1
|
Tereshko Y, Dal Bello S, Lettieri C, Belgrado E, Gigli GL, Merlino G, Valente M. Botulinum Toxin Type A for Trigeminal Neuralgia: A Comprehensive Literature Review. Toxins (Basel) 2024; 16:500. [PMID: 39591255 PMCID: PMC11597931 DOI: 10.3390/toxins16110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Trigeminal neuralgia is a neuropathic pain syndrome responsive to botulinum toxin type A therapy. This review had the goal of analyzing the different studies published from 2002 to January 2024 to better define the techniques and the types of botulinum toxin type A used, the doses, the injection routes, and the different populations of trigeminal neuralgia patients treated. We considered only articles in which the therapy was administered to humans to treat trigeminal neuralgia. Case reports, case series, open-label, retrospective, and RCT studies were considered. The research was conducted on MEDLINE and the keywords included (trigeminal neuralgia) and (botulinum). Thirty-five articles were considered suitable for this review. Botulinum toxin type A was shown to be an effective therapy for TN pain in all the articles analyzed, albeit there is a lack of standardization in methods and outcomes. The techniques, the doses, and the injection approaches were very heterogeneous among the studies. Only two botulinum toxin type A formulations have been used in this setting: onabotulinumtoxinA and lanbotulinumtoxinA. There were 300 patients treated with onabotulinumtoxinA and 760 treated with lanbotulinumtoxinA overall (in 42 patients, the formulation was not specified). The distinction between etiological and clinical types of TN has been made by only a small portion of the studies. The main adverse event was transient facial asymmetry. Botulinum toxin type A is indeed a promising therapy that is clearly effective for trigeminal neuralgia. OnabotulinumtoxinA is the most common formulation used in Western countries; however, the meager sample of TN patients treated, and the lack of standardization are not sufficient for this therapy to be approved by the FDA or EMA. Indeed, more studies with standardized methods and larger samples are needed for this purpose.
Collapse
Affiliation(s)
- Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; (Y.T.); (S.D.B.); (C.L.); (G.M.); (M.V.)
| | - Simone Dal Bello
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; (Y.T.); (S.D.B.); (C.L.); (G.M.); (M.V.)
| | - Christian Lettieri
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; (Y.T.); (S.D.B.); (C.L.); (G.M.); (M.V.)
| | - Enrico Belgrado
- Neurology Unit, Udine University Hospital, Piazzale Santa Maria Della Misericordia 15, 33100 Udine, Italy;
| | - Gian Luigi Gigli
- Department of Medicine (DAME), University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Giovanni Merlino
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; (Y.T.); (S.D.B.); (C.L.); (G.M.); (M.V.)
- Department of Medicine (DAME), University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy; (Y.T.); (S.D.B.); (C.L.); (G.M.); (M.V.)
- Department of Medicine (DAME), University of Udine, Via Colugna 50, 33100 Udine, Italy
| |
Collapse
|
2
|
Kim YM, Son JY, Ahn DK. Botulinum toxin type A is a potential therapeutic drug for chronic orofacial pain. J Oral Biosci 2024; 66:496-503. [PMID: 38908515 DOI: 10.1016/j.job.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Botulinum toxin type A (BTX-A), produced by the gram-positive anaerobic bacterium Clostridium botulinum, acts by cleaving synaptosome-associated protein-25 (SNAP-25), an essential component of the presynaptic neuronal membrane that is necessary for fusion with the membrane proteins of neurotransmitter-containing vesicles. Recent studies have highlighted the efficacy of BTX-A in treating chronic pain conditions, including lower back pain, chronic neck pain, neuropathic pain, and trigeminal neuralgia, particularly when patients are unresponsive to traditional painkillers. This review focuses on the analgesic effects of BTX-A in various chronic pain conditions, with a particular emphasis on the orofacial region. HIGHLIGHT This review focuses on the mechanisms by which BTX-A induces analgesia in patients with inflammatory and temporomandibular joint pain. This review also highlights the fact that BTX-A can effectively manage neuropathic pain and trigeminal neuralgia, which are difficult-to-treat chronic pain conditions. Herein, we present a comprehensive assessment of the central analgesic effects of BTX-A and a discussion of its various applications in clinical dental practice. CONCLUSION BTX-A is an approved treatment option for various chronic pain conditions. Although there is evidence of axonal transport of BTX-A from peripheral to central endings in motor neurons, the precise mechanism underlying its pain-modulating effects remains unclear. This review discusses the evidence supporting the effectiveness of BTX-A in controlling chronic pain conditions in the orofacial region. BTX-A is a promising therapeutic agent for treating pain conditions that do not respond to conventional analgesics.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
3
|
Hosseindoost S, Inanloo SH, Pestehei SK, Rahimi M, Yekta RA, Khajehnasiri A, Rad MA, Majedi H, Dehpour AR. Cellular and molecular mechanisms involved in the analgesic effects of botulinum neurotoxin: A literature review. Drug Dev Res 2024; 85:e22177. [PMID: 38528637 DOI: 10.1002/ddr.22177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Botulinum neurotoxins (BoNTs), derived from Clostridium botulinum, have been employed to treat a range of central and peripheral neurological disease. Some studies indicate that BoNT may be beneficial for pain conditions as well. It has been hypothesized that BoNTs may exert their analgesic effects by preventing the release of pain-related neurotransmitters and neuroinflammatory agents from sensory nerve endings, suppressing glial activation, and inhibiting the transmission of pain-related receptors to the neuronal cell membrane. In addition, there is evidence to suggest that the central analgesic effects of BoNTs are mediated through their retrograde axonal transport. The purpose of this review is to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions. Most of the studies reviewed in this article were conducted using BoNT/A. The PubMed database was searched from 1995 to December 2022 to identify relevant literature.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Khalil Pestehei
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Atef Yekta
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Khajehnasiri
