1
|
Chen K, Gao Y, Xia N, Liu Y, Wang H, Ma H, Zheng S, Fang F. Long-term therapeutic effects of allogeneic mesenchymal stem cell transplantation for intrauterine adhesions. Stem Cell Res Ther 2024; 15:499. [PMID: 39716301 DOI: 10.1186/s13287-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/07/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA), resulting from uterine trauma, is one of the major causes of female infertility. Previous studies have demonstrated that endometrial mesenchymal stem cells (eMSC) have therapeutic effects on IUA through cellular secretions. It is particularly true for most of the pre-clinical experiments performed on multiple animal models, as human-derived eMSC cannot maintain long-term engraftment in animals. Whether tissue-specific MSCs from allogeneic origin can engraft and exert long-term therapeutic efficacy has yet to be thoroughly explored. METHODS We established a rat IUA model to study the long-term engraftment and therapeutic effects of eMSC derived from humans and rats. Human and rat eMSC were isolated and verified by the expression of cell surface markers and the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. The cells were then labeled by green fluorescence proteins (GFP) and transplanted to the rat uterus ex vivo and in vivo. The engraftment was investigated by the expression of GFP at different days after transplantation. Assessed the therapeutic effects by examining the endometrial thickness, the number of glands, and the pregnancy outcome. Significantly, we conducted a thorough assessment of the local cellular immune response following both xenograft and allograft transplantation. RESULTS H-eMSC were eliminated by rats' immune systems within three days after transplantation. In constrast, R-eMSC successfully engrafted and persisted in rat tissue for over ten days. Notably, R-eMSC significantly improved the pregnancy rate by enhancing endometrial thickness and increasing the number of glands, while also reducing fibrosis in rat IUA models. Additionally, the immune response to R-eMSC was generally less aggressive compared to that of xenogeneic MSCs. CONCLUSIONS Tissue-specific MSCs from the allogeneic origin can integrate into the repaired tissue and exert long-term therapeutic efficacy in the model of IUA. This study indicates that in addition to secreting therapeutic factors short-time, tissue-specific MSCs may engraft and participate in long-time tissue repair and regeneration.
Collapse
Affiliation(s)
- Kai Chen
- Reproductive Medicine Center and Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yanyan Gao
- Anhui Tianlun Infertility Specialist Hospital, Hefei, China
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- CodeR Therapeutics, Ltd., Hefei, 230027, Anhui, China
| | - Yusheng Liu
- Anhui Tianlun Infertility Specialist Hospital, Hefei, China
| | - Huiru Wang
- Reproductive Medicine Center and Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Hui Ma
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shengxia Zheng
- Reproductive Medicine Center and Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
2
|
Zeng X, Yuan X, Liao H, Wei Y, Wu Q, Zhu X, Li Q, Chen S, Hu M. The miR-665/SOST Axis Regulates the Phenotypes of Bone Marrow Mesenchymal Stem Cells and Osteoporotic Symptoms in Female Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2059-2075. [PMID: 39461772 DOI: 10.1016/j.ajpath.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 10/29/2024]
Abstract
Osteoporosis is a common degenerative skeletal disease among older people, especially postmenopausal women. Bone marrow mesenchymal stem cells (BMSCs), the progenitors of osteoblasts, are essential to the pathophysiology of osteoporosis. Herein, targeting miRNAs with differential expression in dysfunctional BMSCs was accomplished by bioinformatics analysis based on public databases. Target mRNAs were predicted and applied for signaling pathway and function enrichment annotations. In vitro and in vivo effects of selected miRNA on BMSC proliferation and osteogenesis were investigated, the putative binding between selected miRNA and predicted target mRNA was verified, and the co-effects of the miRNA/mRNA axis on BMSCs were determined. miRNA 665 (miR-665) was down-regulated in osteoporotic BMSCs compared with normal BMSCs and elevated in BMSCs experiencing osteogenic differentiation. In BMSCs, miR-665 overexpression promoted cell proliferation and osteogenic differentiation. miR-665 targeted the Wnt signaling inhibitor sclerostin (SOST) and inhibited SOST mRNA and protein expression. SOST overexpression inhibited BMSC cell proliferation and osteogenic differentiation. When co-transduced to BMSCs, SOST knockdown significantly reversed the effects of miR-665 on BMSCs. In ovariectomy (OVX)-induced osteoporosis model mice, OVX remarkably decreased bone mass, whereas miR-665 overexpression partially improved OVX-induced bone mass loss. miR-665 was down-regulated in osteoporotic BMSCs and up-regulated in osteogenically differentiated BMSCs. In conclusion, the miR-665/SOST axis modulates BMSC proliferation, osteogenic differentiation, and OVX-induced osteoporosis in mice, possibly through Wnt signaling.
Collapse
Affiliation(s)
- Xingxing Zeng
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Xianyu Yuan
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Hongchun Liao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Yongfang Wei
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Qinxuan Wu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Xi Zhu
- Health Management, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qingqing Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Minghua Hu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China; The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China.
| |
Collapse
|
3
|
Tsuji S, Kuramoto Y, Rajbhandari S, Takeda Y, Yamahara K, Yoshimura S. Intravenous administration of human amnion-derived mesenchymal stem cells improves gait and sensory function in mouse models of spinal cord injury. Front Cell Dev Biol 2024; 12:1464727. [PMID: 39324071 PMCID: PMC11422150 DOI: 10.3389/fcell.2024.1464727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Spinal cord injury (SCI) leads to severe disabilities and remains a significant social and economic challenge. Despite advances in medical research, there are still no effective treatments for SCI. Human amnion-derived mesenchymal stem cells (hAMSCs) have shown potential due to their anti-inflammatory and neuroprotective effects. This study evaluates the therapeutic potential of intravenously administered hAMSCs in SCI models. Methods Three days after induction of SCI with forceps calibrated with a 0.2 mm gap, hAMSCs or vehicle were administered intravenously. Up to 4 weeks of SCI induction, motor function was assessed by scores on the Basso Mouse Locomotor Scale (BMS) and the Basso-Beattie-Bresnahan Scale (BBB), and sensory function by hindlimb withdrawal reflex using von Frey filaments. Six weeks after SCI induction, gait function was assessed using three-dimensional motion analysis. Immunohistochemistry, polymerase chain reaction (PCR), flow cytometry, and ELISA assay were performed to clarify the mechanisms of functional improvement. Results The hAMSC treatment significantly improved sensory response and gait function. In the SCI site, immunohistochemistry showed a reduction in Iba1-positive cells and PCR revealed decreased TNFα and increased BDNF levels in the hAMSC-treated group. In assessing the systemic inflammatory response, hAMSC treatment reduced monocytic bone marrow-derived suppressor cells (M-MDSCs) and Ly6C-positive inflammatory macrophages in the bone marrow by flow cytometry and serum NO levels by ELISA assay. Discussion This study demonstrates the therapeutic potential of the hAMSC in SCI, with improvements in gait and sensory functions and reduced inflammation both locally and systemically. The findings support further investigation of the hAMSC as a potential treatment for SCI, focusing on their ability to modulate inflammation and promote neuroprotection.
Collapse
Affiliation(s)
- Shoichiro Tsuji
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | | | - Yuki Takeda
- Department of Neurosurgery, Hyogo Medical University, Hyogo, Japan
| | - Kenichi Yamahara
- Laboratory of Molecular and Cellular Therapy, Institute for Advanced Medical Sciences, Hyogo Medical University, Hyogo, Japan
| | | |
Collapse
|
4
|
Cheng B, Pan C, Cai Q, Liu L, Cheng S, Yang X, Meng P, Wei W, He D, Liu H, Jia Y, Wen Y, Xu P, Zhang F. Long-term ambient air pollution and the risk of musculoskeletal diseases: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133658. [PMID: 38310839 DOI: 10.1016/j.jhazmat.2024.133658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Evidence of the associations of air pollution and musculoskeletal diseases is inconsistent. This study aimed to examine the associations between air pollutants and the risk of incident musculoskeletal diseases, such as degenerative joint diseases (n = 38,850) and inflammatory arthropathies (n = 20,108). An air pollution score was constructed to assess the combined effect of PM2.5, PM2.5-10, NO2, and NOX. Cox proportional hazard model was applied to assess the relationships between air pollutants and the incidence of each musculoskeletal disease. The air pollution scores exhibited the modest association with an increased risk of osteoporosis (HR = 1.006, 95% CI: 1.002-1.011). Among the individual air pollutants, PM2.5 and PM2.5-10 exhibited the most significant effect on elevated risk of musculoskeletal diseases, such as PM2.5 on osteoporosis (HR = 1.064, 95% CI: 1.020-1.110), PM2.5-10 on inflammatory arthropathies (HR = 1.059, 95% CI: 1.037-1.081). Females were found to have a higher risk of incident musculoskeletal diseases when exposed to air pollutants. Individuals with extreme BMI or lower socioeconomic status had a higher risk of developing musculoskeletal diseases. Our findings reveal that long-term exposure to ambient air pollutants may contribute to an increased risk of musculoskeletal diseases.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Huan Liu
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases (Xi'an Jiaotong University), National Health and Family Planning Commission, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
5
|
Ma Z, Sun J, Jiang Q, Zhao Y, Jiang H, Sun P, Feng W. Identification and analysis of mitochondria-related central genes in steroid-induced osteonecrosis of the femoral head, along with drug prediction. Front Endocrinol (Lausanne) 2024; 15:1341366. [PMID: 38384969 PMCID: PMC10879930 DOI: 10.3389/fendo.2024.1341366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory orthopedic hip joint disease that primarily affects middle-aged and young individuals. SONFH may be caused by ischemia and hypoxia of the femoral head, where mitochondria play a crucial role in oxidative reactions. Currently, there is limited literature on whether mitochondria are involved in the progression of SONFH. Here, we aim to identify and validate key potential mitochondrial-related genes in SONFH through bioinformatics analysis. This study aims to provide initial evidence that mitochondria play a role in the progression of SONFH and further elucidate the mechanisms of mitochondria in SONFH. Methods The GSE123568 mRNA expression profile dataset includes 10 non-SONFH (non-steroid-induced osteonecrosis of the femoral head) samples and 30 SONFH samples. The GSE74089 mRNA expression profile dataset includes 4 healthy samples and 4 samples with ischemic necrosis of the femoral head. Both datasets were downloaded from the Gene Expression Omnibus (GEO) database. The mitochondrial-related genes are derived from MitoCarta3.0, which includes data for all 1136 human genes with high confidence in mitochondrial localization based on integrated proteomics, computational, and microscopy approaches. By intersecting the GSE123568 and GSE74089 datasets with a set of mitochondrial-related genes, we screened for mitochondrial-related genes involved in SONFH. Subsequently, we used the good Samples Genes method in R language to remove outlier genes and samples in the GSE123568 dataset. We further used WGCNA to construct a scale-free co-expression network and selected the hub gene set with the highest connectivity. We then intersected this gene set with the previously identified mitochondrial-related genes to select the genes with the highest correlation. A total of 7 mitochondrial-related genes were selected. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the selected mitochondrial-related genes using R software. Furthermore, we performed protein network analysis on the differentially expressed proteins encoded by the mitochondrial genes using STRING. We used the GSEA software to group the genes within the gene set in the GSE123568 dataset based on their coordinated changes and evaluate their impact on phenotype changes. Subsequently, we grouped the samples based on the 7 selected mitochondrial-related genes using R software and observed the differences in immune cell infiltration between the groups. Finally, we evaluated the prognostic significance of these features in the two datasets, consisting of a total of 48 samples, by integrating disease status and the 7 gene features using the cox method in the survival R package. We performed ROC analysis using the roc function in the pROC package and evaluated the AUC and confidence intervals using the ci function to obtain the final AUC results. Results Identification and analysis of 7 intersecting DEGs (differentially expressed genes) were obtained among peripheral blood, cartilage samples, hub genes, and mitochondrial-related genes. These 7 DEGs include FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR, all of which are upregulated genes with no intersection in the downregulated gene set. Subsequently, GO and KEGG pathway enrichment analysis revealed that the upregulated DEGs are primarily involved in processes such as oxidative stress, release of cytochrome C from mitochondria, negative regulation of intrinsic apoptotic signaling pathway, cell apoptosis, mitochondrial metabolism, p53 signaling pathway, and NK cell-mediated cytotoxicity. GSEA also revealed enriched pathways associated with hub genes. Finally, the diagnostic value of these key genes for hormone-related ischemic necrosis of the femoral head (SONFH) was confirmed using ROC curves. Conclusion BID, FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR may serve as potential diagnostic mitochondrial-related biomarkers for SONFH. Additionally, they hold research value in investigating the involvement of mitochondria in the pathogenesis of ischemic necrosis of the femoral head.
