1
|
Chatterjee M, Özdemir S, Fritz C, Möbius W, Kleineidam L, Mandelkow E, Biernat J, Doğdu C, Peters O, Cosma NC, Wang X, Schneider LS, Priller J, Spruth E, Kühn AA, Krause P, Klockgether T, Vogt IR, Kimmich O, Spottke A, Hoffmann DC, Fliessbach K, Miklitz C, McCormick C, Weydt P, Falkenburger B, Brandt M, Guenther R, Dinter E, Wiltfang J, Hansen N, Bähr M, Zerr I, Flöel A, Nestor PJ, Düzel E, Glanz W, Incesoy E, Bürger K, Janowitz D, Perneczky R, Rauchmann BS, Hopfner F, Wagemann O, Levin J, Teipel S, Kilimann I, Goerss D, Prudlo J, Gasser T, Brockmann K, Mengel D, Zimmermann M, Synofzik M, Wilke C, Selma-González J, Turon-Sans J, Santos-Santos MA, Alcolea D, Rubio-Guerra S, Fortea J, Carbayo Á, Lleó A, Rojas-García R, Illán-Gala I, Wagner M, Frommann I, Roeske S, Bertram L, Heneka MT, Brosseron F, Ramirez A, Schmid M, Beschorner R, Halle A, Herms J, Neumann M, Barthélemy NR, Bateman RJ, Rizzu P, Heutink P, Dols-Icardo O, Höglinger G, Hermann A, Schneider A. Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS. Nat Med 2024; 30:1771-1783. [PMID: 38890531 PMCID: PMC11186765 DOI: 10.1038/s41591-024-02937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/21/2024] [Indexed: 06/20/2024]
Abstract
Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.
Collapse
Grants
- R01 AG080470 NIA NIH HHS
- This study was funded by a grant from the German Federal Ministry of Education and Research, BMBF, grant identifier 01KX2230 to AS. AS received funding from the Federal Ministry of Education and Research, BMBF (DESCARTES consortium, grant identifier 01EK2102A, and PREPARE, grant identifier 01GP2213A), Verum Foundation and BMBF/NUM (UTN consortium). A.S. received funding from Cure Alzheimer’s Fund and from Netzwerke NRW iBehave consortium. A.S. is member of the DFG-funded Cluster of Excellence ImmunoSensation2 - EXC2151 – 390873048. A.S. and A.R. were supported by La Fundación Reina Sofía, proyecto “MANOLO BARRÓS”. A.S. received funding by the Target ALS Foundation (TALS).
- MC received funding from Deutsche Demenzhilfe DZNE Innovative Minds Program and the Manfred-Strohscheer-Foundation.
- L.K. received funding from the Hertie Foundation, Hertie Network of Excellence in Clinical Neurosciences and from the JPND grant 01ED2007B (PreAdapt).
- Cure Alzheimer Foundation, Katharina Hard Foundation
- NRW Netzwerke iBehave
- DFG, Neuro-AcSis
Collapse
Affiliation(s)
| | - Selcuk Özdemir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Genetics, Atatürk University, Erzurum, Turkey
| | - Christian Fritz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Eckhard Mandelkow
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jacek Biernat
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cem Doğdu
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | | | - Xiao Wang
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | | | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich School of Medicine, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Spruth
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Klockgether
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Ina R Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Okka Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carolin Miklitz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cornelia McCormick
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Patrick Weydt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Björn Falkenburger
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - René Guenther
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Dinter
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Niels Hansen
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Mathias Bähr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
- Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Peter J Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Queensland Brain Institute, University of Queensland and Mater Public Hospital, Brisbane, Queensland, Australia
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Clinic for Neurology, University Hospital Magdeburg, Magdeburg, Germany
| | - Enise Incesoy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Magdeburg, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Boris S Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Neuroradiology, University Hospital LMU, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Franziska Hopfner
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Olivia Wagemann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Goerss
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - Johannes Prudlo
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - David Mengel
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Milan Zimmermann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Judit Selma-González
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Janina Turon-Sans
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Angel Santos-Santos
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sara Rubio-Guerra
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Álvaro Carbayo
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Rojas-García
- Motor Neuron Disease Clinic, Neuromuscular Diseases Unit, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ignacio Illán-Gala
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Ingo Frommann
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lucas Bertram
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachussetss Medical School, North Worcester, MA, USA
| | | | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry, University of Cologne, Cologne, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Rudi Beschorner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Annett Halle
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO, USA
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Department of Neurology, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Andreas Hermann
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
- Translational Neurodegeneration Section 'Albrecht Kossel' and Center for Transdisciplinary Neurosciences, University Medical Center Rostock, Rostock, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Kyalu Ngoie Zola N, Balty C, Vertommen D, Hanseeuw BJ. [Specific modifications of the soluble tau protein distinguish Alzheimer's disease from other tauopathies]. Med Sci (Paris) 2024; 40:328-331. [PMID: 38651955 DOI: 10.1051/medsci/2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Affiliation(s)
- Nathalie Kyalu Ngoie Zola
- Université catholique de Louvain (UCLouvain), Institut de neurosciences (IONS), Bruxelles, Belgique - Université catholique de Louvain (UCLouvain), Institut de Duve (DDUV), Phosphorylation des protéines (PHOS), Bruxelles, Belgique
| | - Clémence Balty
- Université catholique de Louvain (UCLouvain), Institut de Duve (DDUV), Phosphorylation des protéines (PHOS), Bruxelles, Belgique
| | - Didier Vertommen
- Université catholique de Louvain (UCLouvain), Institut de Duve (DDUV), Plateforme MASSPROT, Bruxelles, Belgique
| | - Bernard Jimmy Hanseeuw
- Université catholique de Louvain (UCLouvain), Institut de neurosciences (IONS), Bruxelles, Belgique - Cliniques universitaires Saint-Luc, département de neurologie, Bruxelles, Belgique - Université catholique de Louvain (UCLouvain), département WELBIO, Institut de recherche WEL, Wavre, Belgique - Harvard medical school, Massachusetts general hospital, Department of radiology, Gordon center for medical imaging, Boston, États-Unis
| |
Collapse
|
3
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
4
|
Remoli G, Schilke ED, Magi A, Ancidoni A, Negro G, Da Re F, Frigo M, Giordano M, Vanacore N, Canevelli M, Ferrarese C, Tremolizzo L, Appollonio I. Neuropathological hints from CSF and serum biomarkers in corticobasal syndrome (CBS): a systematic review. Neurol Res Pract 2024; 6:1. [PMID: 38173024 PMCID: PMC10765833 DOI: 10.1186/s42466-023-00294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Corticobasal syndrome (CBS) is a clinical syndrome determined by various underlying neurodegenerative disorders requiring a pathological assessment for a definitive diagnosis. A literature review was performed following the methodology described in the Cochrane Handbook for Systematic Reviews to investigate the additional value of traditional and cutting-edge cerebrospinal fluid (CSF) and serum/plasma biomarkers in profiling CBS. Four databases were screened applying predefined inclusion criteria: (1) recruiting patients with CBS; (2) analyzing CSF/plasma biomarkers in CBS. The review highlights the potential role of the association of fluid biomarkers in diagnostic workup of CBS, since they may contribute to a more accurate diagnosis and patient selection for future disease-modifying agent; for example, future trial designs should consider baseline CSF Neurofilament Light Chains (NfL) or progranulin dosage to stratify treatment arms according to neuropathological substrates, and serum NfL dosage might be used to monitor the evolution of CBS. In this scenario, prospective cohort studies, starting with neurological examination and neuropsychological tests, should be considered to assess the correlations of clinical profiles and various biomarkers.
Collapse
Affiliation(s)
- Giulia Remoli
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Edoardo Dalmato Schilke
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy.
