1
|
Ardanaz CG, Ezkurdia A, Bejarano A, Echarte B, Smerdou C, Martisova E, Martínez-Valbuena I, Luquin MR, Ramírez MJ, Solas M. JNK3 Overexpression in the Entorhinal Cortex Impacts on the Hippocampus and Induces Cognitive Deficiencies and Tau Misfolding. ACS Chem Neurosci 2023. [PMID: 37236204 DOI: 10.1021/acschemneuro.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.
Collapse
Affiliation(s)
- Carlos G Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Arantza Bejarano
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Beatriz Echarte
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Cristian Smerdou
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Eva Martisova
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Martínez-Valbuena
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - María-Rosario Luquin
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Neurology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
2
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
3
|
Kodati B, Stankowska DL, Krishnamoorthy VR, Krishnamoorthy RR. Involvement of c-Jun N-terminal kinase 2 (JNK2) in Endothelin-1 (ET-1) Mediated Neurodegeneration of Retinal Ganglion Cells. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 33978676 PMCID: PMC8131991 DOI: 10.1167/iovs.62.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The goal of this study was to determine whether JNK2 played a causative role in endothelin-mediated loss of RGCs in mice. Methods JNK2−/− and wild type (C57BL/6) mice were intravitreally injected in one eye with 1 nmole of ET-1, whereas the contralateral eye was injected with the vehicle. At two time points (two hours and 24 hours) after the intravitreal injections, mice were euthanized, and phosphorylated c-Jun was assessed in retinal sections. In a separate set of experiments, JNK2−/− and wild type mice were intravitreally injected with either 1 nmole of ET-1 or its vehicle and euthanized seven days after injection. Retinal flat mounts were stained with antibodies to the RGC marker, Brn3a, and surviving RGCs were quantified. Axonal degeneration was assessed in paraphenylenediamine stained optic nerve sections. Results Intravitreal ET-1 administration produced a significant increase in immunostaining for phospho c-Jun in wild type mice, which was appreciably lower in the JNK2 −/− mice. A significant (P < 0.05) 26% loss of RGCs was found in wild type mice, seven days after injection with ET-1. JNK2−/− mice showed a significant protection from RGC loss following ET-1 administration, compared to wild type mice injected with ET-1. A significant decrease in axonal counts and an increase in the collapsed axons was found in ET-1 injected wild type mice eyes. Conclusions JNK2 appears to play a major role in ET-1 mediated loss of RGCs in mice. Neuroprotective effects in JNK2−/− mice following ET-1 administration occur mainly in the soma and not in the axons of RGCs.
Collapse
Affiliation(s)
- Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Dorota L Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Vignesh R Krishnamoorthy
- Department of Cellular and Molecular Physiology, Loyola University, Maywood, Illinois, United States
| | - Raghu R Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States.,North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
4
|
Liu X, Blazejewski SM, Bennison SA, Toyo-oka K. Glutathione S-transferase Pi (Gstp) proteins regulate neuritogenesis in the developing cerebral cortex. Hum Mol Genet 2021; 30:30-45. [PMID: 33437989 PMCID: PMC8033146 DOI: 10.1093/hmg/ddab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
GSTP proteins are metabolic enzymes involved in the removal of oxidative stress and intracellular signaling and also have inhibitory effects on JNK activity. However, the functions of Gstp proteins in the developing brain are unknown. In mice, there are three Gstp proteins, Gstp1, 2 and 3, whereas there is only one GSTP in humans. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, we found that Gstp1 was expressed beginning at E15.5 in the cortex, but Gstp2 and 3 started expressing at E18.5. Gstp 1 and 2 knockdown (KD) caused decreased neurite number in cortical neurons, implicating them in neurite initiation. Using in utero electroporation (IUE) to knock down Gstp1 and 2 in layer 2/3 pyramidal neurons in vivo, we found abnormal swelling of the apical dendrite at P3 and reduced neurite number at P15. Using time-lapse live imaging, we found that the apical dendrite orientation was skewed compared with the control. We explored the molecular mechanism and found that JNK inhibition rescued reduced neurite number caused by Gstp knockdown, indicating that Gstp regulates neurite formation through JNK signaling. Thus, we found novel functions of Gstp proteins in neurite initiation during cortical development. These findings not only provide novel functions of Gstp proteins in neuritogenesis during cortical development but also help us to understand the complexity of neurite formation.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 USA
| |
Collapse
|
5
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
6
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|
7
|
Parikh AN, Concepcion FA, Khan MN, Boehm RD, Poolos OC, Dhami A, Poolos NP. Selective hyperactivation of JNK2 in an animal model of temporal lobe epilepsy. IBRO Rep 2020; 8:48-55. [PMID: 32072069 PMCID: PMC7015819 DOI: 10.1016/j.ibror.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are derived from three genes, Jnk1-3. These kinases are involved in cellular responses to homeostatic insults, such as inflammation and apoptosis. Furthermore, increased JNK expression and activation are associated with debilitating neurodegenerative diseases, including Alzheimer’s and Parkinson’s. We previously reported elevated levels of phosphorylated JNK (pJNK), indicative of JNK hyperactivation, in the CA1 hippocampus of chronically epileptic rats. We also showed that pharmacological inhibition of JNK activity reduced seizure frequency in a dose-dependent fashion (Tai TY et al., Neuroscience, 2017). Building on these observations, the objectives of this current study were to investigate the timeline of JNK activation during epileptogenesis, and to identify the JNK isoform(s) that undergo hyperactivation in the chronic epilepsy stage. Western blotting analysis of CA1 hippocampal homogenates showed JNK hyperactivation only during the chronic phase of epilepsy (6–9 weeks post-status epilepticus), and not in earlier stages of epileptogenesis (1 h, 1 day, and 1 week post-status epilepticus). After enrichment for pJNK by immunoprecipitation, we identified JNK2 as the only significantly hyperactivated JNK isoform, with expression of the 54 kDa pJNK2 variant elevated to a greater extent than the 46 kDa pJNK2 variant. Expression of the total amounts of both JNK2 variants (phosphorylated plus non-phosphorylated) was reduced in epilepsy, however, suggesting that activation of upstream phosphorylation pathways was responsible for JNK2 hyperactivation. Since our prior work demonstrated that pharmacological inhibition of JNK activation had an antiepileptic effect, JNK2 hyperactivation is therefore likely a pathological event that promotes seizure occurrences. This investigation provides evidence that JNK2 is selectively hyperactivated in epilepsy and thus may be a novel and selective antiepileptic target.