Collapse
Affiliation(s)
- Zheru Ma
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Jing Sun
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Jiang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Haozhuo Jiang
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Peng Sun
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| | - Wei Feng
- Department of Bone and Joint Surgery, Orthopaedic Center, The First Hospital of Jilin University, Chang chun, China
| |
Collapse
|
6
|
Taherian Fard A, Leeson HC, Aguado J, Pietrogrande G, Power D, Gómez-Inclán C, Zheng H, Nelson CB, Soheilmoghaddam F, Glass N, Dharmaratne M, Watson ER, Lu J, Martin S, Pickett HA, Cooper-White J, Wolvetang EJ, Mar JC. Deconstructing heterogeneity of replicative senescence in human mesenchymal stem cells at single cell resolution. GeroScience 2024; 46:999-1015. [PMID: 37314668 PMCID: PMC10828319 DOI: 10.1007/s11357-023-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Following prolonged cell division, mesenchymal stem cells enter replicative senescence, a state of permanent cell cycle arrest that constrains the use of this cell type in regenerative medicine applications and that in vivo substantially contributes to organismal ageing. Multiple cellular processes such as telomere dysfunction, DNA damage and oncogene activation are implicated in promoting replicative senescence, but whether mesenchymal stem cells enter different pre-senescent and senescent states has remained unclear. To address this knowledge gap, we subjected serially passaged human ESC-derived mesenchymal stem cells (esMSCs) to single cell profiling and single cell RNA-sequencing during their progressive entry into replicative senescence. We found that esMSC transitioned through newly identified pre-senescent cell states before entering into three different senescent cell states. By deconstructing this heterogeneity and temporally ordering these pre-senescent and senescent esMSC subpopulations into developmental trajectories, we identified markers and predicted drivers of these cell states. Regulatory networks that capture connections between genes at each timepoint demonstrated a loss of connectivity, and specific genes altered their gene expression distributions as cells entered senescence. Collectively, this data reconciles previous observations that identified different senescence programs within an individual cell type and should enable the design of novel senotherapeutic regimes that can overcome in vitro MSC expansion constraints or that can perhaps slow organismal ageing.
Collapse
Affiliation(s)
- Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Hannah C Leeson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Dominique Power
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Huiwen Zheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Christopher B Nelson
- Children's Medical Research Institute, University of Sydney, Westmead, Sydney, NSW, Australia
| | - Farhad Soheilmoghaddam
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Australia
| | - Nick Glass
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Ebony R Watson
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Jennifer Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Sally Martin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, University of Sydney, Westmead, Sydney, NSW, Australia
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
7
|
McGrath C, Little-Letsinger SE, Pagnotti GM, Sen B, Xie Z, Uzer G, Uzer GB, Zong X, Styner MA, Rubin J, Styner M. Diet-Stimulated Marrow Adiposity Fails to Worsen Early, Age-Related Bone Loss. Obes Facts 2024; 17:145-157. [PMID: 38224679 PMCID: PMC10987189 DOI: 10.1159/000536159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
INTRODUCTION Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid β-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah E. Little-Letsinger
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel M. Pagnotti
- Department of Endocrine, Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA
| | - Buer Sen
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guniz B. Uzer
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martin A. Styner
- Departments of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Rasouli M, Naeimzadeh Y, Hashemi N, Hosseinzadeh S. Age-Related Alterations in Mesenchymal Stem Cell Function: Understanding Mechanisms and Seeking Opportunities to Bypass the Cellular Aging. Curr Stem Cell Res Ther 2024; 19:15-32. [PMID: 36642876 DOI: 10.2174/1574888x18666230113144016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 01/17/2023]
Abstract
Undoubtedly, mesenchymal stem cells (MSCs) are the most common cell therapy candidates in clinical research and therapy. They not only exert considerable therapeutic effects to alleviate inflammation and promote regeneration, but also show low-immunogenicity properties, which ensure their safety following allogeneic transplantation. Thanks to the necessity of providing a sufficient number of MSCs to achieve clinically efficient outcomes, prolonged in vitro cultivation is indisputable. However, either following long-term in vitro expansion or aging in elderly individuals, MSCs face cellular senescence. Senescent MSCs undergo an impairment in their function and therapeutic capacities and secrete degenerative factors which negatively affect young MSCs. To this end, designing novel investigations to further elucidate cellular senescence and to pave the way toward finding new strategies to reverse senescence is highly demanded. In this review, we will concisely discuss current progress on the detailed mechanisms of MSC senescence and various inflicted changes following aging in MSC. We will also shed light on the examined strategies underlying monitoring and reversing senescence in MSCs to bypass the comprised therapeutic efficacy of the senescent MSCs.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Massaro F, Corrillon F, Stamatopoulos B, Dubois N, Ruer A, Meuleman N, Bron D, Lagneaux L. Age-related changes in human bone marrow mesenchymal stromal cells: morphology, gene expression profile, immunomodulatory activity and miRNA expression. Front Immunol 2023; 14:1267550. [PMID: 38130717 PMCID: PMC10733451 DOI: 10.3389/fimmu.2023.1267550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) are one of the main cellular components of bone marrow (BM) microenvironment. MSC play a key role in tissue regeneration, but they are also capable of immunomodulating activity. With host aging, MSC undergo age-related changes, which alter these functions, contributing to the set-up of "inflammaging", which is known to be the basis for the development of several diseases of the elderly, including cancer. However, there's few data investigating this facet of MSC, mainly obtained using murine models or replicative senescence. The aim of this research was to identify morphological, molecular and functional alterations of human bone marrow-derived MSC from young (yBM-MSC) and old (oBM-MSC) healthy donors. Methods MSC were identified by analysis of cell-surface markers according to the ISCT criteria. To evaluate response to inflammatory status, MSC were incubated for 24h in the presence of IL-1β, IFN-α, IFN-ɣ and TNF-α. Macrophages were obtained by differentiation of THP-1 cells through PMA exposure. For M1 polarization experiments, a 24h incubation with LPS and IFN-ɣ was performed. MSC were plated at the bottom of the co-culture transwell system for all the time of cytokine exposure. Gene expression was evaluated by real-time PCR after RNA extraction from BM-MSC or THP-1 culture. Secreted cytokines levels were quantitated through ELISA assays. Results Aging MSC display changes in size, morphology and granularity. Higher levels of β-Gal, reactive oxygen species (ROS), IL-6 and IL-8 and impaired colony-forming and cell cycle progression abilities were found in oBM-MSC. Gene expression profile seems to vary according to subjects' age and particularly in oBM-MSC seem to be characterized by an impaired immunomodulating activity, with a reduced inhibition of macrophage M1 status. The comparative analysis of microRNA (miRNA) expression in yBM-MSC and oBM-MSC revealed a significant difference for miRNA known to be involved in macrophage polarization and particularly miR-193b-3p expression is strongly increased after co-culture of macrophages with yBM-MSC. Conclusion There are profound differences in terms of morphology, gene and miRNA expression and immunomodulating properties among yBM-MSC and oBM-MSC, supporting the critical role of aging BM microenvironment on senescence, immune-mediated disorders and cancer pathogenesis.