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anesthesiology, Critical Care, and Pain, Dr. Ali Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hosseindoost S, Askari Rad M, Inanloo SH, Rahimi M, Dehghan S, Orandi A, Dehpour AR, Majedi H. The analgesic effects of botulinum neurotoxin by modulating pain-related receptors; A literature review. Mol Pain 2024; 20:17448069241275099. [PMID: 39093638 PMCID: PMC11339750 DOI: 10.1177/17448069241275099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, have been used for the treatment of various central and peripheral neurological conditions. Recent studies have suggested that BoNTs may also have a beneficial effect on pain conditions. It has been hypothesized that one of the mechanisms underlying BoNTs' analgesic effects is the inhibition of pain-related receptors' transmission to the neuronal cell membrane. BoNT application disrupts the integration of synaptic vesicles with the cellular membrane, which is responsible for transporting various receptors, including pain receptors such as TRP channels, calcium channels, sodium channels, purinergic receptors, neurokinin-1 receptors, and glutamate receptors. BoNT also modulates the opioidergic system and the GABAergic system, both of which are involved in the pain process. Understanding the cellular and molecular mechanisms underlying these effects can provide valuable insights for the development of novel therapeutic approaches for pain management. This review aims to summarize the experimental evidence of the analgesic functions of BoNTs and discuss the cellular and molecular mechanisms by which they can act on pain conditions by inhibiting the transmission of pain-related receptors.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Askari Rad
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Inanloo
- Department of Urology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Rahimi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Orandi
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Majedi
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care, and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Okroša AD, Munoz-Lora V, Matak I, Bach-Rojecky L, Kalinichev M, Lacković Z. The safety of botulinum neurotoxin type A's intraarticular application in experimental animals. Toxicon X 2023; 18:100155. [PMID: 37096009 PMCID: PMC10121478 DOI: 10.1016/j.toxcx.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In vivo studies of botulinum neurotoxin type A (BoNT-A) enabled characterization of its activity in the nociceptive sensory system separate from its preferred action in motor and autonomic nerve terminals. However, in the recent rodent studies of arthritic pain which employed high intra-articular (i.a.) doses (expressed as a total number of units (U) per animal or U/kg), possible systemic effects have not been conclusively excluded. Herein we assessed the effect of two pharmaceutical preparations, abobotulinumtoxinA (aboBoNT-A, 10, 20, and 40 U/kg corresponding to 0.05, 0.11, and 0.22 ng/kg neurotoxin) and onabotulinumtoxinA (onaBoNT-A, 10 and 20 U/kg corresponding to 0.09 and 0.18 ng/kg, respectively) injected into the rat knee, on safety-relevant readouts: digit abduction, motor performance and weight gain during 14 days post-treatment. The i. a. toxin produced dose-dependent impairment of the toe spreading reflex and rotarod performance, which was moderate and transient after 10 U/kg onaBoNT-A and ≤20 U/kg aboBoNT-A doses, and severe and long-lasting (examined up to 14 days) after ≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A. In addition, lower toxin doses prevented the normal weight gain compared to controls, while higher doses induced marked weight loss (≥20 U/kg of onaBoNT-A and 40 U/kg aboBoNT-A). Commonly employed BoNT-A formulations, depending on the doses, cause local relaxation of the surrounding muscles and systemic adverse effects in rats. Thus, to evade possible toxin unwanted local or systemic spread, careful dosing and motor testing should be mandatory in preclinical behavioral studies, irrespective of the sites and doses of toxin application.
Collapse
|
6
|
Biscetti L, De Vanna G, Cresta E, Bellotti A, Corbelli I, Letizia Cupini M, Calabresi P, Sarchielli P. Immunological findings in patients with migraine and other primary headaches: a narrative review. Clin Exp Immunol 2022; 207:11-26. [PMID: 35020858 PMCID: PMC8802184 DOI: 10.1093/cei/uxab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Experimental findings suggest an involvement of neuroinflammatory mechanisms in the pathophysiology of migraine. Specifically, preclinical models of migraine have emphasized the role of neuroinflammation following the activation of the trigeminal pathway at several peripheral and central sites including dural vessels, the trigeminal ganglion, and the trigeminal nucleus caudalis. The evidence of an induction of inflammatory events in migraine pathophysiological mechanisms has prompted researchers to investigate the human leukocyte antigen (HLA) phenotypes as well as cytokine genetic polymorphisms in order to verify their potential relationship with migraine risk and severity. Furthermore, the role of neuroinflammation in migraine seems to be supported by evidence of an increase in pro-inflammatory cytokines, both ictally and interictally, together with the prevalence of Th1 lymphocytes and a reduction in regulatory lymphocyte subsets in peripheral blood of migraineurs. Cytokine profiles of cluster headache (CH) patients and those of tension-type headache patients further suggest an immunological dysregulation in the pathophysiology of these primary headaches, although evidence is weaker than for migraine. The present review summarizes available findings to date from genetic and biomarker studies that have explored the role of inflammation in primary headaches.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS-INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Bellotti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Feng X, Xiong D, Li J, Xiao L, Xie W, Qiu Y. Direct Inhibition of Microglia Activation by Pretreatment With Botulinum Neurotoxin A for the Prevention of Neuropathic Pain. Front Neurosci 2021; 15:760403. [PMID: 34949981 PMCID: PMC8688716 DOI: 10.3389/fnins.2021.760403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Peripheral injection of botulinum neurotoxin A (BoNT/A) has been demonstrated to have a long-term analgesic effect in treating neuropathic pain. Around peripheral nerves, BoNT/A is taken up by primary afferent neurons and inhibits neuropeptide release. Moreover, BoNT/A could also be retrogradely transported to the spinal cord. Recent studies have suggested that BoNT/A could attenuates neuropathic pain by inhibiting the activation of spinal glial cells. However, it remains unclear whether BoNT/A directly interacts with these glial cells or via their interaction with neurons. Our aim here is to determine the direct effect of BoNT/A on primary microglia and astrocytes. We show that BoNT/A pretreatment significantly inhibits lipopolysaccharide (LPS) -induced activation and pro-inflammatory cytokine release in primary microglia (1 U/mL BoNT/A in medium), while it has no effect on the activation of astrocytes (2 U/mL BoNT/A in medium). Moreover, a single intrathecal pre-administration of a low dose of BoNT/A (1 U/kg) significantly prohibited the partial sciatic nerve ligation (PSNL)- induced upregulation of pro-inflammatory cytokines in both the spinal cord dorsal horn and dorsal root ganglions (DRGs), which in turn prevented the PSNL-induced mechanical allodynia and thermal hyperalgesia. In conclusion, our results indicate that BoNT/A pretreatment prevents PSNL-induced neuropathic pain by direct inhibition of spinal microglia activation.
