1
|
Dobi D, Loberto N, Mauri L, Bassi R, Chiricozzi E, Lunghi G, Aureli M. Effect of CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor on lipid metabolism in human bronchial epithelial cells. Glycoconj J 2025; 42:1-14. [PMID: 39797966 DOI: 10.1007/s10719-024-10174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation. This study investigated ETI's impact on the maturation of the mutated CFTR, the expression levels of its scaffolding proteins, and lipid composition of cells using bronchial epithelial cell lines expressing both wild-type and F508del CFTR. Our findings revealed that ETI treatment enhances CFTR and its scaffolding proteins expression and aids in rescuing mature F508del CFTR, causing also significant alterations in the lipid profile including reduced levels of lactosylceramide and increased content of gangliosides GM1 and GD1a. These changes were linked to ETI's influence on enzymes involved in the sphingolipid metabolism, in particular GM3 synthase and sialidase. Through this work, we aim to deepen understanding CFTR interactions with lipids, and to elucidate the mechanisms of action of CFTR modulators. Our findings may support the development of potential therapeutic strategies contributing to the ongoing efforts to design effective correctors and potentiators for CF treatment.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
| |
Collapse
|
2
|
Mohole M, Naglekar A, Sengupta D, Chattopadhyay A. Probing the energy landscape of the lipid interactions of the serotonin 1A receptor. Biophys Chem 2024; 313:107289. [PMID: 39002247 DOI: 10.1016/j.bpc.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1-4 kT, and timescales of 1-10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Kim K, Bansal PD, Shukla D. Cyclopamine modulates smoothened receptor activity in a binding position dependent manner. Commun Biol 2024; 7:1207. [PMID: 39342033 PMCID: PMC11438977 DOI: 10.1038/s42003-024-06906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Cyclopamine, a natural alkaloid, can act as an agonist when it binds to the Cysteine-Rich Domain (CRD) of Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explore the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower free energy barrier of ~2 kcal/mol, and expansion of hydrophobic tunnel to facilitate cholesterol transport agrees with cyclopamine's agonistic behavior when bound to CRD. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~4 kcal/mol and restricted hydrophobic tunnel shows cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there is a slightly larger inactive population at equilibrium and an increased free energy barrier (~3.5 kcal/mol) exhibiting an overall weak antagonistic effect. These findings show cyclopamine's domain-specific modulation of SMO regulates Hedgehog signaling and cholesterol transport.
Collapse
Affiliation(s)
- Kihong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Kumar M, Aguiar M, Jessel A, Thurberg BL, Underhill L, Wong H, George K, Davidson V, Schuchman EH. The impact of sphingomyelin on the pathophysiology and treatment response to olipudase alfa in acid sphingomyelinase deficiency. GENETICS IN MEDICINE OPEN 2024; 2:101888. [PMID: 39669638 PMCID: PMC11613795 DOI: 10.1016/j.gimo.2024.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/10/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 12/14/2024]
Abstract
Acid sphingomyelinase deficiency (ASMD) is a rare progressive genetic disorder caused by pathogenic variants in the SMPD1 gene causing low or absent activity of the enzyme acid sphingomyelinase, resulting in subsequent accumulation of its substrate, sphingomyelin. Signs and symptoms of excessive lysosomal sphingomyelin storage, such as hepatosplenomegaly and pulmonary impairment, and in a subset of patients, progressive neurological manifestations, have long been recognized as hallmarks of the disease. Uncontrolled accumulation of sphingomyelin has important and complex downstream metabolic and immunologic consequences that contribute to the disease burden. This review article expounds on the complex and multifaceted role of sphingomyelin in the pathophysiology of ASMD and discusses the animal studies and human interventional trials demonstrating that sphingomyelin and its related metabolites are linked to ASMD clinical manifestations, disease burden, and response to treatment. The relationship between the diverse manifestations of ASMD and sphingomyelin accumulation and the connections between sphingomyelin clearance and reversal of the noncentral nervous system manifestations by olipudase alfa therapy also are described.
Collapse
|
5
|
Kim K, Bansal PD, Shukla D. Binding Position Dependent Modulation of Smoothened Activity by Cyclopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579369. [PMID: 38405881 PMCID: PMC10888922 DOI: 10.1101/2024.02.08.579369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2024]
Abstract
Cyclopamine is a natural alkaloid that is known to act as an agonist when it binds to the Cysteine Rich Domain (CRD) of the Smoothened receptor and as an antagonist when it binds to the Transmembrane Domain (TMD). To study the effect of cyclopamine binding to each binding site experimentally, mutations in the other site are required. Hence, simulations are critical for understanding the WT activity due to binding at different sites. Additionally, there is a possibility that cyclopamine could bind to both sites simultaneously especially at high concentration, the implications of which remain unknown. We performed three independent sets of simulations to observe the receptor activation with cyclopamine bound to each site independently (CRD, TMD) and bound to both sites simultaneously. Using multi-milliseconds long aggregate MD simulations combined with Markov state models and machine learning, we explored the dynamic behavior of cyclopamine's interactions with different domains of WT SMO. A higher population of the active state at equilibrium, a lower activation free energy barrier of ~ 2 kcal/mol, and expansion of the hydrophobic tunnel to facilitate cholesterol transport agrees with the cyclopamine's agonistic behavior when bound to the CRD of SMO. A higher population of the inactive state at equilibrium, a higher free energy barrier of ~ 4 kcal/mol and restricted the hydrophobic tunnel to impede cholesterol transport showed cyclopamine's antagonistic behavior when bound to TMD. With cyclopamine bound to both sites, there was a slightly larger inactive population at equilibrium and an increased free energy barrier (~ 3.5 kcal/mol). The tunnel was slightly larger than when solely bound to TMD, and showed a balance between agonism and antagonism with respect to residue movements exhibiting an overall weak antagonistic effect.