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy.
| | - Andrea Magi
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Antonio Ancidoni
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Giulia Negro
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Fulvio Da Re
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Maura Frigo
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Martina Giordano
- Neurosurgery Unit, Department of Neuroscience, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- University of Milan, Milano, Italy
| | - Nicola Vanacore
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Marco Canevelli
- National Institute of Health, Roma, Italy
- Department of Neuroscience, Sapienza University of Roma, Roma, Italy
| | - Carlo Ferrarese
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Lucio Tremolizzo
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| | - Ildebrando Appollonio
- Neurology Department, Fondazione IRCCS San Gerardi dei Tintori, San Gerardo Hospital, Monza. Via G. Pergolesi, 33, 20900, Monza, Italy
- School of Medicine and Surgery and Milan Centre for Neuroscience (NeuroMI), University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
5
|
Kyalu Ngoie Zola N, Balty C, Pyr Dit Ruys S, Vanparys AAT, Huyghe NDG, Herinckx G, Johanns M, Boyer E, Kienlen-Campard P, Rider MH, Vertommen D, Hanseeuw BJ. Specific post-translational modifications of soluble tau protein distinguishes Alzheimer's disease and primary tauopathies. Nat Commun 2023; 14:3706. [PMID: 37349319 PMCID: PMC10287718 DOI: 10.1038/s41467-023-39328-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer's disease, cortico-basal degeneration, Pick's disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick's disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.
Collapse
Affiliation(s)
- Nathalie Kyalu Ngoie Zola
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Clémence Balty
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Universite catholique de Louvain (UClouvain) and Louvain Drug Research Institute (LDRI), Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), 1200, Brussels, Belgium
| | - Axelle A T Vanparys
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Nicolas D G Huyghe
- Université catholique de Louvain (UCLouvain) and Institut de Recherche Expérimentale et Clinique (IREC), 1200, Brussels, Belgium
| | - Gaëtan Herinckx
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Manuel Johanns
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Emilien Boyer
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Mark H Rider
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Didier Vertommen
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Bernard J Hanseeuw
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium.
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium.
- Universite catholique de Louvain (UCLouvain), WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Gordon Center for Medical Imaging, Boston, MA, USA.
| |
Collapse
|
6
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
7
|
"Parkinson's disease" on the way to progressive supranuclear palsy: a review on PSP-parkinsonism. Neurol Sci 2021; 42:4927-4936. [PMID: 34532773 DOI: 10.1007/s10072-021-05601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
Progressive supranuclear palsy (PSP) is a progressive atypical parkinsonian syndrome characterised by postural instability, supranuclear ophthalmoplegia, dysarthria, dysphagia, executive dysfunction and other features. This clinical presentation represents the classic PSP-Richardson syndrome (PSP-RS). However, several other clinical subtypes have been recognised, including PSP-parkinsonism (PSP-P), probably the second most common PSP variant. Unlike PSP-RS, PSP-P often presents with an asymmetric onset, tremor and a moderate initial response to levodopa, especially during the first years of the disease, thus resembling Parkinson's disease (PD). It runs a more favourable course, but over time, PSP-P may evolve clinically into PSP-RS. Therefore, it may seem that PSP-P stands clinically between PD and PSP. There are several peculiarities that can distinguish PSP-P from these entities. As there is lack of systematic reviews on PSP-P in the literature, we decided to summarise all the necessary data about the epidemiology, clinical picture, neuroimaging, genetics and other aspects of this PSP variant in order to provide complete information for the reader.
Collapse
|
8
|
Pampuscenko K, Morkuniene R, Krasauskas L, Smirnovas V, Tomita T, Borutaite V. Distinct Neurotoxic Effects of Extracellular Tau Species in Primary Neuronal-Glial Cultures. Mol Neurobiol 2021; 58:658-667. [PMID: 33001416 DOI: 10.1007/s12035-020-02150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
Recent data from various experimental models support the link between extracellular tau and neurodegeneration; however, the exact mechanisms by which extracellular tau or its modified forms or aggregates cause neuronal death remain unclear. We have previously shown that exogenously applied monomers and oligomers of the longest tau isoform (2N4R) at micromolar concentrations induced microglial phagocytosis of stressed-but-viable neurons in vitro. In this study, we investigated whether extracellular phosphorylated tau2N4R (p-tau2N4R), isoform 1N4R (tau1N4R) and K18 peptide can induce neuronal death or loss in primary neuronal-glial cell cultures. We found that p-tau2N4R at 30 nM concentration induced loss of viable neurons; however, 700 nM p-tau2N4R caused necrosis of both neurons and microglia, and this neuronal death was partially glial cell-dependent. We also found that extracellular tau1N4R oligomers, but not monomers, at 3 μM concentration caused neuronal death in mixed cell cultures: self-assembly tau1N4R dimers-tetramers induced neuronal necrosis and apoptosis, whereas Aβ-promoted tau1N4R oligomers caused glial cell-dependent loss of neurons without signs of increased cell death. Monomeric and pre-aggregated tau peptide containing 4R repeats (K18) had no effect in mixed cultures, suggesting that tau neurotoxicity might be dependent on N-terminal part of the protein. Taken together, our results show that extracellular p-tau2N4R is the most toxic form among investigated tau species inducing loss of neurons at low nanomolar concentrations and that neurotoxicity of tau1N4R is dependent on its aggregation state.
Collapse
Affiliation(s)
- Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lukas Krasauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
9
|
Bayram E, Dickson DW, Reich SG, Litvan I. Pathology-Proven Corticobasal Degeneration Presenting as Richardson's Syndrome. Mov Disord Clin Pract 2020; 7:267-272. [PMID: 32258223 DOI: 10.1002/mdc3.12900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 11/11/2022] Open
Abstract
Background Corticobasal degeneration (CBD) can present with various clinical phenotypes including Richardson's syndrome (RS). Although neuropathological examination can differentiate CBD and progressive supranuclear palsy (PSP) pathologies, no clinical or imaging findings can differentiate CBD from other pathologies when a patient presents with a variant type of CBD. As these various phenotypes are associated with non-CBD pathologies, clinical diagnostic accuracy can be low for such patients. Objectives To present clinical features of two cases with symptom progression in line with PSP-RS, who were diagnosed with CBD based on neuropathological examination. Methods Baseline, follow up examinations, and detailed neuropathological examinations of two CBD cases presenting and progressing in line with probable PSP-RS are demonstrated. Results The two cases clinically diagnosed as probable PSP-RS were shown to have CBD upon neuropathological examination, which is the gold standard for diagnosis of both PSP and CBD. Conclusions These cases emphasize the importance of neuropathology for the definite diagnosis, and stress the need for distinctive markers to increase the reliability of clinical diagnosis before death.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and Other Movement Disorders Center University of California San Diego La Jolla California USA
| | | | - Stephen G Reich
- Department of Neurology University of Maryland Baltimore Maryland USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center University of California San Diego La Jolla California USA
| |
Collapse
|
10
|
Design and validation of an immuno-PCR assay for IFN-α2b quantification in human plasma. Bioanalysis 2019; 11:2175-2188. [DOI: 10.4155/bio-2019-0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nowadays, IFN-α is considered a promising therapeutic target for systemic lupus erythematosus. An immuno-PCR (iPCR) was developed to quantify low amounts of IFN-α in human plasma followed by a deep analysis of the methodologic robustness throughout quality by design approach. Results: An accurate, sensitive, selective and versatile iPCR was validated. The critical iPCR procedural steps were identified, applying a Plackett–Burman design. Also, this assay demonstrated an outstanding LOD of 0.3 pg/ml. A significant aspect relies on its high versatility to detect and quantify other cytokines in human plasma as the appropriate biotinylated antibody is employed. Conclusion: This reliable iPCR assay can be clinically used as an alternative method for quantitating and detecting low IFN-α2b concentrations in human plasma samples.
