/2011] [Indexed: 12/20/2022]
Abstract
The four cephalic sensilla sheath (CEPsh) glial cells are important for development of the nervous system of Caenorhabditis elegans. Whether these invertebrate glia can generate intracellular Ca(2+) increases, a hallmark of mammalian glial cell excitability, is not known. To address this issue, we developed a transgenic worm with the specific co-expression of genetically encoded red fluorescent protein and green Ca(2+) sensor in CEPsh glial cells. This allowed us to identify CEPsh cells in culture and monitor their Ca(2+) dynamics. We show that CEPsh glial cells, in response to depolarization, generate various intracellular Ca(2+) increases mediated by voltage-gated Ca(2+) channels (VGCCs). Using a pharmacological approach, we find that the L-type is the preponderant VGCC type mediating Ca(2+) dynamics. Additionally, using a genetic approach we demonstrate that mutations in three known VGCC α(1)-subunit genes, cca-1, egl-19 and unc-2, can affect Ca(2+) dynamics of CEPsh glial cells. We suggest that VGCC-mediated Ca(2+) dynamics in the CEPsh glial cells are complex and display heterogeneity. These findings will aid understanding of how CEPsh glial cells contribute to the operation of the C. elegans nervous system.
Collapse
Affiliation(s)
- Randy F Stout
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA
| | | |
Collapse
|
32
|
Malarkey EB, Parpura V. Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 2011; 589:4271-300. [PMID: 21746780 DOI: 10.1113/jphysiol.2011.210435] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Astrocytes can release various gliotransmitters in response to stimuli that cause increases in intracellular Ca(2+) levels; this secretion occurs via a regulated exocytosis pathway. Indeed, astrocytes express protein components of the vesicular secretory apparatus. However, the detailed temporal characteristics of vesicular fusions in astrocytes are not well understood. In order to start addressing this issue, we used total internal reflection fluorescence microscopy (TIRFM) to visualize vesicular fusion events in astrocytes expressing the fluorescent synaptobrevin 2 derivative, synapto-pHluorin. Although our cultured astrocytes from visual cortex express synaptosome-associated protein of 23 kDa (SNAP23), but not of 25 kDa (SNAP25), these glial cells exhibited a slow burst of exocytosis under mechanical stimulation; the expression of SNAP25B did not affect bursting behaviour. The relative amount of two distinct types of events observed, transient and full fusions, depended on the applied stimulus. Expression of exogenous synaptotagmin 1 (Syt1) in astrocytes endogenously expressing Syt4, led to a greater proportion of transient fusions when astrocytes were stimulated with bradykinin, a stimulus otherwise resulting in more full fusions. Additionally, we studied the stability of the transient fusion pore by measuring its dwell time, relation to vesicular size, flickering and decay slope; all of these characteristics were secretagogue dependent. The expression of SNAP25B or Syt1 had complex effects on transient fusion pore stability in a stimulus-specific manner. SNAP25B obliterated the appearance of flickers and reduced the dwell time when astrocytes were mechanically stimulated, while astrocytes expressing SNAP25B and stimulated with bradykinin had a reduction in decay slope. Syt1 reduced the dwell time when astrocytes were stimulated either mechanically or with bradykinin. Our detailed study of temporal characteristics of astrocytic exocytosis will not only aid the general understanding of this process, but also the interpretation of the events at the tripartite synapse, both in health and disease.