Collapse
Affiliation(s)
- Kihong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
6
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
7
|
Bansal PD, Dutta S, Shukla D. Activation mechanism of the human Smoothened receptor. Biophys J 2023; 122:1400-1413. [PMID: 36883002 PMCID: PMC10111369 DOI: 10.1016/j.bpj.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 μs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.
Collapse
Affiliation(s)
- Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
8
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
9
|
Identification of Therapeutic Targets for Medulloblastoma by Tissue-Specific Genome-Scale Metabolic Model. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020779. [PMID: 36677837 PMCID: PMC9864031 DOI: 10.3390/molecules28020779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/27/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Medulloblastoma (MB), occurring in the cerebellum, is the most common childhood brain tumor. Because conventional methods decline life quality and endanger children with detrimental side effects, computer models are needed to imitate the characteristics of cancer cells and uncover effective therapeutic targets with minimum toxic effects on healthy cells. In this study, metabolic changes specific to MB were captured by the genome-scale metabolic brain model integrated with transcriptome data. To determine the roles of sphingolipid metabolism in proliferation and metastasis in the cancer cell, 79 reactions were incorporated into the MB model. The pathways employed by MB without a carbon source and the link between metastasis and the Warburg effect were examined in detail. To reveal therapeutic targets for MB, biomass-coupled reactions, the essential genes/gene products, and the antimetabolites, which might deplete the use of metabolites in cells by triggering competitive inhibition, were determined. As a result, interfering with the enzymes associated with fatty acid synthesis (FAs) and the mevalonate pathway in cholesterol synthesis, suppressing cardiolipin production, and tumor-supporting sphingolipid metabolites might be effective therapeutic approaches for MB. Moreover, decreasing the activity of succinate synthesis and GABA-catalyzing enzymes concurrently might be a promising strategy for metastatic MB.
Collapse
|
10
|
Mohole M, Sengupta D, Chattopadhyay A. Synergistic and Competitive Lipid Interactions in the Serotonin 1A Receptor Microenvironment. ACS Chem Neurosci 2022; 13:3403-3415. [PMID: 36351047 DOI: 10.1021/acschemneuro.2c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
Abstract
The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.
Collapse
Affiliation(s)
- Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune411 008, India.,Academy of Scientific and Innovative Research, Ghaziabad201 002, India
| | - Amitabha Chattopadhyay
- Academy of Scientific and Innovative Research, Ghaziabad201 002, India.,CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad500 007, India
| |
Collapse
|
11
|
Kubaski F, Burlina A, Pereira D, Silva C, Herbst ZM, Trapp FB, Michelin-Tirelli K, Lopes FF, Burin MG, Brusius-Facchin AC, Netto ABO, Poletto E, Bernardes TM, Carvalho GS, Sorte NB, Ferreira FN, Perin N, Clivati MR, de Santana MTS, Lobos SFG, Leão EKEA, Coutinho MP, Pinos PV, Santos MLSF, Penatti DA, Lourenço CM, Polo G, Giugliani R. Quantification of lysosphingomyelin and lysosphingomyelin-509 for the screening of acid sphingomyelinase deficiency. Orphanet J Rare Dis 2022; 17:407. [PMID: 36348386 PMCID: PMC9641838 DOI: 10.1186/s13023-022-02560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase deficiency (ASMD) is a lysosomal disorder caused by deficiency of acid sphingomyelinase (ASM) leading to the accumulation of sphingomyelin (SM) in a variety of cell types. Lysosphingomyelin (LysoSM) is the de-acetylated form of SM and it has been shown as a biomarker for ASMD in tissues, plasma, and dried blood spots (DBS) and lysosphingomyelin-509 (LysoSM509) is the carboxylated analogue of LysoSM. High levels of Lysosphingomyelin 509 (LysoSM509) have also been shown in ASMD patients. In this study, we report the utility of the quantification of LysoSM and LysoSM509 in DBS of patients from Latin America with ASMD by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS DBS samples from 14 ASMD patients were compared with 15 controls, and 44 general newborns. All patients had their diagnosis confirmed by the quantification of ASM and the measurement of the activity of chitotriosidase. All patients had significantly higher levels of lysoSM and lysoSM509 compared to controls and general newborns. CONCLUSIONS The quantification of lysosphingolipids in DBS is a valuable tool for the diagnosis of ASMD patients and lysoSM can be useful in the differential diagnosis with NPC. This method is also valuable in the ASMD newborn screening process.