Collapse
Affiliation(s)
- A N Parikh
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - R D Boehm
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - O C Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - A Dhami
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A, Schaefer A, Greengard P. AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 2020; 25:1364-1381. [PMID: 32439846 PMCID: PMC7303013 DOI: 10.1038/s41380-020-0767-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most widely prescribed drugs for mood disorders. While the mechanism of SSRI action is still unknown, SSRIs are thought to exert therapeutic effects by elevating extracellular serotonin levels in the brain, and remodel the structural and functional alterations dysregulated during depression. To determine their precise mode of action, we tested whether such neuroadaptive processes are modulated by regulation of specific gene expression programs. Here we identify a transcriptional program regulated by activator protein-1 (AP-1) complex, formed by c-Fos and c-Jun that is selectively activated prior to the onset of the chronic SSRI response. The AP-1 transcriptional program modulates the expression of key neuronal remodeling genes, including S100a10 (p11), linking neuronal plasticity to the antidepressant response. We find that AP-1 function is required for the antidepressant effect in vivo. Furthermore, we demonstrate how neurochemical pathways of BDNF and FGF2, through the MAPK, PI3K, and JNK cascades, regulate AP-1 function to mediate the beneficial effects of the antidepressant response. Here we put forth a sequential molecular network to track the antidepressant response and provide a new avenue that could be used to accelerate or potentiate antidepressant responses by triggering neuroplasticity.
Collapse
Affiliation(s)
- Revathy U. Chottekalapanda
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Salina Kalik
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Jodi Gresack
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Alyssa Ayala
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Melanie Gao
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Wei Wang
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Sarah Meller
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Ammar Aly
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Anne Schaefer
- 0000 0001 0670 2351grid.59734.3cFriedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul Greengard
- 0000 0001 2166 1519grid.134907.8Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
9
|
Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018; 135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
It is well known that Wnt5a activation plays a pivotal role in brain injury and β-arrestin2 induces c-Jun N-terminal kinase (JNK3) activation is involved in neuronal cell death. Nonetheless, the relationship between Wnt5a and JNK3 remains unexplored during cerebral ischemia/reperfusion (I/R). In the present study, we tested the hypothesis that Wnt5a-mediated JNK3 activation via the Wnt5a-Dvl-1-β-arrestin2-JNK3 signaling pathway was correlated with I/R brain injury. We found that cerebral I/R could enhance the assembly of the Dvl-1-β-arrestin2-JNK3 signaling module, Dvl-1 phosphorylation and JNK3 activation. Activated JNK3 could phosphorylate the transcription factor c-Jun, prompt caspase-3 activation and ultimately lead to neuronal cell death. To further explore specifically Wnt5a mediated JNK3 pathway activation in neuronal injury, we used Foxy-5 (a peptide that mimics the effects of Wnt5a) and Box5 (a Wnt5a antagonist) both in vitro and in vivo. AS-β-arrestin2 (an antisense oligonucleotide against β-arrestin2) and RRSLHL (a small peptide that competes with β-arrestin2 for binding to JNK3) were applied to confirm the positive signal transduction effect of the Dvl-1-β-arrestin2-JNK3 signaling module during cerebral I/R. Furthermore, Box5 and the RRSLHL peptide were found to play protective roles in neuronal death both in vivo global and focal cerebral I/R rat models and in vitro oxygen glucose deprivation (OGD) neural cells. In summary, our results indicate that Wnt5a-mediated JNK3 activation participates in I/R brain injury by targeting the Dvl-1-β-arrestin2/JNK3 interaction. Our results also point to the possibility that disrupting Wnt5a-JNK3 signaling pathway may provide a new approach for stroke therapy.
Collapse
Affiliation(s)
- Xuewen Wei
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; Department of Laboratory Medicine, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - JuanJuan Gong
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Juyun Ma
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Taiyu Zhang
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Yihang Li
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Peng Guo
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221002, PR China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, PR China.
| |
Collapse
|
10
|
He Y, Cai C, Sun S, Wang X, Li W, Li H. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae. Oncotarget 2018; 7:51640-51650. [PMID: 27438150 PMCID: PMC5239503 DOI: 10.18632/oncotarget.10540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 11/25/2022] Open
Abstract
The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China.,Laboratory Center, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wenyan Li
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China
| | - Huawei Li
- Department of Otorhinolaryngology, Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China.,Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan University, Shanghai, China.,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Kon E, Cossard A, Jossin Y. Neuronal Polarity in the Embryonic Mammalian Cerebral Cortex. Front Cell Neurosci 2017; 11:163. [PMID: 28670267 PMCID: PMC5472699 DOI: 10.3389/fncel.2017.00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/26/2017] [Indexed: 11/13/2022] Open
Abstract
The cerebral cortex is composed of billions of neurons that can grossly be subdivided into two broad classes: inhibitory GABAergic interneurons and excitatory glutamatergic neurons. The majority of cortical neurons in mammals are the excitatory type and they are the main focus of this review article. Like many of the cells in multicellular organisms, fully differentiated neurons are both morphologically and functionally polarized. However, they go through several changes in polarity before reaching this final mature differentiated state. Neurons are derived from polarized neuronal progenitor/stem cells and their commitment to neuronal fate is decided by cellular and molecular asymmetry during their last division in the neurogenic zone. They migrate from their birthplace using so-called multipolar migration, during which they switch direction of movement several times, and repolarize for bipolar migration when the axon is specified. Therefore, neurons have to break their previous symmetry, change their morphology and adequately respond to polarizing signals during migration in order to reach the correct position in the cortex and start making connections. Finally, the dendritic tree is elaborated and the axon/dendrite morphological polarity is set. Here we will describe the function, establishment and maintenance of polarity during the different developmental steps starting from neural stem cell (NSC) division, neuronal migration and axon specification at embryonic developmental stages.
