1
|
Du J, Chen F, Du C, Zhao W, Chen Z, Ding Z, Zhou M. Amodiaquine ameliorates stress-induced premature cellular senescence via promoting SIRT1-mediated HR repair. Cell Death Discov 2024; 10:434. [PMID: 39394181 PMCID: PMC11470136 DOI: 10.1038/s41420-024-02201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
DNA damage is considered to be a potentially unifying driver of ageing, and the stalling of DNA damage repair accelerates the cellular senescence. However, augmenting DNA repair has remained a great challenge due to the intricate repair mechanisms specific for multiple types of lesions. Herein, we miniaturized our modified detecting system for homologous recombination (HR) into a 96-well-based platform and performed a high-throughput chemical screen for FDA-approved drugs. We uncovered that amodiaquine could significantly augment HR repair at the noncytotoxic concentration. Further experiments demonstrated that amodiaquine remarkably suppressed stress-induced premature cellular senescence (SIPS), as evidenced by senescence-associated beta-galactosidase (SA-β-gal) staining or senescence-related markers p21WAF1 and p16ink4a, and the expression of several cytokines. Mechanistic studies revealed that the stimulation of HR repair by amodiaquine might be mostly attributable to the promotion of SIRT1 at the transcriptional level. Additionally, SIRT1 depletion abolished the amodiaquine-mediated effects on DNA repair and cellular senescence, indicating that amodiaquine delayed the onset of SIPS via a SIRT1-dependent pathway. Taken together, this experimental approach paved the way for the identification of compounds that augment HR activity, which could help to underscore the therapeutic potential of targeting DNA repair for treating aging-related diseases.
Collapse
Affiliation(s)
- Jie Du
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fuqiang Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenghong Du
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenna Zhao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zihan Chen
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Meijuan Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Karabag D, Heneka MT, Ising C. The putative contribution of cellular senescence to driving tauopathies. Trends Immunol 2024; 45:837-848. [PMID: 39306559 DOI: 10.1016/j.it.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.
Collapse
Affiliation(s)
- Deniz Karabag
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Michael T Heneka
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Christina Ising
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
3
|
Schumann S, Scherthan H, Hartrampf PE, Göring L, Buck AK, Port M, Lassmann M, Eberlein U. Modelling the In Vivo and Ex Vivo DNA Damage Response after Internal Irradiation of Blood from Patients with Thyroid Cancer. Int J Mol Sci 2024; 25:5493. [PMID: 38791531 PMCID: PMC11122196 DOI: 10.3390/ijms25105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
This work reports on a model that describes patient-specific absorbed dose-dependent DNA damage response in peripheral blood mononuclear cells of thyroid cancer patients during radioiodine therapy and compares the results with the ex vivo DNA damage response in these patients. Blood samples of 18 patients (nine time points up to 168 h post-administration) were analyzed for radiation-induced γ-H2AX + 53BP1 DNA double-strand break foci (RIF). A linear one-compartment model described the absorbed dose-dependent time course of RIF (Parameters: c characterizes DSB damage induction; k1 and k2 are rate constants describing fast and slow repair). The rate constants were compared to ex vivo repair rates. A total of 14 patient datasets could be analyzed; c ranged from 0.012 to 0.109 mGy-1, k2 from 0 to 0.04 h-1. On average, 96% of the damage is repaired quickly with k1 (range: 0.19-3.03 h-1). Two patient subgroups were distinguished by k1-values (n = 6, k1 > 1.1 h-1; n = 8, k1 < 0.6 h-1). A weak correlation with patient age was observed. While induction of RIF was similar among ex vivo and in vivo, the respective repair rates failed to correlate. The lack of correlation between in vivo and ex vivo repair rates and the applicability of the model to other therapies will be addressed in further studies.
Collapse
Affiliation(s)
- Sarah Schumann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Philipp E. Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Lukas Göring
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, 80937 Munich, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Uta Eberlein
- Department of Nuclear Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Chen Y, Zhen Z, Chen L, Wang H, Wang X, Sun X, Song Z, Wang H, Lin Y, Zhang W, Wu G, Jiang Y, Mao Z. Androgen signaling stabilizes genomes to counteract senescence by promoting XRCC4 transcription. EMBO Rep 2023; 24:e56984. [PMID: 37955230 PMCID: PMC10702805 DOI: 10.15252/embr.202356984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Aging is accompanied by a decreased DNA repair capacity, which might contribute to age-associated functional decline in multiple tissues. Disruption in hormone signaling, associated with reproductive organ dysfunction, is an early event of age-related tissue degeneration, but whether it impacts DNA repair in nonreproductive organs remains elusive. Using skin fibroblasts derived from healthy donors with a broad age range, we show here that the downregulation of expression of XRCC4, a factor involved in nonhomologous end-joining (NHEJ) repair, which is the dominant pathway to repair somatic double-strand breaks, is mediated through transcriptional mechanisms. We show that the androgen receptor (AR), whose expression is also reduced during aging, directly binds to and enhances the activity of the XRCC4 promoter, facilitating XRCC4 transcription and thus stabilizing the genome. We also demonstrate that dihydrotestosterone (DHT), a powerful AR agonist, restores XRCC4 expression and stabilizes the genome in different models of cellular aging. Moreover, DHT treatment reverses senescence-associated phenotypes, opening a potential avenue to aging interventions in the future.
Collapse
Affiliation(s)
- Yu Chen
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhengyi Zhen
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lingjiang Chen
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hao Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuhui Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoxiang Sun
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiwei Song
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Haiyan Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizi Lin
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenjun Zhang
- Department of Plastic Surgery, Changzheng Hospital, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Ying Jiang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Chen Y, Huang S, Cui Z, Sun X, Tang Y, Zhang H, Chen Z, Jiang R, Zhang W, Li X, Chen J, Liu B, Jiang Y, Wei K, Mao Z. Impaired end joining induces cardiac atrophy in a Hutchinson-Gilford progeria mouse model. Proc Natl Acad Sci U S A 2023; 120:e2309200120. [PMID: 37967221 PMCID: PMC10666128 DOI: 10.1073/pnas.2309200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.
Collapse
Affiliation(s)
- Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Shiqi Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Yansong Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Hongjie Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Rui Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Jiayu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Baohua Liu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen518055, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao266071, China
| |
Collapse
|
6
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Sims AA, Gurkar AU. DNA damage-induced stalling of transcription drives aging through gene expression imbalance. DNA Repair (Amst) 2023; 125:103483. [PMID: 36921370 DOI: 10.1016/j.dnarep.2023.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Age-related changes in gene expression have long been examined to understand the biology of aging. The hallmarks of aging are biological processes known to be associated with aging, but whether there is a unifying driver of these attributes, is not well understood. With the advent of technology over the last few years, it is quite clear that aging leads to global decline in transcription. In this Perspective, we highlight a new study in Nature Genetics that aimed to determine why global transcription rate reduces with age and how this phenomenon is the driver that interconnects multiple hallmarks of aging. This study recognizes that age-related accumulation of DNA damage, particularly transcription-blocking lesions, stalls RNA polymerase. This phenomenon affects longer genes leading to a gradual loss of transcription and skewing the transcriptome. In order to design a successful aging intervention, future work will be needed to test how some promising therapies in pre-clinical trials target affect transcriptional rate.
