1
|
Zhang AQ, Ralph MR, Stinchcombe AR. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms. PLoS Comput Biol 2024; 20:e1012082. [PMID: 38701077 PMCID: PMC11095719 DOI: 10.1371/journal.pcbi.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.
Collapse
Affiliation(s)
- An Qi Zhang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Mannal N, Kleiner K, Fauler M, Dougalis A, Poetschke C, Liss B. Multi-Electrode Array Analysis Identifies Complex Dopamine Responses and Glucose Sensing Properties of Substantia Nigra Neurons in Mouse Brain Slices. Front Synaptic Neurosci 2021; 13:635050. [PMID: 33716704 PMCID: PMC7952765 DOI: 10.3389/fnsyn.2021.635050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Dopaminergic (DA) midbrain neurons within the substantia nigra (SN) display an autonomous pacemaker activity that is crucial for dopamine release and voluntary movement control. Their progressive degeneration is a hallmark of Parkinson's disease. Their metabolically demanding activity-mode affects Ca2+ homeostasis, elevates metabolic stress, and renders SN DA neurons particularly vulnerable to degenerative stressors. Accordingly, their activity is regulated by complex mechanisms, notably by dopamine itself, via inhibitory D2-autoreceptors and the neuroprotective neuronal Ca2+ sensor NCS-1. Analyzing regulation of SN DA neuron activity-pattern is complicated by their high vulnerability. We studied this activity and its control by dopamine, NCS-1, and glucose with extracellular multi-electrode array (MEA) recordings from midbrain slices of juvenile and adult mice. Our tailored MEA- and spike sorting-protocols allowed high throughput and long recording times. According to individual dopamine-responses, we identified two distinct SN cell-types, in similar frequency: dopamine-inhibited and dopamine-excited neurons. Dopamine-excited neurons were either silent in the absence of dopamine, or they displayed pacemaker-activities, similar to that of dopamine-inhibited neurons. Inhibition of pacemaker-activity by dopamine is typical for SN DA neurons, and it can undergo prominent desensitization. We show for adult mice, that the number of SN DA neurons with desensitized dopamine-inhibition was increased (~60–100%) by a knockout of NCS-1, or by prevention of NCS-1 binding to D2-autoreceptors, while time-course and degrees of desensitization were not altered. The number of neurons with desensitized D2-responses was also higher (~65%) at high glucose-levels (25 mM), compared to lower glucose (2.5 mM), while again desensitization-kinetics were unaltered. However, spontaneous firing-rates were significantly higher at high glucose-levels (~20%). Moreover, transient glucose-deprivation (1 mM) induced a fast and fully-reversible pacemaker frequency reduction. To directly address and quantify glucose-sensing properties of SN DA neurons, we continuously monitored their electrical activity, while altering extracellular glucose concentrations stepwise from 0.5 mM up to 25 mM. SN DA neurons were excited by glucose, with EC50 values ranging from 0.35 to 2.3 mM. In conclusion, we identified a novel, common subtype of dopamine-excited SN neurons, and a complex, joint regulation of dopamine-inhibited neurons by dopamine and glucose, within the range of physiological brain glucose-levels.
Collapse
Affiliation(s)
- Nadja Mannal
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | - Michael Fauler
- Institute of Applied Physiology, University of Ulm, Ulm, Germany
| | | | | | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, Germany.,Linacre and New College, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
5
|
Fuller JA, Burrell MH, Yee AG, Liyanagama K, Lipski J, Wickens JR, Hyland BI. Role of homeostatic feedback mechanisms in modulating methylphenidate actions on phasic dopamine signaling in the striatum of awake behaving rats. Prog Neurobiol 2019; 182:101681. [DOI: 10.1016/j.pneurobio.2019.101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/25/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
|
6
|
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019; 13:11. [PMID: 30858799 PMCID: PMC6397878 DOI: 10.3389/fncir.2019.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). Although many mechanisms have been suggested, a decisive root cause of this cell loss is unknown. A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress' variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model.