Collapse
Affiliation(s)
- Francyne Kubaski
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | - Alberto Burlina
- grid.411474.30000 0004 1760 2630Division of Inherited Metabolic Diseases, Regional Center for Expanded Neontal Screening, Department of Women and Children’s Health, DIDAS Servizi di Diagnostica Integrata, University Hospital Padova, Padua, Italy
| | - Danilo Pereira
- Waters Technologies Brazil, São Paulo, Brazil ,Innovatox, São Paulo, Brazil
| | | | - Zackary M. Herbst
- grid.34477.330000000122986657Department of Chemistry, University of Washington, Seattle, USA
| | - Franciele B. Trapp
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Kristiane Michelin-Tirelli
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Franciele F. Lopes
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maira G. Burin
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Carolina Brusius-Facchin
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Alice B. O. Netto
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | - Edina Poletto
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil
| | | | | | | | | | - Nilza Perin
- grid.414705.3Hospital Infantil Joana Gusmão, Florianópolis, Brazil
| | | | | | | | | | | | | | | | | | | | - Giulia Polo
- grid.411474.30000 0004 1760 2630Division of Inherited Metabolic Diseases, Regional Center for Expanded Neontal Screening, Department of Women and Children’s Health, DIDAS Servizi di Diagnostica Integrata, University Hospital Padova, Padua, Italy
| | - Roberto Giugliani
- grid.414449.80000 0001 0125 3761Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil ,grid.8532.c0000 0001 2200 7498PPGMB, UFRGS, Porto Alegre, Brazil ,Dasa, São Paulo, Brazil ,Casa dos Raros, Porto Alegre, Brazil
| |
Collapse
|
12
|
Massive Accumulation of Sphingomyelin Affects the Lysosomal and Mitochondria Compartments and Promotes Apoptosis in Niemann-Pick Disease Type A. J Mol Neurosci 2022; 72:1482-1499. [PMID: 35727525 PMCID: PMC9293875 DOI: 10.1007/s12031-022-02036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Accepted: 06/04/2022] [Indexed: 11/11/2022]
Abstract
Niemann-Pick type A disease (NPA) is a rare lysosomal storage disorder caused by mutations in the gene coding for the lysosomal enzyme acid sphingomyelinase (ASM). ASM deficiency leads to the consequent accumulation of its uncatabolized substrate, the sphingolipid sphingomyelin (SM), causing severe progressive brain disease. To study the effect of the aberrant lysosomal accumulation of SM on cell homeostasis, we loaded skin fibroblasts derived from a NPA patient with exogenous SM to mimic the levels of accumulation characteristic of the pathological neurons. In SM-loaded NPA fibroblasts, we found the blockage of the autophagy flux and the impairment of the mitochondrial compartment paralleled by the altered transcription of several genes, mainly belonging to the electron transport chain machinery and to the cholesterol biosynthesis pathway. In addition, SM loading induces the nuclear translocation of the transcription factor EB that promotes the lysosomal biogenesis and exocytosis. Interestingly, we obtained similar biochemical findings in the brain of the NPA mouse model lacking ASM (ASMKO mouse) at the neurodegenerative stage. Our work provides a new in vitro model to study NPA etiopathology and suggests the existence of a pathogenic lysosome-plasma membrane axis that with an impairment in the mitochondrial activity is responsible for the cell death.
Collapse
|
13
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
14
|
Dutta MS, Mahapatra P, Ghosh A, Basu S. Estimation of the reducing power and electrochemical behavior of few flavonoids and polyhydroxybenzophenones substantiated by bond dissociation energy: a comparative analysis. Mol Divers 2021; 26:1101-1113. [PMID: 33993440 DOI: 10.1007/s11030-021-10232-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
Oxidative stress that damages cellular components affects various organs including the brain. It is thus believed to play an active role in neurodegenerative diseases, wherein the intrinsic antioxidant enzymes metabolize toxic intermediates. For therapeutic purpose, instead of antioxidant enzymes, small organic compounds as antioxidants may be more effective. Here, reducing power and electrochemical behavior of some flavanols, flavanonols, flavones, flavonols and O-methylated flavonols have been estimated and confirmed by the calculated bond dissociation energy. Compared to other classes, flavonols exhibited increased reducing power that decreased with methylation of the oxygen atom in the B-ring. Gossypetin emerged as the most effective of these flavonols. Generally, compounds with two hydroxyl groups in two consecutive positions of the phenyl ring and an enolic group in the C-ring with more preference for the hydroxyl group in the ortho position with respect to each other in the catechol moiety showed major activity. 5 position of the A-ring showed the least effect on the activity. The present understanding therefore may be applied for identifying compounds to be used as scaffold for designing potent antioxidants.
Collapse
Affiliation(s)
- Madhu Sudan Dutta
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Prithwish Mahapatra
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Ashutosh Ghosh
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
15
|
Schuchman EH, Ledesma MD, Simonaro CM. New paradigms for the treatment of lysosomal storage diseases: targeting the endocannabinoid system as a therapeutic strategy. Orphanet J Rare Dis 2021; 16:151. [PMID: 33766102 PMCID: PMC7992818 DOI: 10.1186/s13023-021-01779-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades the lysosomal storage diseases have served as model for rare disease treatment development. While these efforts have led to considerable success, important challenges remain. For example, no treatments are currently approved for nearly two thirds of all lysosomal diseases, and there is limited impact of the existing drugs on the central nervous system. In addition, the costs of these therapies are extremely high, in part due to the fact that drug development has focused on a "single hit" approach - i.e., one drug for one disease. To overcome these obstacles researchers have begun to focus on defining common disease mechanisms in the lysosomal diseases, particularly in the central nervous system, with the hope of identifying drugs that might be used in several lysosomal diseases rather than an individual disease. With this concept in mind, herein we review a new potential treatment approach for the lysosomal storage diseases that focuses on modulation of the endocannabinoid system. We provide a short introduction to lysosomal storage diseases and the endocannabinoid system, followed by a brief review of data supporting this concept.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine At Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA.