Collapse
Affiliation(s)
- Austin A Sims
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA.
| |
Collapse
|
8
|
Vlachogiannis NI, Ntouros PA, Pappa M, Kravvariti E, Kostaki EG, Fragoulis GE, Papanikolaou C, Mavroeidi D, Bournia VK, Panopoulos S, Laskari K, Arida A, Gorgoulis VG, Tektonidou MG, Paraskevis D, Sfikakis PP, Souliotis VL. Chronological Age and DNA Damage Accumulation in Blood Mononuclear Cells: A Linear Association in Healthy Humans after 50 Years of Age. Int J Mol Sci 2023; 24:ijms24087148. [PMID: 37108309 PMCID: PMC10138488 DOI: 10.3390/ijms24087148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is characterized by the progressive deregulation of homeostatic mechanisms causing the accumulation of macromolecular damage, including DNA damage, progressive decline in organ function and chronic diseases. Since several features of the aging phenotype are closely related to defects in the DNA damage response (DDR) network, we have herein investigated the relationship between chronological age and DDR signals in peripheral blood mononuclear cells (PBMCs) from healthy individuals. DDR-associated parameters, including endogenous DNA damage (single-strand breaks and double-strand breaks (DSBs) measured by the alkaline comet assay (Olive Tail Moment (OTM); DSBs-only by γH2AX immunofluorescence staining), DSBs repair capacity, oxidative stress, and apurinic/apyrimidinic sites were evaluated in PBMCs of 243 individuals aged 18-75 years, free of any major comorbidity. While OTM values showed marginal correlation with age until 50 years (rs = 0.41, p = 0.11), a linear relationship was observed after 50 years (r = 0.95, p < 0.001). Moreover, individuals older than 50 years showed increased endogenous DSBs levels (γH2Ax), higher oxidative stress, augmented apurinic/apyrimidinic sites and decreased DSBs repair capacity than those with age lower than 50 years (all p < 0.001). Results were reproduced when we examined men and women separately. Prospective studies confirming the value of DNA damage accumulation as a biomarker of aging, as well as the presence of a relevant agethreshold, are warranted.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Evrydiki Kravvariti
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Postgraduate Medical Studies in Geriatric Syndromes and Physiology of Aging, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Georgios E Fragoulis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| | - Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Stylianos Panopoulos
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Katerina Laskari
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Aikaterini Arida
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, National Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Postgraduate Medical Studies in Geriatric Syndromes and Physiology of Aging, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, 115 27 Athens, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
9
|
Wang H, Stevens T, Lu J, Airik M, Airik R, Prochownik EV. Disruption of Multiple Overlapping Functions Following Stepwise Inactivation of the Extended Myc Network. Cells 2022; 11:4087. [PMID: 36552851 PMCID: PMC9777503 DOI: 10.3390/cells11244087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Myc, a member of the "Myc Network" of bHLH-ZIP transcription factors, supervises proliferation, metabolism, and translation. It also engages in crosstalk with the related "Mlx Network" to co-regulate overlapping genes and functions. We investigated the consequences of stepwise conditional inactivation of Myc and Mlx in primary and SV40 T-antigen-immortalized murine embryonic fibroblasts (MEFs). Myc-knockout (MycKO) and Myc × Mlx "double KO" (DKO)-but not MlxKO-primary MEFs showed rapid growth arrest and displayed features of accelerated aging and senescence. However, DKO MEFs soon resumed proliferating, indicating that durable growth arrest requires an intact Mlx network. All three KO MEF groups deregulated multiple genes and functions pertaining to aging, senescence, and DNA damage recognition/repair. Immortalized KO MEFs proliferated in Myc's absence while demonstrating variable degrees of widespread genomic instability and sensitivity to genotoxic agents. Finally, compared to primary MycKO MEFs, DKO MEFs selectively downregulated numerous gene sets associated with the p53 and retinoblastoma (Rb) pathways and G2/M arrest. Thus, the reversal of primary MycKO MEF growth arrest by either Mlx loss or SV40 T-antigen immortalization appears to involve inactivation of the p53 and/or Rb pathways.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Developmental Biology, The University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- The UPMC Hillman Comprehensive Cancer Center, Pittsburgh, PA 25232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
11
|
Prochownik EV. Regulation of Normal and Neoplastic Proliferation and Metabolism by the Extended Myc Network. Cells 2022; 11:3974. [PMID: 36552737 PMCID: PMC9777120 DOI: 10.3390/cells11243974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Myc Network, comprising a small assemblage of bHLH-ZIP transcription factors, regulates many hundreds to thousands of genes involved in proliferation, energy metabolism, translation and other activities. A structurally and functionally related set of factors known as the Mlx Network also supervises some of these same functions via the regulation of a more limited but overlapping transcriptional repertoire. Target gene co-regulation by these two Networks is the result of their sharing of three members that suppress target gene expression as well as by the ability of both Network's members to cross-bind one another's consensus DNA sites. The two Networks also differ in that the Mlx Network's control over transcription is positively regulated by several glycolytic pathway intermediates and other metabolites. These distinctive properties, functions and tissue expression patterns potentially allow for sensitive control of gene regulation in ways that are differentially responsive to environmental and metabolic cues while allowing for them to be both rapid and of limited duration. This review explores how such control might occur. It further discusses how the actual functional dependencies of the Myc and Mlx Networks rely upon cellular context and how they may differ between normal and neoplastic cells. Finally, consideration is given to how future studies may permit a more refined understanding of the functional interrelationships between the two Networks.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- The UPMC Hillman Comprehensive Cancer Center, Pittsburgh, PA 15232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
12
|
González-Bermúdez L, Genescà A, Terradas M, Martín M. Role of H4K16 acetylation in 53BP1 recruitment to double-strand break sites in in vitro aged cells. Biogerontology 2022; 23:499-514. [PMID: 35851632 PMCID: PMC9388460 DOI: 10.1007/s10522-022-09979-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022]
Abstract
AbstractIncreased frequency of DNA double strand breaks (DSBs) with aging suggests an age-associated decline in DSB repair efficiency, which is also influenced by the epigenetic landscape. H4 acetylation at lysine 16 (H4K16Ac) has been related to DSB repair since deacetylation of this mark is required for efficient 53BP1 recruitment to DSBs. Although age-associated changes in H4K16Ac levels have been studied, their contribution to age-related DSB accumulation remains unknown. In vitro aged Human Dermal Fibroblasts (HDFs) display lower levels of H4K16A that correlate with reduced recruitment of 53BP1 to basal DSBs. Following DNA damage induction, early passage (EP) cells suffered from a transient H4K16 deacetylation that allowed proper 53BP1 recruitment to DSBs. In contrast, to reach this specific and optimum level, aged cells responded by increasing their overall lower H4K16Ac levels. Induced hyperacetylation of late passage (LP) cells using trichostatin A increased H4K16Ac levels but did not ameliorate 53BP1 recruitment. Instead, deacetylation induced by MOF silencing reduced H4K16Ac levels and compromised 53BP1 recruitment in both EP and LP cells. Age-associated decrease of H4K16Ac levels contributes to the repair defect displayed by in vitro aged cells. H4K16Ac responds to DNA damage in order to reach a specific, optimum level that allows proper 53BP1 recruitment. This response may be compromised with age, as LP cells depart from lower H4K16Ac levels. Variations in H4K16Ac following the activation of the DNA damage response and aging point at this histone mark as a key mediator between DNA repair and age-associated chromatin alterations.