Collapse
Affiliation(s)
- Elif Kon
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Alexia Cossard
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| | - Yves Jossin
- Mammalian Development and Cell Biology Unit, Institute of Neuroscience, Université catholique de LouvainBrussels, Belgium
| |
Collapse
|
12
|
Wang C, Xu B, Song QF, Deng Y, Liu W, Xu ZF. Manganese exposure disrupts SNARE protein complex-mediated vesicle fusion in primary cultured neurons. ENVIRONMENTAL TOXICOLOGY 2017; 32:705-716. [PMID: 27125645 DOI: 10.1002/tox.22272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Overexposure to manganese (Mn) has been known to disrupt neurotransmitter release in the brain. However, the underlying mechanisms of Mn exposure on neurotransmitter vesicle release are still unclear. The current study investigated whether the protein expression and their interaction of SNARE complex associated proteins were the media between Mn exposure and neurotransmitter vesicle fusion disorders. After the neurons were respectively exposed to Mn (0-200 μM) for 0, 6, 12, 18, 24 h, there were different degrees of cell injury in neurons. According to the results, Mn exposures in subsequent experiments were restricted to concentrations of 100 μM for 0, 6, 12, 18, 24 h. Mn was found to down-regulate the expression of SNAP-25 and up-regulate the expression of VAMP-2 in cultured neurons. Moreover, the interaction of Munc 18 and Syntaxin increased significantly in response to Mn treatment for 18-24h, and the interaction of VAMP-2 and Synaptophysin increased first and then decreased. FM1-43-labeled synaptic vesicles also provided evidence that the treatment with Mn resulted in neurotransmitter vesicle fusion increasing first and then decreasing, which was consistent with the 80 kDa protein levels of SNARE complexes. The findings clearly demonstrated that Mn induced the disorders of neurotransmitter vesicle release via disturbing the protein expression and their interaction of SNARE complex associated proteins. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 705-716, 2017.
Collapse
Affiliation(s)
- Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qi-Fan Song
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| |
Collapse
|
13
|
Guha I, Slamova I, Chun S, Clegg A, Golos M, Thrasivoulou C, Simons JP, Al-Shawi R. The effects of short-term JNK inhibition on the survival and growth of aged sympathetic neurons. Neurobiol Aging 2016; 46:138-48. [PMID: 27490965 DOI: 10.1016/j.neurobiolaging.2016.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/27/2022]
Abstract
During the course of normal aging, certain populations of nerve growth factor (NGF)-responsive neurons become selectively vulnerable to cell death. Studies using dissociated neurons isolated from neonates have shown that c-Jun N-terminal kinases (JNKs) are important in regulating the survival and neurite outgrowth of NGF-responsive sympathetic neurons. Unlike neonatal neurons, adult sympathetic neurons are not dependent on NGF for their survival. Moreover, the NGF precursor, proNGF, is neurotoxic for aging but not young adult NGF-responsive neurons. Because of these age-related differences, the effects of JNK inhibition on the survival and growth of sympathetic neurons isolated from aged mice were studied. Aged neurons, as well as glia, were found to be dependent on JNK for their growth but not their survival. Conversely, proNGF neurotoxicity was JNK-dependent and mediated by the p75-interacting protein NRAGE, whereas neurite outgrowth was independent of NRAGE. These results have implications for the potential use of JNK inhibitors as therapies for ameliorating age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Isa Guha
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Ivana Slamova
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Soyon Chun
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Arthur Clegg
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Michal Golos
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK
| | - Chris Thrasivoulou
- Research Department of Cell and Developmental Biology, University College London, London, UK
| | - J Paul Simons
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| | - Raya Al-Shawi
- Genetics Unit and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, Royal Free Campus, London, UK.
| |
Collapse
|
14
|
Cai C, Lin J, Sun S, He Y. JNK Inhibition Inhibits Lateral Line Neuromast Hair Cell Development. Front Cell Neurosci 2016; 10:19. [PMID: 26903805 PMCID: PMC4742541 DOI: 10.3389/fncel.2016.00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
JNK signaling is known to play a role in regulating cell behaviors such as cell cycle progression, cell proliferation, and apoptosis, and recent studies have suggested important roles for JNK signaling in embryonic development. However, the precise function of JNK signaling in hair cell development remains poorly studied. In this study, we used the small molecule JNK inhibitor SP600125 to examine the effect of JNK signaling abrogation on the development of hair cells in the zebrafish lateral line neuromast. Our results showed that SP600125 reduced the numbers of both hair cells and supporting cells in neuromasts during larval development in a dose-dependent manner. Additionally, JNK inhibition strongly inhibited the proliferation of neuromast cells, which likely explains the decrease in the number of differentiated hair cells in inhibitor-treated larvae. Furthermore, western blot and in situ analysis showed that JNK inhibition induced cell cycle arrest through induction of p21 expression. We also showed that SP600125 induced cell death in developing neuromasts as measured by cleaved caspase-3 immunohistochemistry, and this was accompanied with an induction of p53 gene expression. Together these results indicate that JNK might be an important regulator in the development of hair cells in the lateral line in zebrafish by controlling both cell cycle progression and apoptosis.
Collapse
Affiliation(s)
- Chengfu Cai
- Department of Otolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Xiamen UniversityXiamen, Fujian, China
| | - Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, School of Basic Medical Sciences, Fudan University Shanghai, China
| | - Yingzi He
- Department of Otolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Research Center, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| |
Collapse
|
15
|
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2016; 6:321. [PMID: 26793112 PMCID: PMC4709475 DOI: 10.3389/fphar.2015.00321] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Ramon Yarza
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| |
Collapse
|
16
|
Wang SY, Chen L, Xue Y, Xia YJ. Substance P prevents 1-methyl-4-phenylpyridinium-induced cytotoxicity through inhibition of apoptosis via neurokinin-1 receptors in MES23.5 cells. Mol Med Rep 2015; 12:8085-92. [PMID: 26497672 DOI: 10.3892/mmr.2015.4464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
[Sar9, Met(O2)11] termed Substance P (SP), is an effective and selective agonist for the neurokinin‑1 (NK‑1) receptors, which are synthetic peptides, similar in structure to SP. SP is an important neurotransmitter or neuromodulator mediated by neurokinin receptors, namely the SP receptor in the central nervous system. The excitatory effects induced by SP may be selectively inhibited by a neurokinin‑1 receptor antagonist, such as SR140333B. It has been proposed that Parkinson's disease (PD) is primarily caused by the loss of trophic peptidergic neurotransmitter, possibly SP, which may lead to the degeneration of neurons. In previous studies, 1‑methyl‑4‑phenylpyridinium (MPP+) has been frequently utilized to establish animal or cell models of PD. In the present study, to further investigate the effects of SP in PD, MPP+ was employed to investigate the promising anti‑apoptotic effects of SP, and examine the underlying mechanisms of the pathology in the MES23.5 dopaminergic cell line. The results indicated that MPP+‑triggered apoptosis was prevented by treatment with SP. SP treatment also decreased the MPP+‑triggered Ca2+ influx, caspase‑3 re‑activity, reactive oxygen species production and mitochondrial membrane potential decrease. Treatment with MPP+ also induced phosphorylation of c‑Jun N‑terminal kinase and p38 mitogen‑activated protein kinase. In addition, treatment with SP inhibited the MPP+‑triggered neurotoxicity in MES23.5 cells. However, no changes were observed in SR140333B+SP+MPP+‑treated MES23.5 cell lines. In conclusion, SP could protect the cells from MPP+‑induced cytotoxicity by inhibiting the apoptosis via NK-1 receptors.