Collapse
Affiliation(s)
| | - Alekhya Mandali
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT-Madras, Chennai, India
| | | |
Collapse
|
7
|
Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional Dopamine Uptake and Antipsychotic Treatment-Resistant Schizophrenia. Front Psychiatry 2019; 10:314. [PMID: 31214054 PMCID: PMC6557273 DOI: 10.3389/fpsyt.2019.00314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
Antipsychotic treatment resistance in schizophrenia remains a major issue in psychiatry. Nearly 30% of patients with schizophrenia do not respond to antipsychotic treatment, yet the underlying neurobiological causes are unknown. All effective antipsychotic medications are thought to achieve their efficacy by targeting the dopaminergic system. Here we review early literature describing the fundamental mechanisms of antipsychotic drug efficacy, highlighting mechanistic concepts that have persisted over time. We then reconsider the original framework for understanding antipsychotic efficacy in light of recent advances in our scientific understanding of the dopaminergic effects of antipsychotics. Based on these new insights, we describe a role for the dopamine transporter in the genesis of both antipsychotic therapeutic response and primary resistance. We believe that this discussion will help delineate the dopaminergic nature of antipsychotic treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Davide Amato
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Anne-Noël Samaha
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Andreas Heinz
- Department of Psychiatry, Charité University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
8
|
Robinson BG, Condon AF, Radl D, Borrelli E, Williams JT, Neve KA. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors. eLife 2017; 6. [PMID: 29154756 PMCID: PMC5695907 DOI: 10.7554/elife.31924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.
Collapse
Affiliation(s)
- Brooks G Robinson
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Alec F Condon
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Daniela Radl
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - Emiliana Borrelli
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
| | - John T Williams
- The Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, Portland, United States.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| |
Collapse
|
9
|
The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. J Chem Neuroanat 2016; 76:98-107. [PMID: 26859066 DOI: 10.1016/j.jchemneu.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The pathology of Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra parcompacta (A9), which results in the insufficient release of dopamine, and the appearance of motor symptoms. Not all neurons in the A9 subregions degenerate in PD, and the dopaminergic (DA) neurons located in the neighboring ventral tegmental area (A10) are relatively resistant to PD pathogenesis. An increasing number of quantitative studies using human tissue samples of these brain regions have revealed important biological differences. In this review, we first describe current knowledge on the multi-segmental neuromere origin of these DA neurons. We then compare the continued transcription factor and protein expression profile and morphological differences distinguishing subregions within the A9 substantia nigra, and between A9 and A10 DA neurons. We conclude that the expression of three types of factors and proteins contributes to the diversity observed in these DA neurons and potentially to their differential vulnerability to PD. In particular, the specific axonal structure of A9 neurons and the way A9 neurons maintain their DA usage makes them easily exposed to energy deficits, calcium overload and oxidative stress, all contributing to their decreased survival in PD. We highlight knowledge gaps in our understanding of the cellular biomarkers for and their different functions in DA neurons, knowledge which may assist to identify underpinning disease mechansims that could be targeted for the treatment of any subregional dysfunction and loss of these DA neurons.