Collapse
Affiliation(s)
- Fulvio Massaro
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Corrillon
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathan Dubois
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Achille Ruer
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Meuleman
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Bron
- Department of Hematology, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, ULB Cancer Research Center (U-CRC) - Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
10
|
Chen JP, Li R, Jiang JX, Chen XD. Autocrine Factors Produced by Mesenchymal Stem Cells in Response to Cell-Cell Contact Inhibition Have Anti-Tumor Properties. Cells 2023; 12:2150. [PMID: 37681882 PMCID: PMC10486504 DOI: 10.3390/cells12172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Recently, mesenchymal stem cell (MSC) therapies have been questioned as MSCs are capable of both promoting and inhibiting tumorigenesis. Both MSCs and tumor cells replicate to increase their population size; however, MSCs, but not tumor cells, stop dividing when they reach confluence due to cell-cell contact inhibition and then differentiate. We hypothesized that contact inhibition results in the production of effector molecules by confluent MSCs and these effectors are capable of suppressing tumor cell growth. To test this hypothesis, we co-cultured breast cancer cells (MDA-MB-231) with either confluent or sub-confluent bone-marrow-derived MSCs (BM-MSCs); in addition, we treated various tumor cells with conditioned media (CM) obtained from either confluent or sub-confluent BM-MSCs. The results showed that the growth of tumor cells co-cultured with confluent BM-MSCs or treated with CM obtained from confluent BM-MSCs was inhibited, and this effect was significantly stronger than that seen with tumor cells co-cultured with sub-confluent BM-MSCs or CM obtained from sub-confluent BM-MSCs. Subcutaneous tumor formation was completely prevented by the inoculation of tumor cells mixed with CM. In the future, soluble anti-tumor effectors, produced by confluent MSCs, may be used as cell-free therapeutics; this approach provides a solution to current concerns associated with cell-based therapies.
Collapse
Affiliation(s)
- Jerry P. Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA;
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
12
|
Cheng M, Yuan W, Moshaverinia A, Yu B. Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging. Cells 2023; 12:998. [PMID: 37048071 PMCID: PMC10093211 DOI: 10.3390/cells12070998] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.
Collapse
Affiliation(s)
- Mingjia Cheng
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Weihao Yuan
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Section of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Yin P, Xue Y. CircRNA hsa_circ_0006859 inhibits the osteogenic differentiation of BMSCs and aggravates osteoporosis by targeting miR-642b-5p/miR-483-3p and upregulating EFNA2/DOCK3. Int Immunopharmacol 2023; 116:109844. [PMID: 36764273 DOI: 10.1016/j.intimp.2023.109844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/14/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Hsa_circ_0006859 has been found as a possible biomarker for postmenopausal osteoporosis (PMOP) with an effect on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but the underlying mechanism is unclear. Bioinformatics analysis was used to identify dysregulated RNAs involved in osteoporosis based on public datasets. Function assays were used to determine the functions of hsa_circ_0006859 on cell proliferation and osteogenic differentiation in vitro. It was found that hsa_circ_0006859 was upregulated in OVX mice-derived BMSCs, but lowly expressed during osteogenic differentiation. Overexpressing hsa_circ_0006859 inhibited the cell proliferation and osteogenesis of BMSCs and hFOB 1.19 cells, vice versa. Bilateral ovariectomy (OVX) was used to induce PMOP in mice. The interactions among circ_0006859, miR-642b-5p/miR-483-3p, and EFNA2/DOCK3 were determined using the RIP assay. Silencing circ_0006859 relieved PMOP in mice. Mechanistically, circ_0006859 bound to miR-642b-5p/miR-483-3p directly, while miR-642b-5p and miR-483-3p respectively targeted EFNA2 and DOCK3. Hsa_circ_0006859 downregulated the expression of miR-642b-5p/miR-483-3p to upregulate EFNA2/DOCK3. Additionally, miR-642b-5p/miR-483-3p targeted EFNA2/DOCK3 to inhibit BMSCs osteogenic differentiation and facilitate osteoporosis progression by inactivating the Wnt signaling. In conclusion, hsa_circ_0006859 is involved in PMOP by targeting miR-642b-5p/EFNA2 and miR-483-3p/DOCK3 axes to maintain the Wnt-signaling pathway, which may be a novel possible therapeutic targets and biomarkers for PMOP.
Collapse
Affiliation(s)
- Peng Yin
- Department of Orthopaedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, China.
| | - Yuan Xue
- Department of Orthopaedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, China.
| |
Collapse
|
14
|
Wong PF, Dharmani M, Ramasamy TS. Senotherapeutics for mesenchymal stem cell senescence and rejuvenation. Drug Discov Today 2023; 28:103424. [PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Murugan Dharmani
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Yang Y, Li R, Cai M, Wang X, Li H, Wu Y, Chen L, Zou H, Zhang Z, Li H, Lin H. Ambient air pollution, bone mineral density and osteoporosis: Results from a national population-based cohort study. CHEMOSPHERE 2023; 310:136871. [PMID: 36244420 DOI: 10.1016/j.chemosphere.2022.136871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Evidence concerning the associations of ambient air pollution exposure with bone mineral density and osteoporosis has been mixed. We conducted cross-sectional and prospective analysis of the associations between air pollution exposure and osteoporosis using data from UK Biobank study. Estimated bone mineral density (eBMD) of each participant at baseline survey was calculated using quantitative ultrasound data, and incident osteoporosis cases were identified during the follow-up period according to health-related records. Air pollution concentrations were assessed using land use regression models. We fitted multivariable linear and logistic regression models to estimate the associations of air pollution with eBMD and osteoporosis prevalence at baseline. We applied cox proportional hazard regression models to assess the relationships between air pollution and osteoporosis incidence. Among the 341,311 participants at baseline, higher air pollution exposure was associated with lower eBMD levels and increased odds of osteoporosis prevalence. For example, an IQR increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx levels were associated with 0.0018 (95% CI: 0.0012, 0.0023) to 0.0052 (95% CI: 0.0046, 0.0058) g/cm2 decrease in eBMD. A total of 330,988 participants without osteoporosis were followed up for an average of 12.0 years. We identified 8105 incident osteoporosis cases (456 cases with pathological fracture and 7634 cases without pathological fracture) during the follow-up. The hazard ratios for an interquartile range increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx were 1.09 (95% CI: 1.06, 1.12), 1.04 (95% CI: 1.02, 1.07), 1.04 (95% CI: 1.01, 1.07), 1.07 (95% CI: 1.04, 1.10), and 1.06 (95% CI: 1.03, 1.09), respectively. Our study suggests that ambient air pollution might be a risk factor of decreased bone mineral density and osteoporosis incidence.
Collapse
Affiliation(s)
- Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haopeng Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Shenzhen University Health Science Center, Shenzhen, 518061, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Zhang F, Zhang X, Zhu S, Zhao G, Li T, Han A, Zhang X, Zhao T, Li D, Zhu W. The associations between short-term exposure to ambient particulate matter and hospitalizations for osteoporotic fracture in Hangzhou: a time-stratified case-crossover study. Arch Osteoporos 2022; 18:4. [PMID: 36469172 DOI: 10.1007/s11657-022-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Our results suggested that short-term exposure to particulate matter (PM) might increase the risks of hospitalizations for osteoporotic fractures. Government should protect its citizens by putting in place policies to reduce unhealthy emissions and air pollution. INTRODUCTION Osteoporotic fractures are accompanied by high rates of disability and mortality. PM has been linked with many health outcomes. However, few studies focus on the association of short-term exposure to ambient PM and osteoporotic fractures. METHODS Data on daily mean air pollution, meteorological factors, and hospitalizations for osteoporotic fractures were collected from Hangzhou, China, 2020-2021. A time-stratified case-crossover design with extended Cox proportional hazards regression was applied to assess the associations between PM and osteoporotic fractures. RESULTS Short-term exposure to PM significantly increased the risks of hospitalizations for osteoporotic fractures at cumulative lag days. Per 10 μg/m3 increased in PM2.5 (PM with an aerodynamic diameter ≤ 2.5 μm), PMC (PM with an aerodynamic diameter between 2.5 μm and 10 μm), and PM10 (PM with an aerodynamic diameter ≤ 10 μm) were associated with 5.65% (95% confidence intervals (CIs): 1.29, 10.19), 3.19% (0.11, 6.36), and 2.45% (0.57, 4.37) increase in hospitalizations for osteoporotic fractures, respectively. Significant PM-osteoporotic fracture associations were only observed in females and people aged over 65 years old. For the season, the estimates of PM on hospitalizations for osteoporotic fractures were 6.30% (95% CIs: 1.62, 11.20) in the cold season vs. 2.16% (95% CIs: - 4.62, 9.42) in the warm season for per 10 μg/m3 increase of PM2.5, and 0.99 (95% CIs: - 2.69, 4.80) vs. 6.72% (95% CIs: 0.68, 13.13) for PMC. CONCLUSIONS Our study showed PM was positively linked with the risk of osteoporotic fractures. Females and people aged over 65 years old were more susceptible to PM. The adverse impacts of PM2.5 in the cold season and PMC in the warm season were worthy of special attention.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Aojing Han
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
17
|
Zhang F, Zhou F, Liu H, Zhang X, Zhu S, Zhang X, Zhao G, Li D, Zhu W. Long-term exposure to air pollution might decrease bone mineral density T-score and increase the prevalence of osteoporosis in Hubei province: evidence from China Osteoporosis Prevalence Study. Osteoporos Int 2022; 33:2357-2368. [PMID: 35831465 DOI: 10.1007/s00198-022-06488-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
UNLABELLED We hypothesized that air pollution could cause oxidative damage and inflammation in the human body, which was linked to bone loss. Our result showed that long-term exposure to air pollution might decrease bone mineral density (BMD) T-score and increase the prevalence of osteoporosis in Hubei province. INTRODUCTION Osteoporosis is becoming an increasingly serious public health problem with the advent of global aging. Long-term exposure to air pollution has been linked to multitudinous adverse health outcomes, but evidence is still relatively limited and inconsistent for BMD T-score and osteoporosis. This study aimed at exploring the associations between long-term exposure to air pollution and BMD T-score and osteoporosis. METHODS The Hubei part of the China Osteoporosis Prevalence Study was extracted. Data on air pollutants were collected by the national air quality real-time release platform of China Environmental Monitoring Station. Linear mixed models and multilevel logistic regression analyses were performed to assess the associations between air pollution and BMD T-score and osteoporosis, respectively. Subgroup analyses were conducted to identify vulnerable populations. RESULTS A total of 1845 participants were included in this cross-section study. Per 10 ug/m3 increase in PM2.5 and SO2 were associated with 0.20 (95% CI: 0.04, 0.36) and 0.31 (95% CI: 0.11, 0.51) decrease in BMD T-score of the neck of femur, respectively. Per 10 ug/m3 increase in CO was linked with 0.03 (95% CI: 0.02, 0.05) decrease in BMD T-score of the total hip. Per 1 ug/m3 increase in PM2.5 was associated with 5% increase in the prevalence of osteoporosis in all participants. In general, the higher concentrations of PM2.5 with the more adverse effect on osteoporosis (P for trend = 0.01). The impact of PM2.5 on osteoporosis in males was higher than that in females [1.29, 95% CI (1.11, 1.50) vs 1.01, 95% CI (0.95, 1.07)]. Per 1 ug/m3 increase in PM10 corresponded with 4% elevation in the risks of osteoporosis in rural population. The ORs (95% CI) for the association of osteoporosis and NO2 in ever/current smoking and drinking population were 1.07 (1.01, 1.13) and 1.05 (1.00, 1.09), respectively. SO2 had a statistically significant positive effect on people with comorbidity [OR = 1.10, (95% CI: 1.00 to 1.21)], while none in people without comorbidity [OR = 0.96, (95% CI: 0.88 to 1.05)]. CONCLUSION Our study provided evidence that long-term exposure to PM2.5 was linked with the decreased BMD T-score and increased risk of osteoporosis among all participants. The adverse impacts of PM2.5, PM10, and NO2 were larger in males than in females. People having comorbidity, living in rural areas, and current/ever smoking or drinking were more vulnerable to air pollution. Public health departments should consider air pollution to formulate better preventive measures for osteoporosis.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fang Zhou