Collapse
Affiliation(s)
- Lourdes González-Bermúdez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Genescà
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Mariona Terradas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Marta Martín
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
13
|
Al-Jumayli M, Brown SL, Chetty IJ, Extermann M, Movsas B. The Biological Process of Aging and the Impact of Ionizing Radiation. Semin Radiat Oncol 2022; 32:172-178. [DOI: 10.1016/j.semradonc.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
St. Hilaire C. Medial Arterial Calcification: A Significant and Independent Contributor of Peripheral Artery Disease. Arterioscler Thromb Vasc Biol 2022; 42:253-260. [PMID: 35081727 PMCID: PMC8866228 DOI: 10.1161/atvbaha.121.316252] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over 200 million individuals worldwide are estimated to have peripheral artery disease (PAD). Although the term peripheral can refer to any outer branch of the vasculature, the focus of this review is on lower-extremity arteries. The initial sequelae of PAD often include movement-induced cramping pain in the hips and legs or loss of hair and thinning of the skin on the lower limbs. PAD progresses, sometimes rapidly, to cause nonhealing ulcers and critical limb ischemia which adversely affects mobility and muscle tone; acute limb ischemia is a medical emergency. PAD causes great pain and a high risk of amputation and ultimately puts patients at significant risk for major adverse cardiovascular events. The negative impact on patients' quality of life, as well as the medical costs incurred, are huge. Atherosclerotic plaques are one cause of PAD; however, emerging clinical data now shows that nonatherosclerotic medial arterial calcification (MAC) is an equal and distinct contributor. This ATVB In Focus article will present the recent clinical findings on the prevalence and impact of MAC in PAD, discuss the known pathways that contribute specifically to MAC in the lower extremity, and highlight gaps in knowledge and tools that limit our understanding of MAC pathogenesis.
Collapse
Affiliation(s)
- Cynthia St. Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
15
|
Grasselli C, Bombelli S, Eriani S, Domenici G, Galluccio R, Tropeano C, De Marco S, Bolognesi MM, Torsello B, Bianchi C, Antolini L, Rossi F, Mazzola P, Leoni V, Bellelli G, Perego RA. DNA damage in circulating hematopoietic progenitor stem cells as promising biological sensor of frailty. J Gerontol A Biol Sci Med Sci 2022; 77:1279-1286. [PMID: 35137086 PMCID: PMC9255693 DOI: 10.1093/gerona/glac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Frailty is an age-related syndrome that exposes individuals to increased vulnerability. Although it is potentially reversible, in most cases it leads to negative outcomes, including mortality. The different methods proposed identify frailty after the onset of clinical manifestations. An early diagnosis might make it possible to manage the frailty progression better. The frailty pathophysiology is still unclear although mechanisms, in particular, those linked to inflammation and immunosenescence, have been investigated. A common feature of several clinical aspects involved in senescent organisms is the increase of oxidative stress, described as one of the major causes of deoxyribonucleic acid (DNA) damage accumulation in aged cells including the adult stem cell compartment. Likely, this accumulation is implicated in frailty status. The oxidative status of our frail, pre-frail, and non-frail population was characterized. In addition, the DNA damage in hematopoietic cells was evidenced by analyzing the peripheral blood mononuclear cell and their T lymphocyte, monocyte, circulating hematopoietic progenitor stem cell (cHPSC) subpopulations. The phosphorylation of C-terminal of histone H2AX at amino acid Ser 139 (γ-H2AX), which occurs at the DNA double-strand break focus, was evaluated. In our frail population, increased oxidative stress and a high level of DNA damage in cHPSC were found. This study may have potential implications because the increment of DNA damage in cHPSC could be suggestive of an organism impairment preceding the evident frailty. In addition, it may open the possibility for attenuation of frailty progression throughout specific drugs acting on preventing DNA damage or removing damaged cells
Collapse
Affiliation(s)
- Chiara Grasselli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Silvia Bombelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefano Eriani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Domenici
- Acute Geriatric Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Riccardo Galluccio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Acute Geriatric Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Chiara Tropeano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Laboratory of Clinical Chemistry, Hospital of Desio, ASST-Brianza, Desio, Italy
| | - Sofia De Marco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Barbara Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Rossi
- Immunotransfusional Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Paolo Mazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Acute Geriatric Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Valerio Leoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Laboratory of Clinical Chemistry, Hospital of Desio, ASST-Brianza, Desio, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Acute Geriatric Unit, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - Roberto A Perego
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
16
|
Freyter BM, Abd Al-razaq MA, Isermann A, Dietz A, Azimzadeh O, Hekking L, Gomolka M, Rübe CE. Nuclear Fragility in Radiation-Induced Senescence: Blebs and Tubes Visualized by 3D Electron Microscopy. Cells 2022; 11:cells11020273. [PMID: 35053389 PMCID: PMC8774169 DOI: 10.3390/cells11020273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Irreparable DNA damage following ionizing radiation (IR) triggers prolonged DNA damage response and induces premature senescence. Cellular senescence is a permanent state of cell-cycle arrest characterized by chromatin restructuring, altered nuclear morphology and acquisition of secretory phenotype, which contributes to senescence-related inflammation. However, the mechanistic connections for radiation-induced DNA damage that trigger these senescence-associated hallmarks are poorly understood. In our in vitro model of radiation-induced senescence, mass spectrometry-based proteomics was combined with high-resolution imaging techniques to investigate the interrelations between altered chromatin compaction, nuclear envelope destabilization and nucleo-cytoplasmic chromatin blebbing. Our findings confirm the general pathophysiology of the senescence-response, with disruption of nuclear lamin organization leading to extensive chromatin restructuring and destabilization of the nuclear membrane with release of chromatin fragments into the cytosol, thereby activating cGAS-STING-dependent interferon signaling. By serial block-face scanning electron microscopy (SBF-SEM) whole-cell datasets were acquired to investigate the morphological organization of senescent fibroblasts. High-resolution 3-dimensional (3D) reconstruction of the complex nuclear shape allows us to precisely visualize the segregation of nuclear blebs from the main nucleus and their fusion with lysosomes. By multi-view 3D electron microscopy, we identified nanotubular channels formed in lamin-perturbed nuclei of senescent fibroblasts; the potential role of these nucleo-cytoplasmic nanotubes for expulsion of damaged chromatin has to be examined.