Collapse
Affiliation(s)
- Shuang-Yan Wang
- Department of Physiology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yu-Jun Xia
- Department of Anatomy, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
17
|
Doucet M, O’Toole E, Connor T, Harkin A. Small-molecule inhibitors at the PSD-95/nNOS interface protect against glutamate-induced neuronal atrophy in primary cortical neurons. Neuroscience 2015; 301:421-38. [DOI: 10.1016/j.neuroscience.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/21/2023]
|
18
|
Leach PT, Kenney JW, Gould TJ. Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning. Neurobiol Learn Mem 2014; 118:162-6. [PMID: 25543025 DOI: 10.1016/j.nlm.2014.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022]
Abstract
Increased training often results in stronger memories but the neural changes responsible for these stronger memories are poorly understood. It is proposed here that higher levels of training that result in stronger memories recruit additional cell signaling cascades. This study specifically examined if c-Jun N-terminal kinase 1 (JNK1) is involved in the formation of stronger fear conditioning memories. Wildtype (WT), JNK1 heterozygous (Het), and JNK1 knockout (KO) mice were fear conditioned with 1 trial, 2 trials, or 4 trials. All mice learned both contextual (hippocampus-dependent) and cued (hippocampus-independent) fear conditioning but for contextual fear conditioning only, the JNK1 KO mice did not show higher levels of learning with increased trials. That is, WT mice showed a significant linear increase in contextual fear conditioning as training trials increased from 1 to 2 to 4 trials whereas KO mice showed the same level of contextual fear conditioning as WT mice for 1 trial training but did not have increased levels of contextual fear conditioning with additional trials. These data suggest that JNK1 may not be critical for learning but when higher levels of hippocampus-dependent learning occur, JNK1 signaling is recruited and is necessary for stronger hippocampus-dependent memory formation.
Collapse
Affiliation(s)
- Prescott T Leach
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St Weiss Hall, Philadelphia, PA 19122, USA.
| | - Justin W Kenney
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St Weiss Hall, Philadelphia, PA 19122, USA.
| | - Thomas J Gould
- Temple University Department of Psychology, Neuroscience Program, Temple University, 1701 N. 13th St Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
19
|
Sury MD, McShane E, Hernandez-Miranda LR, Birchmeier C, Selbach M. Quantitative proteomics reveals dynamic interaction of c-Jun N-terminal kinase (JNK) with RNA transport granule proteins splicing factor proline- and glutamine-rich (Sfpq) and non-POU domain-containing octamer-binding protein (Nono) during neuronal differentiation. Mol Cell Proteomics 2014; 14:50-65. [PMID: 25326457 DOI: 10.1074/mcp.m114.039370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) is an important mediator of physiological and pathophysiological processes in the central nervous system. Importantly, JNK not only is involved in neuronal cell death, but also plays a significant role in neuronal differentiation and regeneration. For example, nerve growth factor induces JNK-dependent neuronal differentiation in several model systems. The mechanism by which JNK mediates neuronal differentiation is not well understood. Here, we employed a proteomic strategy to better characterize the function of JNK during neuronal differentiation. We used SILAC-based quantitative proteomics to identify proteins that interact with JNK in PC12 cells in a nerve growth factor-dependent manner. Intriguingly, we found that JNK interacted with neuronal transport granule proteins such as Sfpq and Nono upon NGF treatment. We validated the specificity of these interactions by showing that they were disrupted by a specific peptide inhibitor that blocks the interaction of JNK with its substrates. Immunoprecipitation and Western blotting experiments confirmed the interaction of JNK1 with Sfpq/Nono and demonstrated that it was RNA dependent. Confocal microscopy indicated that JNK1 associated with neuronal granule proteins in the cytosol of PC12 cells, primary cortical neurons, and P19 neuronal cells. Finally, siRNA experiments confirmed that Sfpq was necessary for neurite outgrowth in PC12 cells and that it most likely acted in the same pathway as JNK. In summary, our data indicate that the interaction of JNK1 with transport granule proteins in the cytosol of differentiating neurons plays an important role during neuronal development.
Collapse
Affiliation(s)
- Matthias D Sury
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Erik McShane
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Luis Rodrigo Hernandez-Miranda
- §Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Carmen Birchmeier
- §Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Matthias Selbach
- From ‡Cell Signaling/Mass Spectrometry, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| |
Collapse
|
20
|
Chen WK, Yeap YY, Bogoyevitch MA. The JNK1/JNK3 interactome – Contributions by the JNK3 unique N-terminus and JNK common docking site residues. Biochem Biophys Res Commun 2014; 453:576-81. [DOI: 10.1016/j.bbrc.2014.09.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/27/2014] [Indexed: 12/14/2022]
|
21
|
c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. J Neurosci 2013; 33:14666-80. [PMID: 24027268 DOI: 10.1523/jneurosci.4821-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) mediates cell signaling essential for axon outgrowth, but the associated substrates and underlying mechanisms are poorly understood. We identified in Xenopus laevis embryos a novel posttranscriptional mechanism whereby JNK regulates axonogenesis by phosphorylating a specific site on heterogeneous nuclear ribonucleoprotein K (hnRNP K). Both JNK inhibition and hnRNP K knockdown inhibited axon outgrowth and translation of hnRNP K-regulated cytoskeletal RNAs (tau and neurofilament medium), effects that were alleviated by expressing phosphomimetic, but not phosphodeficient, forms of hnRNP K. Immunohistochemical and biochemical analyses indicated that JNK phosphorylation of hnRNP K occurred within the cytoplasm and was necessary for the translational initiation of hnRNP K-targeted RNAs but not for hnRNP K intracellular localization or RNA binding. Thus, in addition to its known roles in transcription and cytoskeletal organization, JNK acts posttranscriptionally through hnRNP K to regulate translation of proteins crucial for axonogenesis.