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Hao Liu
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xupeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
18
|
Kirkham AM, Monaghan M, Bailey AJ, Shorr R, Lalu MM, Fergusson DA, Allan DS. Mesenchymal stem/stromal cell-based therapies for COVID-19: First iteration of a living systematic review and meta-analysis: MSCs and COVID-19. Cytotherapy 2022; 24:639-649. [PMID: 35219584 PMCID: PMC8802614 DOI: 10.1016/j.jcyt.2021.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) and their secreted products are a promising therapy for COVID-19 given their immunomodulatory and tissue repair capabilities. Many small studies were launched at the onset of the pandemic, and repeated meta-analysis is critical to obtain timely and sufficient statistical power to determine efficacy. METHODS AND FINDINGS All English-language published studies identified in our systematic search (up to February 3, 2021) examining the use of MSC-derived products to treat patients with COVID-19 were identified. Risk of bias (RoB) was assessed for all studies. Nine studies were identified (189 patients), four of which were controlled (93 patients). Three of the controlled studies reported on mortality (primary analysis) and were pooled through random-effects meta-analysis. MSCs decreased the risk of death at study endpoint compared with controls (risk ratio, 0.18; 95% confidence interval [CI], 0.04 to 0.74; P = .02; I2 = 0%), although follow-up differed. Among secondary outcomes, interleukin-6 levels were most commonly reported and were decreased compared with controls (standardized mean difference, -0.69; 95% CI, -1.15 to -0.22; P = .004; I2 = 0%) (n = 3 studies). Other outcomes were not reported consistently, and pooled estimates of effect were not performed. Substantial heterogeneity was observed between studies in terms of study design. Adherence to published ISCT criteria for MSC characterization was low. In two of nine studies, RoB analysis revealed a low to moderate risk of bias in controlled studies, and uncontrolled case series were of good (3 studies) or fair (2 studies) quality. CONCLUSION Use of MSCs to treat COVID-19 appears promising; however, few studies were identified, and potential risk of bias was detected in all studies. More controlled studies that report uniform clinical outcomes and use MSC products that meet standard ISCT criteria should be performed. Future iterations of our systematic search should refine estimates of efficacy and clarify potential adverse effects.
Collapse
Affiliation(s)
- Aidan M. Kirkham
- Departments of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Madeline Monaghan
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Adrian J.M. Bailey
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Risa Shorr
- Medical Information and Learning Services, The Ottawa Hospital, Ottawa, ON, Canada
| | - Manoj M. Lalu
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Anesthesiology and Pain Medicine, University of Ottawa, Ottawa, ON, Canada,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Departments Anesthesia, The Ottawa Hospital, Ottawa, ON, Canada
| | - Dean A. Fergusson
- Medicine, University of Ottawa, Ottawa, ON, Canada,Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - David S. Allan
- Departments of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada,Medicine, University of Ottawa, Ottawa, ON, Canada,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Medicine, The Ottawa Hospital, Ottawa, ON, Canada,Corresponding Author: Dr. David Allan, Ottawa Hospital Research Institute, 501 Smyth Rd, Box 704 Ottawa ON K1H 8L6, Canada, Fax +1 613-737-8861
| |
Collapse
|
19
|
Schoppa AM, Chen X, Ramge JM, Vikman A, Fischer V, Haffner-Luntzer M, Riegger J, Tuckermann J, Scharffetter-Kochanek K, Ignatius A. Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. Dis Model Mech 2022; 15:274992. [PMID: 35394023 PMCID: PMC9118037 DOI: 10.1242/dmm.049392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2−) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging. Summary: Osteoblast-lineage specific Sod2 deficiency in mice leads to increased mtROS, impaired osteoblast function, increased adipogenesis, increased osteoclast activity and increased osteoblast senescence, resulting in bone loss.
Collapse
Affiliation(s)
- Astrid M Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Xiangxu Chen
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan-Moritz Ramge
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Anna Vikman
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jana Riegger
- Department of Orthopedics, Division for Biochemistry of Joint and Connective Tissue Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
20
|
Jacob J, Aggarwal A, Aggarwal A, Bhattacharyya S, Kumar V, Sharma V, Sahni D. Senescent chondrogenic progenitor cells derived from articular cartilage of knee osteoarthritis patients contributes to senescence-associated secretory phenotype via release of IL-6 and IL-8. Acta Histochem 2022; 124:151867. [PMID: 35192993 DOI: 10.1016/j.acthis.2022.151867] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite the presence of chondrogenic progenitor cells (CPCs) in knee osteoarthritis patients they are unable to repair the damaged cartilage. This study aimed to evaluate the oxidative stress, cellular senescence, and senescence-associated secretory phenotype (SASP) in the CPCs derived from osteoarthritic cartilage and compare with the CPCs of healthy articular cartilage. METHODS Isolated CPCs were characterized based on phenotypic expression of stem cell markers, clonogenicity, and tri-lineage differentiation assay. Production of ROS was measured using DCFDA assay. Cellular senescence in CPCs was assessed by senescence-associated beta-galactosidase assay and expression of senescence markers at the gene level using real-time PCR. Morphological features associated with senescent OA-CPCs were studied using scanning electron microscopy. To study SASP, the production of inflammatory cytokines was assessed in the culture supernatant using a flow-cytometer based cytometric bead array. RESULTS OA-CPCs exhibited elevated ROS levels along with a relatively high percentage of senescent cells compared to non-OA CPCs, and a positive correlation exists between ROS production and senescence. The morphological assessment of senescent CPCs revealed increased cell size and multiple nuclei in senescent OA-CPCs. These results were further validated by elevated expression of senescence genes p16, p21, and p53. Additionally, culture supernatant of senescent OA-CPCs expressed IL-6 and IL-8 cytokines indicative of SASP. CONCLUSIONS Despite exhibiting similar expression of stem cell markers and clonogenicity, CPCs undergo oxidative stress in diseased knee joint leading to increased production of intracellular ROS in chondrogenic progenitor cells that support cellular senescence. Further, senescence in OA-CPCs is mediated via the release of pro-inflammatory cytokines, IL-6 and IL-8.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Anjali Aggarwal
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Aditya Aggarwal
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vishal Kumar
- Department of Orthopedics, Nehru Hospital, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Vinit Sharma
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - Daisy Sahni
- Department of Anatomy, Research Block B, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
21
|
Liu X, Zhan Y, Xu W, Liu L, Liu X, Da J, Zhang K, Zhang X, Wang J, Liu Z, Jin H, Zhang B, Li Y. Characterization of transcriptional landscape in bone marrow-derived mesenchymal stromal cells treated with aspirin by RNA-seq. PeerJ 2022; 10:e12819. [PMID: 35127290 PMCID: PMC8793730 DOI: 10.7717/peerj.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Aspirin is a common antipyretic, analgesic, and anti-inflammatory drug, which has been reported to extend life in animal models and application in the treatment of aging-related diseases. However, it remains unclear about the effects of aspirin on bone marrow-derived mesenchymal stromal cells (BM-MSCs). Here, we aimed to analyze the influence of aspirin on senescence and young BM-MSCs. METHODS BM-MSCs were serially passaged to construct a replicative senescence model. SA-β-gal staining, PCR, western blot, and RNA-sequencing were performed on BM-MSCs with or without aspirin treatment, to examine aspirin's impact on bone marrow-derived mesenchymal stem cells. RESULTS SA-β-gal staining, PCR, and western blot revealed that aspirin could alleviate the cellular expression of senescence-related indicators of BM-MSCs, including a decrease of SA-β-gal-positive cells and staining intensity, and downregulation of p16, p21, and p53 expression after aspirin treatment. RNA-sequencing results shown in the biological processes related to aging, aspirin could influence cellular immune response and lipid metabolism. CONCLUSION The efficacy of aspirin for retarding senescence of BM-MSCs was demonstrated. Our study indicated that the mechanisms of this delay might involve influencing immune response and lipid metabolism.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,The Second Affiliated Hospital of Harbin Medical University, Department of Periodontology and Oral Mucosa, Harbin, China
| | - Wenxia Xu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyao Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinjian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziqi Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Carvalho MS, Alves L, Bogalho I, Cabral JMS, da Silva CL. Impact of Donor Age on the Osteogenic Supportive Capacity of Mesenchymal Stromal Cell-Derived Extracellular Matrix. Front Cell Dev Biol 2021; 9:747521. [PMID: 34676216 PMCID: PMC8523799 DOI: 10.3389/fcell.2021.747521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been proposed as an emerging cell-based therapeutic option for regenerative medicine applications as these cells can promote tissue and organ repair. In particular, MSC have been applied for the treatment of bone fractures. However, the healing capacity of these fractures is often compromised by patient's age. Therefore, considering the use of autologous MSC, we evaluated the impact of donor age on the osteogenic potential of bone marrow (BM)-derived MSC. MSC from older patients (60 and 80 years old) demonstrated impaired proliferative and osteogenic capacities compared to MSC isolated from younger patients (30 and 45 years old), suggesting that aging potentially changes the quantity and quality of MSC. Moreover, in this study, we investigated the capacity of the microenvironment [i.e., extracellular matrix (ECM)] to rescue the impaired proliferative and osteogenic potential of aged MSC. In this context, we aimed to understand if BM MSC features could be modulated by exposure to an ECM derived from cells obtained from young or old donors. When aged MSC were cultured on decellularized ECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced, which did not happen when cultured on old ECM. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the quality (assessed in terms of osteogenic differentiation capacity) and quantity of MSC. Specifically, the aging of ECM is determinant of osteogenic differentiation of MSC. In fact, old MSC maintained on a young ECM produced higher amounts of extracellularly deposited calcium (9.10 ± 0.22 vs. 4.69 ± 1.41 μg.μl-1.10-7 cells for young ECM and old ECM, respectively) and up-regulated the expression of osteogenic gene markers such as Runx2 and OPN. Cell rejuvenation by exposure to a functional ECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study provides new insights on the osteogenic potential of MSC during aging and opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Alves