Collapse
|
11
|
Constantinides VC, Paraskevas GP, Paraskevas PG, Stefanis L, Kapaki E. Corticobasal degeneration and corticobasal syndrome: A review. Clin Park Relat Disord 2019; 1:66-71. [PMID: 34316603 PMCID: PMC8288513 DOI: 10.1016/j.prdoa.2019.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
Corticobasal degeneration (CBD) is a rare neurodegenerative disorder. The most common presentation of CBD is the corticobasal syndrome (CBS), which is a constellation of cortical and extrapyramidal symptoms and signs. Clinical-pathological studies have illustrated that CBD can present with diverse clinical phenotypes, including a non-fluent, agrammatic primary progressive aphasia syndrome, a behavioral, dysexecutive and visuospatial syndrome, as well as a progressive supranuclear palsy-like syndrome. Conversely, multiple pathologies, such as CBD, Alzheimer's disease and progressive supranuclear palsy may underlie a patient with CBS. This clinical-pathological overlap emphasizes the need for biomarkers that will assist in the accurate diagnosis of patients with CBS. This review presents an overview of the pathological, genetic, clinical and therapeutic characteristics of CBD, with an emphasis on the imaging (structural and functional) and biochemical (cerebrospinal fluid) biomarkers of CBD.
Collapse
Affiliation(s)
- Vasilios C. Constantinides
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Greece
| | - George P. Paraskevas
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Greece
| | - Panagiotis G. Paraskevas
- Department of Nursing, Technological Educational Institute of Crete, School of Health and Welfare Services, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Greece
| | - Elisabeth Kapaki
- 1st Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Greece
| |
Collapse
|
12
|
Stamelou M, Giagkou N, Höglinger GU. One decade ago, one decade ahead in progressive supranuclear palsy. Mov Disord 2019; 34:1284-1293. [DOI: 10.1002/mds.27788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Maria Stamelou
- Parkinson's disease and Movement Disorders DepartmentHYGEIA Hospital Athens Greece
- Neurology ClinicPhilipps University Marburg Germany
- First Department of Neurology, Aiginiteion HospitalUniversity of Athens Athens Greece
| | - Nikolaos Giagkou
- Parkinson's disease and Movement Disorders DepartmentHYGEIA Hospital Athens Greece
| | - Günter U Höglinger
- Department of NeurologyTechnische Universität München Munich Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich Germany
| |
Collapse
|
13
|
Pernègre C, Duquette A, Leclerc N. Tau Secretion: Good and Bad for Neurons. Front Neurosci 2019; 13:649. [PMID: 31293374 PMCID: PMC6606725 DOI: 10.3389/fnins.2019.00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer’s disease (AD), neurofibrillary tangles (NFTs), lesions composed of hyperphosphorylated and aggregated tau, spread from the transentorhinal cortex to the hippocampal formation and neocortex. Growing evidence indicates that tau pathology propagates trans-synaptically, implying that pathological tau released by pre-synaptic neurons is taken up by post-synaptic neurons where it accumulates and aggregates. Observations such as the presence of tau in the cerebrospinal fluid (CSF) from control individuals and in the CSF of transgenic mice overexpressing human tau before the detection of neuronal death indicate that tau can be secreted by neurons. The increase of tau in the CSF in pathological conditions such as AD suggests that tau secretion is enhanced and/or other secretory pathways take place when neuronal function is compromised. In physiological conditions, extracellular tau could exert beneficial effects as observed for other cytosolic proteins also released in the extracellular space. In such a case, blocking tau secretion could have negative effects on neurons unless the mechanism of tau secretion are different in physiological and pathological conditions allowing the prevention of pathological tau secretion without affecting the secretion of physiological tau. Furthermore, distinct extracellular tau species could be secreted in physiological and pathological conditions, species having the capacity to induce tau pathology being only secreted in the latter condition. In the present review, we will focus on the mechanisms and function of tau secretion in both physiological and pathological conditions and how this information can help to elaborate an efficient therapeutic strategy to prevent tau pathology and its propagation.
Collapse
Affiliation(s)
- Camille Pernègre
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Antoine Duquette
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Centre of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Rösler TW, Tayaranian Marvian A, Brendel M, Nykänen NP, Höllerhage M, Schwarz SC, Hopfner F, Koeglsperger T, Respondek G, Schweyer K, Levin J, Villemagne VL, Barthel H, Sabri O, Müller U, Meissner WG, Kovacs GG, Höglinger GU. Four-repeat tauopathies. Prog Neurobiol 2019; 180:101644. [PMID: 31238088 DOI: 10.1016/j.pneurobio.2019.101644] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.
Collapse
Affiliation(s)
- Thomas W Rösler
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Amir Tayaranian Marvian
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Matthias Brendel
- Dept. of Nuclear Medicine, University of Munich, 81377 Munich, Germany
| | - Niko-Petteri Nykänen
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Matthias Höllerhage
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Sigrid C Schwarz
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | | | - Thomas Koeglsperger
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Gesine Respondek
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Kerstin Schweyer
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| | - Johannes Levin
- Dept. of Neurology, University of Munich, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Victor L Villemagne
- Dept. of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, 3084, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia; Dept. of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Henryk Barthel
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Dept. of Nuclear Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrich Müller
- Institute for Human Genetics, University of Giessen, 35392 Giessen, Germany
| | - Wassilios G Meissner
- Service de Neurologie, CHU Bordeaux, 33000 Bordeaux, France; Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Dept. of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria; Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Laboratory Medicine Program, University Health Network, Toronto, Canada; Tanz Centre for Research in Neurodegenerative Disease, Krembil Brain Institute, Toronto, Canada
| | - Günter U Höglinger
- Dept. of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Dept. of Neurology, Technical University of Munich, School of Medicine, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany; Dept. of Neurology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
15
|
Fichou Y, Al-Hilaly YK, Devred F, Smet-Nocca C, Tsvetkov PO, Verelst J, Winderickx J, Geukens N, Vanmechelen E, Perrotin A, Serpell L, Hanseeuw BJ, Medina M, Buée L, Landrieu I. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 2019; 7:31. [PMID: 30823892 PMCID: PMC6397507 DOI: 10.1186/s40478-019-0682-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Insights into tau molecular structures have advanced significantly in recent years. This field has been the subject of recent breakthroughs, including the first cryo-electron microscopy structures of tau filaments from Alzheimer’s and Pick’s disease inclusions, as well as the structure of the repeat regions of tau bound to microtubules. Tau structure covers various species as the tau protein itself takes many forms. We will here address a range of studies that help to define the many facets of tau protein structures and how they translate into pathogenic forms. New results shed light on previous data that need now to be revisited in order to up-date our knowledge of tau molecular structure. Finally, we explore how these data can contribute the important medical aspects of this research - diagnosis and therapeutics.