| | - Maria D Ledesma
- Centro Biologia Molecular Severo Ochoa, 28049, Madrid, Spain
| | - Calogera M Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine At Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA
| |
Collapse
|
16
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
17
|
Zeitler S, Schumacher F, Monti J, Anni D, Guhathakurta D, Kleuser B, Friedland K, Fejtová A, Kornhuber J, Rhein C. Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems. Cells 2020; 9:E2502. [PMID: 33218173 PMCID: PMC7698877 DOI: 10.3390/cells9112502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
: The acid sphingomyelinase (ASM)/ceramide system exhibits a crucial role in the pathology of major depressive disorder (MDD). ASM hydrolyzes the abundant membrane lipid sphingomyelin to ceramide that regulates the clustering of membrane proteins via microdomain and lipid raft organization. Several commonly used antidepressants, such as fluoxetine, rely on the functional inhibition of ASM in terms of their antidepressive pharmacological effects. Transient receptor potential canonical 6 (TRPC6) ion channels are located in the plasma membrane of neurons and serve as receptors for hyperforin, a phytochemical constituent of the antidepressive herbal remedy St. John's wort. TRPC6 channels are involved in the regulation of neuronal plasticity, which likely contributes to their antidepressant effect. In this work, we investigated the impact of reduced ASM activity on the TRPC6 function in neurons. A lipidomic analysis of cortical brain tissue of ASM deficient mice revealed a decrease in ceramide/sphingomyelin molar ratio and an increase in sphingosine. In neurons with ASM deletion, hyperforin-mediated Ca2+-influx via TRPC6 was decreased. Consequently, downstream activation of nuclear phospho-cAMP response element-binding protein (pCREB) was changed, a transcriptional factor involved in neuronal plasticity. Our study underlines the importance of balanced ASM activity, as well as sphingolipidome composition for optimal TRPC6 function. A better understanding of the interaction of the ASM/ceramide and TRPC6 systems could help to draw conclusions about the pathology of MDD.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany;
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Burkhard Kleuser
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Kristina Friedland
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg Universität Mainz, 55128 Mainz, Germany;
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
18
|
Loberto N, Mancini G, Bassi R, Carsana EV, Tamanini A, Pedemonte N, Dechecchi MC, Sonnino S, Aureli M. Sphingolipids and plasma membrane hydrolases in human primary bronchial cells during differentiation and their altered patterns in cystic fibrosis. Glycoconj J 2020; 37:623-633. [PMID: 32666337 PMCID: PMC7501107 DOI: 10.1007/s10719-020-09935-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.
Collapse
Affiliation(s)
- Nicoletta Loberto
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Giulia Mancini
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Rosaria Bassi
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Emma Veronica Carsana
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Anna Tamanini
- Section of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126, Verona, Italy
| | | | - Maria Cristina Dechecchi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement, University of Verona, 37134, Verona, Italy
| | - Sandro Sonnino
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy
| | - Massimo Aureli
- Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, LITA, Via Fratelli Cervi 93, Segrate, Milano, 20090, Italy.
| |
Collapse
|
19
|
Pant DC, Aguilera-Albesa S, Pujol A. Ceramide signalling in inherited and multifactorial brain metabolic diseases. Neurobiol Dis 2020; 143:105014. [PMID: 32653675 DOI: 10.1016/j.nbd.2020.105014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, research on sphingolipids, particularly ceramides, has attracted increased attention, revealing the important roles and many functions of these molecules in several human neurological disorders. The nervous system is enriched with important classes of sphingolipids, e.g., ceramide and its derivatives, which compose the major portion of this group, particularly in the form of myelin. Ceramides have also emerged as important nodes for lipid signalling, both inside the cell and between cells. Until recently, knowledge about ceramides in the nervous system was limited, but currently, multiple links between ceramide signalling and neurological diseases have been reported. Alterations in the regulation of ceramide pathobiology have been shown to influence the risk of developing neurometabolic diseases. Thus, these molecules are critically important in the maintenance and development of the nervous system and are culprits or major contributors to the development of brain disorders, either inherited or multifactorial. In the present review, we highlight the critical role of ceramide signalling in several different neurological disorders as well as the effects of their perturbations and discuss how this emerging class of bioactive sphingolipids has attracted interest in the field of neurological diseases.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Irunlarrea 4, 310620 Pamplona, Spain; Navarrabiomed-Miguel Servet Research Foundation, Pamplona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL, Hospital Duran i Reynals, Gran Via 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain.
| |
Collapse
|
20
|
Yañez MJ, Marín T, Balboa E, Klein AD, Alvarez AR, Zanlungo S. Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165875. [PMID: 32522631 DOI: 10.1016/j.bbadis.2020.165875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2020] [Revised: 05/06/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.
Collapse
Affiliation(s)
- M J Yañez
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Marín
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - E Balboa
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - A R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Santiago, Chile; CARE UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Wheeler S, Sillence DJ. Niemann-Pick type C disease: cellular pathology and pharmacotherapy. J Neurochem 2019; 153:674-692. [PMID: 31608980 DOI: 10.1111/jnc.14895] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.