Collapse
Affiliation(s)
- Xiaona Feng
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Donglin Xiong
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jie Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lizu Xiao
- Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Weijiao Xie
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yunhai Qiu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Municipal Key Laboratory for Pain Medicine, Department of Pain Medicine, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
8
|
Affiliation(s)
- Haya S. Raef
- Tufts University School of Medicine, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sarina B. Elmariah
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Leira Y, Domínguez C, Ameijeira P, López-Arias E, Ávila-Gómez P, Pérez-Mato M, Sobrino T, Campos F, Blanco J, Leira R. Mild systemic inflammation enhances response to OnabotulinumtoxinA in chronic migraineurs. Sci Rep 2021; 11:1092. [PMID: 33441852 PMCID: PMC7806961 DOI: 10.1038/s41598-020-80283-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
The anti-inflammatory effect of OnabotulinumtoxinA (OnabotA) has been a matter of discussion for many years. In chronic migraine, however, increased pro-inflammatory state is associated with good response to OnabotA. We aimed to investigate whether a mild systemic inflammatory state elicited by a common oral infection (periodontitis) could enhance treatment response to OnabotA. In this study, we included 61 chronic migraineurs otherwise healthy treated with OnabotA of which 7 were poor responders and 54 good responders. Before receiving OnabotA therapy, all participants underwent a full-mouth periodontal examination and blood samples were collected to determine serum levels of calcitonin gene-related peptide (CGRP), interleukin 6 (IL-6), IL-10 and high sensitivity C-reactive protein (hs-CRP). Periodontitis was present in 70.4% of responders and 28.6% of non-responders (P = 0.042). Responders showed greater levels of inflammation than non-responders (IL-6: 15.3 ± 8.7 vs. 9.2 ± 4.7 ng/mL, P = 0.016; CGRP: 18.8 ± 7.6 vs. 13.0 ± 3.1 pg/mL, P = 0.002; and hs-CRP: 3.9 ± 6.6 vs. 0.9 ± 0.8 mg/L, P = 0.003). A linear positive correlation was found between the amount of periodontal tissue inflamed in the oral cavity and markers of inflammation (IL-6: r = 0.270, P = 0.035; CGRP: r = 0.325, P = 0.011; and hs-CRP: r = 0.370, P = 0.003). This report shows that in presence of elevated systemic inflammatory markers related to periodontitis, OnabotA seems to reduce migraine attacks. The changes of scheduled inflammatory parameters after treatment and subsequent assessment during an adequate period still need to be done.
Collapse
Affiliation(s)
- Yago Leira
- Periodontology Unit, UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK. .,Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain. .,Medical-Surgical Dentistry (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain. .,Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Clara Domínguez
- Department of Neurology, Headache Unit, University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Ameijeira
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre, University College London, 256 Gray's Inn Road, London, WC1X 8LD, UK.,Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Rogelio Leira
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Neurology, Headache Unit, University Clinical Hospital, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Lovrenčić L, Matak I, Lacković Z. Association of Intranasal and Neurogenic Dural Inflammation in Experimental Acute Rhinosinusitis. Front Pharmacol 2020; 11:586037. [PMID: 33178025 PMCID: PMC7593566 DOI: 10.3389/fphar.2020.586037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background Nasal cavity and sinus disorders, such as allergic rhinitis, rhinosinusitis, or certain anatomical defects, are often associated with transient or ongoing headaches. On the other hand, migraine headache patients often exhibit pain referral over the area of nasal sinuses and typical nasal autonomic symptoms involving congestion and rhinorrhea. Mechanism for convergence of nasal or sinus disorders and headaches is unknown. Herein, we examined the association of sino-nasal inflammatory pain with common preclinical indicators of trigeminovascular system activation such as dural neurogenic inflammation (DNI) and neuronal activation in brainstem nociceptive nuclei. Methods Nasal and paranasal cavity inflammation and pain was induced by formalin (2.5%/10 μl) or capsaicin (0.1%/10 μl) instillation at the border of maxillary sinus and nasal cavity in rats. Quantification of inflammation of nasal mucosa and DNI was performed by spectrophotometric measurement of Evans blue - plasma protein complex extravasation. Pain behavior was quantified by rat grimace scale (RGS). Nociceptive neuronal activation in caudal part of spinal trigeminal nucleus (TNC) was assessed by c-Fos protein immunohistochemistry. Results Capsaicin and formalin administered into rat nasal cavity increased plasma protein extravasation in the nasal mucosa and dura mater. Intensity of plasma protein extravasation in nasal mucosa correlated with extravasation in dura. Similarly, facial pain intensity correlated with nociceptive neuronal c-Fos activation in the TNC. Conclusion Present data show that inflammatory stimuli in deep nasal and paranasal structures provoke distant intracranial changes related to trigeminovascular system activation. We hypothesize that this phenomenon could explain overlapping symptoms and comorbidity of nasal/paranasal inflammatory disorders with migraine.
Collapse
Affiliation(s)
- Luka Lovrenčić
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
11
|
Egeo G, Fofi L, Barbanti P. Botulinum Neurotoxin for the Treatment of Neuropathic Pain. Front Neurol 2020; 11:716. [PMID: 32849195 PMCID: PMC7431775 DOI: 10.3389/fneur.2020.00716] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxin is widely used for the treatment of central and peripherical neurological conditions. Initially used to treat strabismus, over the years its use has been expanded also to spasticity and other neurological disorders. This review summarizes the evidence from the published literature regarding its effect on neuropathic pain. Almost all investigations were performed using onabotulinum toxin type A (BoNT/A). Most studies provided positive results, even though toxin formulation, dose, dilution, injection techniques, and sites are heterogeneous across studies. Future larger, high-quality, specifically designed clinical trials are warranted to confirm botulinum neurotoxin efficacy in neuropathic pain.
Collapse
Affiliation(s)
- Gabriella Egeo
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Luisa Fofi
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - Piero Barbanti
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University, Rome, Italy
| |
Collapse
|
12
|
Reddy AG, Dick BP, Natale C, Akula KP, Yousif A, Hellstrom WJG. Application of Botulinum Neurotoxin in Male Sexual Dysfunction: Where Are We Now? Sex Med Rev 2020; 9:320-330. [PMID: 32641225 DOI: 10.1016/j.sxmr.2020.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Botulinum neurotoxin (BoNT) is a recognized therapeutic agent of modern medical care, routinely used to treat medical conditions affecting a variety of organ systems including the musculoskeletal, integumentary, and urological domains. Ongoing research is exploring BoNT's potential role as a therapeutic agent for a variety of male sexual pathologies. OBJECTIVE To review and analyze the literature regarding BoNT as a treatment option for male sexual dysfunction. METHODS A PubMed search was performed for English-language articles in peer-reviewed journals between 1970 and 2019 (with one article from 1897). Relevant articles referenced within these texts were also included. One article did not have an accompanied English full-text available. The following search terms were used: "Botox", "Botulinum toxin", "Botulinum toxin A", "Onabotulinum A", "Abobutlinum A", "BoNT", "BoNT-A", "Male sexual health", "Male sexual pathology", "Peyronie's disease", "Premature ejaculation", "Scrotal Pain", "Penile Retraction", "Scrotox", "Erectile Dysfunction", and "Botox in Urology". RESULTS There is interest in the potential role of BoNT in the treatment of male sexual pathologies. We identified studies that used BoNT to treat chronic scrotal content pain, premature ejaculation, erectile dysfunction, Peyronie's disease, penile retraction, and more. However, despite preclinical/clinical data indicating some potential efficacy and safety in these settings, a lack of robust clinical trial data has resulted in no current Food and Drug Administration-approved indications for the use of BoNT in the treatment of male sexual pathology. As a result, much of the current use of BoNT by today's providers is "off-label," and ongoing clinical trials aim to further elucidate the potential role of this therapeutic agent. CONCLUSION Current data suggest that BoNT could have a potential role as a treatment option for certain types of male sexual pathologies. However, more randomized controlled trial data regarding its long-term safety and efficacy are necessary before a widespread clinical adoption can take place. Reddy AG, Dick BP, Natale C, et al. Application of Botulinum Neurotoxin in Male Sexual Dysfunction: Where Are We Now?. J Sex Med 2021;9:320-330.
