1
|
Jakaria Al-Mujahidy SM, Kryukov K, Ikeo K, Saito K, Uddin ME, Ibn Sina AA. Functional genomic analysis of the isolated potential probiotic Lactobacillus delbrueckii subsp. indicus TY-11 and its comparison with other Lactobacillus delbrueckii strains. Microbiol Spectr 2024; 12:e0347023. [PMID: 38771133 PMCID: PMC11218508 DOI: 10.1128/spectrum.03470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Collapse
Affiliation(s)
- Sk. Md. Jakaria Al-Mujahidy
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kei Saito
- Laboratory of Physics and Cell Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Md. Ekhlas Uddin
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Hernández-Macias S, Comas-Basté O, Jofré A, Bover-Cid S, Latorre-Moratalla ML, Vidal-Carou MC. Growth-Promoting Effect of Cava Lees on Lactic Acid Bacteria Strains: A Potential Revalorization Strategy of a Winery By-Product. Foods 2021; 10:foods10071636. [PMID: 34359506 PMCID: PMC8306662 DOI: 10.3390/foods10071636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The growing trend of circular economy has prompted the design of novel strategies for the revalorization of food industry by-products. Cava lees, a winery by-product consisting of non-viable cells of Saccharomyces cerevisiae rich in β-glucans and mannan-oligosaccharides, can be used as a microbial growth promoter, with potential food safety and health applications. The aim of this study was to assess in vitro the effect of cava lees on the growth of 21 strains of lactic acid bacteria (LAB) species commonly used as starter cultures and/or probiotics. Firstly, 5% of cava lees was selected as the most effective amount for enhancing microbial counts. After screening different LAB, statistically significantly (p < 0.05) higher microbial counts were found in 12 strains as a consequence of cava lees supplementation. Moreover, a greater and faster reduction in pH was observed in most of these strains. The growth-promoting effects of cava lees on LAB strains supports the potential revalorization of this winery by-product, either to improve the safety of fermented products or as a health-promoting prebiotic that may be selectively fermented by probiotic species.
Collapse
Affiliation(s)
- Salvador Hernández-Macias
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Oriol Comas-Basté
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - Anna Jofré
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (A.J.); (S.B.-C.)
| | - Sara Bover-Cid
- Food Safety and Functionality Programme, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain; (A.J.); (S.B.-C.)
| | - M. Luz Latorre-Moratalla
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
| | - M. Carmen Vidal-Carou
- Departament de Nutrició, Ciències de l’Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l’Alimentació, Campus de l’Alimentació de Torribera, Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain; (S.H.-M.); (O.C.-B.); (M.L.L.-M.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA·UB), Universitat de Barcelona (UB), Av. Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
- Xarxa d’Innovació Alimentària (XIA), C/Baldiri Reixac 4, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-031-984
| |
Collapse
|
3
|
Li X, Guo R, Wu X, Liu X, Ai L, Sheng Y, Song Z, Wu Y. Dynamic digestion of tamarind seed polysaccharide: Indigestibility in gastrointestinal simulations and gut microbiota changes in vitro. Carbohydr Polym 2020; 239:116194. [DOI: 10.1016/j.carbpol.2020.116194] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
|
4
|
Yang Y, Li N, Jiang Y, Liu Z, Liu X, Zhao J, Zhang H, Chen W. Short communication: Enzymatic perspective of galactosidases reveals variations in lactose metabolism among Lactococcus lactis strains. J Dairy Sci 2019; 102:6027-6031. [PMID: 31056324 DOI: 10.3168/jds.2018-15973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
Abstract
To date, most studies of lactose utilization have focused on the genetic diversity of lactic acid bacteria or its influence on product quality, but phenotypic evaluation has rarely been based on metabolic characteristics. In the present study, we investigated the growth, acid production, β-galactosidase, and 6-phospho-β-galactosidase activities of 16 Lactococcus lactis strains obtained from various habitats with lactose as the sole carbon source. The 15 L. lactis strains obtained from various habitats exhibited significant differences in growth and acid production characteristics in the de Man, Rogosa, and Sharpe-lactose broth, and 4 strains consumed more lactose when cultured in skim milk than the type strain ATCC 19435. Among these strains, DQHXNQ38-12 mainly produced acetoin and diacetyl when cultured in skim milk, whereas the strains 15M2 and 5G2 produced high levels of acid and formed curd rapidly. We concluded that the use of lactose is necessary for strain adaptation to the dairy niche. Comprehensive studies of lactose use and the fermentation characteristics of L. lactis are of significant importance.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China
| | - Yang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China.