Collapse
|
10
|
Gantz SC, Robinson BG, Buck DC, Bunzow JR, Neve RL, Williams JT, Neve KA. Distinct regulation of dopamine D2S and D2L autoreceptor signaling by calcium. eLife 2015; 4. [PMID: 26308580 PMCID: PMC4575989 DOI: 10.7554/elife.09358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022] Open
Abstract
D2 autoreceptors regulate dopamine release throughout the brain. Two isoforms of the D2 receptor, D2S and D2L, are expressed in midbrain dopamine neurons. Differential roles of these isoforms as autoreceptors are poorly understood. By virally expressing the isoforms in dopamine neurons of D2 receptor knockout mice, this study assessed the calcium-dependence and drug-induced plasticity of D2S and D2L receptor-dependent G protein-coupled inwardly rectifying potassium (GIRK) currents. The results reveal that D2S, but not D2L receptors, exhibited calcium-dependent desensitization similar to that exhibited by endogenous autoreceptors. Two pathways of calcium signaling that regulated D2 autoreceptor-dependent GIRK signaling were identified, which distinctly affected desensitization and the magnitude of D2S and D2L receptor-dependent GIRK currents. Previous in vivo cocaine exposure removed calcium-dependent D2 autoreceptor desensitization in wild type, but not D2S-only mice. Thus, expression of D2S as the exclusive autoreceptor was insufficient for cocaine-induced plasticity, implying a functional role for the co-expression of D2S and D2L autoreceptors. DOI:http://dx.doi.org/10.7554/eLife.09358.001 Dopamine is an important component of the brain's reward system and is commonly referred to as a ‘feel-good’ chemical. It is mainly released from neurons in the brain in response to natural rewards, such as food or sex, and following exposure to, or in anticipation of, certain drugs of abuse (including cocaine). Dopamine-releasing neurons also sense dopamine, and just like someone can change the volume of their voice by hearing themselves speak, dopamine neurons regulate how much dopamine is released based on how much dopamine they sense. This feedback system is known as autoinhibition. These neurons sense dopamine when it binds to, and activates, so-called ‘dopamine D2 receptors’ on their cell surface. But not all D2 receptors are alike. Instead there are two variants called D2S and D2L. Previous studies have shown that D2 receptor signaling in dopamine neurons is altered by the concentration of calcium ions inside these cells. Furthermore, exposure to cocaine and other drugs is known to change how these calcium ions regulate D2 receptor signaling. Now, Gantz et al. have used mice that produce only a single variant of the D2 receptor (either D2S or D2L) in their dopamine neurons to uncover similarities and differences between the two variants. The experiments show that localized increases in calcium ion concentration make D2S less capable of autoinhibition, like D2 receptors in neurons from wild type mice, without affecting autoinhibition by D2L. In further experiments, some of these mice were given cocaine before D2 receptor signaling was assessed. In dopamine neurons from wild type mice, a single exposure to cocaine eliminates the calcium-dependent regulation; thus, cocaine treatment causes a D2L-like response. In contrast, cocaine treatment did not affect the calcium-dependent regulation when only one variant of the D2 receptor was present. This implies that dopamine neurons must have both D2S and D2L receptors before the drug can induce changes in D2 receptor signaling. These findings also challenge the long-held view that the D2S receptor is the predominant form involved in autoinhibition. The next challenge is to determine how cocaine induces an apparent switch from D2S to D2L and the implications of this switch for the development of cocaine addiction. DOI:http://dx.doi.org/10.7554/eLife.09358.002
Collapse
Affiliation(s)
- Stephanie C Gantz
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Brooks G Robinson
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - David C Buck
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| | - James R Bunzow
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Kim A Neve
- Research Service, VA Portland Health Care System, United States Department of Veterans Affairs, Portland, United States
| |
Collapse
|
11
|
Melo A, Tavares I, Sousa N, Pêgo JM. Can the dopaminergic-related effects of general anesthetics be linked to mechanisms involved in drug abuse and addiction? Acta Anaesthesiol Scand 2015; 59:822-9. [PMID: 25950123 DOI: 10.1111/aas.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND General anesthetics (GA) are well known for the ability to induce a state of reversible loss of consciousness and unresponsiveness to painful stimuli. However, evidence from animal models and clinical studies show that GA exposure may induce behavioral changes beyond acute effects. Most research and concerns are focused on changes in cognition and memory. METHODS We will look at effects of GA on behavior that is mediated by the dopaminergic system. RESULTS Pharmacological resemblance of GA with drugs of abuse, and the complexity and importance of dopaminergic systems in both reward seeking and addictive illnesses make us believe that it deserves an overview about what is already known and what matters to us as healthcare workers and specifically as anesthesiologists. CONCLUSION A review of available evidence strongly suggests that there may be a link between the effects of GA on the brain and substance abuse, partly explained by their influence on the dopaminergic system.