Collapse
Affiliation(s)
- Amit G Reddy
- Department of Urology, Tulane University School of Medicine, New Orleans, USA
| | - Brian P Dick
- Department of Urology, Tulane University School of Medicine, New Orleans, USA
| | - Caleb Natale
- Department of Urology, Tulane University School of Medicine, New Orleans, USA
| | - Kole P Akula
- Department of Urology, Tulane University School of Medicine, New Orleans, USA
| | - Ayad Yousif
- Department of Urology, Tulane University School of Medicine, New Orleans, USA
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, USA.
| |
Collapse
|
13
|
New analgesic: Focus on botulinum toxin. Toxicon 2020; 179:1-7. [PMID: 32174507 DOI: 10.1016/j.toxicon.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/17/2023]
Abstract
In 2010, Kissin concluded pessimistically that of the 59 new drugs introduced in the fifty-year period between 1960 and 2009 and still in use, only seven had new molecular targets. Of these, only one, sumatriptan, was effective enough to lead to the introduction of multiple drugs targeting the same target molecules (triptans) (Kissin, 2010). Morphine and acetylsalicylic acid (aspirin), introduced for the treatment of pain more than a century ago, continue to dominate biomedical publications despite their limited effectiveness in many areas (e.g., neuropathic pain) and serious adverse effects. Today, are we really closer to ideal analgesics that would work hard enough, long enough, and did not have unwanted side effects? The purpose of the present article is to analyze where we are now. Several drugs, like long-acting opioids or botulinum toxins open some hope. Advantage of botulinum toxin A is unique duration of action (months). New discoveries showed that after peripheral application botulinum toxin by axonal transport reaches the CNS. Major analgesic mechanism of action seems to be of central origin. Will botulinum toxin in the CNS bring new indications and or/adverse effects? Much more basic and clinical research should be in front of us. Although relatively safe as a drug, botulinum toxin is not without adverse effect. Policy makers, clinicians and all those applying botulinum toxin should be aware of that. Unfortunately the life without the pain is still not possible.
Collapse
|
14
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
15
|
Matak I, Tékus V, Bölcskei K, Lacković Z, Helyes Z. Involvement of substance P in the antinociceptive effect of botulinum toxin type A: Evidence from knockout mice. Neuroscience 2017; 358:137-145. [DOI: 10.1016/j.neuroscience.2017.06.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
|
16
|
Park J, Park HJ. Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins (Basel) 2017; 9:E260. [PMID: 28837075 PMCID: PMC5618193 DOI: 10.3390/toxins9090260] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin (BoNT) has been used as a treatment for excessive muscle stiffness, spasticity, and dystonia. BoNT for approximately 40 years, and has recently been used to treat various types of neuropathic pain. The mechanism by which BoNT acts on neuropathic pain involves inhibiting the release of inflammatory mediators and peripheral neurotransmitters from sensory nerves. Recent journals have demonstrated that BoNT is effective for neuropathic pain, such as postherpetic neuralgia, trigeminal neuralgia, and peripheral neuralgia. The purpose of this review is to summarize the experimental and clinical evidence of the mechanism by which BoNT acts on various types of neuropathic pain and describe why BoNT can be applied as treatment. The PubMed database was searched from 1988 to May 2017. Recent studies have demonstrated that BoNT injections are effective treatments for post-herpetic neuralgia, diabetic neuropathy, trigeminal neuralgia, and intractable neuropathic pain, such as poststroke pain and spinal cord injury.
Collapse
Affiliation(s)
- JungHyun Park
- Department of Anaesthesiology & Pain Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea.
| | - Hue Jung Park
- Department of Anaesthesiology & Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
17
|
Abstract
BiTox attenuated A-nociceptor-mediated mechanosensitivity in rat models of chronic pain. Plasma extravasation and keratinocyte proliferation were also inhibited but C-fiber nociception was not impaired. Local injections of botulinum toxins have been reported to be useful not only for the treatment of peripheral neuropathic pain and migraine but also to cause long-lasting muscle paralysis, a potentially serious side effect. Recently, a botulinum A-based molecule (“BiTox”) has been synthesized that retains neuronal silencing capacity without triggering muscle paralysis. In this study, we examined whether BiTox delivered peripherally was able to reduce or prevent the increased nociceptive sensitivity found in animal models of inflammatory, surgical, and neuropathic pain. Plasma extravasation and edema were also measured as well as keratinocyte proliferation. No motor deficits were seen and acute thermal and mechanical nociceptive thresholds were unimpaired by BiTox injections. We found reduced plasma extravasation and inflammatory edema as well as lower levels of keratinocyte proliferation in cutaneous tissue after local BiTox injection. However, we found no evidence that BiTox was transported to the dorsal root ganglia or dorsal horn and no deficits in formalin-elicited behaviors or capsaicin or formalin-induced c-Fos expression within the dorsal horn. In contrast, Bitox treatment strongly reduced A-nociceptor-mediated secondary mechanical hyperalgesia associated with either complete Freund’s adjuvant (CFA)-induced joint inflammation or capsaicin injection and the hypersensitivity associated with spared nerve injury. These results imply that although local release of neuromodulators from C-fibers was inhibited by BiTox injection, C-nociceptive signaling function was not impaired. Taken together with recent clinical data the results suggest that BiTox should be considered for treatment of pain conditions in which A-nociceptors are thought to play a significant role.