Collapse
Affiliation(s)
- Erik B Malarkey
- Departments of Neurobiology and Cell Biology, Center for Glial Biology inMedicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
33
|
Losón OC, Ha CM, Parpura V. Age-dependent spatial segregation of synaptobrevin 2-containing vesicles in astrocytes. J Neurochem 2011; 116:909-15. [PMID: 21214554 DOI: 10.1111/j.1471-4159.2010.07018.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Astrocytes possess much of the same exocytotic protein machinery as neurons do and can release various gliotransmitters stored in their secretory vesicles. An essential component of this exocytotic machinery is the vesicle-associated membrane protein synaptobrevin 2 (Sb2). In order to assess whether vesicular age plays a role in determining the intracellular location of vesicles in astrocytes, we generated a fluorescent chimeric form of Sb2. We appended the Sb2 cytosolic N-terminus with the fluorescent 'timer' protein DsRedE5, which changes its fluorescence emission from green to red as it ages. We found that Sb2-containing vesicles in astrocytes segregate and localize intracellularly in an age dependent manner. Younger vesicles predominately localize at the periphery of cell somata and processes, while older vesicles predominately locate at the central portion of the cell body. These findings raise the notion that there might be differential astrocyte-neuron signaling at sites away or at the tripartite synapse that could be modulated by the age of vesicles and/or their cargo.
Collapse
Affiliation(s)
- Oliver C Losón
- MARC U* STAR Program, University of California, Riverside, California, USA
| | | | | |
Collapse
|
34
|
Reyes RC, Perry G, Lesort M, Parpura V. Immunophilin deficiency augments Ca2+-dependent glutamate release from mouse cortical astrocytes. Cell Calcium 2011; 49:23-34. [PMID: 21163525 PMCID: PMC3073643 DOI: 10.1016/j.ceca.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 11/23/2022]
Abstract
Immunophilins are receptors for immunosuppressive drugs such as the macrolides cyclosporin A (CsA) and FK506; correspondingly these immunophilins are referred to as cyclophilins and FK506-binding proteins (FKBPs). In particular, CsA targets cyclophilin D (CypD), which can modulate mitochondrial Ca(2+) dynamics. Since mitochondria have been implicated in the regulation of astrocytic cytosolic Ca(2+) (Ca(cyt)(2+)) dynamics and consequential Ca(2+)-dependent exocytotic release of glutamate, we investigated the role of CypD in this process. Cortical astrocytes isolated from CypD deficient mice Ppif(-/-) displayed reduced mechanically induced Ca(cyt)(2+) increases, even though these cells showed augmented exocytotic release of glutamate, when compared to responses obtained from astrocytes isolated from wild-type mice. Furthermore, acute treatment with CsA to inhibit CypD modulation of mitochondrial Ca(2+) buffering, or with FK506 to inhibit FKBP12 interaction with inositol-trisphosphate receptor of the endoplasmic reticulum, led to similar reductive effects on astrocytic Ca(cyt)(2+) dynamics, but also to an enhanced Ca(2+)-dependent exocytotic release of glutamate in wild-type astrocytes. These findings point to a possible role of immunophilin signal transduction pathways in astrocytic modulation of neuronal activity at the tripartite synapse.
Collapse
Affiliation(s)
- Reno C. Reyes
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121
| | - Giselle Perry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294
| | - Mathieu Lesort
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, Birmingham, AL 35294
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
35
|
Zink M, Rapp S, Donev R, Gebicke-Haerter PJ, Thome J. Fluoxetine treatment induces EAAT2 expression in rat brain. J Neural Transm (Vienna) 2010; 118:849-55. [PMID: 21161710 DOI: 10.1007/s00702-010-0536-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022]
Abstract