Collapse
Affiliation(s)
- A. Melo
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - I. Tavares
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Porto Portugal
| | - N. Sousa
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - J. M. Pêgo
- Life and Health Sciences Research Institute (ICVS); School of Health Sciences; University of Minho; Braga Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
12
|
Marques A, Fantini ML, Morand D, Pereira B, Derost P, Ulla M, Debilly B, Lemaire JJ, Durif F. Emergence of restless legs syndrome after subthalamic stimulation in Parkinson's disease: a dopaminergic overstimulation? Sleep Med 2015; 16:583-8. [DOI: 10.1016/j.sleep.2014.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/27/2022]
|
13
|
Molochnikov I, Cohen D. Hemispheric differences in the mesostriatal dopaminergic system. Front Syst Neurosci 2014; 8:110. [PMID: 24966817 PMCID: PMC4052732 DOI: 10.3389/fnsys.2014.00110] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/24/2014] [Indexed: 11/20/2022] Open
Abstract
The mesostriatal dopaminergic system, which comprises the mesolimbic and the nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic functions. Multiple reports suggest that these processes are influenced by hemispheric differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, we review studies which measured the concentration of DA and its metabolites to examine the relationship between DA imbalance and animal behavior under different conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric DA imbalance; determine whether the known anatomy provides a suitable substrate for this imbalance; examine the relationship between DA imbalance and animal behavior; and characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal and the mesolimbic DA systems. We conclude that many studies provide supporting evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system. Nonetheless, a variety of brain and behavioral manipulations demonstrate that the nigrostriatal system displays symmetrical laterality whereas the mesolimbic system displays asymmetrical laterality which supports hemispheric specialization in rodents. The reciprocity of the relationship between DA imbalance and animal behavior (i.e., the capacity of animal training to alter DA imbalance for prolonged time periods) remains controversial, however, if confirmed, it may provide a valuable non-invasive therapeutic means for treating abnormal DA imbalance.
Collapse
Affiliation(s)
- Ilana Molochnikov
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| | - Dana Cohen
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
14
|
Jang J, Um KB, Jang M, Kim SH, Cho H, Chung S, Kim HJ, Park MK. Balance between the proximal dendritic compartment and the soma determines spontaneous firing rate in midbrain dopamine neurons. J Physiol 2014; 592:2829-44. [PMID: 24756642 DOI: 10.1113/jphysiol.2014.275032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that require the elaborate composition of many ion channels in the somatodendritic compartments. Understanding the major determinants of the spontaneous firing rate (SFR) of midbrain DA neurons is important because they determine the basal DA levels in target areas, including the striatum. As spontaneous firing occurs synchronously at the soma and dendrites, the electrical coupling between the soma and dendritic compartments has been regarded as a key determinant for the SFR. However, it is not known whether this somatodendritic coupling is served by the whole dendritic compartments or only parts of them. In the rat substantia nigra pars compacta (SNc) DA neurons, we demonstrate that the balance between the proximal dendritic compartment and the soma determines the SFR. Isolated SNc DA neurons showed a wide range of soma size and a variable number of primary dendrites but preserved a quite consistent SFR. The SFR was not correlated with soma size or with the number of primary dendrites, but it was strongly correlated with the area ratios of the proximal dendritic compartments to the somatic compartment. Tetrodotoxin puff and local Ca(2+) perturbation experiments, computer simulation, and local glutamate uncaging experiments suggest the importance of the proximal dendritic compartments in pacemaker activity. These data indicate that the proximal dendritic compartments, not the whole dendritic compartments, play a key role in the somatodendritic balance that determines the SFR in DA neurons.
Collapse
Affiliation(s)
- Jinyoung Jang
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Miae Jang
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Shin Hye Kim
- Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| |
Collapse
|
15
|
Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience 2014; 282:13-22. [PMID: 24463000 DOI: 10.1016/j.neuroscience.2014.01.025] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson's disease as well as schizophrenia, drug addiction and attention-deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
Collapse
Affiliation(s)
- C P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, United States.
| |
Collapse
|
16
|
Visualizing epigenetics: current advances and advantages in HDAC PET imaging techniques. Neuroscience 2013; 264:186-97. [PMID: 24051365 DOI: 10.1016/j.neuroscience.2013.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/27/2013] [Accepted: 09/09/2013] [Indexed: 12/19/2022]
Abstract
Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.