| | - Xiaoming Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Vitellio P, Celano G, Bonfrate L, Gobbetti M, Portincasa P, De Angelis M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2019; 11:E886. [PMID: 31010241 PMCID: PMC6520754 DOI: 10.3390/nu11040886] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Functional gastrointestinal symptoms are frequent, and may be driven by several pathogenic mechanisms. Symptoms may persist in lactose intolerant (LI) patients (i.e., subjects with intestinal lactase deficiency, lactose malabsorption producing symptoms), after a lactose-free diet. Our hypothesis was that probiotic and vitamin B6 treatment may be useful to alleviate symptoms in LI patients through a positive modulation of gut microbial composition and relative metabolism. We aimed to test the efficacy of a novel formulation of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 plus vitamin B6 (ZR) in 23 LI subjects with persistent symptoms during a lactose-free diet. Symptoms, microbiome, and metabolome were measured at baseline and after 30 days in a crossover, randomized, double-blind study of ZR versus placebo (PL). Compared with PL, the administration of probiotics and vitamin B6 significantly decreased bloating (p = 0.028) and ameliorated constipation (p = 0.045). Fecal microbiome differed between ZR and PL. ZR drove the enrichment of several genera involved in lactose digestion including Bifidobacerium. Moreover, the relative abundance of acetic acid, 2-methyl-propanoic acid, nonenal, and indolizine 3-methyl increased, while phenol decreased. Our findings highlight the importance of selected probiotics and vitamin B6 to alleviate symptoms and gut dysbiosis in lactose intolerant patients with persistent functional gastrointestinal symptoms.
Collapse
Affiliation(s)
- Paola Vitellio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, piazza Università, 5, 39100 Bolzano, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
6
|
Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. MICROBIOME 2019; 7:48. [PMID: 30914068 PMCID: PMC6436221 DOI: 10.1186/s40168-019-0662-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The piglets' transition from milk to solid feed induces a succession of bacterial communities, enhancing the hosts' ability to harvest energy from dietary carbohydrates. To reconstruct microbial carbohydrate metabolism in weanling pigs, this study combined 16S rRNA gene sequencing (n = 191) and shotgun metagenomics (n = 72). RESULTS Time and wheat content in feed explained most of the variation of the microbiota as assessed by 16S rRNA gene sequencing in weanling pigs. De novo metagenomic binning reconstructed 360 high-quality genomes that represented 11 prokaryotic and 1 archaeal phylum. Analysis of carbohydrate metabolism in these genomes revealed that starch fermentation is carried out by a consortium of Firmicutes expressing extracellular α-(1 → 4)-glucan branching enzyme (GH13) and Bacteroidetes expressing periplasmic neopullulanase (GH13) and α-glucosidase (GH97). Fructans were degraded by extracellular GH32 enzymes from Bacteriodetes and Lactobacillus. Lactose fermentation by β-galactosidases (GH2 and GH42) was identified in Firmicutes. In conclusion, the assembly of 360 high-quality genomes as the first metagenomic reference for swine intestinal microbiota allowed identification of key microbial contributors to degradation of starch, fructans, and lactose. CONCLUSIONS Microbial consortia that are responsible for degradation of these glycans differ substantially from the microbial consortia that degrade the same glycans in humans. Our study thus enables improvement of feeding models with higher feed efficiency and better pathogen control for weanling pigs.
Collapse
Affiliation(s)
- Weilan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, Alberta, T6G 2P5, Canada
- State Key Lab of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huifeng Hu
- State Key Lab of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Jinshui Zheng
- State Key Lab of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Centre, Edmonton, Alberta, T6G 2P5, Canada.
- Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
Briggiler Marcó M, Zacarías MF, Vinderola G, Reinheimer JA, Quiberoni A. Biological and probiotic characterisation of spontaneous phage-resistant mutants of Lactobacillus plantarum. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Identification of Five Phospho-β-glycosidases fromLactobacillus gasseriATCC33323TCultured in Lactose Medium. Biosci Biotechnol Biochem 2014; 72:1954-7. [DOI: 10.1271/bbb.80089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Flores R, Shi J, Gail MH, Ravel J, Goedert JJ. Assessment of the human faecal microbiota: I. Measurement and reproducibility of selected enzymatic activities. Eur J Clin Invest 2012; 42:848-54. [PMID: 22409163 PMCID: PMC3399928 DOI: 10.1111/j.1365-2362.2012.02660.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The intestinal microbial community has major effects on human health, but optimal research methods are unsettled. To facilitate epidemiologic and clinical research, we sought to optimize conditions and to assess reproducibility of selected core functions of the distal gut microbiota, β-glucuronidase and β-glucosidase bioactivities. METHODS AND RESULTS A colorimetric kinetic method was optimized and used to quantify activities of β-glucuronidase and β-glucosidase in human faeces. Enzyme detection was optimal with neutral pH, snap freezing in liquid nitrogen and rapid thawing to 37 °C before protein extraction. Enzymatic stability was assessed by delayed freezing for 2-48 h to mimic field settings. Activities decayed approximately 20% within 2 h and 40% within 4 h at room temperature. To formally assess reproducibility, 51 volunteers (25 men; mean age 39) used two devices to self-collect and rapidly chill four replicates of a stool. Devices were compared for mean enzymatic activities and intraclass correlation coefficients (ICC) in paired replicates of the self-collected specimens. Reproducibility was excellent with both devices for β-glucuronidase (ICC 0·92). The larger collection device had significantly higher reproducibility for β-glucosidase (ICC 0·92 vs. 0·76, P < 0·0001) and higher mean activities for both enzymes (P < 0·0001). CONCLUSIONS Optimal measurement of these core activities of the microbiota required a sufficient quantity of rapidly chilled or frozen specimens collected in phosphate buffered saline at pH7·0. Application of these methods to clinical and epidemiologic research could provide insights on how the intestinal microbiota affects human health.
Collapse
Affiliation(s)
- Roberto Flores
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.
| | | | | | | | | |
Collapse
|
10
|
Honda H, Nagaoka S, Kawai Y, Kemperman R, Kok J, Yamazaki Y, Tateno Y, Kitazawa H, Saito T. Purification and characterization of two phospho-β-galactosidases, LacG1 and LacG2, from Lactobacillus gasseri ATCC33323(T). J GEN APPL MICROBIOL 2012; 58:11-7. [PMID: 22449746 DOI: 10.2323/jgam.58.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lactobacillus gasseri ATCC33323(T) expresses four enzymes showing phospho-β-galactosidase activity (LacG1, LacG2, Pbg1 and Pbg2). We previously reported the purification and characterization of two phospho-β-galactosidases (Pbg1 and Pbg2) from Lactobacillus gasseri JCM1031 cultured in lactose medium. Here we aimed to characterize LacG1 and LacG2, and classify the four enzymes into 'phospho-β-galactosidase' or 'phospho-β-glucosidase.' LacG1 and recombinant LacG2 (rLacG2), from Lb. gasseri ATCC33323(T), were purified to homogeneity using column chromatography. Kinetic experiments were performed using sugar substrates, o-nitrophenyl-β-D-galactopyranoside 6-phosphate (ONPGal-6P) and o-nitrophenyl-β-D-glucopyranoside 6-phosphate (ONPGlc-6P), synthesized in our laboratory. LacG1 and rLacG2 exhibited high k(cat)/K(m) values for ONPGal-6P as compared with Pbg1 and Pbg2. The V(max) values for ONPGal-6P were higher than phospho-β-galactosidases previously purified and characterized from several lactic acid bacteria. A phylogenetic tree analysis showed that LacG1 and LacG2 belong to the phospho-β-galactosidase cluster and Pbg1 and Pbg2 belong to the phospho-β-glucosidase cluster. Our data suggest two phospho-β-galactosidase, LacG1 and LacG2, are the primary enzymes for lactose utilization in Lb. gasseri ATCC33323(T). We propose a reclassification of Pbg1 and Pbg2 as phospho-β-glucosidase.