Collapse
|
18
|
Matak I, Lacković Z, Relja M. Botulinum toxin type A in motor nervous system: unexplained observations and new challenges. J Neural Transm (Vienna) 2016; 123:1415-1421. [PMID: 27586162 DOI: 10.1007/s00702-016-1611-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022]
Abstract
In the motor system, botulinum toxin type A (BoNT/A) actions were classically attributed to its well-known peripheral anticholinergic actions in neuromuscular junctions. However, the enzymatic activity of BoNT/A, assessed by the detection of cleaved synaptosomal-associated protein 25 (SNAP-25), was recently detected in motor and sensory regions of the brainstem and spinal cord after toxin peripheral injection in rodents. In sensory regions, the function of BoNT/A activity is associated with its antinociceptive effects, while in motor regions we only know that BoNT/A activity is present. Is it possible that BoNT/A presence in central motor nuclei is without any function? In this brief review, we analyze this question. Limited data available in the literature warrant further investigations of BoNT/A actions in motor nervous system.
Collapse
Affiliation(s)
- I Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia.
| | - Z Lacković
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000, Zagreb, Croatia
| | - M Relja
- Department of Neurology, Movement Disorders Centre, Clinical Medical Centre, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
19
|
Drinovac Vlah V, Bach-Rojecky L, Lacković Z. Antinociceptive action of botulinum toxin type A in carrageenan-induced mirror pain. J Neural Transm (Vienna) 2016; 123:1403-1413. [DOI: 10.1007/s00702-016-1605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
|
20
|
Sikandar S, Gustavsson Y, Marino MJ, Dickenson AH, Yaksh TL, Sorkin LS, Ramachandran R. Effects of intraplantar botulinum toxin-B on carrageenan-induced changes in nociception and spinal phosphorylation of GluA1 and Akt. Eur J Neurosci 2016; 44:1714-22. [PMID: 27108664 DOI: 10.1111/ejn.13261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
Increasing evidence suggests that botulinum neurotoxins (BoNTs) delivered into the skin and muscle in certain human and animal pain states may exert antinociceptive efficacy though their uptake and transport to central afferent terminals. Cleavage of soluble N-methylaleimide-sensitive attachment protein receptor by BoNTs can impede vesicular mediated neurotransmitter release as well as transport/insertion of channel/receptor subunits into plasma membranes, an effect that can reduce activity-evoked facilitation. Here, we explored the effects of intraplantar botulinum toxin- B (BoNT-B) on peripheral inflammation and spinal nociceptive processing in an inflammatory model of pain. C57BL/6 mice (male) received unilateral intraplantar BoNT (1 U, 30 μL) or saline prior to intraplantar carrageenan (20 μL, 2%) or intrathecal N-methyl-D-aspartate (NMDA), substance P or saline (5 μL). Intraplantar carrageenan resulted in edema and mechanical allodynia in the injected paw and increased phosphorylation of a glutamate subunit (pGluA1ser845) and a serine/threonine-specific protein kinase (pAktser473) in spinal dorsal horn along with an increased incidence of spinal c-Fos positive cells. Pre-treatment with intraplantar BoNT-B reduced carrageenan evoked: (i) allodynia, but not edema; (ii) pGluA1 and pAkt and (iii) c-Fos expression. Further, intrathecal NMDA and substance P each increased dorsal horn levels of pGluA1 and pAkt. Intraplantar BoNT-B inhibited NMDA, but not substance P evoked phosphorylation of GluA1 and Akt. These results suggest that intraplantar toxin is transported centrally to block spinal activation and prevent phosphorylation of a glutamate receptor subunit and a kinase, which otherwise contribute to facilitated states.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Wolfson Inst for Biomedical Research, University College London, London, UK
| | | | - Marc J Marino
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Linda S Sorkin
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Roshni Ramachandran
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
Lamarre NS, Bjorling DE. Treatment of painful bladder syndrome/interstitial cystitis with botulinum toxin A: why isn't it effective in all patients? Transl Androl Urol 2016; 4:543-54. [PMID: 26816853 PMCID: PMC4708559 DOI: 10.3978/j.issn.2223-4683.2015.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin A (BTA) is currently used to treat a variety of painful disorders, including painful bladder syndrome/interstitial cystitis (PBS/IC). However, BTA is not consistently effective in all patients. This may be due to the disparity of causes of pain, but this may also relate to the processes by which BTA exerts anti-nociceptive effects. This review discusses mechanisms by which BTA may inhibit pain and studies of the use of BTA in PSB/IC patients. It is doubtful that any single treatment will effectively control pain in PBS/IC patients, and it is highly probable that multiple strategies will be required, both within individual patients and across the population of PBS/IC patients. The purpose of this review is to discuss those mechanisms by which BTA acts, with the intent that alternative strategies exploiting these mechanism, or work through alternative pathways, can be identified to more effectively treat pain in PBS/IC patients in the future.
Collapse
Affiliation(s)
- Neil S Lamarre
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| | - Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
22
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
23
|
Botulinum Toxin for Neuropathic Pain: A Review of the Literature. Toxins (Basel) 2015; 7:3127-54. [PMID: 26287242 PMCID: PMC4549742 DOI: 10.3390/toxins7083127] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxin (BoNT), derived from Clostridium botulinum, has been used therapeutically for focal dystonia, spasticity, and chronic migraine. Its spectrum as a potential treatment for neuropathic pain has grown. Recent opinions on the mechanism behind the antinociceptive effects of BoNT suggest that it inhibits the release of peripheral neurotransmitters and inflammatory mediators from sensory nerves. There is some evidence showing the axonal transport of BoNT, but it remains controversial. The aim of this review is to summarize the experimental and clinical evidence of the antinociceptive effects, mechanisms, and therapeutic applications of BoNT for neuropathic pain conditions, including postherpetic neuralgia, complex regional pain syndrome, and trigeminal neuralgia. The PubMed and OvidSP databases were searched from 1966 to May 2015. We assessed levels of evidence according to the American Academy of Neurology guidelines. Recent studies have suggested that BoNT injection is an effective treatment for postherpetic neuralgia and is likely efficient for trigeminal neuralgia and post-traumatic neuralgia. BoNT could also be effective as a treatment for diabetic neuropathy. It has not been proven to be an effective treatment for occipital neuralgia or complex regional pain syndrome.