Collapse
|
17
|
Chang CH, Grace AA. Some dopamine neurons may be more impulsive than others: Why differences in receptors and transporters can affect dopamine function in Parkinson's disease. Mov Disord 2013; 28:1319-20. [DOI: 10.1002/mds.25580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/08/2022] Open
Affiliation(s)
- Chun-hui Chang
- Departments of Neuroscience; Psychiatry, and Psychology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Anthony A. Grace
- Departments of Neuroscience; Psychiatry, and Psychology; University of Pittsburgh; Pittsburgh Pennsylvania USA
| |
Collapse
|
18
|
Neve KA, Ford CP, Buck DC, Grandy DK, Neve RL, Phillips TJ. Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S. Neuroscience 2013; 248:479-87. [PMID: 23811070 DOI: 10.1016/j.neuroscience.2013.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
D2 receptor null mutant (Drd2(-/-)) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in which D2L is thought to be the postsynaptic D2 receptor on medium spiny neurons in the basal forebrain, and D2S the autoreceptor that regulates the activity of dopamine neurons and dopamine synthesis and release. Because constitutive genetic deletion of the D2 or D2L receptor may cause compensatory changes that influence functional outcomes, our approach is to identify aspects of the abnormal phenotype of a Drd2(-/-) mouse that can be normalized by virus-mediated D2 receptor expression. Drd2(-/-) mice are deficient in basal and methamphetamine-induced locomotor activation and lack D2 receptor agonist-induced activation of G protein-regulated inward rectifying potassium channels (GIRKs) in dopaminergic neurons. Here we show that virus-mediated expression of D2L in the nucleus accumbens significantly restored methamphetamine-induced locomotor activation, but not basal locomotor activity, compared to mice receiving the control virus. It also restored the effect of methamphetamine to decrease time spent in the center of the activity chamber in female but not male Drd2(-/-) mice. Furthermore, the effect of expression of D2S was indistinguishable from D2L. Similarly, virus-mediated expression of either D2S or D2L in substantia nigra neurons restored D2 agonist-induced activation of GIRKs. In this acute expression system, the alternatively spliced forms of the D2 receptor appear to be equally capable of acting as postsynaptic receptors and autoreceptors.
Collapse
Affiliation(s)
- K A Neve
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - C P Ford
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D C Buck
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D K Grandy
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - R L Neve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| | - T J Phillips
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Reyes S, Cottam V, Kirik D, Double KL, Halliday GM. Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Mov Disord 2013; 28:1351-9. [PMID: 23674405 DOI: 10.1002/mds.25493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) patients have increased susceptibility to impulse control disorders. Recent studies have suggested that alterations in dopamine receptors in the midbrain underlie impulsive behaviors and that more impulsive individuals, including patients with PD, exhibit increased occupancy of their midbrain dopamine receptors. The cellular location of dopamine receptor subtypes and transporters within the human midbrain may therefore have important implications for the development of impulse control disorders in PD. The localization of the dopamine receptors (D1-D5) and dopamine transporter proteins in the upper brain stems of elderly adult humans (n = 8) was assessed using single immunoperoxidase and double immunofluorescence (with tyrosine hydroxylase to identify dopamine neurons). The relative amount of protein expressed in dopamine neurons from different regions was assessed by comparing their relative immunofluorescent intensities. The midbrain dopamine regions associated with impulsivity (medial nigra and ventral tegmental area [VTA]) expressed less dopamine transporter on their neurons than other midbrain dopamine regions. Medial nigral dopamine neurons expressed significantly greater amounts of D1 and D2 receptors and vesicular monoamine transporter than VTA dopamine neurons. The heterogeneous pattern of dopamine receptors and transporters in the human midbrain suggests that the effects of dopamine and dopamine agonists are likely to be nonuniform. The expression of excitatory D1 receptors on nigral dopamine neurons in midbrain regions associated with impulsivity, and their variable loss as seen in PD, may be of particular interest for impulse control.