Synaptic pathology and disturbed glutamatergic neurotransmission contribute to the neurobiology of depression. Reduced expression of glutamate transporters, most importantly excitatory amino acid transporter (EAAT2), was reported in human studies and animal models. We therefore assessed the effects of antidepressant treatment upon EAAT2 expression. Male Sprague-Dawley rats received daily intraperitoneal injections of the antidepressants desipramine (DES, N = 7), fluoxetine (FLU, N = 7), tranylcypromine (TRAN, N = 5) or a saline control (CON, N = 5) for a period of 14 days. The expression of the major glial glutamate transporter EAAT2 was evaluated by semi-quantitative in situ hybridizations using a (35)S-labeled cRNA probe. Treatment with FLU significantly induced EAAT2 expression in hippocampal and cortical regions in comparison with saline injections, while DES and TRAN-applications did not exert significant effects. It can be postulated that increased expression of EAAT2 may counterbalance the tonus of glutamatergic neurotransmission. Our findings are in concert with human post-mortem findings, valid animal models of depression, antidepressive effects of NMDA-antagonists, and the glutamatergic theory of depression. Further studies should examine the effects of antidepressant treatments upon EAAT2 expression in rodent models of depression to further elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- M Zink
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, P.O. Box 122120, 68072 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
36
|
Parpura V, Grubišić V, Verkhratsky A. Ca(2+) sources for the exocytotic release of glutamate from astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:984-91. [PMID: 21118669 DOI: 10.1016/j.bbamcr.2010.11.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 01/26/2023]
Abstract
Astrocytes can exocytotically release the gliotransmitter glutamate from vesicular compartments. Increased cytosolic Ca(2+) concentration is necessary and sufficient for this process. The predominant source of Ca(2+) for exocytosis in astrocytes resides within the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate and ryanodine receptors of the ER provide a conduit for the release of Ca(2+) to the cytosol. The ER store is (re)filled by the store-specific Ca(2+)-ATPase. Ultimately, the depleted ER is replenished by Ca(2+) which enters from the extracellular space to the cytosol via store-operated Ca(2+) entry; the TRPC1 protein has been implicated in this part of the astrocytic exocytotic process. Voltage-gated Ca(2+) channels and plasma membrane Na(+)/Ca(2+) exchangers are additional means for cytosolic Ca(2+) entry. Cytosolic Ca(2+) levels can be modulated by mitochondria, which can take up cytosolic Ca(2+) via the Ca(2+) uniporter and release Ca(2+) into cytosol via the mitochondrial Na(+)/Ca(2+) exchanger, as well as by the formation of the mitochondrial permeability transition pore. The interplay between various Ca(2+) sources generates cytosolic Ca(2+) dynamics that can drive Ca(2+)-dependent exocytotic release of glutamate from astrocytes. An understanding of this process in vivo will reveal some of the astrocytic functions in health and disease of the brain. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy and Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham 35294-0021, USA.
| | | | | |
Collapse
|
37
|
Xie Y, Wang T, Sun GY, Ding S. Specific disruption of astrocytic Ca2+ signaling pathway in vivo by adeno-associated viral transduction. Neuroscience 2010; 170:992-1003. [PMID: 20736051 DOI: 10.1016/j.neuroscience.2010.08.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are the predominant glial-cell type in the CNS and they are known to play an active role in modulating neuronal function. Since many of the same molecules including G-protein coupled receptors (GPCRs) are expressed in both neurons and astrocytes, in vivo pharmacological manipulations to target astrocytes lack specificity. In this study, we investigated the effect of Pleckstrin Homology (PH) domain of Phospholipase C (PLC)-like protein p130 (p130PH) on Ca(2+) signaling in astrocytes in vivo. We used the serotype 2/5 recombinant adeno-associated virus (rAAV2/5) vectors to introduce p130PH fused with a tagged protein monomer red fluorescent protein at the N-terminal (i.e., transgene mRFP-p130PH). In order to selectively disrupt the Ca(2+) signaling pathway in astrocytes, the transgene was driven by a novel astrocyte-specific promoter gfaABC(1)D. Our results show that mRFP-p130PH is exclusively expressed in astrocytes with a high efficiency and a stable expression level. In vivo imaging using two-photon microscopy demonstrated reduced Ca(2+) signal in transduced astrocytes in response to ATP stimulation. As Ca(2+) signaling is a characteristic form of cellular excitability in astrocytes that can mediate chemical transmitter release and contribute to neuronal excitotoxicity, the current study provides an in vivo approach to better understand Ca(2+)-dependent gliotransmission and its involvement in glia-related diseases.