Collapse
|
24
|
Ramachandran R, Yaksh TL. Therapeutic use of botulinum toxin in migraine: mechanisms of action. Br J Pharmacol 2015; 171:4177-92. [PMID: 24819339 DOI: 10.1111/bph.12763] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022] Open
Abstract
Migraine pain represents sensations arising from the activation of trigeminal afferents, which innervate the meningeal vasculature and project to the trigeminal nucleus caudalis (TNC). Pain secondary to meningeal input is referred to extracranial regions innervated by somatic afferents that project to homologous regions in the TNC. Such viscerosomatic convergence accounts for referral of migraine pain arising from meningeal afferents to particular extracranial dermatomes. Botulinum toxins (BoNTs) delivered into extracranial dermatomes are effective in and approved for treating chronic migraine pain. Aside from their well-described effect upon motor endplates, BoNTs are also taken up in local afferent nerve terminals where they cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and prevent local terminal release. However, a local extracranial effect of BoNT cannot account for allthe effects of BoNT upon migraine. We now know that peripherally delivered BoNTs are taken up in sensory afferents and transported to cleave SNARE proteins in the ganglion and TNC, prevent evoked afferent release and downstream activation. Such effects upon somatic input (as from the face) likewise would not alone account for block of input from converging meningeal afferents. This current work suggests that BoNTs may undergo transcytosis to cleave SNAREs in second-order neurons or in adjacent afferent terminals. Finally, while SNAREs mediate exocytotic release, they are also involved in transport of channels and receptors involved in facilitated pain states. The role of such post-synaptic effects of BoNT action in migraine remains to be determined.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
25
|
Luvisetto S, Vacca V, Cianchetti C. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice. Toxicon 2014; 94:23-8. [PMID: 25529549 DOI: 10.1016/j.toxicon.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/21/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.
Collapse
Affiliation(s)
- Siro Luvisetto
- CNR - National Research Council of Italy, Institute of Cell Biology and Neurobiology, Roma, Italy; IRCCS Santa Lucia Foundation, Roma, Italy.
| | - Valentina Vacca
- CNR - National Research Council of Italy, Institute of Cell Biology and Neurobiology, Roma, Italy; IRCCS Santa Lucia Foundation, Roma, Italy
| | - Carlo Cianchetti
- Child Neuropsychiatry Clinic, AOU, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
26
|
Matak I, Lacković Z. Botulinum toxin A, brain and pain. Prog Neurobiol 2014; 119-120:39-59. [PMID: 24915026 DOI: 10.1016/j.pneurobio.2014.06.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Botulinum neurotoxin type A (BoNT/A) is one of the most potent toxins known and a potential biological threat. At the same time, it is among the most widely used therapeutic proteins used yearly by millions of people, especially for cosmetic purposes. Currently, its clinical use in certain types of pain is increasing, and its long-term duration of effects represents a special clinical value. Efficacy of BoNT/A in different types of pain has been found in numerous clinical trials and case reports, as well as in animal pain models. However, sites and mechanisms of BoNT/A actions involved in nociception are a matter of controversy. In analogy with well known neuroparalytic effects in peripheral cholinergic synapses, presently dominant opinion is that BoNT/A exerts pain reduction by inhibiting peripheral neurotransmitter/inflammatory mediator release from sensory nerves. On the other hand, growing number of behavioral and immunohistochemical studies demonstrated the requirement of axonal transport for BoNT/A's antinociceptive action. In addition, toxin's enzymatic activity in central sensory regions was clearly identified after its peripheral application. Apart from general pharmacology, this review summarizes the clinical and experimental evidence for BoNT/A antinociceptive activity and compares the data in favor of peripheral vs. central site and mechanism of action. Based on literature review and published results from our laboratory we propose that the hypothesis of peripheral site of BoNT/A action is not sufficient to explain the experimental data collected up to now.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| |
Collapse
|
27
|
Matak I, Rossetto O, Lacković Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain 2014; 155:1516-1526. [PMID: 24793910 DOI: 10.1016/j.pain.2014.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023]
Abstract
Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. Occurrence of cleaved SNAP-25 in TNC was examined after nonselective ganglion ablation with formalin or selective denervation of capsaicin-sensitive (vanilloid receptor-1 or TRPV1-expressing) neurons, and in relation to different cellular and neuronal markers. Regional c-Fos activation and effect of TRPV1-expressing afferent denervation on toxin's antinociceptive action were studied in formalin-induced orofacial pain. BoNT/A-cleaved SNAP-25 was observed in TNC, but not in higher-level nociceptive nuclei. Cleaved SNAP-25 in TNC disappeared after formalin-induced trigeminal ganglion ablation or capsaicin-induced sensory denervation. Occurrence of cleaved SNAP-25 in TNC and BoNT/A antinociceptive activity in formalin-induced orofacial pain were prevented by denervation with capsaicin. Cleaved SNAP-25 localization demonstrated toxin's presynaptic activity in TRPV1-expressing neurons. BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain.
Collapse
Affiliation(s)
- Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb 10000, Croatia Department of Biomedical Sciences, University of Padua, Padua 35121, Italy
| | | | | |
Collapse
|
28
|
Anti-inflammatory effects of botulinum toxin type a in a complete Freund's adjuvant-induced arthritic knee joint of hind leg on rat model. Neurotox Res 2013; 26:32-9. [PMID: 24338136 DOI: 10.1007/s12640-013-9447-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 02/02/2023]
Abstract
The objective of the study is to verify histopathologically the anti-inflammatory effect of botulinum toxin type A (BoNT-A) in a Complete Freund's Adjuvant (CFA)-induced arthritic knee joint of hind leg on rat model using immunofluorescent staining of anti-ionized calcium-binding adaptor molecule 1 (Iba-1) and interleukin-1β (IL-1β) antibody. Twenty-eight experimental rats were injected with 0.1 ml of CFA solution in the knee joint of the hind leg bilaterally. Three weeks after CFA injection, the BoNT-A group (N = 14) was injected with 20 IU (0.1 ml) of BoNT-A bilaterally while the saline group (N = 14) was injected with 0.1 ml of saline in the knee joint of the hind leg bilaterally. One and two weeks after BoNT-A or saline injection, joint inflammation was investigated in seven rats from each group using histopathological and immune-fluorescent staining of Iba-1 and IL-1β antibody. The number of Iba-1 and IL-1β immune-reactive (IR) cells was counted in the BoNT-A and saline groups for comparison. There was a significant reduction in joint inflammation and destruction in the BoNT-A group at 1 and 2 weeks after BoNT-A injection compared with the saline group. The binding of Iba-1 and IL-1β antibody was significantly lower in the BoNT-A group than the saline group at 1 and 2 weeks after BoNT-A injection. The number of Iba-1 and IL-1β-IR cells at 1 and 2 weeks after the injection of BoNT-A were significantly different from the corresponding number of Iba-1 and IL-1β-IR cells in the saline group. To conclude, BoNT-A had an anti-inflammatory effect in a CFA-induced arthritic rat model, indicating that BoNT-A could potentially be used to treat inflammatory joint pain.