Collapse
Affiliation(s)
- Stefanie Reyes
- Neuroscience Research Australia and the School of Medical Sciences, University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
20
|
Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson's patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiol Dis 2012; 48:519-25. [PMID: 22766031 DOI: 10.1016/j.nbd.2012.06.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/02/2012] [Accepted: 06/22/2012] [Indexed: 12/11/2022] Open
Abstract
Impulse control disorders such as pathological gambling (PG) are a serious and common adverse effect of dopamine (DA) replacement medication in Parkinson's disease (PD). Patients with PG have increased impulsivity and abnormalities in striatal DA, in common with behavioural and substance addictions in the non-PD population. To date, no studies have investigated the role of extrastriatal dopaminergic abnormalities in PD patients with PG. We used the PET radiotracer, [11C] FLB-457, with high-affinity for extrastriatal DA D2/3 receptors. 14 PD patients on DA agonists were imaged while they performed a gambling task involving real monetary reward and a control task. Trait impulsivity was measured with the Barratt Impulsivity Scale (BIS). Seven of the patients had a history of PG that developed subsequent to DA agonist medication. Change in [11C] FLB-457 binding potential (BP) during gambling was reduced in PD with PG patients in the midbrain, where D2/D3 receptors are dominated by autoreceptors. The degree of change in [11C] FLB-457 binding in this region correlated with impulsivity. In the cortex, [11C] FLB-457 BP was significantly greater in the anterior cingulate cortex (ACC) in PD patients with PG during the control task, and binding in this region was also correlated with impulsivity. Our findings provide the first evidence that PD patients with PG have dysfunctional activation of DA autoreceptors in the midbrain and low DA tone in the ACC. Thus, altered striatal and cortical DA homeostasis may incur vulnerability for the development of PG in PD, linked with the impulsive personality trait.
Collapse
|
21
|
Quinpirole-induced 50kHz ultrasonic vocalization in the rat: Role of D2 and D3 dopamine receptors. Behav Brain Res 2012; 226:511-8. [DOI: 10.1016/j.bbr.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022]
|
22
|
Jang M, Jang JY, Kim SH, Uhm KB, Kang YK, Kim HJ, Chung S, Park MK. Functional organization of dendritic Ca2+ signals in midbrain dopamine neurons. Cell Calcium 2011; 50:370-80. [PMID: 21757230 DOI: 10.1016/j.ceca.2011.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 01/30/2023]
Abstract
Dendritic Ca2+ plays an important role not only in synaptic integration and synaptic plasticity, but also in dendritic excitability in midbrain dopamine neurons. However, the functional organization of dendritic Ca2+ signals in the dopamine neurons remains largely unknown. We therefore investigated dendritic Ca2+ signals by measuring glutamate-induced Ca2+ increases along the dendrites of acutely isolated midbrain dopamine neurons. Maximal doses of glutamate induced a [Ca2+]c rise with similar amplitudes in proximal and distal dendritic regions of a dopamine neuron. Glutamate receptors contributed incrementally to the [Ca2+]c rise according to their distance from the soma, with a reciprocal decrement in the contribution of voltage-operated Ca2+ channels (VOCCs). The contribution of AMPA and NMDA receptors increased with dendritic length, but that of metabotropic glutamate receptors decreased. At low doses of glutamate at which spontaneous firing was sustained, the [Ca2+]c rise was higher in the distal than the proximal regions of a dendrite, possibly due to the increased spontaneous firing rate. These results indicate that functional organization of Ca2+ signals in the dendrites of dopamine neurons requires different combination of VOCCs and glutamate receptors according to dendritic length, and that regional Ca2+ rises in dendrites respond differently to applied glutamate concentration.
Collapse
Affiliation(s)
- Miae Jang
- Department of Physiology, Sungkyunkwan University School of Medicine, and Department of Pathology, Inje University Seoul Paik Hospital, 300 Chunchun-dong, Jangan-ku, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|