Collapse
Affiliation(s)
- Y Xie
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
38
|
Calì C, Bezzi P. CXCR4-mediated glutamate exocytosis from astrocytes. J Neuroimmunol 2010; 224:13-21. [PMID: 20580441 DOI: 10.1016/j.jneuroim.2010.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/28/2022]
Abstract
The role of astrocytes as structural and metabolic support for neurons is known since the beginning of the last century. Because of their strategic localization between neurons and capillaries they can monitor and control the level of synaptic activity by providing energetic metabolites to neurons and remove excess of neurotransmitters. During the last two decades number of papers further established that the astrocytic plasma-membrane G-protein coupled receptors (GPCR) can sense external inputs (such as the spillover of neurotransmitters) and transduce them as intracellular calcium elevations and release of chemical transmitters such as glutamate. The chemokine CXCR4 receptor is a GPCR widely expressed on glial cells (especially astrocytes and microglia). Activation of the astrocytic CXCR4 by its natural ligand CXCL12 (or SDF1 alpha) results in a long chain of intracellular and extracellular events (including the release of the pro-inflammatory cytokine TNFalpha and prostanglandins) leading to glutamate release. The emerging role of CXCR4-CXCL12 signalling axis in brain physiology came from the recent observation that glutamate in astrocytes is released via a regulated exocytosis process and occurs with a relatively fast time-scale, in the order of few hundred milliseconds. Taking into account that astrocytes are electrically non-excitable and thus exocytosis rely only on a signalling pathway that involves the release Ca(2+) from the internal stores, these results suggested a close relationship between sites of Ca(2+) release and those of fusion events. Indeed, a recent observation describes structural sub-membrane microdomains where fast ER-dependent calcium elevations occur in spatial and temporal correlation with fusion events.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Cell Biology and Morphology, University of Lausanne, FBM, Lausanne, Switzerland
| | | |
Collapse
|
39
|
Verkhratsky A, Parpura V, Rodríguez JJ. Where the thoughts dwell: the physiology of neuronal-glial "diffuse neural net". ACTA ACUST UNITED AC 2010; 66:133-51. [PMID: 20546785 DOI: 10.1016/j.brainresrev.2010.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the production of thoughts by exceedingly complex cellular networks that construct the human brain constitute the most challenging problem of natural sciences. Our understanding of the brain function is very much shaped by the neuronal doctrine that assumes that neuronal networks represent the only substrate for cognition. These neuronal networks however are embedded into much larger and probably more complex network formed by neuroglia. The latter, although being electrically silent, employ many different mechanisms for intercellular signalling. It appears that astrocytes can control synaptic networks and in such a capacity they may represent an integral component of the computational power of the brain rather than being just brain "connective tissue". The fundamental question of whether neuroglia is involved in cognition and information processing remains, however, open. Indeed, a remarkable increase in the number of glial cells that distinguishes the human brain can be simply a result of exceedingly high specialisation of the neuronal networks, which delegated all matters of survival and maintenance to the neuroglia. At the same time potential power of analogue processing offered by internally connected glial networks may represent the alternative mechanism involved in cognition.
Collapse
|
40
|
|
41
|
Sinakevitch I, Grau Y, Strausfeld NJ, Birman S. Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Dev 2010; 5:10. [PMID: 20370889 PMCID: PMC3003247 DOI: 10.1186/1749-8104-5-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 04/06/2010] [Indexed: 12/16/2022] Open
Abstract
Background The mushroom bodies (MBs) are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs), their intrinsic neurons, form the bulk of the MB's calyx, pedunculus and lobes. In young adult Drosophila, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores) that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu) immunoreactivity is present in the α/β cores (α/βc) of recently eclosed adult flies. In a Drosophila model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR) antagonists can rescue memory deficits and MB structural defects. Results To address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in Drosophila. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we provide evidence that DmGluRA, the only Drosophila mGluR, is specifically expressed in Glu-accumulating cells of the MB α/βc immediately and for a short time after eclosion. Conclusions The distribution and dynamics of glutamatergic markers indicate that newborn KCs transiently accumulate Glu at a high level in late pupal and young eclosed Drosophila, and may locally release this amino acid by a mechanism that would not involve DVGluT. At this stage, Glu can bind to intrinsic mGluRs abundant in the α/βc KCs, and to NMDA receptors in the rest of the MB neuropil, before being captured and metabolized in surrounding glial cells. This suggests that Glu acts as an autocrine or paracrine agent that contributes to the structural and functional maturation of the MB during the first hours of Drosophila adult life.