Collapse
Affiliation(s)
- Benjamin M. Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Mutaz A. Abd Al-razaq
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Anna Isermann
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
| | - Anne Dietz
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | - Omid Azimzadeh
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | | | - Maria Gomolka
- Department of Effects and Risks of Ionising & Non-Ionising Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany; (A.D.); (O.A.); (M.G.)
| | - Claudia E. Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Kirrbergerstrasse Building 6.5, 66421 Homburg, Germany; (B.M.F.); (M.A.A.A.-r.); (A.I.)
- Correspondence: ; Tel.: +49-6841-1634614; Fax: +49-6841-1624699
| |
Collapse
|
17
|
Noren Hooten N, Pacheco NL, Smith JT, Evans MK. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res Rev 2022; 73:101536. [PMID: 34883202 PMCID: PMC10862389 DOI: 10.1016/j.arr.2021.101536] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The pursuit to discover the fundamental biology and mechanisms of aging within the context of the physical and social environment is critical to designing interventions to prevent and treat its complex phenotypes. Aging research is critically linked to understanding health disparities because these inequities shape minority aging, which may proceed on a different trajectory than the overall population. Health disparities are characteristically seen in commonly occurring age-associated diseases such as cardiovascular and cerebrovascular disease as well as diabetes mellitus and cancer. The early appearance and increased severity of age-associated disease among African American and low socioeconomic status (SES) individuals suggests that the factors contributing to the emergence of health disparities may also induce a phenotype of 'premature aging' or 'accelerated aging' or 'weathering'. In marginalized and low SES populations with high rates of early onset age-associated disease the interaction of biologic, psychosocial, socioeconomic and environmental factors may result in a phenotype of accelerated aging biologically similar to premature aging syndromes with increased susceptibility to oxidative stress, premature accumulation of oxidative DNA damage, defects in DNA repair and higher levels of biomarkers of oxidative stress and inflammation. Health disparities, therefore, may be the end product of this complex interaction in populations at high risk. This review will examine the factors that drive both health disparities and the accelerated aging phenotype that ultimately contributes to premature mortality.
Collapse
Affiliation(s)
- Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Natasha L Pacheco
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jessica T Smith
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
18
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
19
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
20
|
Nakamura AJ. Beyond visualization of DNA double-strand breaks after radiation exposure. Int J Radiat Biol 2021; 98:522-527. [PMID: 33989105 DOI: 10.1080/09553002.2021.1930268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Radiation science and radiation biology are fields where milestones have been set by numerous woman researchers, as represented by Marie Curie. This shows that it is a research field that is like a model of research diversity in modern society. In this review, I will describe what kind of research activities I have conducted as a Japanese woman researcher in the field of radiation science research. In addition, as a Japanese woman radiobiologist, I will describe the sense of mission I felt after the Fukushima Nuclear Power Plant accident and the research issues we must challenge in the future. CONCLUSION As a Japanese woman researcher, I have felt a bias in gender balance in the field of science in Japan. Also, after the Fukushima nuclear Power Plant accident, I sometimes felt that woman researchers would be more suitable when sharing research results and specialized knowledge with the general public. In recent years, the importance of STEAM (Science-Technology-Engineering-Art-Mathematics) education has been highlighted all over the world, and I believe that the field of radiation science falls exactly into the STEAM education category. STEAM education is for people of all gender. I hope that radiation science research will lead to various younger generations, and that the gender balance of Japanese scientific researchers will increase.
Collapse
Affiliation(s)
- Asako J Nakamura
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| |
Collapse
|
21
|
Lobachevsky P, Forrester HB, Ivashkevich A, Mason J, Stevenson AW, Hall CJ, Sprung CN, Djonov VG, Martin OA. Synchrotron X-Ray Radiation-Induced Bystander Effect: An Impact of the Scattered Radiation, Distance From the Irradiated Site and p53 Cell Status. Front Oncol 2021; 11:685598. [PMID: 34094987 PMCID: PMC8175890 DOI: 10.3389/fonc.2021.685598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Synchrotron radiation, especially microbeam radiotherapy (MRT), has a great potential to improve cancer radiotherapy, but non-targeted effects of synchrotron radiation have not yet been sufficiently explored. We have previously demonstrated that scattered synchrotron radiation induces measurable γ-H2AX foci, a biomarker of DNA double-strand breaks, at biologically relevant distances from the irradiated field that could contribute to the apparent accumulation of bystander DNA damage detected in cells and tissues outside of the irradiated area. Here, we quantified an impact of scattered radiation to DNA damage response in "naïve" cells sharing the medium with the cells that were exposed to synchrotron radiation. To understand the effect of genetic alterations in naïve cells, we utilised p53-null and p53-wild-type human colon cancer cells HCT116. The cells were grown in two-well chamber slides, with only one of nine zones (of equal area) of one well irradiated with broad beam or MRT. γ-H2AX foci per cell values induced by scattered radiation in selected zones of the unirradiated well were compared to the commensurate values from selected zones in the irradiated well, with matching distances from the irradiated zone. Scattered radiation highly impacted the DNA damage response in both wells and a pronounced distance-independent bystander DNA damage was generated by broad-beam irradiations, while MRT-generated bystander response was negligible. For p53-null cells, a trend for a reduced response to scattered irradiation was observed, but not to bystander signalling. These results will be taken into account for the assessment of genotoxic effects in surrounding non-targeted tissues in preclinical experiments designed to optimise conditions for clinical MRT and for cancer treatment in patients.