Collapse
|
16
|
Constantinides VC, Paraskevas GP, Efthymiopoulou E, Stefanis L, Kapaki E. Clinical, neuropsychological and imaging characteristics of Alzheimer's disease patients presenting as corticobasal syndrome. J Neurol Sci 2019; 398:142-147. [DOI: 10.1016/j.jns.2019.01.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
17
|
Lin CH, Yang SY, Horng HE, Yang CC, Chieh JJ, Chen HH, Liu BH, Chiu MJ. Plasma Biomarkers Differentiate Parkinson's Disease From Atypical Parkinsonism Syndromes. Front Aging Neurosci 2018; 10:123. [PMID: 29755341 PMCID: PMC5934438 DOI: 10.3389/fnagi.2018.00123] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Parkinson’s disease (PD) has significant clinical overlaps with atypical parkinsonism syndromes (APS), which have a poorer treatment response and a more aggressive course than PD. We aimed to identify plasma biomarkers to differentiate PD from APS. Methods: Plasma samples (n = 204) were obtained from healthy controls and from patients with PD, dementia with Lewy bodies (DLB), multiple system atrophy, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), or frontotemporal dementia (FTD) with parkinsonism (FTD-P) or without parkinsonism. We measured plasma levels of α-synuclein, total tau, p-Tau181, and amyloid beta 42 (Aβ42) by immunomagnetic reduction-based immunoassay. Results: Plasma α-synuclein level was significantly increased in patients with PD and APS when compared with controls and FTD without parkinsonism (p < 0.01). Total tau and p-Tau181 were significantly increased in all disease groups compared to controls, especially in patients with FTD (p < 0.01). A multivariate and receiver operating characteristic curve analysis revealed that a cut-off value for Aβ42 multiplied by p-Tau181 for discriminating patients with FTD from patients with PD and APS was 92.66 (pg/ml)2, with an area under the curve (AUC) of 0.932. An α-synuclein cut-off of 0.1977 pg/ml could separate FTD-P from FTD without parkinsonism (AUC 0.947). In patients with predominant parkinsonism, an α-synuclein cut-off of 1.388 pg/ml differentiated patients with PD from those with APS (AUC 0.87). Conclusion: Our results suggest that integrated plasma biomarkers improve the differential diagnosis of PD from APS (PSP, CBD, DLB, and FTD-P).
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Herng-Er Horng
- Graduate Institute of Electro-Optical Science and Technology, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Jen-Jie Chieh
- Graduate Institute of Electro-Optical Science and Technology, College of Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Psychology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Zetterberg H. Review: Tau in biofluids - relation to pathology, imaging and clinical features. Neuropathol Appl Neurobiol 2018; 43:194-199. [PMID: 28054371 DOI: 10.1111/nan.12378] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022]
Abstract
Tau is a microtubule-binding protein that is important for the stability of neuronal axons. It is normally expressed within neurons and is also secreted into the brain interstitial fluid that communicates freely with cerebrospinal fluid (CSF) and, in a more restricted manner, blood via the glymphatic clearance system of the brain. In Alzheimer's disease (AD), neuroaxonal degeneration results in increased release of tau from neurons. Furthermore, tau is truncated and phosphorylated, which leads to aggregation of tau in neurofibrillary tangles of the proximal axoplasm. Neuroaxonal degeneration and tangle formation are reflected by increased concentrations of total tau (T-tau, measured using assays that detect most forms of tau) and phospho-tau (P-tau, measured using assays with antibodies specific to phosphorylated forms of tau). In AD CSF, both T-tau and P-tau concentrations are increased. In stroke and other CNS disorders with neuroaxonal injury but without tangles, T-tau is selectively increased, whereas P-tau concentration often stays normal. In tauopathies (diseases with both neurodegeneration and neurofibrillary tangles) other than AD, CSF T-tau and P-tau concentrations are typically unaltered, which is a puzzling result that warrants further investigation. In the current review, I discuss the association of T-tau and P-tau concentrations in body fluids with neuropathological changes, imaging findings and clinical features in AD and other CNS diseases.
Collapse
Affiliation(s)
- H Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
19
|
|
20
|
Biomarkers in cerebrospinal fluid for synucleinopathies, tauopathies, and other neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 146:99-113. [DOI: 10.1016/b978-0-12-804279-3.00007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Cerebrospinal fluid levels of coenzyme Q10 are reduced in multiple system atrophy. Parkinsonism Relat Disord 2017; 46:16-23. [PMID: 29107645 DOI: 10.1016/j.parkreldis.2017.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/20/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The finding of mutations of the COQ2 gene and reduced coenzyme Q10 levels in the cerebellum in multiple system atrophy (MSA) suggest that coenzyme Q10 is relevant to MSA pathophysiology. Two recent studies have reported reduced coenzyme Q10 levels in plasma and serum (respectively) of MSA patients compared to Parkinson's disease and/or control subjects, but with largely overlapping values, limited comparison with other parkinsonisms, or dependence on cholesterol levels. We hypothesized that cerebrospinal fluid (CSF) is reliable to assess reductions in coenzyme Q10 as a candidate biomarker of MSA. METHODS In this preliminary cross-sectional study we assessed CSF coenzyme Q10 levels in 20 patients with MSA from the multicenter Catalan MSA Registry and of 15 PD patients, 10 patients with progressive supranuclear palsy (PSP), and 15 control subjects from the Movement Disorders Unit Biosample Collection of Hospital Clinic de Barcelona. A specific ELISA kit was used to determine CSF coenzyme Q10 levels. CSF coenzyme Q10 levels were compared in MSA vs. the other groups globally, pair-wise, and by binary logistic regression models adjusted for age, sex, disease severity, disease duration, and dopaminergic treatment. RESULTS CSF coenzyme Q10 levels were significantly lower in MSA than in other groups in global and pair-wise comparisons, as well as in multivariate regression models. Receiver operating characteristic curve analyses yielded significant areas under the curve for MSA vs. PD, PSP and controls. CONCLUSIONS These findings support coenzyme Q10 relevance in MSA. Low CSF coenzyme Q10 levels deserve further consideration as a biomarker of MSA.
Collapse
|
23
|
Jabbari E, Zetterberg H, Morris HR. Tracking and predicting disease progression in progressive supranuclear palsy: CSF and blood biomarkers. J Neurol Neurosurg Psychiatry 2017; 88:883-888. [PMID: 28600442 DOI: 10.1136/jnnp-2017-315857] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/03/2022]
Abstract
Progressive supranuclear palsy (PSP) is a rare and progressive neurodegenerative condition characterised pathologically by neuronal cell loss due to abnormal tau deposits. Clinically, the condition manifests as parkinsonism with the addition of progressive balance, speech, swallowing, eye movement and cognitive impairment, ultimately leading to death. Measuring change over time in neurodegenerative conditions is central to defining the effects of therapeutic intervention and disease biology. The current gold standard for measuring clinical disease progression in PSP is the PSP Rating Scale score. However, such scales may be affected by intrarater and inter-rater variability. In addition, their use in clinical trials may be hindered by differences in the time interval between pathological disease progression/response to therapeutics and change in clinical state. Therefore, the need for reliable disease progression biomarkers to complement clinical rating scales is clear. Here we discuss the benefits of using biomarkers to predict and track disease progression in both clinical and research settings. Through reviewing the literature to date on the role of cerebrospinal fluid (CSF) and blood biomarkers, we highlight data that reveals the ability of CSF and plasma neurofilament light chain (NF-L) to predict and track clinical disease progression in PSP. We also discuss the need for large-scale longitudinal studies to identify novel biomarkers.