Collapse
Affiliation(s)
- Simon Wheeler
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| | - Dan J Sillence
- School of Pharmacy, De Montfort University, The Gateway, Leicester, UK
| |
Collapse
|
22
|
Falomir-Lockhart LJ, Cavazzutti GF, Giménez E, Toscani AM. Fatty Acid Signaling Mechanisms in Neural Cells: Fatty Acid Receptors. Front Cell Neurosci 2019; 13:162. [PMID: 31105530 PMCID: PMC6491900 DOI: 10.3389/fncel.2019.00162] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Fatty acids (FAs) are typically associated with structural and metabolic roles, as they can be stored as triglycerides, degraded by β-oxidation or used in phospholipids’ synthesis, the main components of biological membranes. It has been shown that these lipids exhibit also regulatory functions in different cell types. FAs can serve as secondary messengers, as well as modulators of enzymatic activities and substrates for cytokines synthesis. More recently, it has been documented a direct activity of free FAs as ligands of membrane, cytosolic, and nuclear receptors, and cumulative evidence has emerged, demonstrating its participation in a wide range of physiological and pathological conditions. It has been long known that the central nervous system is enriched with poly-unsaturated FAs, such as arachidonic (C20:4ω-6) or docosohexaenoic (C22:6ω-3) acids. These lipids participate in the regulation of membrane fluidity, axonal growth, development, memory, and inflammatory response. Furthermore, a whole family of low molecular weight compounds derived from FAs has also gained special attention as the natural ligands for cannabinoid receptors or key cytokines involved in inflammation, largely expanding the role of FAs as precursors of signaling molecules. Nutritional deficiencies, and alterations in lipid metabolism and lipid signaling have been associated with developmental and cognitive problems, as well as with neurodegenerative diseases. The molecular mechanism behind these effects still remains elusive. But in the last two decades, different families of proteins have been characterized as receptors mediating FAs signaling. This review focuses on different receptors sensing and transducing free FAs signals in neural cells: (1) membrane receptors of the family of G Protein Coupled Receptors known as Free Fatty Acid Receptors (FFARs); (2) cytosolic transport Fatty Acid-Binding Proteins (FABPs); and (3) transcription factors Peroxisome Proliferator-Activated Receptors (PPARs). We discuss how these proteins modulate and mediate direct regulatory functions of free FAs in neural cells. Finally, we briefly discuss the advantages of evaluating them as potential targets for drug design in order to manipulate lipid signaling. A thorough characterization of lipid receptors of the nervous system could provide a framework for a better understanding of their roles in neurophysiology and, potentially, help for the development of novel drugs against aging and neurodegenerative processes.
Collapse
Affiliation(s)
- Lisandro Jorge Falomir-Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gian Franco Cavazzutti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Giménez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Andrés Martín Toscani
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Centro Científico Tecnológico - La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
23
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
24
|
Abstract
Cholesterol, sphingolipids and glycerophospholipids are critical constituents of the brain, subserving neuronal membrane architecture and providing a platform for biochemical processes essential for proper neurodevelopment and function. When lysosomal defects arise in a lipid metabolic pathway, it is therefore easy to imagine that neurological decline will transpire, however for deficits in non-lipid pathways, this becomes harder to envisage. Here we suggest the working hypothesis that neurodegenerative lysosomal storage disorders might manifest as primary and/or secondary disorders of lipid metabolism. Evidence suggests that the mere process of lysosomal substrate accumulation, ubiquitous in all lysosomal storage disorders, impairs lysosome integrity resulting in secondary lipid accumulation. Impaired lysosomal degradation of a specific lipid defines a primary disorder of lipid metabolism and as these lysosomal storage disorders additionally show secondary lipid alterations, all primary disorders can also be considered secondary disorders of lipid metabolism. The outcome is a generalized cellular lipid dyshomeostasis and consequently, the physiological architecture of the lipid-enriched plasma membrane is perturbed, including the lipid composition of specialized membrane microdomains, often termed lipid rafts. Neurotoxicity results from the complex interplay of malfunctioning signaling and vesicular trafficking important for neuronal communication and synaptic plasticity-induced by the imbalance in physiological membrane lipid composition - together with compensatory mechanisms aimed at restoring lipid homeostasis.
Collapse
Affiliation(s)
- Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, 72 King William Road, North Adelaide and School of Medicine, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators Inflamm 2017; 2017:1730245. [PMID: 29333001 PMCID: PMC5733190 DOI: 10.1155/2017/1730245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2017] [Revised: 08/02/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.
Collapse
|
26
|
Abstract
The eponym Niemann-Pick disease (NPD) refers to a group of patients who present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Due to the pioneering work of Roscoe Brady and co-workers, we now know that there are two distinct metabolic abnormalities that account for NPD. The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM; "types A & B" NPD), and the second is due to defective function in cholesterol transport ("type C" NPD). Herein only types A and B NPD will be discussed. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. All patients with types A and B NPD have mutations in the gene encoding ASM (SMPD1), and thus the disease is more accurately referred to as ASM deficiency (ASMD). Herein we will review the clinical, pathological, biochemical, and genetic findings in types A and B NPD, and emphasize the seminal contributions of Dr. Brady to this disease. We will also discuss the current status of therapy for this disorder.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States.
| | - Robert J Desnick
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| |
Collapse
|
27
|
Zhang X. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Proteomics 2016; 17. [PMID: 27633951 DOI: 10.1002/pmic.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2016] [Revised: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci U S A 2016; 113:5928-33. [PMID: 27162368 DOI: 10.1073/pnas.1522071113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22-C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death.