Collapse
Affiliation(s)
- Pavel Lobachevsky
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Advanced Analytical Technologies, Melbourne, VIC, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.,School of Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Therapeutic Goods Administration, Canberra, ACT, Australia
| | - Joel Mason
- Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Andrew W Stevenson
- Commonwealth Scientific and Industrial Organisation (CSIRO) Future Industries, Clayton, VIC, Australia.,Australian Nuclear Science and Technology Organisation (ANSTO)/Australian Synchrotron, Clayton, VIC, Australia
| | - Chris J Hall
- Australian Nuclear Science and Technology Organisation (ANSTO)/Australian Synchrotron, Clayton, VIC, Australia
| | - Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | | | - Olga A Martin
- Institute of Anatomy, University of Bern, Bern, Switzerland.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Broustas CG, Duval AJ, Amundson SA. Impact of aging on gene expression response to x-ray irradiation using mouse blood. Sci Rep 2021; 11:10177. [PMID: 33986387 PMCID: PMC8119453 DOI: 10.1038/s41598-021-89682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
As a radiation biodosimetry tool, gene expression profiling is being developed using mouse and human peripheral blood models. The impact of dose, dose-rate, and radiation quality has been studied with the goal of predicting radiological tissue injury. In this study, we determined the impact of aging on the gene expression profile of blood from mice exposed to radiation. Young (2 mo) and old (21 mo) male mice were irradiated with 4 Gy x-rays, total RNA was isolated from whole blood 24 h later, and subjected to whole genome microarray analysis. Pathway analysis of differentially expressed genes revealed young mice responded to x-ray exposure by significantly upregulating pathways involved in apoptosis and phagocytosis, a process that eliminates apoptotic cells and preserves tissue homeostasis. In contrast, the functional annotation of senescence was overrepresented among differentially expressed genes from irradiated old mice without enrichment of phagocytosis pathways. Pathways associated with hematologic malignancies were enriched in irradiated old mice compared with irradiated young mice. The fibroblast growth factor signaling pathway was underrepresented in older mice under basal conditions. Similarly, brain-related functions were underrepresented in unirradiated old mice. Thus, age-dependent gene expression differences should be considered when developing gene signatures for use in radiation biodosimetry.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, 630 W. 168th St., New York, NY, 10032, USA
| |
Collapse
|
23
|
Tain LS, Sehlke R, Meilenbrock RL, Leech T, Paulitz J, Chokkalingam M, Nagaraj N, Grönke S, Fröhlich J, Atanassov I, Mann M, Beyer A, Partridge L. Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. eLife 2021; 10:e67275. [PMID: 33879316 PMCID: PMC8060030 DOI: 10.7554/elife.67275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Reduced activity of the insulin/IGF signalling network increases health during ageing in multiple species. Diverse and tissue-specific mechanisms drive the health improvement. Here, we performed tissue-specific transcriptional and proteomic profiling of long-lived Drosophila dilp2-3,5 mutants, and identified tissue-specific regulation of >3600 transcripts and >3700 proteins. Most expression changes were regulated post-transcriptionally in the fat body, and only in mutants infected with the endosymbiotic bacteria, Wolbachia pipientis, which increases their lifespan. Bioinformatic analysis identified reduced co-translational ER targeting of secreted and membrane-associated proteins and increased DNA damage/repair response proteins. Accordingly, age-related DNA damage and genome instability were lower in fat body of the mutant, and overexpression of a minichromosome maintenance protein subunit extended lifespan. Proteins involved in carbohydrate metabolism showed altered expression in the mutant intestine, and gut-specific overexpression of a lysosomal mannosidase increased autophagy, gut homeostasis, and lifespan. These processes are candidates for combatting ageing-related decline in other organisms.
Collapse
Affiliation(s)
| | - Robert Sehlke
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | | | - Thomas Leech
- Max-Planck Institute for Biology of AgeingCologneGermany
| | - Jonathan Paulitz
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | | | - Jenny Fröhlich
- Max-Planck Institute for Biology of AgeingCologneGermany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
- Center for Molecular Medicine (CMMC) & Cologne School for Computational Biology (CSCB), University of CologneCologneGermany
| | - Linda Partridge
- Max-Planck Institute for Biology of AgeingCologneGermany
- Institute of Healthy Ageing, and GEE, UCLLondonUnited Kingdom
| |
Collapse
|
24
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
25
|
Derlin T, Bogdanova N, Ohlendorf F, Ramachandran D, Werner RA, Ross TL, Christiansen H, Bengel FM, Henkenberens C. Assessment of γ-H2AX and 53BP1 Foci in Peripheral Blood Lymphocytes to Predict Subclinical Hematotoxicity and Response in Somatostatin Receptor-Targeted Radionuclide Therapy for Advanced Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13071516. [PMID: 33806081 PMCID: PMC8036952 DOI: 10.3390/cancers13071516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We aimed to characterize γ-H2AX and 53BP1 foci formation in patients receiving somatostatin receptor-targeted radioligand therapy, and explored its role for predicting treatment-related hematotoxicity, and treatment response. METHODS A prospective analysis of double-strand break (DSB) markers was performed in 21 patients with advanced gastroenteropancreatic neuroendocrine tumors. γ-H2AX and 53BP1 foci formation were evaluated in peripheral blood lymphocytes (PBLs) at baseline, +1 h and +24 h after administration of 7.4 GBq (177Lu)Lu-DOTA-TATE. Hematotoxicity was evaluated using standard hematology. Therapy response was assessed using (68Ga)Ga-DOTA-TATE PET/CT before enrollment and after 2 cycles of PRRT according to the volumetric modification of RECIST 1.1. RESULTS DSB marker kinetics were heterogeneous among patients. Subclinical hematotoxicity was associated with γ-H2AX and 53BP1 foci formation (e.g., change in platelet count vs change in γ-H2AX+ cells between baseline and +1 h (r = -0.6080; p = 0.0045). Patients showing early development of new metastases had less γ-H2AX (p = 0.0125) and less 53BP1 foci per cell at +1 h (p = 0.0289), and demonstrated a distinct kinetic pattern with an absence of DSB marker decrease at +24 h (γ-H2AX: p = 0.0025; 53BP1: p = 0.0008). CONCLUSIONS Assessment of γ-H2AX and 53BP1 foci formation in PBLs of patients receiving radioligand therapy may hold promise for predicting subclinical hematotoxicity and early treatment response.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
- Correspondence: ; Tel.: +49-(0)5115322579; Fax: +49-(0)5115323761
| | - Natalia Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| | - Fiona Ohlendorf
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Dhanya Ramachandran
- Department of Radiation Oncology, and Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany;
| | - Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Tobias L. Ross
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Christoph Henkenberens
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| |
Collapse
|
26
|
Gil L, Niño SA, Capdeville G, Jiménez-Capdeville ME. Aging and Alzheimer's disease connection: Nuclear Tau and lamin A. Neurosci Lett 2021; 749:135741. [PMID: 33610669 DOI: 10.1016/j.neulet.2021.135741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad "Alfonso X el Sabio", Madrid, Spain
| | - Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | |
Collapse
|
27
|
García-Giménez JL, Mena-Molla S, Tarazona-Santabalbina FJ, Viña J, Gomez-Cabrera MC, Pallardó FV. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1883. [PMID: 33672064 PMCID: PMC7919465 DOI: 10.3390/ijerph18041883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.