Collapse
|
29
|
Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 2013; 155:674-684. [PMID: 24333775 DOI: 10.1016/j.pain.2013.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/22/2013] [Accepted: 12/04/2013] [Indexed: 01/11/2023]
Abstract
We addressed the hypothesis that intraplantar botulinum toxin B (rimabotulinumtoxin B: BoNT-B) has an early local effect upon peripheral afferent terminal releasing function and, over time, will be transported to the central terminals of the primary afferent. Once in the terminals it will cleave synaptic protein, block spinal afferent transmitter release, and thereby prevent spinal nociceptive excitation and behavior. In mice, C57Bl/6 males, intraplantar BoNT-B (1 U) given unilaterally into the hind paw had no effect upon survival or motor function, but ipsilaterally decreased: (1) intraplantar formalin-evoked flinching; (2) intraplantar capsaicin-evoked plasma extravasation in the hind paw measured by Evans blue in the paw; (3) intraplantar formalin-evoked dorsal horn substance P (SP) release (neurokinin 1 [NK1] receptor internalization); (4) intraplantar formalin-evoked dorsal horn neuronal activation (c-fos); (5) ipsilateral dorsal root ganglion (DRG) vesicle-associated membrane protein (VAMP); (6) ipsilateral SP release otherwise evoked bilaterally by intrathecal capsaicin; (7) ipsilateral activation of c-fos otherwise evoked bilaterally by intrathecal SP. These results indicate that BoNT-B, after unilateral intraplantar delivery, is taken up by the peripheral terminal, is locally active (blocking plasma extravasation), is transported to the ipsilateral DRG to cleave VAMP, and is acting presynaptically to block release from the spinal peptidergic terminal. The observations following intrathecal SP offer evidence for a possible transsynaptic effect of intraplantar BoNT. These results provide robust evidence that peripheral BoNT-B can alter peripheral and central terminal release from a nociceptor and attenuate downstream nociceptive processing via a presynaptic effect, with further evidence suggesting a possible postsynaptic effect.
Collapse
Affiliation(s)
- Marc J Marino
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Anesthesiology, Dokkyo Medical University, School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Antinociceptive effects of A1 and A2 type botulinum toxins on carrageenan-induced hyperalgesia in rat. Toxicon 2012; 64:12-9. [PMID: 23270755 DOI: 10.1016/j.toxicon.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
We performed a study on the antinociceptive effects of A1 and A2 type (A1LL and A2NTX, respectively) botulinum toxin on carrageenan-induced hyperalgesia in the rat. Both A1LL and A2NTX had antinociceptive effects in the carrageenan-induced inflammatory pain model, reducing the mechanical and thermal hyperalgesia. A2NTX also reduced the increase in c-fos immunoreactivity in L4-L5 spinal segments induced by carrageenan, suggesting that A2NTX inhibits the activation of spinal nociceptive afferent fibers that project to the CNS. Our results indicate that A2NTX may offer a new therapeutic tool to treat inflammatory pain.
Collapse
|
31
|
Vacca V, Marinelli S, Eleuteri C, Luvisetto S, Pavone F. Botulinum neurotoxin A enhances the analgesic effects on inflammatory pain and antagonizes tolerance induced by morphine in mice. Brain Behav Immun 2012; 26:489-99. [PMID: 22281280 DOI: 10.1016/j.bbi.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/30/2022] Open
Abstract
Over the recent years compelling evidence has accumulated indicating that botulinum neurotoxin serotype A (BoNT/A) results in analgesic effects on neuropathic as well as inflammatory pain, both in humans and in animal models. In the present study, the pharmacological interaction of BoNT/A with morphine in fighting inflammatory pain was investigated in mice using the formalin test. Moreover, the effects of BoNT/A on the tolerance-induced by chronic administration of morphine were tested and the behavioral effects were correlated with immunofluorescence staining of glial fibrillary acidic protein, the specific marker of astrocytes, at the spinal cord level. An ineffective dose of BoNT/A (2 pg/paw) combined with an ineffective dose of morphine (1 mg/kg) exerted a significant analgesic action both during the early and the late phases of formalin test. A single intraplantar injection of BoNT/A (15 pg/paw; i.pl.), administered the day before the beginning of chronic morphine treatment (7 days of s.c. injections of 20 mg/kg), was able to counteract the occurrence of tolerance to morphine. Moreover, BoNT/A reduces the enhancement of the expression of astrocytes induced by inflammatory formalin pain. Side effects of opiates, including the development of tolerance during repeated use, may limit their therapeutic use, the possibility of using BoNT/A for lowering the effective dose of morphine and preventing the development of opioid tolerance would have relevant implications in terms of potential therapeutic perspectives.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council of Italy (Cell Biology and Neurobiology Institute IBCN)/IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | | | | | | |
Collapse
|
32
|
Filipović B, Matak I, Bach-Rojecky L, Lacković Z. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy. PLoS One 2012; 7:e29803. [PMID: 22238656 PMCID: PMC3251614 DOI: 10.1371/journal.pone.0029803] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model. METHODOLOGY/PRINCIPAL FINDINGS Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue-plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects. CONCLUSIONS/SIGNIFICANCE Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action.
Collapse
Affiliation(s)
- Boris Filipović
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital Sveti Duh, Zagreb, Croatia
| | - Ivica Matak
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Zdravko Lacković
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
- * E-mail:
| |
Collapse
|
33
|
Matak I, Bach-Rojecky L, Filipović B, Lacković Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience 2011; 186:201-7. [PMID: 21539899 DOI: 10.1016/j.neuroscience.2011.04.026] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 11/29/2022]
Abstract
Botulinum toxin A (BTX-A) is approved for treatment of different cholinergic hyperactivity disorders, and, recently, migraine headache. Although suggested to act only locally, novel observations demonstrated bilateral reduction of pain after unilateral toxin injection, and proposed retrograde axonal transport, presumably in sensory neurons. However, up to now, axonal transport of BTX-A from periphery to CNS was identified only in motoneurons, but with unknown significance. We assessed the effects of low doses of BTX-A injected into the rat whisker pad (3.5 U/kg) or into the sensory trigeminal ganglion (1 U/kg) on formalin-induced facial pain. Axonal transport was prevented by colchicine injection into the trigeminal ganglion (5 mM, 2 μl). To find the possible site of action of axonally transported BTX-A, we employed immunohistochemical labeling of BTX-A-truncated synaptosomal-associated protein 25 (SNAP-25) in medullary dorsal horn of trigeminal nucleus caudalis after toxin injection into the whisker pad. Both peripheral and intraganglionic BTX-A reduce phase II of formalin-induced pain. Antinociceptive effect of BTX-A was prevented completely by colchicine. BTX-A-truncated SNAP-25 in medullary dorsal horn (spinal trigeminal nucleus) was evident 3 days following the peripheral treatment, even with low dose applied (3.5 U/kg). Presented data provide the first evidence that axonal transport of BTX-A, obligatory for its antinociceptive effects, occurs via sensory neurons and is directed to sensory nociceptive nuclei in the CNS.