Collapse
Affiliation(s)
- Irina Sinakevitch
- Laboratoire de Neurobiologie, CNRS UMR 7637, ESPCI ParisTech, 10 rue Vauquelin, 75231 Paris cedex 5, France.
| | | | | | | |
Collapse
|
42
|
Lee H, Brecha NC. Immunocytochemical evidence for SNARE protein-dependent transmitter release from guinea pig horizontal cells. Eur J Neurosci 2010; 31:1388-401. [PMID: 20384779 DOI: 10.1111/j.1460-9568.2010.07181.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Horizontal cells are lateral interneurons that participate in visual processing in the outer retina but the cellular mechanisms underlying transmitter release from these cells are not fully understood. In non-mammalian horizontal cells, GABA release has been shown to occur by a non-vesicular mechanism. However, recent evidence in mammalian horizontal cells favors a vesicular mechanism as they lack plasmalemmal GABA transporters and some soluble NSF attachment protein receptor (SNARE) core proteins have been identified in rodent horizontal cells. Moreover, immunoreactivity for GABA and the molecular machinery to synthesize GABA have been found in guinea pig horizontal cells, suggesting that if components of the SNARE complex are expressed they could contribute to the vesicular release of GABA. In this study we investigated whether these vesicular and synaptic proteins are expressed by guinea pig horizontal cells using immunohistochemistry with well-characterized antibodies to evaluate their cellular distribution. Components of synaptic vesicles including vesicular GABA transporter, synapsin I and synaptic vesicle protein 2A were localized to horizontal cell processes and endings, along with the SNARE core complex proteins, syntaxin-1a, syntaxin-4 and synaptosomal-associated protein 25 (SNAP-25). Complexin I/II, a cytosolic protein that stabilizes the activated SNARE fusion core, strongly immunostained horizontal cell soma and processes. In addition, the vesicular Ca(2+)-sensor, synaptotagmin-2, which is essential for Ca(2+)-mediated vesicular release, was also localized to horizontal cell processes and somata. These morphological findings from guinea pig horizontal cells suggest that mammalian horizontal cells have the capacity to utilize a regulated Ca(2+)-dependent vesicular pathway to release neurotransmitter, and that this mechanism may be shared among many mammalian species.
Collapse
Affiliation(s)
- Helen Lee
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | |
Collapse
|
43
|
McLamore ES, Mohanty S, Shi J, Claussen J, Jedlicka SS, Rickus JL, Porterfield DM. A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. J Neurosci Methods 2010; 189:14-22. [PMID: 20298719 DOI: 10.1016/j.jneumeth.2010.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/14/2010] [Accepted: 03/02/2010] [Indexed: 01/21/2023]
Abstract
Quantification of neurotransmitter transport dynamics is hindered by a lack of sufficient tools to directly monitor bioactive flux under physiological conditions. Traditional techniques for studying neurotransmitter release/uptake require inferences from non-selective electrical recordings, are invasive/destructive, and/or suffer from poor temporal resolution. Recent advances in electrochemical biosensors have enhanced in vitro and in vivo detection of neurotransmitter concentration under physiological/pathophysiological conditions. The use of enzymatic biosensors with performance enhancing materials (e.g., carbon nanotubes) has been a major focus for many of these advances. However, these techniques are not used as mainstream neuroscience research tools, due to relatively low sensitivity, excessive drift/noise, low signal-to-noise ratio, and inability to quantify rapid neurochemical kinetics during synaptic transmission. A sensing technique known as self-referencing overcomes many of these problems, and allows non-invasive quantification of biophysical transport. This work presents a self-referencing CNT modified glutamate oxidase biosensor for monitoring glutamate flux near neural/neuronal cells. Concentration of basal glutamate was similar to other in vivo and in vitro measurements. The biosensor was used in self-referencing (oscillating) mode to measure net glutamate flux near neural cells during electrical stimulation. Prior to stimulation, the average influx was 33.9+/-6.4 fmol cm(-2)s(-1)). Glutamate efflux took place immediately following stimulation, and was always followed by uptake in the 50-150 fmol cm(-2)s(-1) range. Uptake was inhibited using threo-beta-benzyloxyaspartate, and average surface flux in replicate cells (1.1+/-7.4 fmol cm(-2)s(-1)) was significantly lower than uninhibited cells. The technique is extremely valuable for studying neuropathological conditions related to neurotransmission under dynamic physiological conditions.