Collapse
|
22
|
Liu Y, Zhang R, Li P, Huang F, Fa Z, Chen L, Jiang X. Determination of the detectable concentration of manganese used in neuronal MEMRI and its effect on cortical neurons in vitro. Neurol Res 2013; 35:895-902. [PMID: 23816337 DOI: 10.1179/1743132813y.0000000226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) has received increasing attention because of its functional and anatomic value in brain studies. However, the contrast agent, Mn(2+), will lead to neurotoxicity at high concentrations, which limits its use in biomedical research. This study was designed to determine whether Mn(2+) can significantly enhance the signal intensity (SI) of primary cultured cortical neurons at non-toxic levels. METHOD Neurons were incubated with different concentrations of Mn(2+) (control and 0.01, 0.05, 0.10, and 0.20 mM), then a cellular MRI was performed in vitro and the intracellular Mn(2+) concentrations were analyzed by ICP-MS. At the same time, the cell viability, LDH release assay, intracellular ROS level, and apoptosis were measured 24 h after treatment. RESULTS (1) After the neurons were treated with Mn(2+) at a low concentration (0.01 mM), there was no impact on cell viability and cytotoxicity, and no significant signal was enhanced on MEMRI. (2) When the neurons were exposed to higher concentrations of Mn(2+) (0.05, 0.1, and 0.2 mM), a significant increase in signal quality was achieved, but cell viability was significantly reduced and the intracellular ROS formation and percentage of TUNEL-positive cells were increased significantly. CONCLUSION At Mn(2+) concentrations > 0.05 mM, significant enhancement of MEMRI SI occurred, but with overt cytotoxicity.
Collapse
Affiliation(s)
- Yi Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Knockout of c-Jun N-terminal kinases 1, 2 or 3 isoforms induces behavioural changes. Behav Brain Res 2013; 245:88-95. [DOI: 10.1016/j.bbr.2013.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 11/19/2022]
|
24
|
Karmarkar SW, Bottum KM, Krager SL, Tischkau SA. ERK/MAPK is essential for endogenous neuroprotection in SCN2.2 cells. PLoS One 2011; 6:e23493. [PMID: 21858143 PMCID: PMC3157406 DOI: 10.1371/journal.pone.0023493] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/18/2011] [Indexed: 11/24/2022] Open
Abstract
Background Glutamate (Glu) is essential to central nervous system function; however excessive Glu release leads to neurodegenerative disease. Strategies to protect neurons are underdeveloped, in part due to a limited understanding of natural neuroprotective mechanisms, such as those present in the suprachiasmatic nucleus (SCN). This study tests the hypothesis that activation of ERK/MAPK provides essential protection to the SCN after exposure to excessive Glu using the SCN2.2 cells as a model. Methodology Immortalized SCN2.2 cells (derived from SCN) and GT1-7 cells (neurons from the neighboring hypothalamus) were treated with 10 mM Glu in the presence or absence of the ERK/MAPK inhibitor PD98059. Cell death was assessed by Live/Dead assay, MTS assay and TUNEL. Caspase 3 activity was also measured. Activation of MAPK family members was determined by immunoblot. Bcl2, neuritin and Bid mRNA (by quantitative-PCR) and protein levels (by immunoblot) were also measured. Principal Findings As expected Glu treatment increased caspase 3 activity and cell death in the GT1-7 cells, but Glu alone did not induce cell death or affect caspase 3 activity in the SCN2.2 cells. However, pretreatment with PD98059 increased caspase 3 activity and resulted in cell death after Glu treatment in SCN2.2 cells. This effect was dependent on NMDA receptor activation. Glu treatment in the SCN2.2 cells resulted in sustained activation of the anti-apoptotic pERK/MAPK, without affecting the pro-apoptotic p-p38/MAPK. In contrast, Glu exposure in GT1-7 cells caused an increase in p-p38/MAPK and a decrease in pERK/MAPK. Bcl2-protein increased in SCN2.2 cells following Glu treatment, but not in GT1-7 cells; bid mRNA and cleaved-Bid protein increased in GT1-7, but not SCN2.2 cells. Conclusions Facilitation of ERK activation and inhibition of caspase activation promotes resistance to Glu excitotoxicity in SCN2.2 cells. Significance Further research will explore ERK/MAPK as a key molecule in the prevention of neurodegenerative processes.
Collapse
Affiliation(s)
- Sumedha W. Karmarkar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Kathleen M. Bottum
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield Illinois, United States of America
| | - Stacey L. Krager
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield Illinois, United States of America
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Valesio EG, Zhang H, Zhang C. Exposure to the JNK inhibitor SP600125 (anthrapyrazolone) during early zebrafish development results in morphological defects. J Appl Toxicol 2011; 33:32-40. [PMID: 21751222 DOI: 10.1002/jat.1708] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 11/07/2022]
Abstract
SP600125 (anthrapyrazolone) is a synthetic polyaromatic chemical that inhibits c-Jun N-terminal kinase (JNK) signaling by interfering with phosphorylation of c-Jun. To determine the pharmacological impact of SP600125 on zebrafish development, we incubated embryos in various concentrations of SP600125 from 18 h postfertilization (hpf) to 48 hpf. Embryos treated with 1.25 µm appeared with occasional pericardium edema. Treatment with 12.5 µm resulted in complete mortality by 120 hpf, preventing an assessment of physiological defects. Embryos treated with 5 µm exhibited slowed overall growth, a delay in hatching and numerous morphological defects such as pericardium edema, yolk sac edema, swim bladder deflation, bent vertebrae and eye and jaw malformations. Whole-mount immunohistochemical studies using an anti-acetylated β-tubulin antibody confirmed developmental defects in the nervous system. Within the retina, fish treated with 1.25 µm showed a mild reduction of immunoreactivity. Immunoreactivity in the retina was further reduced in fish treated with 5 µm of SP600125. In these fish, eyes and olfactory organs were half the size compared with other groups. Multiple lenses were observed in 67% of these fish. A second experiment with a shorter exposure period of SP600125 (6 h) presented significantly fewer morphological defects. The treatment led to a delay in hatching, and increased incidences of swim bladder deflation and pericardium edema with increasing concentrations. In summary, SP600125 caused developmental abnormalities during zebrafish organogenesis starting at 1.25 µm and the defects were exacerbated with increasing concentrations. Our study suggests that SP600125 at 1.25 µm and beyond has devastating consequences for zebrafish development.