Collapse
Affiliation(s)
- I Matak
- Department of Pharmacology and Croatian Brain Research Institute, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | | |
Collapse
|
34
|
Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel) 2010; 2:2890-913. [PMID: 22069581 PMCID: PMC3153188 DOI: 10.3390/toxins2122890] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023] Open
Abstract
The action of botulinum neurotoxins (BoNTs) at the neuromuscular junction has been extensively investigated and knowledge gained in this field laid the foundation for the use of BoNTs in human pathologies characterized by excessive muscle contractions. Although much more is known about the action of BoNTs on the peripheral system, growing evidence has demonstrated several effects also at the central level. Pain conditions, with special regard to neuropathic and intractable pain, are some of the pathological states that have been recently treated with BoNTs with beneficial effects. The knowledge of the action and potentiality of BoNTs utilization against pain, with emphasis for its possible use in modulation and alleviation of chronic pain, still represents an outstanding challenge for experimental research. This review highlights recent findings on the effects of BoNTs in animal pain models.
Collapse
Affiliation(s)
- Flaminia Pavone
- CNR, Institute of Neuroscience-Roma, via del Fosso di Fiorano 64, I-00143 Roma, Italy.
| | | |
Collapse
|
35
|
Wasserman D, Monheit G. Commentary: new treatment for a surgical wrinkle. Aesthetic Plast Surg 2010; 34:428-9. [PMID: 20533033 DOI: 10.1007/s00266-010-9531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
36
|
Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain 2010; 149:316-324. [PMID: 20223589 DOI: 10.1016/j.pain.2010.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/20/2010] [Accepted: 02/16/2010] [Indexed: 11/23/2022]
Abstract
Release of inflammatory pain mediators from peripheral sensory afferent endings contributes to the development of a positive feedback cycle resulting in chronic inflammation and pain. Botulinum neurotoxin type A (BoNT-A) blocks exocytosis of neurotransmitters and may therefore block the release of pain modulators in the periphery. Subcutaneous administration of BoNT-A (2.5, 5 and 10U) reduced plasma extravasation (PE) caused by electrical stimulation of the saphenous nerve or capsaicin in the rat hindpaw skin (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A also reduced blood flow changes evoked by saphenous nerve stimulation (ANOVA, Post hoc Tukey, p<0.05, n=6). Subcutaneous BoNT-A had no effect on PE induced by local injection of substance P (SP) or vasodilation induced by local CGRP injection. Although BoNT-A is an effective treatment for a wide range of painful conditions, the toxin's large size necessitates that it be injected at numerous sites. We found that a short synthetic peptide (TD-1) can facilitate effective transdermal delivery of BoNT-A through intact skin. Coadministration of TD-1 and BoNT-A to the hindpaw skin resulted in a significant reduction in PE evoked by electrical stimulation. The findings show that BoNT-A can be administered subcutaneously or topically with a novel transdermal delivery peptide to reduce inflammation produced by activating nociceptors in the skin. Peptide-mediated delivery of BoNT-A is an easy and non-invasive way of administering the toxin that may prove to be useful in clinical practice.
Collapse
|
37
|
Bach-Rojecky L, Salković-Petrisić M, Lacković Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol 2010; 633:10-4. [PMID: 20123097 DOI: 10.1016/j.ejphar.2010.01.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
We investigated antinociceptive activity of botulinum toxin type A (BTX-A) in a model of diabetic neuropathic pain in rats. Male Wistar rats were made diabetic by a single intraperitoneal injection of streptozotocin (80mg/kg). Sensitivity to mechanical and thermal stimuli was measured with the paw-pressure and hot-plate test, respectively. The formalin test was used to measure sensitivity to chemical stimuli. Diabetic animals with pain thresholds lower for at least 25% compared to the non-diabetic group were considered neuropathic and were injected with BTX-A either subcutaneously (3, 5 and 7U/kg) or intrathecally (1U/kg). Mechanical and thermal sensitivity was measured at several time-points. After peripheral application, BTX-A (5 and 7U/kg) reduced mechanical and thermal hypersensitivity not only on ipsilateral, but on contralateral side, too. The antinociceptive effect started 5days following BTX-A injection and lasted at least 15days. Formalin-induced hypersensitivity in diabetic animals was abolished as well. When applied intrathecally, BTX-A (1U/kg) reduced diabetic hyperalgesia within 24h supporting the assumption of retrograde axonal transport of BTX-A from the peripheral site of injection to central nervous system. The results presented here demonstrate the long-lasting pain reduction after single BTX-A injection in the animals with diabetic neuropathy. The bilateral pain reduction after unilateral toxin application and the effectiveness of lower dose with the faster onset after the intrathecal injection suggest the involvement of the central nervous system in the antinociceptive action of BTX-A in painful diabetic neuropathy.
Collapse
Affiliation(s)
- Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, Zagreb, Croatia.
| | | | | |
Collapse
|
38
|
Bach-Rojecky L, Lacković Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav 2009; 94:234-8. [PMID: 19732788 DOI: 10.1016/j.pbb.2009.08.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/14/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Here we provide behavioural evidence for an axonal transport and the central origin of the antinociceptive effect of botulinum toxin type A (BTX-A). In rats we investigated the effectiveness of BTX-A on "mirror pain" induced by unilateral repeated intramuscular acidic saline injections (pH 4.0). Since experimental evidence suggest that bilateral pain induced by acidic saline is of central origin, peripheral application of BTX-A should have no effect on this type of pain. However, here we demonstrated that the unilateral subcutaneous BTX-A (5U/kg) application diminished pain on the ipsilateral, and on the contralateral side too. When injected into the proximal part of a distally cut sciatic nerve, BTX-A still reduced pain on the contralateral side. Colchicine, an axonal transport blocker, when injected into the ipsilateral sciatic nerve, prevented the effect of the peripheral BTX-A injection on both sides. Additionally, when BTX-A (1U/kg) was applied intrathecally in the lumbar cerebrospinal fluid, the bilateral hyperalgesia was also reduced. The results demonstrate the necessity of retrograde axonal transport and involvement of the central nervous system for the antinociceptive activity of BTX-A.
Collapse
Affiliation(s)
- Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb School of Pharmacy and Biochemistry, 10 000 Zagreb, Croatia.
| | | |
Collapse
|