Collapse
Affiliation(s)
- Hiroyuki Honda
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Francl AL, Hoeflinger JL, Miller MJ. Identification of lactose phosphotransferase systems in Lactobacillus gasseri ATCC 33323 required for lactose utilization. Microbiology (Reading) 2012; 158:944-952. [DOI: 10.1099/mic.0.052928-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alyssa L. Francl
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L. Hoeflinger
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Influence of lactose and lactate on growth and β-galactosidase activity of potential probiotic Propionibacterium acidipropionici. Anaerobe 2012; 18:25-30. [DOI: 10.1016/j.anaerobe.2011.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
|
13
|
Iqbal S, Nguyen TH, Nguyen HA, Nguyen TT, Maischberger T, Kittl R, Haltrich D. Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3803-3811. [PMID: 21405014 DOI: 10.1021/jf103832q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The lacLM genes from Lactobacillus sakei Lb790, encoding a heterodimeric β-galactosidase that belongs to glycoside hydrolase family GH2, were cloned and heterologously expressed in Escherichia coli . Subsequently, the recombinant β-galactosidase LacLM was purified to apparent homogeneity and characterized. The enzyme is a β-galactosidase with narrow substrate specificity because o-nitrophenyl-β-D-galactopyranoside (oNPG) was efficiently hydrolyzed, whereas various structurally related oNP analogues were not. The K(m) and k(cat) values for oNPG and lactose were 0.6 mM and 180 s(-1) and 20 mM and 43 s(-1), respectively. The enzyme is inhibited competitively by its two end-products D-galactose and D-glucose (K(i) values of 180 and 475 mM, respectively). As judged by the ratio of the inhibition constant to the Michaelis constant, K(i)/K(m), this inhibition is only very moderate and much less pronounced than for other microbial β-galactosidases. β-Galactosidase from L. sakei possesses high transgalactosylation activity and was used for the synthesis of galacto-oligosaccharides (GalOS), employing lactose at a concentration of 215 g/L. The maximum GalOS yield was 41% (w/w) of total sugars at 77% lactose conversion and contained mainly non-lactose disaccharides, trisaccharides, and tetrasaccharides with approximately 38, 57, and 5% of total GalOS formed, respectively. The enzyme showed a strong preference for the formation of β-(1→6)-linked transgalactosylation products, whereas β-(1→3)-linked compounds were formed to a lesser extent and β-(1→4)-linked reaction products could not be detected.
Collapse
Affiliation(s)
- Sanaullah Iqbal
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Maischberger T, Leitner E, Nitisinprasert S, Juajun O, Yamabhai M, Nguyen TH, Haltrich D. Beta-galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol J 2010; 5:838-47. [PMID: 20669255 DOI: 10.1002/biot.201000126] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel heterodimeric beta-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 U(oNPG)/mg protein. The K(m), k(cat) and k(cat)/K(m) values for lactose and o-nitrophenyl-beta-D-galactopyranoside (oNPG) were 38 mM, 20 s(-1), 530 M(-1).s(-1) and 1.67 mM, 540 s(-1), 325 000 M(-1).s(-1), respectively. The temperature optimum of beta-galactosidase activity was 60-65 degrees C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal beta-galactosidases. Mg(2+) ions enhanced both activity and stability significantly. L. pentosus beta-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of beta-(1-->3) and beta-(1-->6) linkages, and the main transgalactosylation products identified were the disaccharides beta-D-Galp-(1-->6)-D-Glc, beta-D-Galp-(1-->3)-D-Glc, beta-D-Galp-(1-->6)-D-Gal, beta-D-Galp-(1-->3)-D-Gal, and the trisaccharides beta-D-Galp-(1-->3)-D-Lac, beta-D-Galp-(1-->6)-D-Lac.
Collapse
Affiliation(s)
- Thomas Maischberger
- BOKU University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Fakhry S, Manzo N, D'Apuzzo E, Pietrini L, Sorrentini I, Ricca E, De Felice M, Baccigalupi L. Characterization of intestinal bacteria tightly bound to the human ileal epithelium. Res Microbiol 2009; 160:817-23. [DOI: 10.1016/j.resmic.2009.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/07/2009] [Accepted: 09/09/2009] [Indexed: 12/22/2022]
|