Collapse
|
29
|
Filosto M, Aureli M, Castellotti B, Rinaldi F, Schiumarini D, Valsecchi M, Lualdi S, Mazzotti R, Pensato V, Rota S, Gellera C, Filocamo M, Padovani A. ASAH1 variant causing a mild SMA phenotype with no myoclonic epilepsy: a clinical, biochemical and molecular study. Eur J Hum Genet 2016; 24:1578-1583. [PMID: 27026573 DOI: 10.1038/ejhg.2016.28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2015] [Revised: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 11/09/2022] Open
Abstract
ASAH1 gene encodes for acid ceramidase that is involved in the degradation of ceramide into sphingosine and free fatty acids within lysosomes. ASAH1 variants cause both the severe and early-onset Farber disease and rare cases of spinal muscular atrophy (SMA) with progressive myoclonic epilepsy (SMA-PME), phenotypically characterized by childhood onset of proximal muscle weakness and atrophy due to spinal motor neuron degeneration followed by occurrence of severe and intractable myoclonic seizures and death in the teenage years. We studied two subjects, a 30-year-old pregnant woman and her 17-year-old sister, affected with a very slowly progressive non-5q SMA since childhood. No history of seizures or myoclonus has been reported and EEG was unremarkable. The molecular study of ASAH1 gene showed the presence of the homozygote nucleotide variation c.124A>G (r.124a>g) that causes the amino acid substitution p.Thr42Ala. Biochemical evaluation of cultured fibroblasts showed both reduction in ceramidase activity and accumulation of ceramide compared with the normal control. This study describes for the first time the association between ASAH1 variants and an adult SMA phenotype with no myoclonic epilepsy nor death in early age, thus expanding the phenotypic spectrum of ASAH1-related SMA. ASAH1 molecular analysis should be considered in the diagnostic testing of non-5q adult SMA patients.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital 'Spedali Civili', Brescia, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Fabrizio Rinaldi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital 'Spedali Civili', Brescia, Italy
| | - Domitilla Schiumarini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Susanna Lualdi
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Raffaella Mazzotti
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Silvia Rota
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital 'Spedali Civili', Brescia, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche, Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital 'Spedali Civili', Brescia, Italy
| |
Collapse
|
30
|
Martín-Acebes MA, Gabandé-Rodríguez E, García-Cabrero AM, Sánchez MP, Ledesma MD, Sobrino F, Saiz JC. Host sphingomyelin increases West Nile virus infection in vivo. J Lipid Res 2016; 57:422-32. [PMID: 26764042 DOI: 10.1194/jlr.m064212] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
Flaviviruses, such as the dengue virus and the West Nile virus (WNV), are arthropod-borne viruses that represent a global health problem. The flavivirus lifecycle is intimately connected to cellular lipids. Among the lipids co-opted by flaviviruses, we have focused on SM, an important component of cellular membranes particularly enriched in the nervous system. After infection with the neurotropic WNV, mice deficient in acid sphingomyelinase (ASM), which accumulate high levels of SM in their tissues, displayed exacerbated infection. In addition, WNV multiplication was enhanced in cells from human patients with Niemann-Pick type A, a disease caused by a deficiency of ASM activity resulting in SM accumulation. Furthermore, the addition of SM to cultured cells also increased WNV infection, whereas treatment with pharmacological inhibitors of SM synthesis reduced WNV infection. Confocal microscopy analyses confirmed the association of SM with viral replication sites within infected cells. Our results unveil that SM metabolism regulates flavivirus infection in vivo and propose SM as a suitable target for antiviral design against WNV.
Collapse
Affiliation(s)
- Miguel A Martín-Acebes
- Departments of Virology and Microbiology Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | | | - Ana M García-Cabrero
- Laboratory of Neurology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Marina P Sánchez
- Laboratory of Neurology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid 28040, Spain
| | - María Dolores Ledesma
- Molecular Neurobiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain
| | - Francisco Sobrino
- Departments of Virology and Microbiology Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid 28049, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040, Spain
| |
Collapse
|
31
|
Abstract
The hypothesis that the Golgi apparatus is capable of sorting proteins and sending them to the plasma membrane through "lipid rafts," membrane lipid domains highly enriched in glycosphingolipids, sphingomyelin, ceramide, and cholesterol, was formulated by van Meer and Simons in 1988 and came to a turning point when it was suggested that lipid rafts could be isolated thanks to their resistance to solubilization by some detergents, namely Triton X-100. An incredible number of papers have described the composition and properties of detergent-resistant membrane fractions. However, the use of this method has also raised the fiercest criticisms. In this chapter, we would like to discuss the most relevant methodological aspects related to the preparation of detergent-resistant membrane fractions, and to discuss the importance of discriminating between what is present on a cell membrane and what we can prepare from cell membranes in a laboratory tube.
Collapse
|
32
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
33
|
Zhang X. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics. Mol Cell Proteomics 2015; 14:2441-53. [PMID: 26081834 DOI: 10.1074/mcp.r114.042572] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics.
Collapse
Affiliation(s)
- Xi Zhang
- From the ‡Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Abstract
Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics & Genomic Sciences, Ichan School of Medicine at Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY 10029, United States.
| | - Melissa P Wasserstein
- Department of Genetics & Genomic Sciences, Ichan School of Medicine at Mount Sinai, 1428 Madison Avenue, 1st Floor, Room AB1-12, New York, NY 10029, United States.
| |
Collapse
|
35
|
Sabourdy F, Astudillo L, Colacios C, Dubot P, Mrad M, Ségui B, Andrieu-Abadie N, Levade T. Monogenic neurological disorders of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1040-51. [PMID: 25660725 DOI: 10.1016/j.bbalip.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Frédérique Sabourdy
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Service de Médecine Interne, CHU Purpan, Toulouse, France
| | - Céline Colacios
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Patricia Dubot
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Marguerite Mrad
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France.
| |
Collapse
|
36
|
Sultan A, Luo M, Yu Q, Riederer B, Xia W, Chen M, Lissner S, Gessner JE, Donowitz M, Yun CC, deJonge H, Lamprecht G, Seidler U. Differential association of the Na+/H+ Exchanger Regulatory Factor (NHERF) family of adaptor proteins with the raft- and the non-raft brush border membrane fractions of NHE3. Cell Physiol Biochem 2014; 32:1386-402. [PMID: 24297041 DOI: 10.1159/000356577] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. METHODS Detergent resistant membranes ("lipid rafts") were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3(-) mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. RESULTS NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. CONCLUSIONS The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs.