Collapse
Affiliation(s)
- E S McLamore
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Regulated exocytosis in astrocytic signal integration. Neurochem Int 2010; 57:451-9. [PMID: 20156504 DOI: 10.1016/j.neuint.2010.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 12/11/2022]
Abstract
Astrocytes can be considered as signal integrators in central nervous system activity. These glial cells can respond to signals from the heterocellular milieu of the brain and subsequently release various molecules to signal to themselves and/or other neighboring neural cells. An important functional module that enables signal integration in astrocytes is exocytosis, a Ca(2+)-dependent process consisting of vesicular fusion to the plasma membrane. Astrocytes utilize regulated exocytosis to release various signaling molecules stored in the vesicular lumen. Here we review the properties of exocytotic release of three classes of gliotransmitters: (i) amino acids, (ii) nucleotides and (iii) peptides. Vesicles may carry not only lumenal cargo, but also membrane-associated molecules. Therefore, we also discuss exocytosis as a delivery mechanism for transporters and receptors to the plasma membrane, where these proteins are involved in astrocytic intercellular signaling.
Collapse
|
45
|
Abstract
It is well established that NG2 cells throughout the young and adult brain consistently detect the release of single vesicles filled with glutamate from nearby axons. The released neurotransmitter glutamate electrically excites NG2 cells via non-NMDA (N-methyl-D-aspartic acid) glutamate receptors but the individual contribution of AMPA and kainate receptors to neuron-NG2 cell signalling, is not well understood. Here we pharmacologically block AMPA-type glutamate receptors and investigate whether hippocampal NG2 cells also express the kainate subtype of glutamate receptors and what may be their contribution to synaptic connectivity. It has been shown previously that vesicular glutamate release does not lead to a detectable activation of kainate receptors on NG2 cells. Here we report that while bath application of 250 nM-1 muM kainate does not have a major effect on NG2 cells it consistently induces a small and persistent depolarising current. This current was not mimicked by ATPA, suggesting that this current is carried by non-GluR5 containing kainate receptors. In addition to this inward current, nanomolar concentrations of kainate also produced a dramatic increase in the frequency of spontaneous GABA-A receptor-mediated synaptic currents (IPSCs) in NG2 cells. This increase in spontaneous IPSC frequency was even more pronounced on application of the GluR5-specific agonist ATPA (approximately 15-fold increase in frequency). In contrast, mono-synaptic stimulated IPSCs recorded in NG2 cells were unaffected by kainate receptor activation. Those and further experiments show that the occurrence of the high frequency of IPSCs is due to action potential firing of hippocampal interneurons caused by activation of GluR5 receptors on the somatodendritic membrane of the interneurons. Our data suggest that hippocampal kainate receptors are not only important for communication between neurons but may also play a dual and subtype-specific role for neuron-glia signalling: Firstly, extra-synaptic non-GluR5 kainate receptors in the membrane of NG2 cells are ideally suited to instruct NG2 cells on the population activity of local excitatory neurons via ambient glutamate. Secondly, based on the known importance of GluR5 receptors on hippocampal interneurons for the generation of network rhythms and based on our finding that these interneurons heavily project onto NG2 cells, it appears that synaptic activation of interneuronal GluR5 receptors triggers signalling to NG2 cells which transmits the phase and frequency of ongoing network oscillations in the developing hippocampus.