Collapse
Affiliation(s)
- Eric G Valesio
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, 3101S. Dearborn Street, Chicago, IL 60616, USA
| | | | | |
Collapse
|
26
|
Atkinson PJ, Cho CH, Hansen MR, Green SH. Activity of all JNK isoforms contributes to neurite growth in spiral ganglion neurons. Hear Res 2011; 278:77-85. [PMID: 21554942 DOI: 10.1016/j.heares.2011.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/06/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023]
Abstract
Jun N-terminal kinase (JNK) is a multifunctional protein kinase crucial for neuronal apoptosis as well as neurite growth. We have previously shown that JNK activity is correlated with spiral ganglion neuron (SGN) apoptosis following hair cell loss in rats (Alam et al., 2007) implying that JNK inhibition may have therapeutic potential to protect SGNs in deaf individuals. Here we investigated the role of JNK in neurite outgrowth from cultured neonatal rat and mouse SGNs. We show that JNK is required for initial growth of neurites and for continued extension of already established neurites. The effect of JNK inhibition on neurite growth is rapid and is also rapidly reversible after washout of the inhibitor. Using phosphoJNK immunoreactivity as an indicator, we show that JNK is activated in growth cones within 30 min after transfer to medium lacking neurotrophic stimuli (5 K medium) but activation in the nucleus and soma requires hours. By transfecting epitope-tagged JNK1, JNK2, or JNK3 isoforms into SGNs, we found that all are present in the nucleus and cytoplasm and that there is no preferential redistribution to the nucleus after transfer to 5 K medium. Cotransfection of dominant-negative (dn) JNK1 and JNK2 into SGNs reduced neurite growth, although transfection of dnJNK1 or dnJNK2 alone had no significant effect. SGNs cultured from JNK3(-/-) mice showed reduced neurite growth that was further reduced by transfection of dnJNK1 and dnJNK2. This indicates that all three JNK isoforms promote SGN neurite growth although there may be functional redundancy between JNK1 and JNK2.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Biology, University of Iowa, 143 Biology Building, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
27
|
JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J Mol Neurosci 2011; 45:284-93. [PMID: 21468718 PMCID: PMC3178779 DOI: 10.1007/s12031-011-9519-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/24/2011] [Indexed: 12/05/2022]
Abstract
Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of the nigrostriatal pathway is controversially discussed. In our study, we utilized a mechanical scratch lesion paradigm of midbrain DAergic neurons in vitro and studied regenerative neuritic outgrowth. After a siRNA-mediated knockdown of each of the three JNK isoforms, we found that JNKs differentially regulate neurite regeneration. Knockdown of JNK3 resulted in the most prominent neurite outgrowth impairment. This effect was attenuated again by plasmid overexpression of JNK3. We also evaluated cell survival of the affected neurons at the scratch border. JNK3 was found to be also relevant for survival of MDN which were lesioned by the scratch. Our data suggest that JNK isoforms are involved in differential regulation of cell death and regeneration in MDN depending on their neurite integrity. JNK3 appears to be required for regeneration and survival in the case of an environment permissive for regeneration. Future therapeutic approaches for the DAergic system may thus require isoform specific targeting of these kinases.
Collapse
|
28
|
Zhang Q, Shen M, Ding M, Shen D, Ding F. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway. Toxicol Appl Pharmacol 2011; 252:62-72. [DOI: 10.1016/j.taap.2011.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/18/2011] [Accepted: 02/04/2011] [Indexed: 01/18/2023]
|
29
|
Mehan S, Meena H, Sharma D, Sankhla R. JNK: A Stress-Activated Protein Kinase Therapeutic Strategies and Involvement in Alzheimer’s and Various Neurodegenerative Abnormalities. J Mol Neurosci 2010; 43:376-90. [DOI: 10.1007/s12031-010-9454-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/16/2010] [Indexed: 01/26/2023]
|
30
|
Abstract
The ability of neurons to form a single axon and multiple dendrites underlies the directional flow of information transfer in the central nervous system. Dendrites and axons are molecularly and functionally distinct domains. Dendrites integrate synaptic inputs, triggering the generation of action potentials at the level of the soma. Action potentials then propagate along the axon, which makes presynaptic contacts onto target cells. This article reviews what is known about the cellular and molecular mechanisms underlying the ability of neurons to initiate and extend a single axon during development. Remarkably, neurons can polarize to form a single axon, multiple dendrites, and later establish functional synaptic contacts in reductionist in vitro conditions. This approach became, and remains, the dominant model to study axon initiation and growth and has yielded the identification of many molecules that regulate axon formation in vitro (Dotti et al. 1988). At present, only a few of the genes identified using in vitro approaches have been shown to be required for axon initiation and outgrowth in vivo. In vitro, axon initiation and elongation are largely intrinsic properties of neurons that are established in the absence of relevant extracellular cues. However, the importance of extracellular cues to axon initiation and outgrowth in vivo is emerging as a major theme in neural development (Barnes and Polleux 2009). In this article, we focus our attention on the extracellular cues and signaling pathways required in vivo for axon initiation and axon extension.
Collapse
|
31
|
Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration. J Neurosci 2010; 30:7804-16. [PMID: 20534829 DOI: 10.1523/jneurosci.0372-10.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) (comprising JNK1-3 isoforms) are members of the MAPK (mitogen-activated protein kinase) family, activated in response to various stimuli including growth factors and inflammatory cytokines. Their activation is facilitated by scaffold proteins, notably JNK-interacting protein-1 (JIP1). Originally considered to be mediators of neuronal degeneration in response to stress and injury, recent studies support a role of JNKs in early stages of neurite outgrowth, including adult axonal regeneration. However, the function of individual JNK isoforms, and their potential effector molecules, remained unknown. Here, we analyzed the role of JNK signaling during axonal regeneration from adult mouse dorsal root ganglion (DRG) neurons, combining pharmacological JNK inhibition and mice deficient for each JNK isoform and for JIP1. We demonstrate that neuritogenesis is delayed by lack of JNK2 and JNK3, but not JNK1. JNK signaling is further required for sustained neurite elongation, as pharmacological JNK inhibition resulted in massive neurite retraction. This function relies on JNK1 and JNK2. Neurite regeneration of jip1(-/-) DRG neurons is affected at both initiation and extension stages. Interestingly, activated JNKs (phospho-JNKs), as well as JIP1, are also present in the cytoplasm of sprouting or regenerating axons, suggesting a local action on cytoskeleton proteins. Indeed, we have shown that JNK1 and JNK2 regulate the phosphorylation state of microtubule-associated protein MAP1B, whose role in axonal regeneration was previously characterized. Moreover, lack of MAP1B prevents neurite retraction induced by JNK inhibition. Thus, signaling by individual JNKs is differentially implicated in the reorganization of the cytoskeleton, and neurite regeneration.