Collapse
|
37
|
iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 2014; 5:4028. [PMID: 24905578 DOI: 10.1038/ncomms5028] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023] Open
Abstract
Mutations in the acid β-glucocerebrosidase (GBA1) gene, responsible for the lysosomal storage disorder Gaucher's disease (GD), are the strongest genetic risk factor for Parkinson's disease (PD) known to date. Here we generate induced pluripotent stem cells from subjects with GD and PD harbouring GBA1 mutations, and differentiate them into midbrain dopaminergic neurons followed by enrichment using fluorescence-activated cell sorting. Neurons show a reduction in glucocerebrosidase activity and protein levels, increase in glucosylceramide and α-synuclein levels as well as autophagic and lysosomal defects. Quantitative proteomic profiling reveals an increase of the neuronal calcium-binding protein 2 (NECAB2) in diseased neurons. Mutant neurons show a dysregulation of calcium homeostasis and increased vulnerability to stress responses involving elevation of cytosolic calcium. Importantly, correction of the mutations rescues such pathological phenotypes. These findings provide evidence for a link between GBA1 mutations and complex changes in the autophagic/lysosomal system and intracellular calcium homeostasis, which underlie vulnerability to neurodegeneration.
Collapse
|
38
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
39
|
Camacho A, Huang JK, Delint-Ramirez I, Yew Tan C, Fuller M, Lelliott CJ, Vidal-Puig A, Franklin RJM. Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. Eur J Neurosci 2013; 38:2672-83. [DOI: 10.1111/ejn.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Alberto Camacho
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Jeffrey K. Huang
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| | - Ilse Delint-Ramirez
- Department of Pharmacology; Faculty of Medicine; Autonomous University of Nuevo León; Monterrey; Mexico
| | - Chong Yew Tan
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Maria Fuller
- Department of Genetics and Molecular Pathology; SA Pathology; Adelaide; SA; Australia
| | | | - Antonio Vidal-Puig
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Robin J. M. Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| |
Collapse
|
40
|
Qin J, Dawson G. Evidence for coordination of lysosomal (ASMase) and plasma membrane (NSMase2) forms of sphingomyelinase from mutant mice. FEBS Lett 2012; 586:4002-9. [PMID: 23046545 PMCID: PMC3498985 DOI: 10.1016/j.febslet.2012.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/01/2023]
Abstract
NSMase2 is associated to the plasma membrane, whereas ASMase is predominantly lysosomal; both hydrolyze sphingomyelin (SM) to ceramide and phosphocholine. Although SM accumulated in both ASMase(-/-) and fro/fro (NSMase2(-/-)) fibroblasts, the reduction of ceramides was more dramatic in fro/fro cells. ASMase mRNA, protein and enzyme activity were substantially elevated in fro/fro fibroblasts. In contrast, NSMase2 activity was unaffected in ASMase(-/-) fibroblasts. ASMase(-/-) cells showed normal cell cycling whereas fro/fro cells grew slowly and were arrested in G1/G0 and could be corrected by transfection with smpd3 gene. This suggests two distinct subcellular pathways for SM catabolism with distinct functions.
Collapse
Affiliation(s)
- Jingdong Qin
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
41
|
Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, Aerts JM, Boot RG, Filocamo M, Sonnino S. Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 2012; 35:1081-91. [PMID: 22526844 DOI: 10.1007/s10545-012-9478-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/17/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is the most common lysosomal disorder and is caused by an inherited autosomal recessive deficiency in β-glucocerebrosidase. This enzyme, like other glycohydrolases involved in glycosphingolipid (GSL) metabolism, is present in both plasma membrane (PM) and intracellular fractions. We analyzed the activities of CBE-sensitive β-glucosidase (GBA1) and AMP-DNM-sensitive β-glucosidase (GBA2) in total cell lysates and PM of human fibroblast cell lines from control (normal) subjects and from patients with GD clinical types 1, 2, and 3. GBA1 activities in both total lysate and PM of GD fibroblasts were low, and their relative percentages were similar to those of control cells. In contrast, GBA2 activities were higher in GD cells than in control cells, and the degree of increase differed among the three GD types. The increase of GBA2 enzyme activity was correlated with increased expression of GBA2 protein as evaluated by QRT-PCR. Activities of β-galactosidase and β-hexosaminidase in PM were significantly higher for GD cells than for control cells and also showed significant differences among the three GD types, suggesting the occurrence of cross-talk among the enzymes involved in GSL metabolism. Our findings indicate that the profiles of glycohydrolase activities in PM may provide a valuable tool to refine the classification of GD into distinct clinical types.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, 20090, Segrate, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Truman JP, Al Gadban MM, Smith KJ, Hammad SM. Acid sphingomyelinase in macrophage biology. Cell Mol Life Sci 2011; 68:3293-305. [PMID: 21533981 DOI: 10.1007/s00018-011-0686-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022]
Abstract
Macrophages play a central role in innate immune responses, in disposal of cholesterol, and in tissue homeostasis and remodeling. To perform these vital functions macrophages display high endosomal/lysosomal activities. Recent studies have highlighted that acid sphingomyelinase (ASMase), which generates ceramide from sphingomyelin, is involved in modulation of membrane structures and signal transduction in addition to its metabolic role in the lysosome. In this review, we bring together studies on ASMase, its different forms and locations that are necessary for the macrophage to accomplish its diverse functions. We also address the importance of ASMase to several disease processes that are mediated by activated macrophages.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
43
|
Ledesma MD, Prinetti A, Sonnino S, Schuchman EH. Brain pathology in Niemann Pick disease type A: insights from the acid sphingomyelinase knockout mice. J Neurochem 2011; 116:779-88. [PMID: 21214563 DOI: 10.1111/j.1471-4159.2010.07034.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Severe neurological involvement characterizes Niemann Pick disease (NPD) type A, an inherited disorder caused by loss of function mutations in the gene encoding acid sphingomyelinase (ASM). Mice lacking ASM, which mimic NPD type A, have provided important insights into the aberrant brain phenotypes induced by ASM deficiency. For example, lipid alterations, including the accumulation of sphingolipids, affect the membranes of different subcellular compartments of neurons and glial cells, leading to anomalies in signalling pathways, neuronal polarization, calcium homeostasis, synaptic plasticity, myelin production or immune response. These findings contribute to our understanding of the overall role of sphingolipids and their metabolic enzymes in brain physiology, and pave the way to design and test new therapeutic strategies for type A NPD and other neurodegenerative disorders. Some of these have already been tested in mice lacking ASM with promising results.