Collapse
|
46
|
Lee W, Parpura V. Micropatterned substrates for studying astrocytes in culture. Front Neurosci 2009; 3:381-7. [PMID: 20198155 PMCID: PMC2796922 DOI: 10.3389/neuro.01.033.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022] Open
Abstract
Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of astrocytic Ca2+ excitability and bidirectional neuron-astrocyte signaling. This culturing approach aims to reduce the level of complexity of the system by limiting the interacting partners and by controlling the localization of cells. It provides tight control over experimental conditions allowing detailed characterization of cellular functions and intercellular communication. Although such a reductionist approach yields some difference in observations between astrocytic properties in culture and in situ, general phenomena discovered in cell culture systems, however, have also been found in vivo.
Collapse
Affiliation(s)
- William Lee
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy and Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
47
|
Parpura V, Zorec R. Gliotransmission: Exocytotic release from astrocytes. ACTA ACUST UNITED AC 2009; 63:83-92. [PMID: 19948188 DOI: 10.1016/j.brainresrev.2009.11.008] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/22/2009] [Accepted: 11/24/2009] [Indexed: 01/28/2023]
Abstract
Gliotransmitters are chemicals released from glial cells fulfilling a following set of criteria: (i) they are synthesized by and/or stored in glia; (ii) their regulated release is triggered by physiological and/or pathological stimuli; (iii) they activate rapid (milliseconds to seconds) responses in neighboring cells; and (iv) they play a role in (patho)physiological processes. Astrocytes can release a variety of gliotransmitters into the extracellular space using several different mechanisms. In this review, we focus on exocytotic mechanism(s) underlying the release of three classes of gliotransmitters: (i) amino acids, such as, glutamate and d-serine; (ii) nucleotides, like adenosine 5'-triphosphate; and (iii) peptides, such as, atrial natriuretic peptide and brain-derived neurotrophic factor. It is becoming clear that astrocytes are endowed with elements that qualify them as cells communicating with neurons and other cells within the central nervous system by employing regulated exocytosis.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, USA.
| | | |
Collapse
|
48
|
Ni Y, Parpura V. Dual regulation of Ca2+-dependent glutamate release from astrocytes: vesicular glutamate transporters and cytosolic glutamate levels. Glia 2009; 57:1296-305. [PMID: 19191347 DOI: 10.1002/glia.20849] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.
Collapse
Affiliation(s)
- Yingchun Ni
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
49
|
Fischer W, Nörenberg W, Franke H, Schaefer M, Illes P. Increase of intracellular Ca2+ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. J Comp Neurol 2009; 516:343-59. [PMID: 19655384 DOI: 10.1002/cne.22079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura-2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X(2,4,6) and P2Y(1,2) subtypes. P2X(1) and P2X(7) receptor immunoreactivity (IR) was found on thin axon-like processes and presynaptic structures, respectively. Application of ATP caused a small concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), ADPbetaS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, alpha,beta-meATP, UDP, and UDP-glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2, 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179), and suramin (300 microM) as well as by a cyclopiazonic acid-induced depletion of intracellular Ca2+ stores. A Ca2+-free external medium tended to decrease the ATP-induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage-sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased it. Cross-desensitization experiments between ADPbetaS or UTP and ATP suggested that ATP acts on the one hand via P2Y(1,2) receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2+ via store-operated Ca2+ channels. Evidence for the presence of functional P2X receptors, in particular P2X(7), remains elusive.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig D-04107, Germany.
| | | | | | | | | |
Collapse
|
50
|
Giugliano M. Calcium waves in astrocyte networks: theory and experiments. Front Neurosci 2009; 3:160-1. [PMID: 20228859 PMCID: PMC2751621 DOI: 10.3389/neuro.01.019.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michele Giugliano
- Department of Biomedical Sciences, University of Antwerp Wilrijk, Belgium
| |
Collapse
|