Collapse
Affiliation(s)
- Edwin Jabbari
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.,Institute of Neuroscience and Physiology, Goteborgs Universitet, Gothenburg, Sweden
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
24
|
Reilly P, Winston CN, Baron KR, Trejo M, Rockenstein EM, Akers JC, Kfoury N, Diamond M, Masliah E, Rissman RA, Yuan SH. Novel human neuronal tau model exhibiting neurofibrillary tangles and transcellular propagation. Neurobiol Dis 2017; 106:222-234. [PMID: 28610892 PMCID: PMC5593133 DOI: 10.1016/j.nbd.2017.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/18/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia and progressive supranuclear palsy, which are associated with the pathological aggregation of tau protein into neurofibrillary tangles (NFT). Studies have characterized tau as a "prion-like" protein given its ability to form distinct, stable amyloid conformations capable of transcellular and multigenerational propagation in clonal fashion. It has been proposed that progression of tauopathy could be due to the prion-like propagation of tau, suggesting the possibility that end-stage pathologies, like NFT formation, may require an instigating event such as tau seeding. To investigate this, we applied a novel human induced pluripotent stem cell (hiPSC) system we have developed to serve as a human neuronal model. We introduced the tau repeat domain (tau-RD) with P301L and V337M (tau-RD-LM) mutations into hiPSC-derived neurons and observed expression of tau-RD at levels similar to total tau in postmortem AD brains. Tau aggregation occurred without the addition of recombinant tau fibrils. The conditioned media from tau-RD cultures contained tau-RD seeds, which were capable of inducing aggregate formation in homotypic mode in non-transduced recipient neuronal cultures. The resultant NFTs were thioflavin-positive, silver stain-positive, and assumed fibrillary appearance on transmission electron microscopy (TEM) with immunogold, which revealed paired helical filament 1 (PHF1)-positive NFTs, representing possible recruitment of endogenous tau in the aggregates. Functionally, expression of tau-RD caused neurotoxicity that manifested as axon retraction, synaptic density reduction, and enlargement of lysosomes. The results of our hiPSC study were reinforced by the observation that Tau-RD-LM is excreted in exosomes, which mediated the transfer of human tau to wild-type mouse neurons in vivo. Our hiPSC human neuronal system provides a model for further studies of tau aggregation and pathology as well as a means to study transcellular propagation and related neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Patrick Reilly
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Charisse N Winston
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Kelsey R Baron
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Margarita Trejo
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Edward M Rockenstein
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Johnny C Akers
- Department of Neurosurgery, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Najla Kfoury
- Department of Neurology, Washington University, Saint Louis, MO 63110, United States
| | - Marc Diamond
- Department of Neurology, Washington University, Saint Louis, MO 63110, United States
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Department of Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States; Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161 United States
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
25
|
Ryazantsev DY, Voronina DV, Zavriev SK. Immuno-PCR: achievements and perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:1754-1770. [DOI: 10.1134/s0006297916130113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Barthélemy NR, Gabelle A, Hirtz C, Fenaille F, Sergeant N, Schraen-Maschke S, Vialaret J, Buée L, Junot C, Becher F, Lehmann S. Differential Mass Spectrometry Profiles of Tau Protein in the Cerebrospinal Fluid of Patients with Alzheimer's Disease, Progressive Supranuclear Palsy, and Dementia with Lewy Bodies. J Alzheimers Dis 2016; 51:1033-43. [PMID: 26923020 DOI: 10.3233/jad-150962] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microtubule-associated Tau proteins are major actors in neurological disorders, the so-called tauopathies. In some of them, and specifically in Alzheimer's disease (AD), hyperphosphorylated forms of Tau aggregate into neurofibrillary tangles. Following and understanding the complexity of Tau's molecular profile with its multiple isoforms and post-translational modifications represent an important issue, and a major analytical challenge. Immunodetection methods are, in fact, limited by the number, specificity, sensitivity, and capturing property of the available antibodies. Mass spectrometry (MS) has recently allowed protein quantification in complex biological fluids using isotope-labeled recombinant standard for absolute quantification (PSAQ). To study Tau proteins, which are found at very low concentrations within the cerebrospinal fluid (CSF), we relied on an innovative two-step pre-fractionation strategy, which was not dependent on immuno-enrichment. We then developed a sensitive multiplex peptide detection capability using targeted high-resolution MS to quantify Tau-specific peptides covering its entire sequence. This approach was used on a clinical cohort of patients with AD, progressive supranuclear palsy (PSP), and dementia with Lewy body (DLB) and with control non-neurodegenerative disorders. We uncovered a common CSF Tau molecular profile characterized by a predominance of central core expression and 1N/3R isoform detection. While PSP and DLB tau profiles showed minimal changes, AD was characterized by a unique pattern with specific modifications of peptide distribution. Taken together these results provide important information on Tau biology for future therapeutic interventions, and improved molecular diagnosis of tauopathies.
Collapse
Affiliation(s)
- Nicolas R Barthélemy
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France.,CHU Montpellier, IRMB, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, INSERM-UM U1183, Montpellier, France
| | - Audrey Gabelle
- CHU Montpellier, IRMB, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, INSERM-UM U1183, Montpellier, France.,Centre Mémoire Ressources Recherche, CHU Montpellier, hôpital Gui de Chauliac, Montpellier. Université Montpellier I, Montpellier, France
| | - Christophe Hirtz
- CHU Montpellier, IRMB, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, INSERM-UM U1183, Montpellier, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Nicolas Sergeant
- Inserm, UMR 837, Alzheimer & Tauopathies, Centre de Recherche Jean-Pierre Aubert, Institut de Médecine Prédictive et de Recherche Thérapeutique, Faculté de Médecine, Univ. Lille Nord de France, Université de Lille II, France
| | - Susanna Schraen-Maschke
- Inserm, UMR 837, Alzheimer & Tauopathies, Centre de Recherche Jean-Pierre Aubert, Institut de Médecine Prédictive et de Recherche Thérapeutique, Faculté de Médecine, Univ. Lille Nord de France, Université de Lille II, France
| | - Jérôme Vialaret
- CHU Montpellier, IRMB, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, INSERM-UM U1183, Montpellier, France
| | - Luc Buée
- Inserm, UMR 837, Alzheimer & Tauopathies, Centre de Recherche Jean-Pierre Aubert, Institut de Médecine Prédictive et de Recherche Thérapeutique, Faculté de Médecine, Univ. Lille Nord de France, Université de Lille II, France
| | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - François Becher
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Sylvain Lehmann
- CHU Montpellier, IRMB, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, INSERM-UM U1183, Montpellier, France
| |
Collapse
|
27
|
Detecting Alzheimer's disease biomarkers: From antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms – A critical review. Anal Chim Acta 2016; 940:21-37. [DOI: 10.1016/j.aca.2016.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
|
28
|
Spengler M, Adler M, Niemeyer CM. Highly sensitive ligand-binding assays in pre-clinical and clinical applications: immuno-PCR and other emerging techniques. Analyst 2016. [PMID: 26196036 DOI: 10.1039/c5an00822k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinant DNA technology and corresponding innovations in molecular biology, chemistry and medicine have led to novel therapeutic biomacromolecules as lead candidates in the pharmaceutical drug development pipelines. While monoclonal antibodies and other proteins provide therapeutic potential beyond the possibilities of small molecule drugs, the concomitant demand for supportive bioanalytical sample testing creates multiple novel challenges. For example, intact macromolecules can usually not be quantified by mass-spectrometry without enzymatic digestion and isotopically labeled internal standards are costly and/or difficult to prepare. Classical ELISA-type immunoassays, on the other hand, often lack the sensitivity required to obtain pharmacokinetics of low dosed drugs or pharmacodynamics of suitable biomarkers. Here we summarize emerging state-of-the-art ligand-binding assay technologies for pharmaceutical sample testing, which reveal enhanced analytical sensitivity over classical ELISA formats. We focus on immuno-PCR, which combines antibody specificity with the extremely sensitive detection of a tethered DNA marker by quantitative PCR, and alternative nucleic acid-based technologies as well as methods based on electrochemiluminescence or single-molecule counting. Using case studies, we discuss advantages and drawbacks of these methods for preclinical and clinical sample testing.
Collapse
Affiliation(s)
- Mark Spengler
- Chimera Biotec GmbH, Emil-Figge-Str. 76 A, D-44227 Dortmund, Germany.
| | | | | |
Collapse
|
29
|
Subramaniyan Parimalam S, Tarhan MC, Karsten SL, Fujita H, Shintaku H, Kotera H, Yokokawa R. On-chip microtubule gliding assay for parallel measurement of tau protein species. LAB ON A CHIP 2016; 16:1691-7. [PMID: 27056640 PMCID: PMC11377082 DOI: 10.1039/c5lc01486g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tau protein is a well-established biomarker for a group of neurodegenerative diseases collectively called tauopathies. So far, clinically relevant detection of tau species in cerebrospinal fluid (CSF) cannot be achieved without immunological methods. Recently, it was shown that different tau isoforms including the ones carrying various types of mutations affect microtubule (MT)-kinesin binding and velocity in an isoform specific manner. Here, based on these observations, we developed a microfluidic device to analyze tau mutations, isoforms and their ratios. The assay device consists of three regions: a MT reservoir which captures MTs from a solution to a kinesin-coated surface, a microchannel which guides gliding MTs, and an arrowhead-shaped collector which concentrates MTs. Tau-bound fluorescently labeled MTs (tau-MTs) were assayed, and the increase in fluorescence intensity (FI) corresponding to the total number of MTs accumulated was measured at the collector. We show that our device is capable of differentiating 3R and 4R tau isoform ratios and effects of point mutations within 5 minutes. Furthermore, radially oriented collector regions enable simultaneous FI measurements for six independent assays. Performing parallel assays in the proposed device with minimal image processing provides a cost-efficient, easy-to-use and fast tau detection platform.