Collapse
Affiliation(s)
- José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
28
|
Anglada T, Genescà A, Martín M. Age-associated deficient recruitment of 53BP1 in G1 cells directs DNA double-strand break repair to BRCA1/CtIP-mediated DNA-end resection. Aging (Albany NY) 2020; 12:24872-24893. [PMID: 33361520 PMCID: PMC7803562 DOI: 10.18632/aging.202419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
DNA repair mechanisms play a crucial role in maintaining genome integrity. However, the increased frequency of DNA double-strand breaks (DSBs) and genome rearrangements in aged individuals suggests an age-associated DNA repair deficiency. Previous work from our group revealed a delayed firing of the DNA damage response in human mammary epithelial cells (HMECs) from aged donors. We now report a decreased activity of the main DSB repair pathways, the canonical non-homologous end-joining (c-NHEJ) and the homologous recombination (HR) in these HMECs from older individuals. We describe here a deficient recruitment of 53BP1 to DSB sites in G1 cells, probably influenced by an altered epigenetic regulation. 53BP1 absence at some DSBs is responsible for the age-associated DNA repair defect, as it permits the ectopic formation of BRCA1 foci while still in the G1 phase. CtIP and RPA foci are also formed in G1 cells from aged donors, but RAD51 is not recruited, thus indicating that extensive DNA-end resection occurs in these breaks although HR is not triggered. These results suggest an age-associated switch of DSB repair from canonical to highly mutagenic alternative mechanisms that promote the formation of genome rearrangements, a source of genome instability that might contribute to the aging process.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
29
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
30
|
Semochkina YP, Moskaleva EY, Malashenkova IK, Krynskiy SA, Hailov NA, Ogurtsov DP, Ponomareva EV, Gavrilova SI. [Effectiveness of the DNA double-strand breaks repair system in lymphocytes of patients with cognitive impairments and healthy volunteers]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:345-352. [PMID: 32893818 DOI: 10.18097/pbmc20206604345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The individual differences in the efficiency of DNA DSB repair were estimated by the level of residual γH2AX foci after γ-irradiation at a dose of 2 Gy, in lymphocytes of patients with amnestic mild cognitive impairment (AMCI) and Alzheimer's disease (AD) and of healthy volunteers. Lymphocytes were isolated from the peripheral blood of the examined patients and were frozen in a medium for freezing cells. Before the study, the lymphocytes were thawed, suspended in RPMI 1640 culture medium supplemented with 10% inactivated fetal bovine serum, and half of the cells were γ-irradiated at 4°C from a 60Co source on a GUT-200M facility at a dose of 2 Gy (a dose rate of 0.75 Gy/min). Control and irradiated lymphocytes were cultured for 24 h, collected, fixed, and stored until the study of the number of spontaneous and residual foci of γH2AX using fluorescent microscopy after staining with fluorescent labeled antibodies. In lymphocytes of patients with AMCI and AD a higher number of residual γH2AX foci in lymphocytes and the higher number of lymphocytes with foci were found compared with healthy volunteers. This indicates a decrease in the ability to repair DNA DSB in these patients. Indicators of cellular immunity and the concentration of TNF-α in the blood serum in the group of examined patients were normal. In the group of patients with the cognitive impairments (AMCI+AD), a correlation was found between the number of residual foci of γH2AX and the number of CD3+CD4+ lymphocytes and the concentration of proinflammatory cytokine TNF-α in the blood serum. This suggests the development of stronger neuroinflammation in patients with reduced ability to repair DNA DSB in this pathology.
Collapse
|
31
|
Guedj A, Volman Y, Geiger-Maor A, Bolik J, Schumacher N, Künzel S, Baines JF, Nevo Y, Elgavish S, Galun E, Amsalem H, Schmidt-Arras D, Rachmilewitz J. Gut microbiota shape 'inflamm-ageing' cytokines and account for age-dependent decline in DNA damage repair. Gut 2020; 69:1064-1075. [PMID: 31586932 DOI: 10.1136/gutjnl-2019-318491] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Failing to properly repair damaged DNA drives the ageing process. Furthermore, age-related inflammation contributes to the manifestation of ageing. Recently, we demonstrated that the efficiency of repair of diethylnitrosamine (DEN)-induced double-strand breaks (DSBs) rapidly declines with age. We therefore hypothesised that with age, the decline in DNA damage repair stems from age-related inflammation. DESIGN We used DEN-induced DNA damage in mouse livers and compared the efficiency of their resolution in different ages and following various permutations aimed at manipulating the liver age-related inflammation. RESULTS We found that age-related deregulation of innate immunity was linked to altered gut microbiota. Consequently, antibiotic treatment, MyD88 ablation or germ-free mice had reduced cytokine expression and improved DSBs rejoining in 6-month-old mice. In contrast, feeding young mice with a high-fat diet enhanced inflammation and facilitated the decline in DSBs repair. This latter effect was reversed by antibiotic treatment. Kupffer cell replenishment or their inactivation with gadolinium chloride reduced proinflammatory cytokine expression and reversed the decline in DSBs repair. The addition of proinflammatory cytokines ablated DSBs rejoining mediated by macrophage-derived heparin-binding epidermal growth factor-like growth factor. CONCLUSIONS Taken together, our results reveal a previously unrecognised link between commensal bacteria-induced inflammation that results in age-dependent decline in DNA damage repair. Importantly, the present study support the notion of a cell non-autonomous mechanism for age-related decline in DNA damage repair that is based on the presence of 'inflamm-ageing' cytokines in the tissue microenvironment, rather than an intrinsic cellular deficiency in the DNA repair machinery.
Collapse
Affiliation(s)
- Avital Guedj
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Volman
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Geiger-Maor
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia Bolik
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Sven Künzel
- Institute for Evolutionary Biology, Max Planck, Plön, Germany
| | - John F Baines
- Institute for Evolutionary Biology, Max Planck, Plön, Germany.,Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Yuval Nevo
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah University Hospital-Mount Scopus, Jerusalem, Israel
| | | | - Jacob Rachmilewitz
- Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
32
|
Anglada T, Repullés J, Espinal A, LaBarge MA, Stampfer MR, Genescà A, Martín M. Delayed γH2AX foci disappearance in mammary epithelial cells from aged women reveals an age-associated DNA repair defect. Aging (Albany NY) 2020; 11:1510-1523. [PMID: 30875333 PMCID: PMC6428106 DOI: 10.18632/aging.101849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
Abstract
Aging is a degenerative process in which genome instability plays a crucial role. To gain insight into the link between organismal aging and DNA repair capacity, we analyzed DNA double-strand break (DSB) resolution efficiency in human mammary epithelial cells from 12 healthy donors of young and old ages. The frequency of DSBs was measured by quantifying the number of γH2AX foci before and after 1Gy of γ-rays and it was higher in cells from aged donors (ADs) at all times analyzed. At 24 hours after irradiation, ADs retained a significantly higher frequency of residual DSBs than young donors (YDs), which had already reached values close to basal levels. The kinetics of DSB induction and disappearance showed that cells from ADs and YDs repair DSBs with similar speed, although analysis of early times after irradiation indicate that a repair defect may lie within the firing of the DNA repair machinery in AD cells. Indeed, using a mathematical model we calculated a constant factor of delay affecting aged human epithelial cells repair kinetics. This defect manifests with the accumulation of DSBs that might eventually undergo illegitimate repair, thus posing a relevant threat to the maintenance of genome integrity in older individuals.