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Bogalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Wruck W, Graffmann N, Spitzhorn LS, Adjaye J. Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity. Front Cell Dev Biol 2021; 9:717772. [PMID: 34604216 PMCID: PMC8481886 DOI: 10.3389/fcell.2021.717772] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the uniform selection criteria for the isolation of human mesenchymal stem cells (MSCs), considerable heterogeneity exists which reflects the distinct tissue origins and differences between individuals with respect to their genetic background and age. This heterogeneity is manifested by the variabilities seen in the transcriptomes, proteomes, secretomes, and epigenomes of tissue-specific MSCs. Here, we review literature on different aspects of MSC heterogeneity including the role of epigenetics and the impact of MSC heterogeneity on therapies. We then combine this with a meta-analysis of transcriptome data from distinct MSC subpopulations derived from bone marrow, adipose tissue, cruciate, tonsil, kidney, umbilical cord, fetus, and induced pluripotent stem cells derived MSCs (iMSCs). Beyond that, we investigate transcriptome differences between tissue-specific MSCs and pluripotent stem cells. Our meta-analysis of numerous MSC-related data sets revealed markers and associated biological processes characterizing the heterogeneity and the common features of MSCs from various tissues. We found that this heterogeneity is mainly related to the origin of the MSCs and infer that microenvironment and epigenetics are key drivers. The epigenomes of MSCs alter with age and this has a profound impact on their differentiation capabilities. Epigenetic modifications of MSCs are propagated during cell divisions and manifest in differentiated cells, thus contributing to diseased or healthy phenotypes of the respective tissue. An approach used to reduce heterogeneity caused by age- and tissue-related epigenetic and microenvironmental patterns is the iMSC concept: iMSCs are MSCs generated from induced pluripotent stem cells (iPSCs). During iMSC generation epigenetic and chromatin remodeling result in a gene expression pattern associated with rejuvenation thus allowing to overcome age-related shortcomings (e.g., limited differentiation and proliferation capacity). The importance of the iMSC concept is underlined by multiple clinical trials. In conclusion, we propose the use of rejuvenated iMSCs to bypass tissue- and age-related heterogeneity which are associated with native MSCs.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater 2021; 133:114-125. [PMID: 33857693 DOI: 10.1016/j.actbio.2021.03.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have gained immense attention over the past two decades due to their multipotent differentiation potential and pro-regenerative and immunomodulatory cytokine secretory profiles. Their ability to modulate the host immune system and promote tolerance has prompted several allogeneic and autologous hMSC-based clinical trials for the treatment of graft-versus-host disease and several other immune-induced disorders. However, clinical success beyond safety is still controversial and highly variable, with inconclusive therapeutic benefits and little mechanistic explanation. This clinical variability has been broadly attributed to inconsistent MSC sourcing, phenotypic characterization, variable potency, and non-standard isolation protocols, leading to functional heterogeneity among administered MSCs. Homogeneous MSC populations are proposed to yield more predictable, reliable biological responses and clinically meaningful properties relevant to cell-based therapies. Limited comparisons of heterogeneous MSCs with homogenous MSCs are reported. This review addresses this gap in the literature with a critical analysis of strategies aimed at decreasing MSC heterogeneity concerning their reported immunomodulatory profiles. STATEMENT OF SIGNIFICANCE: This review collates, summarizes, and critically analyzes published strategies that seek to improve homogeneity in immunomodulatory functioning MSC populations intended as cell therapies to treat immune-based disorders, such as graft-vs-host-disease. No such review for MSC therapies, immunomodulatory profiles and cell heterogeneity analysis is published. Since MSCs represent the most clinically studied experimental cell therapy platform globally for which there remains no US domestic marketing approval, insights into MSC challenges in therapeutic product development are imperative to providing solutions for immunomodulatory variabilities.
Collapse
|
25
|
Zhou B, Peng K, Wang G, Chen W, Kang Y. Silencing Proteasome 26S Subunit ATPase 2 (PSMC2) Protects the Osteogenic Differentiation In Vitro and Osteogenesis In Vivo. Calcif Tissue Int 2021; 109:44-54. [PMID: 33625534 DOI: 10.1007/s00223-021-00819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a commonly seen degenerative bone disorder in the elderly and postmenopausal women, with a low bone mineral density as a major risk factor. The osteogenic potential of bone marrow stromal cells (BMSCs) showed to be impaired during osteoporosis. We established a postmenopausal osteoporosis model in ovariectomized (OVX) mice and found the upregulation of proteasome 26S subunit ATPase 2 (PSMC2) in OVX mice. PSMC2 silencing improved OVX-impaired biomechanical properties of mice femur, OVX-decreased BMD, and OVX-destroyed bone structure. Histopathological analysis indicated that PSMC2 silencing improved bone trabecular structure and increased the contents of collagen fibers and newly formed bone or cartilage in OVX mice. In the meantime, PSMC2 silencing increased Runx2, PI3K, Wnt3a, and β-catenin protein contents while reduced CTSK protein. Within BMSCs isolated from OVX mice, PSMC2 silencing promoted BMSC osteogenic differentiation and elevated osteogenic markers' protein contents, including HOXA10, Runx2, OCN, OPN, and COL1A2. In conclusion, PSMC2 expression is upregulated in the postmenopausal osteoporosis model in OVX mice. PSMC2 silencing promotes the osteogenic differentiation of BMSCs in vitro, promotes bone formation, and inhibits bone resorption in vivo.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Kun Peng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Guoqiang Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weihua Chen
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yijun Kang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
26
|
Eroglu B, Genova E, Zhang Q, Su Y, Shi X, Isales C, Eroglu A. Photobiomodulation has rejuvenating effects on aged bone marrow mesenchymal stem cells. Sci Rep 2021; 11:13067. [PMID: 34158600 PMCID: PMC8219765 DOI: 10.1038/s41598-021-92584-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Evan Genova
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Yun Su
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Xingming Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
| | - Carlos Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, CA-2004, Augusta, GA, 30912, USA.
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
27
|
Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13:128-138. [PMID: 33584984 PMCID: PMC7859986 DOI: 10.4252/wjsc.v13.i1.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.
AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.
METHODS We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo.
RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features.
CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shu-Fen Liu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Kisiday JD, Schwartz JA, Tangtrongsup S, Goodrich LR, Grande DA. Culture Conditions that Support Expansion and Chondrogenesis of Middle-Aged Rat Mesenchymal Stem Cells. Cartilage 2020; 11:364-373. [PMID: 30056741 PMCID: PMC7298599 DOI: 10.1177/1947603518790047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Rats are an early preclinical model for cartilage tissue engineering, and a practical species for investigating the effects of aging. However, rats may be a poor aging model for mesenchymal stem cells (MSCs) based on laboratory reports of a severe decline in chondrogenesis beyond young adulthood. Such testing has not been conducted with MSCs seeded in a scaffold, which can improve the propensity of MSCs to undergo chondrogenesis. Therefore, the objective of this study was to evaluate chondrogenesis of middle-aged rat MSCs encapsulated in agarose. DESIGN MSCs from 14- to 15-month-old rats were expanded, seeded into agarose, and cultured in chondrogenic medium with or without 5% serum for 15 days. Samples were evaluated for cell viability and cartilaginous extracellular matrix (ECM) accumulation. Experiments were repeated using MSCs from 6-week-old rats. RESULTS During expansion, middle-aged rat MSCs demonstrated a diminishing proliferation rate that was improved ~2-fold in part by transient exposure to chondrogenic medium. In agarose culture in defined medium, middle-aged rat MSCs accumulated ECM to a much greater extent than negative controls. Serum supplementation improved cell survival ~2-fold, and increased ECM accumulation ~3-fold. Histological analysis indicated that defined medium supported chondrogenesis in a subset of cells, while serum-supplementation increased the frequency of chondrogenic cells. In contrast, young rat MSCs experienced robust chondrogenesis in defined medium that was not improved with serum-supplementation. CONCLUSIONS These data demonstrate a previously-unreported propensity of middle-aged rat MSCs to undergo chondrogenesis, and the potential of serum to enhance chondrogenesis of aging MSCs.
Collapse
Affiliation(s)
- John D. Kisiday
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA,John D. Kisiday, Orthopaedic Research
Center, Department of Clinical Sciences, Colorado State University, Campus
Delivery 1678, Fort Collins, CO 80523, USA.
| | - John A. Schwartz
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | | | - Laurie R. Goodrich
- Orthopaedic Research Center, Colorado
State University, Fort Collins, CO, USA
| | - Daniel A. Grande
- The Feinstein Institute for Medical
Research, North Shore–LIJ Health System, Manhasset, NY, USA
| |
Collapse
|
29
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
30
|
Niedermair T, Schirner S, Lasheras MG, Straub RH, Grässel S. Absence of α-calcitonin gene-related peptide modulates bone remodeling properties of murine osteoblasts and osteoclasts in an age-dependent way. Mech Ageing Dev 2020; 189:111265. [PMID: 32446790 DOI: 10.1016/j.mad.2020.111265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
Mice with an overall deletion of the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP) develop an age-dependent osteopenic bone phenotype. Underlying molecular mechanisms of how αCGRP affects bone cell metabolism are not well understood. This study aims to characterize differences in metabolic parameters of osteoblast-like cells (OB) and differentiated bone marrow-derived macrophages (BMM)/osteoclast (OC) cultures isolated from 3 month (3 m) and 9 month old (9 m) α-CGRP-deficient mice (-/-) and age-matched WT controls. All WT bone cell cultures endogenously produced and secreted α-CGRP. We found higher BMM but reduced OB numbers and reduced OB vitality after isolation from 9 m compared to 3 m mice, independent of genotype. Absence of α-CGRP reduced cell spreading, increased apoptosis rate throughout osteogenic differentiation, and reduced ALP activity during late osteogenic differentiation in 9 m OB-/- cultures, whereas minor effects were found in 3 m OB-/- cultures. Cathepsin K activity was reduced in 3 m OC-/- cultures. On the contrary, 9 m OC-/- cells demonstrated increased proliferation and caspase3/7 activity. The absence of α-CGRP influenced bone formation and resorption rate differently in bone cells from 3 and 9 m old mice. In summary we suggest, that an increase of dysfunctional mature osteoblasts might occur during aging and contribute to the development of the osteopenic bone phenotype in mature adult (9 m) α-CGRP-deficient mice.