Collapse
Affiliation(s)
| | - Mehmet C Tarhan
- Laboratory for Integrated Micro Mechatronic Systems (LIMMS), Institute of Industrial Science (IIS), The University of Tokyo, Tokyo, Japan and Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan
| | - Stanislav L Karsten
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan and NeuroInDx Inc., Signal Hill, CA, USA
| | - Hiroyuki Fujita
- Center for International Research on Micronano Mechatronics (CIRMM), Institute of Industrial Science (IIS), The University of Tokyo, Japan
| | | | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
30
|
Chang L, Li J, Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta 2016; 910:12-24. [DOI: 10.1016/j.aca.2015.12.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022]
|
31
|
Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C, Blennow K, Bhatia K, Morris HR, Giunti P, Warner TT, de Silva R, Lees AJ, Zetterberg H. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015; 86:1240-7. [PMID: 25589779 PMCID: PMC4564944 DOI: 10.1136/jnnp-2014-309562] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/15/2014] [Indexed: 11/04/2022]
Abstract
BACKGROUND Patients presenting with parkinsonian syndromes share many clinical features, which can make diagnosis difficult. This is important as atypical parkinsonian syndromes (APSs) such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and corticobasal syndrome (CBS) carry a poor prognosis, compared with patients with Parkinson's disease (PD). In addition, there is overlap between APS and dementia diseases, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). OBJECTIVE To use a panel of cerebrospinal fluid (CSF) biomarkers to differentiate patients with APS from PD and dementia. METHODS A prospective cohort of 160 patients and 30 control participants were recruited from a single specialist centre. Patients were clinically diagnosed according to current consensus criteria. CSF samples were obtained from patients with clinical diagnoses of PD (n=31), PSP (n=33), CBS (n=14), MSA (n=31), AD (n=26) and FTD (n=16). Healthy, elderly participants (n=30) were included as controls. Total τ (t-τ), phosphorylated τ (p-τ), β-amyloid 1-42 (Aβ42), neurofilament light chain (NFL), α-synuclein (α-syn), amyloid precursor protein soluble metabolites α and β (soluble amyloid precursor protein (sAPP)α, sAPPβ) and two neuroinflammatory markers (monocyte chemoattractant protein-1 and YKL-40) were measured in CSF. A reverse stepwise regression analysis and the false discovery rate procedure were used. RESULTS CSF NFL (p<0.001), sAPPα (p<0.001) and a-syn (p=0.003) independently predicted diagnosis of PD versus APS. Together, these nine biomarkers could differentiate patients with PD from APS with an area under the curve of 0.95 and subtypes of APS from one another. There was good discriminatory power between parkinsonian groups, dementia disorders and healthy controls. CONCLUSIONS A panel of nine CSF biomarkers was able to differentiate APS from patients with PD and dementia. This may have important clinical utility in improving diagnostic accuracy, allowing better prognostication and earlier access to potential disease-modifying therapies.
Collapse
Affiliation(s)
- N K Magdalinou
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - R W Paterson
- Department of Neurodegeneration, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - J M Schott
- Department of Neurodegeneration, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - N C Fox
- Department of Neurodegeneration, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - C Mummery
- Department of Neurodegeneration, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - K Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - K Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - H R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, Royal Free Hospital, London, UK
| | - P Giunti
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - R de Silva
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - H Zetterberg
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
32
|
Kansal K, Irwin DJ. The use of cerebrospinal fluid and neuropathologic studies in neuropsychiatry practice and research. Psychiatr Clin North Am 2015; 38:309-22. [PMID: 25998118 PMCID: PMC4443852 DOI: 10.1016/j.psc.2015.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gold standard for diagnosis of neurodegenerative diseases (ie, Alzheimer disease, frontotemporal dementia, Parkinson disease, dementia with Lewy bodies, amyotrophic lateral sclerosis) is neuropathologic examination at autopsy. As such, laboratory studies play a central role in antemortem diagnosis of these conditions and their differentiation from the neuroinflammatory, infectious, toxic, and other nondegenerative etiologies (eg, rapidly progressive dementias) that are encountered in neuropsychiatric practice. This article summarizes the use of cerebrospinal fluid (CSF) laboratory studies in the diagnostic evaluation of dementia syndromes and emerging CSF biomarkers specific for underlying neuropathology in neurodegenerative disease research.
Collapse
Affiliation(s)
- Kalyani Kansal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - David J. Irwin
- Department of Neurology, University of Pennsylvania Perelman School of medicine, Philadelphia, PA USA
| |
Collapse
|
33
|
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VMY, Trojanowski JQ. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 2015; 129:469-91. [PMID: 25549971 PMCID: PMC4369168 DOI: 10.1007/s00401-014-1380-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
Collapse
Affiliation(s)
- David J Irwin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nigel J. Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Wagshal D, Sankaranarayanan S, Guss V, Hall T, Berisha F, Lobach I, Karydas A, Voltarelli L, Scherling C, Heuer H, Tartaglia MC, Miller Z, Coppola G, Ahlijanian M, Soares H, Kramer JH, Rabinovici GD, Rosen HJ, Miller BL, Meredith J, Boxer AL. Divergent CSF τ alterations in two common tauopathies: Alzheimer's disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2015; 86:244-50. [PMID: 24899730 PMCID: PMC4256124 DOI: 10.1136/jnnp-2014-308004] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated CSF τ is considered a biomarker of neuronal injury in newly developed Alzheimer's disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of τ species in other primary tauopathies. We assessed CSF τ protein abnormalities in AD, a tauopathy with prominent Aβ pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterised by deposition of four microtubule-binding repeat (4R) τ with minimal Aβ pathology. METHODS 26 normal control (NC), 37 AD, and 24 patients with PSP participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aβ, total τ, and ptau181. Additional, novel ELISAs targeting different N-terminal and central τ epitopes were developed to examine CSF τ components and to investigate interactions between diagnostic group, demographics and genetic variables. RESULTS PSP had lower CSF N-terminal and C-terminal τ concentrations than NC and AD measured with the novel τ ELISAs and the standard AlzBio3 τ and ptau assays. AD had higher total τ and ptau levels than NC and PSP. There was a gender by diagnosis interaction in AD and PSP for most τ species, with lower concentrations for male compared to female patients. CONCLUSIONS CSF τ fragment concentrations are different in PSP compared with AD despite the presence of severe τ pathology and neuronal injury in both disorders. CSF τ concentration likely reflects multiple factors in addition to the degree of neuronal injury.