Collapse
|
32
|
Specific regulation of JNK signalling by the novel rat MKK7gamma1 isoform. Cell Signal 2010; 22:1761-72. [PMID: 20633641 DOI: 10.1016/j.cellsig.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 01/20/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) mediate a diversity of physiological and pathophysiological effects. Apart from isoform-specific JNK activation, upstream kinases are supposed to be the relevant regulators, which are involved in the context- and signalosome-depending functions. In the present study we report the cloning and characterization of the novel rat MKK7gamma1, a splice variant of MKK7 with an additional exon in the N-terminal region, in the neuronal pheochromocytoma cell line PC12. Transfected MKK7gamma1 increased basal JNK activity, in particular phosphorylation of JNK2. Consequently, JNK signalling was changed in mRNA-, protein- and activation-levels of JNK targets, such as transcription factors (c-Jun, p53, c-Myc), cell cycle regulators (p21, CyclinD1) and apoptotic proteins (Fas, Bim, Bcl-2, Bcl-xl). These alterations promote the sensitivity of MKK7gamma1-transfected cells towards cell death and repress cell proliferation under normal cell growth conditions. Complexes of JIP-1, MKK7 and JNK2 were the major JNK signalosomes under basal conditions. After stimulation with taxol (5muM) and tunicamycin (1.4mug/ml), MKK7gamma1- but not MKK7beta1-transfection, reduced cell death and even increased cell proliferation. Cellular stress also led to an increased phosphorylation of JNK1 and the almost complete abrogation of complexes of JIP-1, MKK7 and JNK2 in MKK7gamma1-transfected PC12 cells. Summarizing, MKK7gamma1 affects the function and activity of individual JNK isoforms and the formation of their signalosomes. This study demonstrates for the first time that one splice-variant of MKK7 tightly controls JNK signalling and effectively adapts JNK functions to the cellular context.
Collapse
|
33
|
Meltser I, Canlon B. The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiol Dis 2010; 40:325-30. [PMID: 20598895 DOI: 10.1016/j.nbd.2010.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 12/31/2022] Open
Abstract
Acoustic trauma is well known to cause peripheral damage with subsequent effects in the central auditory system. The inferior colliculus (IC) is a major auditory center for the integration of ascending and descending information and is involved in noise-induced tinnitus and central hyperactivity. Here we show that the early effects of acoustic trauma, that eventually result in permanent damage to auditory system, lead to a transient activation of BDNF and mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the IC. In contrast, the early effects of acoustic trauma that result in a temporary damage produced a reversible activation only of p38. The transient activation of MAPK and BDNF in the IC after permanent acoustic trauma is attributed to the plastic changes triggered by a decreased signal input from the damaged periphery. The pattern of MAPK and BDNF activation in the IC is different from that previously described for the cochlea from this laboratory. The differences in the pattern of MAPK and BDNF expression in the IC highlight unique molecular mechanisms underlying temporary and permanent acoustic damage to the central auditory system.
Collapse
Affiliation(s)
- Inna Meltser
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
34
|
Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239:1-15. [PMID: 19530173 DOI: 10.1002/dvdy.21991] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs) play crucial roles in the development of various organs and tissues. In mammals, Ror2, a member of the Ror-family RTKs, has been shown to act as a receptor or coreceptor for Wnt5a to mediate noncanonical Wnt signaling. Ror2- and Wnt5a-deficient mice exhibit similar abnormalities during developmental morphogenesis, reflecting their defects in convergent extension movements and planar cell polarity, characteristic features mediated by noncanonical Wnt signaling. Furthermore, mutations within the human Ror2 gene are responsible for the genetic skeletal disorders dominant brachydactyly type B and recessive Robinow syndrome. Accumulating evidence demonstrate that Ror2 mediates noncanonical Wnt5a signaling by inhibiting the beta-catenin-TCF pathway and activating the Wnt/JNK pathway that results in polarized cell migration. In this article, we review recent progress in understanding the roles of noncanonical Wnt5a/Ror2 signaling in developmental morphogenesis and in human diseases, including heritable skeletal disorders and tumor invasion.
Collapse
Affiliation(s)
- Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|
35
|
Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells. Int J Cell Biol 2010; 2010:818497. [PMID: 20182544 PMCID: PMC2825649 DOI: 10.1155/2010/818497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/22/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022] Open
Abstract
6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson's disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB1 or CB2) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.
Collapse
|
36
|
Pham TT, Giesert F, Röthig A, Floss T, Kallnik M, Weindl K, Hölter SM, Ahting U, Prokisch H, Becker L, Klopstock T, Hrabé de Angelis M, Beyer K, Görner K, Kahle PJ, Vogt Weisenhorn DM, Wurst W. DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. GENES BRAIN AND BEHAVIOR 2009; 9:305-17. [PMID: 20039949 DOI: 10.1111/j.1601-183x.2009.00559.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss of function of DJ-1 (PARK7) is associated with autosomal recessive early-onset Parkinson's disease (PD), one of the major age-related neurological diseases. In this study, we extended former studies on DJ-1 knockout mice by identifying subtle morphological and behavioural phenotypes. The DJ-1 gene trap-induced null mutants exhibit less dopamine-producing neurons in the ventral tegmental area (VTA). They also exhibit slight changes in behaviour, i.e. diminished rearing behaviour and impairments in object recognition. Furthermore, we detected subtle phenotypes, which suggest that these animals compensate for the loss of DJ-1. First, we found a significant upregulation of mitochondrial respiratory enzyme activities, a mechanism known to protect against oxidative stress. Second, a close to significant increase in c-Jun N-terminal kinase 1 phosphorylation in old DJ-1-deficient mice hints at a differential activation of neuronal cell survival pathways. Third, as no change in the density of tyrosine hydroxylase (TH)-positive terminals in the striatum was observed, the remaining dopamine-producing neurons likely compensate by increasing axonal sprouting. In summary, the present data suggest that DJ-1 is implicated in major non-motor symptoms of PD appearing in the early phases of the disease-such as subtle impairments in motivated behaviour and cognition-and that under basal conditions the loss of DJ-1 is compensated.