Collapse
Affiliation(s)
- Tanja Niedermair
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Stephan Schirner
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Mar Guaza Lasheras
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University of Regensburg, Germany.
| | - Susanne Grässel
- Department of Orthopaedic Surgery, University of Regensburg, Germany; Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Germany.
| |
Collapse
|
31
|
Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged Tendon Stem/Progenitor Cells Are Less Competent to Form 3D Tendon Organoids Due to Cell Autonomous and Matrix Production Deficits. Front Bioeng Biotechnol 2020; 8:406. [PMID: 32432103 PMCID: PMC7214752 DOI: 10.3389/fbioe.2020.00406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Tendons are dense connective tissues, which are critical for the integrity and function of our musculoskeletal system. During tendon aging and degeneration, tendon stem/progenitor cells (TSPCs) experience profound phenotypic changes with declined cellular functions that can be linked to the known increase in complications during tendon healing process in elderly patients. Tissue engineering is a promising approach for achieving a complete recovery of injured tendons. However, use of autologous cells from aged individuals would require restoring the cellular fitness prior to implantation. In this study, we applied an established cell sheet model for in vitro tenogenesis and compared the sheet formation of TSPC derived from young/healthy (Y-TSPCs) versus aged/degenerative (A-TSPCs) human Achilles tendon biopsies with the purpose to unravel differences in their potential to form self-assembled three-dimensional (3D) tendon organoids. Using our three-step protocol, 4 donors of Y-TSPCs and 9 donors of A-TSPCs were subjected to cell sheet formation and maturation in a period of 5 weeks. The sheets were then cross evaluated by weight and diameter measurements; quantification of cell density, proliferation, senescence and apoptosis; histomorphometry; gene expression of 48 target genes; and collagen type I protein production. The results revealed very obvious and significant phenotype in A-TSPC sheets characterized by being fragile and thin with poor tissue morphology, and significantly lower cell density and proliferation, but significantly higher levels of the senescence-related gene markers and apoptotic cells. Quantitative gene expression analyses at the mRNA and protein levels, also demonstrated abnormal molecular circuits in the A-TSPC sheets. Taken together, we report for the first time that A-TSPCs exhibit profound deficits in forming 3D tendon tissue organoids, thus making the cell sheet model suitable to investigate the molecular mechanisms involved in tendon aging and degeneration, as well as examining novel pharmacologic strategies for rejuvenation of aged cells.
Collapse
Affiliation(s)
- Zexing Yan
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Heyong Yin
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | | | - Christian G Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany.,Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
32
|
Liu J, Ding Y, Liu Z, Liang X. Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies. Front Cell Dev Biol 2020; 8:258. [PMID: 32478063 PMCID: PMC7232554 DOI: 10.3389/fcell.2020.00258] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation. There is increasing evidence of the therapeutic value of MSCs in various clinical situations, however, these cells gradually lose their regenerative potential with age, with a concomitant increase in cellular dysfunction. Stem cell aging and replicative exhaustion are considered as hallmarks of aging and functional attrition in organisms. MSCs do not proliferate infinitely but undergo only a limited number of population doublings before becoming senescent. This greatly hinders their clinical application, given that cultures must be expanded to obtain a sufficient number of cells for cell-based therapy. Here, we review the current knowledge of the phenotypic and functional characteristics of senescent MSCs, molecular mechanisms underlying MSCs aging, and strategies to rejuvenate senescent MSCs, which can broaden their range of therapeutic applications.
Collapse
Affiliation(s)
- Jing Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Ding
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Rastaldo R, Vitale E, Giachino C. Dual Role of Autophagy in Regulation of Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2020; 8:276. [PMID: 32391362 PMCID: PMC7193103 DOI: 10.3389/fcell.2020.00276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
During their development and overall life, mesenchymal stem cells (MSCs) encounter a plethora of internal and external stress signals and therefore, they need to put in action homeostatic changes in order to face these stresses. To this aim, similar to other mammalian cells, MSCs are endowed with two crucial biological responses, autophagy and senescence. Sharing of a number of stimuli like shrinkage of telomeres, oncogenic and oxidative stress, and DNA damage, suggest an intriguingly close relationship between autophagy and senescence. Autophagy is at first reported to suppress MSC senescence by clearing injured cytoplasmic organelles and impaired macromolecules, yet recent investigations also showed that autophagy can promote MSC senescence by inducing the production of senescence-associated secretory proteins (SASP). These apparently contrary contributions of autophagy may mirror an intricate image of autophagic regulation on MSC senescence. We here tackle the pro-senescence and anti-senescence roles of autophagy in MSCs while concentrating on some possible mechanistic explanations of such an intricate liaison. Clarifying the autophagy/senescence relationship in MSCs will help the development of more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Emanuela Vitale
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Jeon R, Park S, Lee SL, Rho GJ. Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:515-524. [PMID: 32054231 PMCID: PMC7054621 DOI: 10.5713/ajas.19.0416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
Objective Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.
Collapse
Affiliation(s)
- Ryounghoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
35
|
Sugihara H, Teramoto N, Yamanouchi K, Matsuwaki T, Nishihara M. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging (Albany NY) 2019; 10:747-763. [PMID: 29695641 PMCID: PMC5940129 DOI: 10.18632/aging.101425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function. Skeletal muscle comprises diverse progenitor cells, including mesenchymal progenitor cells (MPCs), which normally support myogenic cell function but cause a decline in skeletal muscle function after differentiating into fibrous/adipose tissue. Cellular senescence is a form of persistent cell cycle arrest caused by cellular stress, including oxidative stress, and is accompanied by the acquisition of senescence-associated secretory phenotype (SASP). Here, we found γH2AX+ senescent cells appeared in the interstitium in skeletal muscle, corresponding in position to that of MPCs. H2O2 mediated oxidative stress in 2G11 cells, a rat MPC clone previously established in our laboratory, successfully induced senescence, as shown by the upregulation of p21 and SASP factors, including IL-6. The senescent 2G11 cells lost their fibro/adipogenic potential, but, intriguingly, coculture of myoblasts with senescent 2G11 cells abrogated the myotube formation, which coincided with the downregulation of myomaker, a muscle-specific protein involved in myogenic cell fusion; however, forced expression of myomaker could not rescue this abrogation. These results suggest that senescent MPCs in aged rat skeletal muscle lose their fibro/adipogenic potential, but differ completely from undifferentiated progenitor cells in that senescent MPCs suppress myoblast fusion and thereby potentially accelerate sarcopenia.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
36
|
Wagner DR, Karnik S, Gunderson ZJ, Nielsen JJ, Fennimore A, Promer HJ, Lowery JW, Loghmani MT, Low PS, McKinley TO, Kacena MA, Clauss M, Li J. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells 2019; 11:281-296. [PMID: 31293713 PMCID: PMC6600851 DOI: 10.4252/wjsc.v11.i6.281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
Collapse
Affiliation(s)
- Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alanna Fennimore
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Hunter J Promer
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - M Terry Loghmani
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| | - Matthias Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| |
Collapse
|
37
|
Souter P, Cunningham JC, Horner A, Genever PG. The variable toxicity of silver ions in cell culture media. Toxicol In Vitro 2019; 60:154-159. [PMID: 31132479 DOI: 10.1016/j.tiv.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
The elevated interest in silver ions (Ag+) as a broad spectrum antimicrobial for use on medical devices has increased the number and importance of in vitro biocompatibility testing, however little consideration is given to the culture environment in which the assessments are performed. The current investigation assessed the viability of mouse fibroblasts (L929) exposed to different concentrations of Ag+ in both Dulbecco's modified Eagle's medium (DMEM) and minimal essential medium Eagle, alpha modification (αMEM). We identified a significant increase in the EC50 of L929 cells exposed to Ag+ in αMEM compared to DMEM, which was matched by a corresponding decrease in Ag+ availability in αMEM at concentrations ≤400 μM, as detected by inductively coupled plasma mass spectrometry (ICP-MS). The reduced availability was not observed for Ag+ > 400 μM, the concentration above which caused in vitro cytotoxicity in L929 cells in αMEM; while linear quantification of Ag+ was observed in DMEM. Equilibration of the chloride and glucose components between media did not affect cytotoxicity on primary test cells; mesenchymal stromal cells (MSCs). Overall, our results present evidence of the importance of culture conditions on the in vitro evaluation of silver, with DMEM providing a reliable basal media in which to conduct assessments.