Collapse
Affiliation(s)
- Teresa Anglada
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Repullés
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Microscopy Platform, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, 08041, Spain
| | - Anna Espinal
- Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mark A LaBarge
- Department of Population Sciences, and Center for Cancer and Aging, Beckman Research Institute at City of Hope, Duarte, CA, 91010, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
33
|
Teixeira-Gomes A, Lage B, Esteves F, Sousa AC, Pastorinho MR, Valdiglesias V, Costa S, Laffon B, Teixeira JP. Frailty syndrome, biomarkers and environmental factors - A pilot study. Toxicol Lett 2020; 330:14-22. [PMID: 32380123 DOI: 10.1016/j.toxlet.2020.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/31/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Frailty is an age-related syndrome expected to increase over the next decades. This syndrome has been identified to be the most common condition leading to disability, institutionalisation and death in the elderly. The aim of this pilot study is to investigate a possible link between frailty status, biomarkers and environmental exposures. A group of 71 older adults (≥65 years old) was engaged in this study. The study population was classified as 45.1% robust, 45.1% pre-frail and 9.8% frail. A significant higher prevalence of second-hand smokers was found in the pre-frail group when compared to robust. Furthermore, a higher prevalence of robust individuals was found among those consuming home-produced vegetables and water from well/springs. Significant differences were found between data collected in a lifetime exposure questionnaire (LTEQ) and the levels of genotoxicity endpoints and the mercury levels analysed regarding some exposure-related parameters, namely, smoking habits, intake of home-produced vegetables and the use of pesticides in agriculture. Understanding if the way we live(d) or worked can impact the way we age are important questions to be explored. Data obtained in this pilot study encourage further studies on this matter, exploring the role of exposures history and its impact on health.
Collapse
Affiliation(s)
- Armanda Teixeira-Gomes
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Bruna Lage
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Porto, Portugal
| | - Filipa Esteves
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Porto, Portugal
| | - Ana Catarina Sousa
- CICS-UBI, University of Beira Interior, Covilhã, Portugal; NuESA, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; CICECO, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Ramiro Pastorinho
- CICS-UBI, University of Beira Interior, Covilhã, Portugal; NuESA, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Vanessa Valdiglesias
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; DICOMOSA Group, Area of Psychobiology, Department of Psychology, University of A Coruña, A Coruña, Spain
| | - Solange Costa
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Porto, Portugal.
| | - Blanca Laffon
- DICOMOSA Group, Area of Psychobiology, Department of Psychology, University of A Coruña, A Coruña, Spain
| | - João Paulo Teixeira
- EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas, no 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Porto, Portugal
| |
Collapse
|
34
|
Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of Tumor Eradication. Front Cell Dev Biol 2020; 8:261. [PMID: 32391355 PMCID: PMC7193305 DOI: 10.3389/fcell.2020.00261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Olga A Martin
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Roger F Martin
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Valdiglesias V, Sánchez-Flores M, Marcos-Pérez D, Lorenzo-López L, Maseda A, Millán-Calenti JC, Pásaro E, Laffon B. Exploring Genetic Outcomes as Frailty Biomarkers. J Gerontol A Biol Sci Med Sci 2019; 74:168-175. [PMID: 29684114 DOI: 10.1093/gerona/gly085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Frailty has emerged as a reliable measure of the aging process. Because the early detection of frailty is crucial to prevent or even revert it, the use of biomarkers would allow an earlier and more objective identification of frail individuals. To improve the understanding of the biological features associated with frailty as well as to explore different biomarkers for its early identification, several genetic outcomes-mutagenicity, different types of genetic damage, and cellular repair capacity-were analyzed in a population of older adults classified into frail, prefrail, and nonfrail. Besides, influence of clinical parameters-nutritional status and cognitive status-was evaluated. No association of mutation rate or primary DNA damage with frailty was observed. However, DNA repair capacity showed a nonsignificant tendency to decrease with frailty, and persistent levels of phosphorylated H2AX, as indicative of DNA breakage, increased progressively with frailty severity. These results support the possible use of H2AX phosphorylation to provide information regarding frailty severity. Further investigation is necessary to determine the consistency of the current findings in different populations and larger sample sizes, to eventually standardize biomarkers to be used in clinics, and to fully understand the influence of cognitive impairment.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,ISPUP-EPIUnit, Universidade do Porto, Portugal
| | - María Sánchez-Flores
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,Department of Cell and Molecular Biology, Universidade da Coruña, Spain
| | - Diego Marcos-Pérez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,Department of Cell and Molecular Biology, Universidade da Coruña, Spain
| | - Laura Lorenzo-López
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - Ana Maseda
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - José C Millán-Calenti
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| |
Collapse
|
36
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
37
|
Sabin R, Pucci G, Anderson RM. DNA Damage Processing is Perturbed in Both Proliferative and Non-Proliferative Cells of Increased Chronological Cellular Age. Radiat Res 2019; 192:200-207. [DOI: 10.1667/rr15348.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rebecca Sabin
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Gaia Pucci
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Rhona M. Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Institute of Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
38
|
Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD. Nuclear Genomic Instability and Aging. Annu Rev Biochem 2019; 87:295-322. [PMID: 29925262 DOI: 10.1146/annurev-biochem-062917-012239] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear genome decays as organisms age. Numerous studies demonstrate that the burden of several classes of DNA lesions is greater in older mammals than in young mammals. More challenging is proving this is a cause rather than a consequence of aging. The DNA damage theory of aging, which argues that genomic instability plays a causal role in aging, has recently gained momentum. Support for this theory stems partly from progeroid syndromes in which inherited defects in DNA repair increase the burden of DNA damage leading to accelerated aging of one or more organs. Additionally, growing evidence shows that DNA damage accrual triggers cellular senescence and metabolic changes that promote a decline in tissue function and increased susceptibility to age-related diseases. Here, we examine multiple lines of evidence correlating nuclear DNA damage with aging. We then consider how, mechanistically, nuclear genotoxic stress could promote aging. We conclude that the evidence, in toto, supports a role for DNA damage as a nidus of aging.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA;
| | - Aditi U Gurkar
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA; .,Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Michael F. Price Center, Bronx, New York 10461, USA
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 CE Rotterdam, The Netherlands
| | - Paul D Robbins
- Department of Molecular Medicine and the Center on Aging, The Scripps Research Institute Florida, Jupiter, Florida 33458, USA;
| |
Collapse
|
39
|
Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. Proc Natl Acad Sci U S A 2019; 116:7471-7476. [PMID: 30910969 DOI: 10.1073/pnas.1820245116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phosphorylation of histone H2AX is a major contributor to efficient DNA repair. We recently reported neurobehavioral deficits in mice lacking H2AX. Here we establish that this neural failure stems from impairment of mitochondrial function and repression of the mitochondrial biogenesis gene PGC-1α. H2AX loss leads to reduced levels of the major subunits of the mitochondrial respiratory complexes in mouse embryonic fibroblasts and in the striatum, a brain region particularly vulnerable to mitochondrial damage. These defects are substantiated by disruption of the mitochondrial shape in H2AX mutant cells. Ectopic expression of PGC-1α restores mitochondrial oxidative phosphorylation complexes and mitigates cell death. H2AX knockout mice display increased neuronal death in the brain when challenged with 3-nitropronionic acid, which targets mitochondria. This study establishes a role for H2AX in mitochondrial homeostasis associated with neuroprotection.