Collapse
Affiliation(s)
- Dana Wagshal
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | | | - Valerie Guss
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Tracey Hall
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Flora Berisha
- Kyowa Hakko Kirin Pharma, Inc., Princeton, New Jersey, USA
| | - Iryna Lobach
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Voltarelli
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Carole Scherling
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Hilary Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Maria Carmela Tartaglia
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA Tanz Center for Research in Neurodegenerative disease, University of Toronto, Toronto, Canada
| | - Zachary Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Holly Soares
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| | | | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Bluett B, Litvan I. Pathophysiology, genetics, clinical features, diagnosis and therapeutic trials in progressive supranuclear palsy. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1018180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Mollenhauer B, Rochester L, Chen-Plotkin A, Brooks D. What can biomarkers tell us about cognition in Parkinson's disease? Mov Disord 2014; 29:622-33. [PMID: 24757111 DOI: 10.1002/mds.25846] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 01/13/2023] Open
Abstract
Cognitive decline is common in Parkinson's disease (PD), even in the early motor stage, and this non-motor feature impacts quality of life and prognosis tremendously. In this article, we discuss marker candidates for cognitive decline in PD from different angles, including functional and structural imaging techniques, biological fluid markers in cerebrospinal fluid, and blood genetic predictors, as well as gait as a surrogate marker of cognitive decline. Specifically, imaging-based markers of cognitive impairment in PD include cortical atrophy, reduced cortical metabolism, loss of cortical cholinergic and frontal dopaminergic function, as well as an increased cortical amyloid load. Reduced β-amyloid(1-42) in cerebrospinal fluid and lower plasma levels of epidermal growth factor are predictors for cognitive decline in PD. In addition, genetic variation in the apolipoprotein E (APOE), catechol-O-methyltransferase (COMT), microtubule-associated protein tau (MAPT), and glucocerebrosidase (GBA) genes may confer risk for cognitive impairment in PD; and gait disturbance may also indicate an increased risk for dementia. Other marker candidates have been proposed and are discussed. All of the current studies are hampered by gaps in our knowledge about the molecular causes of cognitive decline, which will have to be considered in future biomarker studies.
Collapse
Affiliation(s)
- Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel and University Medical Center, Göttingen, Germany
| | | | | | | |
Collapse
|
37
|
Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:757-68. [PMID: 25526887 DOI: 10.1016/j.bbapap.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/18/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a spectrum of rare neurodegenerative diseases with an estimated prevalence of 15-22 cases per 100,000 persons including the behavioral variant of frontotemporal dementia (bvFTD), progressive non-fluent aphasia (PNFA), semantic dementia (SD), FTD with motor neuron disease (FTD-MND), progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). The pathogenesis of the diseases is still unclear and clinical diagnosis of FTLD is hampered by overlapping symptoms within the FTLD subtypes and with other neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Intracellular protein aggregates in the brain are a major hallmark of FTLD and implicate alterations in protein metabolism or function in the disease's pathogenesis. Cerebrospinal fluid (CSF) which surrounds the brain can be used to study changes in neurodegenerative diseases and to identify disease-related mechanisms or neurochemical biomarkers for diagnosis. In the present review, we will give an overview of the current literature on proteomic studies in CSF of FTLD patients. Reports of targeted and unbiased proteomic approaches are included and the results are discussed in regard of their informative value about disease pathology and the suitability to be used as diagnostic biomarkers. Finally, we will give some future perspectives on CSF proteomics and a list of candidate biomarkers which might be interesting for validation in further studies. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Petra Steinacker
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Emily Feneberg
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
38
|
Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H. Biomarker modelling of early molecular changes in Alzheimer's disease. Mol Diagn Ther 2014; 18:213-27. [PMID: 24281842 DOI: 10.1007/s40291-013-0069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preclinical phase of Alzheimer's disease (AD) occurs years, possibly decades, before the onset of clinical symptoms. Being able to detect the very earliest stages of AD is critical to improving understanding of AD biology, and identifying individuals at greatest risk of developing clinical symptoms with a view to treating AD pathophysiology before irreversible neurodegeneration occurs. Studies of dominantly inherited AD families and longitudinal studies of sporadic AD have contributed to knowledge of the earliest AD biomarkers. Here we appraise this evidence before reviewing novel, particularly fluid, biomarkers that may provide insights into AD pathogenesis and relate these to existing hypothetical disease models.
Collapse
Affiliation(s)
- Ross W Paterson
- Dementia Research Centre, Department of Neurodegeneration, UCL Institute of Neurology, London, UK,
| | | | | | | | | |
Collapse
|
39
|
Fischer SK, Joyce A, Spengler M, Yang TY, Zhuang Y, Fjording MS, Mikulskis A. Emerging technologies to increase ligand binding assay sensitivity. AAPS JOURNAL 2014; 17:93-101. [PMID: 25331105 DOI: 10.1208/s12248-014-9682-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/02/2014] [Indexed: 02/07/2023]
Abstract
Ligand binding assays (LBAs) have been the method of choice for protein analyte measurements for more than four decades. Over the years, LBA methods have improved in sensitivity and achieved larger dynamic ranges by using alternative detection systems and new technologies. As a consequence, the landscape and application of immunoassay platforms has changed dramatically. The introduction of bead-based methods, coupled with single molecule detection standardization and the ability to amplify assay signals, has improved the sensitivity of many immunoassays, in some cases by several logs of magnitude. Three promising immunoassay platforms are described in this article: Single Molecule Counting (SMC™) from Singulex Inc, Single Molecule Arrays (Simoa™) from Quanterix Corporation, and Immuno-PCR (Imperacer®) from Chimera Biotec GmbH. These platforms have the potential to significantly improve immunoassay sensitivity and thereby address the bioanalytical needs and challenges faced during biopharmaceutical drug development.
Collapse
Affiliation(s)
- Saloumeh K Fischer
- Department of BioAnalytical Sciences, Genentech, 1 DNA Way, South San Francisco, California, 94080-4990, USA,
| | | | | | | | | | | | | |
Collapse
|
40
|
Magdalinou N, Lees AJ, Zetterberg H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J Neurol Neurosurg Psychiatry 2014; 85:1065-75. [PMID: 24691581 PMCID: PMC4173749 DOI: 10.1136/jnnp-2013-307539] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Parkinsonian diseases comprise a heterogeneous group of neurodegenerative disorders, which show significant clinical and pathological overlap. Accurate diagnosis still largely relies on clinical acumen; pathological diagnosis remains the gold standard. There is an urgent need for biomarkers to diagnose parkinsonian disorders, particularly in the early stages when diagnosis is most difficult. In this review, several of the most promising cerebrospinal fluid candidate markers will be discussed. Their strengths and limitations will be considered together with future developments in the field.
Collapse
Affiliation(s)
- Nadia Magdalinou
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Andrew J Lees
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
41
|
Colosimo C, Bak TH, Bologna M, Berardelli A. Fifty years of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 2014; 85:938-44. [PMID: 24013274 DOI: 10.1136/jnnp-2013-305740] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carlo Colosimo
- Department of Neurology and Psychiatry, "Sapienza" University, Rome, Italy
| | - Thomas H Bak
- School of Philosophy, Psychology and Language Sciences (PPLS) & Centre for Clinical Brain Sciences (CCBS), University of Edinburgh, Edinburgh, UK
| | | | - Alfredo Berardelli
- Department of Neurology and Psychiatry, "Sapienza" University, Rome, Italy Neuromed Institute IRCCS, Pozzilli (IS), Italy
| |
Collapse
|
42
|
Nagao S, Yokota O, Ikeda C, Takeda N, Ishizu H, Kuroda S, Sudo K, Terada S, Murayama S, Uchitomi Y. Argyrophilic grain disease as a neurodegenerative substrate in late-onset schizophrenia and delusional disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264:317-31. [PMID: 24272318 DOI: 10.1007/s00406-013-0472-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
To study the relationship between neurodegenerative diseases including argyrophilic grain disease (AGD) and late-onset schizophrenia and delusional disorders (LOSD; onset ≥40 years of age), we pathologically examined 23 patients with LOSD, 71 age-matched normal controls, and 22 psychiatric disease controls (11 depression, six personality disorder, two bipolar disorders, and three neurotic disorders cases). In all LOSD cases (compared to age-matched normal controls), the frequencies of Lewy body disease (LBD), AGD, and corticobasal degeneration (CBD) were 26.1 % (11.3 %), 21.7 % (8.5 %), and 4.3 % (0.0 %), respectively. There was no case of pure Alzheimer's disease (AD). The total frequency of LBD, AGD, and CBD was significantly higher in LOSD cases than in normal controls. Argyrophilic grains were significantly more severe in LOSD than in controls, but were almost completely restricted to the limbic system and adjacent temporal cortex. In LOSD patients whose onset occurred at ≥65 years of age (versus age-matched normal controls), the frequencies of LBD and AGD were 36.4 % (19.4 %) and 36.4 % (8.3 %), respectively, and AGD was significantly more frequent in LOSD patients than in normal controls. In LOSD patients whose onset occurred at <65 years of age, the frequencies of LBD, AGD, and CBD were 16.7, 8.3, and 8.3 %, comparable to those of age-matched normal controls (10.2, 5.1, and 0.0 %). In all psychiatric cases, delusion was significantly more frequent in AGD cases than in cases bearing minimal AD pathology alone. Given these findings, LOSD patients may have heterogeneous pathological backgrounds, and AGD may be associated with the occurrence of LOSD especially after 65 years of age.