Collapse
Affiliation(s)
- Paul Souter
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| | | | | | - Paul G Genever
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
38
|
Peng H, Yang M, Guo Q, Su T, Xiao Y, Xia ZY. Dendrobium officinale polysaccharides regulate age-related lineage commitment between osteogenic and adipogenic differentiation. Cell Prolif 2019; 52:e12624. [PMID: 31038249 PMCID: PMC6668967 DOI: 10.1111/cpr.12624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Excessive oxidative stress and diminished antioxidant defences could contribute to age‐related tissue damage and various diseases including age‐related osteoporosis. Dendrobium officinale polysaccharides (DOPs), a major ingredient from a traditional Chinese medicine, have a great potential of antioxidative activity. In this study, we explore the role of DOP in age‐related osteoporosis that remains elusive. Materials and methods Oxidative stimulation and DOP were used to treat bone marrow mesenchymal stem cells (BMSCs), whose lineage commitment was measured by adipogenic‐ and osteoblastic‐induced differentiation analysis. The oxidative stress and antioxidant capacity of BMSCs under the treatment of DOP were analysed by the level of MDA, SOD. Related mechanism studies were confirmed by qRT‐PCR, Western blotting and siRNA transfection. DOP was orally administrated in aged mice whose phenotype was confirmed by micro‐CT, immunofluorescence, immunochemistry and calcein double‐labelling analysis. Results Dendrobium officinale polysaccharide treatment markedly increased osteogenic differentiation of BMSCs, while inhibiting adipogenic differentiation. In vitro, DOP could rescue H2O2‐induced switch of BMSCs differentiation fate. However, this effect was abolished in BMSCs when interfered with Nrf2 siRNA. Furthermore, administration of DOP to aged mice significantly increased the bone mass and reduced the marrow adipose tissue (MAT) accompanied with decreased oxidative stress of BMSCs. Conclusions Our study reveals that DOP can attenuate bone loss and MAT accumulation through NRF2 antioxidant signalling, which may represent as potential therapeutic agent for age‐related osteoporosis.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhu-Ying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici Ö, Meisel R, Sorg RV, Oreffo ROC, Adjaye J. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther 2019; 10:100. [PMID: 30885246 PMCID: PMC6423778 DOI: 10.1186/s13287-019-1209-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Primary mesenchymal stem cells (MSCs) are fraught with aging-related shortfalls. Human-induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been shown to be a useful clinically relevant source of MSCs that circumvent these aging-associated drawbacks. To date, the extent of the retention of aging-hallmarks in iMSCs differentiated from iPSCs derived from elderly donors remains unclear. METHODS Fetal femur-derived MSCs (fMSCs) and adult bone marrow MSCs (aMSCs) were isolated, corresponding iPSCs were generated, and iMSCs were differentiated from fMSC-iPSCs, from aMSC-iPSCs, and from human embryonic stem cells (ESCs) H1. In addition, typical MSC characterization such as cell surface marker expression, differentiation capacity, secretome profile, and trancriptome analysis were conducted for the three distinct iMSC preparations-fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs. To verify these results, previously published data sets were used, and also, additional aMSCs and iMSCs were analyzed. RESULTS fMSCs and aMSCs both express the typical MSC cell surface markers and can be differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. However, the transcriptome analysis revealed overlapping and distinct gene expression patterns and showed that fMSCs express more genes in common with ESCs than with aMSCs. fMSC-iMSCs, aMSC-iMSCs, and ESC-iMSCs met the criteria set out for MSCs. Dendrogram analyses confirmed that the transcriptomes of all iMSCs clustered together with the parental MSCs and separated from the MSC-iPSCs and ESCs. iMSCs irrespective of donor age and cell type acquired a rejuvenation-associated gene signature, specifically, the expression of INHBE, DNMT3B, POU5F1P1, CDKN1C, and GCNT2 which are also expressed in pluripotent stem cells (iPSCs and ESC) but not in the parental aMSCs. iMSCs expressed more genes in common with fMSCs than with aMSCs. Independent real-time PCR comparing aMSCs, fMSCs, and iMSCs confirmed the differential expression of the rejuvenation (COX7A, EZA2, and TMEM119) and aging (CXADR and IGSF3) signatures. Importantly, in terms of regenerative medicine, iMSCs acquired a secretome (e.g., angiogenin, DKK-1, IL-8, PDGF-AA, osteopontin, SERPINE1, and VEGF) similar to that of fMSCs and aMSCs, thus highlighting their ability to act via paracrine signaling. CONCLUSIONS iMSCs irrespective of donor age and cell source acquire a rejuvenation gene signature. The iMSC concept could allow circumventing the drawbacks associated with the use of adult MSCs und thus provide a promising tool for use in various clinical settings in the future.
Collapse
Affiliation(s)
- Lucas-Sebastian Spitzhorn
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Matthias Megges
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Md Shaifur Rahman
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jörg Otte
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Özer Degistirici
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Roland Meisel
- Division of Paediatric Stem Cell Therapy, Clinic for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger Volker Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr, 5, 40225, Düsseldorf, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
40
|
Autophagy in Development and Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:469-487. [PMID: 31776999 DOI: 10.1007/978-981-15-0602-4_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is crucial in the differentiation and development of both mammals and invertebrates, as a rapid response to environmental and hormonal stimuli. Autophagy is also important for intracellular renewal, maintaining the health of terminally differentiated cells. Studies of Drosophila, Caenorhabditis elegans, and other species revealed abnormal autophagy lead to developmental and differential abnormality, including those in salivary glands and midgut development, protein aggregation, removal of apoptotic cell corpses, and development of dauer and synapse. Autophagy also participates in the development of mammalian embryos before implantation into the uterus, adaption to the nascent hunger environment, blood cells production, and cell differentiation in adipogenesis. Autophagy found in various stem cells, like hematopoietic stem cells, bone marrow mesenchymal stem cells and neural stem cells (NSCs), is tightly associated with their self-renewal, directed differentiation, and senescence.
Collapse
|
41
|
Kornicka K, Houston J, Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy may Limit Their Potential Therapeutic Use. Stem Cell Rev Rep 2018; 14:337-345. [PMID: 29611042 PMCID: PMC5960487 DOI: 10.1007/s12015-018-9809-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesenchymal stem cells (MSC) have become a promising tool for therapeutic intervention. Their unique features, including self-renewal, multipotency and immunomodulatory properties draw the worldwide attention of researchers and physicians with respect to their application in disease treatment. However, the environment (so-called niche) from which MSCs are isolated may determine their usefulness. Many studies indicated the involvement of MSCs in ageing and disease. In this review, we have focused on how type 2 diabetes (T2D) and metabolic syndrome (MS) affect MSC properties, and thus limit their therapeutic potential. Herein, we mainly focus on apoptosis, autophagy and mitochondria deterioration processes that indirectly affect MSC fate. Based on the data presented, special attention should be paid when considering autologous MSC therapy in T2D or MS treatments, as their therapeutic potential may be restricted.
Collapse
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Jenny Houston
- PferdePraxis Dr. Med. Vet. Daniel Weiss, Postmatte 14, CH-8807, Freienbach, Switzerland
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.,Wroclaw Research Centre EIT+, 54-066, Wroclaw, Poland
| |
Collapse
|
42
|
Vainieri M, Wahl D, Alini M, van Osch G, Grad S. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies. Acta Biomater 2018; 81:256-266. [PMID: 30273741 DOI: 10.1016/j.actbio.2018.09.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Surgical procedures such as microfracture or autologous chondrocyte implantation have been used to treat articular cartilage lesions; however, repair often fails in terms of matrix organization and mechanical behaviour. Advanced biomaterials and tissue engineered constructs have been developed to improve cartilage repair; nevertheless, their clinical translation has been hampered by the lack of reliable in vitro models suitable for pre-clinical screening of new implants and compounds. In this study, an osteochondral defect model in a bioreactor that mimics the multi-axial motion of an articulating joint, was developed. Osteochondral explants were obtained from bovine stifle joints, and cartilage defects of 4 mm diameter were created. The explants were used as an interface against a ceramic ball applying dynamic compressive and shear loading. Osteochondral defects were filled with chondrocytes-seeded fibrin-polyurethane constructs and subjected to mechanical stimulation. Cartilage viability, proteoglycan accumulation and gene expression of seeded chondrocytes were compared to free swelling controls. Cells within both cartilage and bone remained viable throughout the 10-day culture period. Loading did not wear the cartilage, as indicated by histological evaluation and glycosaminoglycan release. The gene expression of seeded chondrocytes indicated a chondrogenic response to the mechanical stimulation. Proteoglycan 4 and cartilage oligomeric matrix protein were markedly increased, while mRNA ratios of collagen type II to type I and aggrecan to versican were also enhanced. This mechanically stimulated osteochondral defect culture model provides a viable microenvironment and will be a useful pre-clinical tool to screen new biomaterials and biological regenerative therapies under relevant complex mechanical stimuli. STATEMENT OF SIGNIFICANCE: Articular cartilage lesions have a poor healing capacity and reflect one of the most challenging problems in orthopedic clinical practice. The aim of current research is to develop a testing system to assess biomaterials for implants, that can permanently replace damaged cartilage with the original hyaline structure and can withstand the mechanical forces long term. Here, we present an osteochondral ex vivo culture model within a cartilage bioreactor, which mimics the complex motion of an articulating joint in vivo. The implementation of mechanical forces is essential for pre-clinical testing of novel technologies in the field of cartilage repair, biomaterial engineering and regenerative medicine. Our model provides a unique opportunity to investigate healing of articular cartilage defects in a physiological joint-like environment.
Collapse
|
43
|
Dwivedi G, Chevrier A, Hoemann CD, Buschmann MD. Bone Marrow Progenitor Cells Isolated from Young Rabbit Trochlea Are More Numerous and Exhibit Greater Clonogenic, Chondrogenic, and Osteogenic Potential than Cells Isolated from Condyles. Cartilage 2018; 9:378-390. [PMID: 29156978 PMCID: PMC6139585 DOI: 10.1177/1947603517693044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Bone marrow stimulation procedures initiate repair by fracturing or drilling subchondral bone at base of cartilaginous defect. Earlier studies have shown that defect location and animal age affect cartilage repair outcome, suggesting a strong influence of structural and biological characteristics of subchondral bone. Here, we analyzed comprehensive biological characteristics of bone marrow progenitor cells (BMPCs) in subchondral bone of young and old rabbit condyle and trochlea. We tested the hypothesis that in vitro biological properties of BMPCs are influenced by location, age of donor and method of their isolation. DESIGN In vitro biological properties, including cell yield, colony-forming unit fibroblasts (CFU-f), surface marker expression, and differentiation potential were determined. Comparisons were carried out between trochlea versus condyle and epiphyseal versus metaphyseal bone using old ( N = 5) and young animal knees ( N = 8) to generate collagenase and explant-derived BMPC cultures. RESULTS CFU-f, cell yield, expression of stem cell markers, and osteogenic differentiation were significantly superior for younger animals. Trochlear subchondral bone yielded the most progenitors with the highest clonogenic potential and cartilaginous matrix expression. Trochlear collagenase-derived BMPCs had higher clonogenic capacity than explant-derived ones. Epiphyseal cells generated a larger chondrogenic pellet mass than metaphyseal-derived BMPCs. All older pellet cultures and one non-responder young rabbit failed to accumulate glycosaminoglycans (GAGs). CONCLUSION Taken together, these results suggest that properties intrinsic to subchondral progenitors could significantly influence cartilage repair potential, and could partly explain variability in cartilage repair outcomes using same cartilage repair approach.