Collapse
Affiliation(s)
- T T Pham
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu B, Xu ZF, Deng Y. Effect of manganese exposure on intracellular Ca2+ homeostasis and expression of NMDA receptor subunits in primary cultured neurons. Neurotoxicology 2009; 30:941-9. [DOI: 10.1016/j.neuro.2009.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 11/28/2022]
|
38
|
Meade AJ, Meloni BP, Cross J, Bakker AJ, Fear MW, Mastaglia FL, Watt PM, Knuckey NW. AP-1 inhibitory peptides are neuroprotective following acute glutamate excitotoxicity in primary cortical neuronal cultures. J Neurochem 2009; 112:258-70. [PMID: 19878434 DOI: 10.1111/j.1471-4159.2009.06459.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuronal cell death caused by glutamate excitotoxicity is prevalent in various neurological disorders and has been associated with the transcriptional activation of activator protein-1 (AP-1). In this study, we tested 19 recently isolated AP-1 inhibitory peptides, fused to the cell penetrating peptide TAT, for their efficacy in preventing cell death in cortical neuronal cultures following glutamate excitotoxicity. Five peptides (PYC19D-TAT, PYC35D-TAT, PYC36D-TAT, PYC38D-TAT, PYC41D-TAT) displayed neuroprotective activity in concentration responses in both l- and retro-inverso d-isoforms with increasing levels of neuroprotection peaking at 83%. Interestingly, the D-TAT peptide displayed a neuroprotective effect increasing neuronal survival to 25%. Using an AP-1 luciferase reporter assay, we confirmed that the AP-1 inhibitory peptides reduce AP-1 transcriptional activation, and that c-Jun and c-Fos mRNA following glutamate exposure is reduced. In addition, following glutamate exposure the AP-1 inhibitory peptides decreased calpain-mediated alpha-fodrin cleavage, but not neuronal calcium influx. Finally, as neuronal death following glutamate excitotoxicity was transcriptionally independent (actinomycin D insensitive), our data indicate that activation of AP-1 proteins can induce cell death via non-transcriptional pathways. Thus, these peptides have potential application as therapeutics directly or for the rational design of small molecule inhibitors in both apoptotic and necrotic neuronal death associated with AP-1 activation.
Collapse
Affiliation(s)
- Amanda J Meade
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia and Australian Neuromuscular Research Institute, QEII Medical Centre, Nedlands, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Haeusgen W, Boehm R, Zhao Y, Herdegen T, Waetzig V. Specific activities of individual c-Jun N-terminal kinases in the brain. Neuroscience 2009; 161:951-9. [DOI: 10.1016/j.neuroscience.2009.04.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 12/31/2022]
|
40
|
Sury MD, Agarinis C, Widmer HR, Leib SL, Christen S. JNK is activated but does not mediate hippocampal neuronal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis 2008; 32:142-50. [PMID: 18703144 DOI: 10.1016/j.nbd.2008.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/03/2008] [Indexed: 12/30/2022] Open
Abstract
Pneumococcal meningitis is associated with caspase 3-dependent apoptosis of recently post-mitotic immature neurons in the dentate gyrus of the hippocampus. The death of these cells is implicated in the learning and memory deficits in patients surviving the disease. The stress-activated protein kinase c-Jun N-terminal kinase (JNK) has been shown to be an important mediator of caspase 3-dependent neuronal apoptosis. However, whether JNK is involved in hippocampal apoptosis caused by pneumococcal meningitis has so far not been investigated. Here we show in a neonatal rat model of pneumococcal meningitis that JNK3 but not JNK1 or JNK2 is activated in the hippocampus during the acute phase of infection. At the cellular level, JNK3 activation was accompanied in the dentate gyrus by markedly increased phosphorylation of its major downstream target c-Jun in early immature (Hu-positive) neurons, but not in migrating (doublecortin-positive) neurons, the cells that do undergo apoptosis. These findings suggested that JNK may not be involved in pneumococcal meningitis-induced hippocampal apoptosis. Indeed, although intracerebroventricular administration of D-JNKI-1 or AS601245 (two highly specific JNK inhibitors) inhibited c-Jun phosphorylation and protein expression in the hippocampus, hippocampal apoptosis was unaffected. Collectively, these results demonstrate that JNK does not mediate hippocampal apoptosis in pneumococcal meningitis, and that JNK may be involved in processes unrelated to apoptosis in this disease.
Collapse
Affiliation(s)
- Matthias D Sury
- Institute of Infectious Diseases, University of Berne, Berne, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Read DE, Reed Herbert K, Gorman AM. Heat shock enhances NGF-induced neurite elongation which is not mediated by Hsp25 in PC12 cells. Brain Res 2008; 1221:14-23. [PMID: 18561899 DOI: 10.1016/j.brainres.2008.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/01/2008] [Accepted: 05/13/2008] [Indexed: 12/31/2022]
Abstract
Neuronal differentiation and neurite outgrowth are key processes during development of the nervous system. Understanding the regulation of neurite outgrowth stimulated by neurotrophins is crucial to developing therapies to promote axon regeneration after injury or in neurodegenerative diseases. Treatment of PC12 cells with nerve growth factor (NGF) stimulates them to extend neurites and differentiate into a sympathetic neuron-like phenotype. In this study we found that exposure of PC12 cells to 42 degrees C for 1 h significantly enhanced NGF-induced neurite elongation, but not branching. This heat shock treatment led to induction of heat shock protein 25 (Hsp25) and Hsp70. The morphological changes induced by NGF were accompanied by increased Hsp25 mRNA levels, in addition to elevation in Hsp25 protein expression and phosphorylation, without a concomitant increase in Hsp70. A possible role for Hsp25 in NGF-stimulated neurite outgrowth was investigated. However, quantification of NGF-induced neurite elongation and branching revealed that neither of these features were altered in PC12 cells which stably overexpressed human Hsp27 (to mimic heat shock induction of Hsp25). Similarly, knockdown of Hsp25 using siRNA had no effect on NGF-induced neurite outgrowth. Inhibition of p38 MAPK signalling with SB202190 blocked phosphorylation of Hsp25 without affecting NGF-induced neurite outgrowth or the heat shock-dependent enhancement of elongation. These findings indicate that Hsp25 is not required for NGF-induced neurite outgrowth in PC12 cells and is not responsible for the heat shock-enhancement of NGF-induced neurite elongation. Instead, inhibition of MEK1/2 with U0126 partially reduced the heat shock-enhancement of NGF-stimulated neurite elongation.
Collapse
Affiliation(s)
- Danielle E Read
- Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|