Collapse
|
44
|
Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S. Secondary Alterations of Sphingolipid Metabolism in Lysosomal Storage Diseases. Neurochem Res 2011; 36:1654-68. [DOI: 10.1007/s11064-010-0380-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/20/2010] [Indexed: 12/20/2022]
|
45
|
Piccinini M, Scandroglio F, Prioni S, Buccinnà B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 2010; 41:314-40. [PMID: 20127207 DOI: 10.1007/s12035-009-8096-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2009] [Accepted: 12/22/2009] [Indexed: 12/13/2022]
Abstract
Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
Collapse
Affiliation(s)
- Marco Piccinini
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
47
|
Schuchman EH. Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett 2009; 584:1895-900. [PMID: 19944693 DOI: 10.1016/j.febslet.2009.11.083] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2009] [Accepted: 11/24/2009] [Indexed: 12/11/2022]
Abstract
Acid sphingomyelinase (ASM) plays an important role in normal membrane turnover through the hydrolysis of sphingomyelin, and is one of the key enzymes responsible for the production of ceramide. ASM activity is deficient in the genetic disorder Types A and B Niemann-Pick disease (NPD). ASM knockout (ASMKO) mice were originally constructed to study this disorder, and numerous defects in ceramide-related signaling have been shown. Studies in these mice have further suggested that ASM may be involved in the pathogenesis of several common diseases through the reorganization of membrane microdomains. This review will focus on the role of ASM in membrane biology, with a specific emphasis on what a rare genetic disorder (NPD) has taught us about more common events.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Icahn Medical Institute, New York, NY 10029, USA.
| |
Collapse
|
48
|
Aureli M, Prioni S, Mauri L, Loberto N, Casellato R, Ciampa MG, Chigorno V, Prinetti A, Sonnino S. Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells. J Lipid Res 2009; 51:798-808. [PMID: 19820263 DOI: 10.1194/jlr.m001974] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Human fibroblasts from normal subjects and Niemann-Pick A (NPA) disease patients were fed with two labeled metabolic precursors of sphingomyelin (SM), [(3)H]choline and photoactivable sphingosine, that entered into the biosynthetic pathway allowing the synthesis of radioactive phosphatidylcholine and SM, and of radioactive and photoactivable SM ([(3)H]SM-N(3)). Detergent resistant membrane (DRM) fractions prepared from normal and NPA fibroblasts resulted as highly enriched in [(3)H]SM-N(3). However, lipid and protein analysis showed strong differences between the two cell types. After cross-linking, different patterns of SM-protein complexes were found, mainly associated with the detergent soluble fraction of the gradient containing most cell proteins. After cell surface biotinylation, DRMs were immunoprecipitated using streptavidin. In conditions that maintain the integrity of domain, SM-protein complexes were detectable only in normal fibroblasts, whereas disrupting the membrane organization, these complexes were not recovered in the immunoprecipitate, suggesting that they involve proteins belonging to the inner membrane layer. These data suggest that differences in lipid and protein compositions of these cell lines determine specific lipid-protein interactions and different clustering within plasma membrane. In addition, our experiments show that photoactivable sphingolipids metabolically synthesized in cells can be used to study sphingolipid protein environments and sphingolipid-protein interactions.
Collapse
Affiliation(s)
- Massimo Aureli
- Department of Medical Chemistry Biochemistry and Biotechnology Center of Excellence on Neurodegenerative Diseases, University of Milano, Segrate, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hartmann AM, Blaesse P, Kranz T, Wenz M, Schindler J, Kaila K, Friauf E, Nothwang HG. Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. J Neurochem 2009; 111:321-31. [PMID: 19686239 DOI: 10.1111/j.1471-4159.2009.06343.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
In the majority of neurons, the intracellular Cl(-) concentration is set by the activity of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) and the K(+)-Cl(-) cotransporter (KCC2). Here, we investigated the cotransporters' functional dependence on membrane rafts. In the mature rat brain, NKCC1 was mainly insoluble in Brij 58 and co-distributed with the membrane raft marker flotillin-1 in sucrose density flotation experiments. In contrast, KCC2 was found in the insoluble fraction as well as in the soluble fraction, where it co-distributed with the non-raft marker transferrin receptor. Both KCC2 populations displayed a mature glycosylation pattern. Disrupting membrane rafts with methyl-beta-cyclodextrin (MbetaCD) increased the solubility of KCC2, yet had no effect on NKCC1. In human embryonic kidney-293 cells, KCC2 was strongly activated by a combined treatment with MbetaCD and sphingomyelinase, while NKCC1 was inhibited. These data indicate that membrane rafts render KCC2 inactive and NKCC1 active. In agreement with this, inactive KCC2 of the perinatal rat brainstem largely partitioned into membrane rafts. In addition, the exposure of the transporters to MbetaCD and sphingomyelinase showed that the two transporters differentially interact with the membrane rafts. Taken together, membrane raft association appears to represent a mechanism for co-ordinated regulation of chloride transporter function.
Collapse
Affiliation(s)
- Anna-Maria Hartmann
- Department of Neurogenetics, Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sandro S, Alessandro P. Membrane lipid domains and membrane lipid domain preparations: are they the same thing? TRENDS GLYCOSCI GLYC 2008. [DOI: 10.4052/tigg.20.315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|