Collapse
Affiliation(s)
- Garima Dwivedi
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Caroline D. Hoemann
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, Quebec, Canada,Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michael D. Buschmann
- Biomedical Engineering Institute, Polytechnique Montreal, Montreal, Quebec, Canada,Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada,Michael D. Buschmann, Department of Chemical Engineering, Polytechnique Montreal, PO Box 6079, Succ Centre-Ville, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
44
|
Shao Z, Wu J, Du G, Song H, Li SH, He S, Li J, Wu J, Weisel RD, Yuan H, Li RK. Young bone marrow Sca-1 cells protect aged retina from ischaemia-reperfusion injury through activation of FGF2. J Cell Mol Med 2018; 22:6176-6189. [PMID: 30255622 PMCID: PMC6237572 DOI: 10.1111/jcmm.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 08/19/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cell apoptosis and optic nerve degeneration are prevalent in aged patients, which may be related to the decrease in bone marrow (BM) stem cell number/function because of the possible cross‐talk between the two organs. This pathological process is accelerated by retinal ischaemia‐reperfusion (I/R) injury. This study investigated whether young BM stem cells can regenerate and repair the aged retina after acute I/R injury. Young BM stem cell antigen 1 positive (Sca‐1+) or Sca‐1− cells were transplanted into lethally irradiated aged recipient mice to generate Sca‐1+ and Sca‐1− chimaeras, respectively. The animals were housed for 3 months to allow the young Sca‐1 cells to repopulate in the BM of aged mice. Retinal I/R was then induced by elevation of intraocular pressure. Better preservation of visual function was found in Sca‐1+ than Sca‐1− chimaeras 7 days after injury. More Sca‐1+ cells homed to the retina than Sca‐1− cells and more cells differentiated into glial and microglial cells in the Sca‐1+ chimaeras. After injury, Sca‐1+ cells in the retina reduced host cellular apoptosis, which was associated with higher expression of fibroblast growth factor 2 (FGF2) in the Sca‐1+ chimaeras. Young Sca‐1+ cells repopulated the stem cells in the aged retina and diminished cellular apoptosis after acute I/R injury through FGF2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Zhengbo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jie Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Guoqing Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Huifang Song
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sheng He
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Cardiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Heathman TR, Nienow AW, Rafiq QA, Coopman K, Kara B, Hewitt CJ. Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Suh N, Lee EB. Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells. BMB Rep 2018; 50:572-577. [PMID: 29065969 PMCID: PMC5720471 DOI: 10.5483/bmbrep.2017.50.11.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 11/30/2022] Open
Abstract
In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.
Collapse
Affiliation(s)
- Nayoung Suh
- Department of Pharmaceutical Engineering, Soon Chun Hyang University, Asan 31538, Korea
| | - Eun-Bi Lee
- Department of Pharmaceutical Engineering, Soon Chun Hyang University, Asan 31538, Korea
| |
Collapse
|
47
|
Wei J, Chen S, Guo W, Feng B, Yang S, Huang C, Chu J. Leukotriene D4 induces cellular senescence in osteoblasts. Int Immunopharmacol 2018; 58:154-159. [PMID: 29587204 DOI: 10.1016/j.intimp.2017.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
Abstract
Aging is associated with the development of osteoporosis, in which cellular senescence in osteoblasts plays a key role. Leukotriene D4 (LTD4), an important cysteinyl leukotriene (cysLT), is a powerful pro-inflammatory mediator formed from arachidonic acid. However, little information regarding the effects of LTD4 on the pathogenesis of osteoporosis has been reported before. In the present study, we defined the physiological roles of LTD4 in cellular senescence in osteoblasts. Our results indicate that LTD4 treatment decreased the expression of SIRT1 in a dose-dependent manner in MC3T3-E1 osteoblastic cells. Additionally, LTD4 significantly increased the expression of p53, p21 and plasminogen activator inhibitor-1 (PAI-1). LTD4 was also found to elevate the activity of β-galactosidase (SA-β-Gal) but to prevent BrdU incorporation. Our results indicate that cysteinyl leukotriene receptor 1 (cysLT1R) could be detected in MC3T3-E1 osteoblastic cells at both the mRNA and protein levels. However, cysLT2R was not expressed in these cells. Interestingly, we found that knockdown of cysLT1R or use of the selective cysLT1R antagonist montelukast abolished the LTD4-induced reduction in SIRT1 and increase in p53, p21, and PAI-1. Notably, knockdown of cysLT1R by transfection with cysLT1R siRNA or treatment with montelukast attenuated the LTD4-induced increase in SA-β-Gal activity. Our study shows for the first time that LTD4 has a significant impact on cellular senescence in osteoblasts.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Siyuan Chen
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Weixiong Guo
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Bailin Feng
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shukai Yang
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chengshuo Huang
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Jiaqi Chu
- Department of Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China.
| |
Collapse
|
48
|
Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta 2018; 65:37-46. [PMID: 29908640 DOI: 10.1016/j.placenta.2018.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mesenchymal stem/stromal cells derived from human term placentas (PMSCs) are novel therapeutic agents and more topical than ever. Here we evaluated the effects of three types of PMSCs on wound healing in an in vivo mouse model: Amnion-derived MSCs (AMSCs), blood vessel-derived MSCs (BV-MSCs) from the chorionic plate and Wharton's jelly-derived MSCs (WJ-MSCs) from the umbilical cord. METHODS We topically applied PMSCs onto skin wounds in mice using the dermal substitute Matriderm® as carrier and evaluated wound healing parameters. In addition, we investigated the effects of all PMSC types under co-application with placental endothelial cells (PLECs). After 8 days, we compared the percent of wound closure and the angiogenic potential between all groups. RESULTS AMSCs, BV-MSCs and WJ-MSCs significantly induced a faster healing and a higher number of blood vessels in the wound when compared to controls (Matriderm®-alone). PLECs did not further improve the advantageous effects of PMSC-treatment. Quantitative data and 3D analysis by high resolution episcopic microscopy confirmed a lower density of vessels in Matriderm®/PMSCs/PLECs co-application compared to Matriderm®/PMSCs treatment. CONCLUSION Results indicate that all three PMSC types exert similar beneficial effects on wound closure and neovascularization in our mouse model. PRACTICE Using Matriderm® as carrier for PMSCs propagates rapid cell migration towards the wound area that allows a fast and clinically practicable method for stem cell application. IMPLICATIONS These promising effects warrant further investigation in clinical trials.
Collapse
|
49
|
Jing H, Su X, Gao B, Shuai Y, Chen J, Deng Z, Liao L, Jin Y. Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis. Cell Death Dis 2018; 9:176. [PMID: 29416009 PMCID: PMC5833865 DOI: 10.1038/s41419-017-0231-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
Abstract
Disrupted Wnt signaling in osteoblastic-lineage cells leads to bone formation defect in osteoporosis. However, the factors repressing Wnt signaling are unclear. In our study, we found that Wnt signaling was suppressed persistently in bone marrow-derived mesenchymal stem cells (BMSCs) during osteoporosis. Accordingly, histone acetylation levels on Wnt genes (Wnt1, Wnt6, Wnt10a, and Wnt10b) were declined in BMSCs from OVX mice. By screening the family of histone acetyltransferase, we identified that GCN5 expression increased during osteogenic differentiation of BMSCs, whereas decreased after osteoporosis. Further analysis revealed that GCN5 promoted osteogenic differentiation of BMSCs by increasing acetylation on histone 3 lysine 9 loci on the promoters of Wnt genes. Reduced GCN5 expression suppressed Wnt signaling, resulting in osteogenic defect of BMSCs from OVX mice. Moreover, restoring GCN5 levels recovered BMSC osteogenic differentiation, and attenuated bone loss in OVX mice. Taken together, our study demonstrated that disrupted histone acetylation modification in BMSCs lead to bone formation defect during osteoporosis. The findings also introduced a novel therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huan Jing
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Xiaoxia Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Bo Gao
- Department of Orthopaedic Surgery. Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yi Shuai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.,Department of Oral Implantology, School of Stomatology, State Key Laboratory of Military Stomatology, The Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Zhihong Deng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li Liao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
50
|
Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, Liu W, Jin Y. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018; 17. [PMID: 29210174 PMCID: PMC5770781 DOI: 10.1111/acel.12709] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2017] [Indexed: 12/22/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem cells (BMMSCs) exhibit degenerative changes, including imbalanced differentiation and reduced proliferation during aging, that contribute to age‐related bone loss. We demonstrate here that autophagy is significantly reduced in aged BMMSCs compared with young BMMSCs. The autophagy inhibitor 3‐methyladenine (3‐MA) could turn young BMMSCs into a relatively aged state by reducing their osteogenic differentiation and proliferation capacity and enhancing their adipogenic differentiation capacity. Accordingly, the autophagy activator rapamycin could restore the biological properties of aged BMMSCs by increasing osteogenic differentiation and proliferation capacity and decreasing adipogenic differentiation capacity. Possible underlying mechanisms were explored, and the analysis revealed that autophagy could affect reactive oxygen species and p53 levels, thus regulating biological properties of BMMSCs. In an in vivo study, we found that activation of autophagy restored bone loss in aged mice. In conclusion, our results suggest that autophagy plays a pivotal role in the aging of BMMSCs, and activation of autophagy could partially reverse this aging and may represent a potential therapeutic avenue to clinically treat age‐related bone loss.
Collapse
Affiliation(s)
- Yang Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute; Kings College London; London UK
| | - Meng Qi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
| | - Ying An
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Department of Periodontology; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
| | - Liqiang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- Xi'an Institute of Tissue Engineering & Regenerative Medicine; Xi'an Shaanxi China
| | - Rui Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- Department of Stomatology; PLA Army General Hospital; Beijing China
| | - Daniel H Doro
- Department of Craniofacial Development and Stem Cell Biology; Dental Institute; Kings College London; London UK
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- Xi'an Institute of Tissue Engineering & Regenerative Medicine; Xi'an Shaanxi China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; The Fourth Military Medical University; Xi'an Shaanxi China
- Xi'an Institute of Tissue Engineering & Regenerative Medicine; Xi'an Shaanxi China
| |
Collapse
|