Collapse
Affiliation(s)
- Shigeto Nagao
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Purpose of review This update discusses novel aspects on genetics, diagnosis, and treatments of atypical parkinsonism published over the past 2 years. Recent findings A genome-wide association study identified new genetic risk factors for progressive supranuclear palsy and new genetic conditions presenting with atypical parkinsonism have been described. The clinical criteria for diagnosis of corticobasal degeneration have been revised, and for progressive supranuclear palsy are under revision. Novel molecular techniques to identify possible biomarkers, as in other neurodegenerative disorders, have started being studied on atypical parkinsonian conditions, and although preliminary results seem promising, further studies are urgently warranted. Therapeutic trials based on disease-specific targets have shown no clinical improvement. Summary The knowledge obtained recently on atypical parkinsonian conditions points out the major deficits in this field. With the expanding phenotypical spectrum of atypical parkinsonian conditions, the early identification of patients has become difficult. The inability of conventional methods to identify these disorders earlier and better than clinicians, and the recent failure of promising therapeutic compounds, highlight the fact that the lack of biomarkers is probably the greatest limitation for developing treatments for these disorders. Thus, current and future research in this direction will be crucial.
Collapse
|
44
|
Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease and Frontotemporal Dementia. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
45
|
Tokuda T. [Differential diagnosis of corticobasal syndrome (CBS) and its biomarkers]. Rinsho Shinkeigaku 2013; 53:1033-5. [PMID: 24291870 DOI: 10.5692/clinicalneurol.53.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Corticobasal degeneration (CBD) was initially thought to represent a clinicopathological entity, but recent studies have shown its considerable clinicopathological heterogeneity. Thus, the constellation of the findings initially considered characteristic of CBD is now named "corticobasal syndrome" (CBS), while the term "CBD" is used for the histopathological disorder. Multiple phenotypes associated with CBD pathology and multiple diseases associated with CBS, the latter of which are called "CBD mimickers," make the correct diagnosis of these conditions on the basis of only clinical symptoms and signs difficult. Therefore, the development of specific biomarkers for diagnosing each causative disease of CBS is extremely important. Abnormal accumulations of the microtubule-associated tau protein are found in both neurons and glia, and CBD is thus considered one of the tauopathies. Although some studies have measured total and phosphorylated tau in the CSF of patients with CBS, their results are inconclusive. Disease-specific truncation and/or phosphorylation of tau protein and its fragments in the CSF would be a promising biomarker candidate; however, its effectiveness still needs to be confirmed by further studies. Progress in biomarker development to differentiate CBD from CBD mimickers has been slow, but it is essential to improve diagnostic accuracy and to develop disease-modifying therapies.
Collapse
Affiliation(s)
- Takahiko Tokuda
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine
| |
Collapse
|
46
|
Characterization of novel CSF Tau and ptau biomarkers for Alzheimer's disease. PLoS One 2013; 8:e76523. [PMID: 24116116 PMCID: PMC3792042 DOI: 10.1371/journal.pone.0076523] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/31/2013] [Indexed: 12/02/2022] Open
Abstract
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.
Collapse
|
47
|
Nagao S, Yokota O, Ikeda C, Terada S, Ihara Y, Uchitomi Y. Progressive supranuclear palsy presenting as primary lateral sclerosis. J Neurol Sci 2013; 329:70-1. [PMID: 23566486 DOI: 10.1016/j.jns.2013.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022]
|
48
|
Irwin DJ, Trojanowski JQ, Grossman M. Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer's disease. Front Aging Neurosci 2013; 5:6. [PMID: 23440936 PMCID: PMC3578350 DOI: 10.3389/fnagi.2013.00006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Accurate ante mortem diagnosis in frontotemporal lobar degeneration (FTLD) is crucial to the development and implementation of etiology-based therapies. Several neurodegenerative disease-associated proteins, including the major protein constituents of inclusions in Alzheimer's disease (AD) associated with amyloid-beta (Aβ(1-42)) plaque and tau neurofibrillary tangle pathology, can be measured in cerebrospinal fluid (CSF) for diagnostic applications. Comparative studies using autopsy-confirmed samples suggest that CSF total-tau (t-tau) and Aβ(1-42) levels can accurately distinguish FTLD from AD, with a high t-tau to Aβ(1-42) ratio diagnostic of AD; however, there is also an urgent need for FTLD-specific biomarkers. These analytes will require validation in large autopsy-confirmed cohorts and face challenges of standardization of within- and between-laboratory sources of error. In addition, CSF biomarkers with prognostic utility and longitudinal study of CSF biomarker levels over the course of disease are also needed. Current goals in the field include identification of analytes that are easily and reliably measured and can be used alone or in a multi-modal approach to provide an accurate prediction of underlying neuropathology for use in clinical trials of disease modifying treatments in FTLD. To achieve these goals it will be of the utmost importance to view neurodegenerative disease, including FTLD, as a clinicopathological entity, rather than exclusively a clinical syndrome.
Collapse
Affiliation(s)
- David J Irwin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Alzheimer's Disease Core Center, Institute on Aging, University of Pennsylvania Philadelphia, PA, USA ; Department of Neurology, Center for Frontotemporal Dementia, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | | | | |
Collapse
|
49
|
Golbe LI. Diagnosis and management of progressive supranuclear palsy. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Progressive supranuclear palsy is one of the rare ‘atypical parkinsonian’ disorders. It is distinguished by its disproportionate postural instability and multiple supranuclear gaze defects emphasizing downgaze limitation. Frontal dementia, bradykinesia, greater rigidity in axial compared with limb muscles, dysarthria and dysphagia also produce major disability, with death after an average of 7 years post-onset. Focal midbrain atrophy, basal ganglia gliosis and iron deposition on MRI assist diagnosis, but present formal diagnostic criteria rely on the history and physical examination of the patient. Experimental biomarkers utilizing cerebrospinal fluid, tau and novel imaging techniques are promising but remain unproven. Unlike Parkinson’s disease, supranuclear palsy usually responds poorly to dopaminergic medication. However, a trial of up to 1200 mg of levodopa per day (with carbidopa) is justified in patients with rigidity and bradykinesia. Amantadine and coenzyme Q-10 may also provide minor symptomatic benefits. Physical measures such as gait assistance and alteration of diet or swallowing technique address the two principal causes of morbidity and mortality in PSP.
Collapse
|
50
|
Hardy J. CSF biomarking for diagnosis and treatment assessment in neurodegeneration. J Neurochem 2012; 123:339-41. [PMID: 22994375 DOI: 10.1111/j.1471-4159.2012.07928.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/16/2012] [Indexed: 11/30/2022]
|