Collapse
|
40
|
Stricklin D, Prins R, Bellman J. Development of age-dependent dose modification factors for acute radiation lethality. Int J Radiat Biol 2019; 96:67-80. [DOI: 10.1080/09553002.2018.1547438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Robert Prins
- Applied Research Associates, Inc., Arlington, VA, USA
| | - Jacob Bellman
- Applied Research Associates, Inc., Arlington, VA, USA
| |
Collapse
|
41
|
Herschtal A, Martin RF, Leong T, Lobachevsky P, Martin OA. A Bayesian Approach for Prediction of Patient Radiosensitivity. Int J Radiat Oncol Biol Phys 2018; 102:627-634. [PMID: 30244880 DOI: 10.1016/j.ijrobp.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/14/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE A priori identification of the small proportion of radiation therapy patients who prove to be severely radiosensitive is a long-held goal in radiation oncology. A number of published studies indicate that analysis of the DNA damage response after ex vivo irradiation of peripheral blood lymphocytes, using the γ-H2AX assay to detect DNA damage, provides a basis for a functional assay for identification of the small proportion of severely radiosensitive cancer patients undergoing radiotherapy. METHODS AND MATERIALS We introduce a new, more rigorous, integrated approach to analysis of radiation-induced γ-H2AX response, using Bayesian statistics. RESULTS This approach shows excellent discrimination between radiosensitive and non-radiosensitive patient groups described in a previously reported data set. CONCLUSIONS Bayesian statistical analysis provides a more appropriate and reliable methodology for future prospective studies.
Collapse
Affiliation(s)
- Alan Herschtal
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Roger F Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Trevor Leong
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pavel Lobachevsky
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Olga A Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
42
|
Schuster B, Ellmann A, Mayo T, Auer J, Haas M, Hecht M, Fietkau R, Distel LV. Rate of individuals with clearly increased radiosensitivity rise with age both in healthy individuals and in cancer patients. BMC Geriatr 2018; 18:105. [PMID: 29728069 PMCID: PMC5935967 DOI: 10.1186/s12877-018-0799-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The question of an age dependence of individual radiosensitivity has only marginally been studied so far. Therefore, we analyzed blood samples of healthy individuals and cancer patients of different ages to determine individual radiosensitivity. METHODS Ex vivo irradiated blood samples of 595 individuals were tested. Chromosomes 1, 2 and 4 were stained by 3-color fluorescence in situ hybridization and aberrations were analyzed. Radiosensitivity was determined by the mean breaks per metaphase (B/M). RESULTS Healthy individuals (mean age 50.7 years) had an average B/M value of 0.42 ± 0.104 and an increase of 0.0014B/M per year. The patients (mean age 60.4 years) had an average B/M value of 0.44 ± 0.150 and radiosensitivity did not change with age. In previous studies we found that from a value of 0.6B/M on an individual is considered to be distinctly radiosensitive. The portion of radiosensitive individuals (B/M > 0.6) increased in both cohorts with age. CONCLUSION Individual radiosensitivity rises continuously with age, yet with strong interindividual variation. No age related increase of radiosensitivity can be demonstrated in patients due to the strong interindividual variation. However among old cancer patients there is a higher probability to have patients with clearly increased radiosensitivity than at younger age.
Collapse
Affiliation(s)
- Barbara Schuster
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Anna Ellmann
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Theresa Mayo
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Judith Auer
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Matthias Haas
- Department of Radiology, Charité Universitätsmedizin, Berlin, Germany
| | - Markus Hecht
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany.
| |
Collapse
|
43
|
Naz S, Sowers A, Choudhuri R, Wissler M, Gamson J, Mathias A, Cook JA, Mitchell JB. Abemaciclib, a Selective CDK4/6 Inhibitor, Enhances the Radiosensitivity of Non-Small Cell Lung Cancer In Vitro and In Vivo. Clin Cancer Res 2018; 24:3994-4005. [PMID: 29716919 DOI: 10.1158/1078-0432.ccr-17-3575] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
Purpose: To characterize the ionizing radiation (IR) enhancing effects and underlying mechanisms of the CDK4/6 inhibitor abemaciclib in non-small cell lung cancer (NSCLC) cells in vitro and in vivoExperimental Design: IR enhancement by abemaciclib in a variety of NSCLC cell lines was assessed by in vitro clonogenic assay, flow cytometry, and target inhibition verified by immunoblotting. IR-induced DNA damage repair was evaluated by γH2AX analysis. Global metabolic alterations by abemaciclib and IR combination were evaluated by LC/MS mass spectrometry and YSI bioanalyzer. Effects of abemaciclib and IR combination in vivo were studied by xenograft tumor regrowth delay, xenograft lysate immunoblotting, and tissue section immunohistochemistry.Results: Abemaciclib enhanced the radiosensitivity of NSCLC cells independent of RAS or EGFR status. Enhancement of radiosensitivity was lost in cell lines deficient for functional p53 and RB protein. After IR, abemaciclib treatment inhibited DNA damage repair as measured by γH2AX. Mechanistically, abemaciclib inhibited RB phosphorylation, leading to cell-cycle arrest. It also inhibited mTOR signaling and reduced intracellular amino acid pools, causing nutrient stress. In vivo, abemaciclib, when administered in an adjuvant setting for the second week after fractionated IR, further inhibited vasculogenesis and tumor regrowth, with sustained inhibition of RB/E2F activity, mTOR pathway, and HIF-1 expression. In summary, our study signifies inhibiting the CDK4/6 pathway by abemaciclib in combination with IR as a promising therapeutic strategy to treat NSCLC.Conclusions: Abemaciclib in combination with IR enhances NSCLC radiosensitivity in preclinical models, potentially providing a novel biomarker-driven combination therapeutic strategy for patients with NSCLC. Clin Cancer Res; 24(16); 3994-4005. ©2018 AACR.
Collapse
Affiliation(s)
- Sarwat Naz
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Anastasia Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Rajani Choudhuri
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maria Wissler
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Janet Gamson
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Askale Mathias
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John A Cook
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
44
|
Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nat Commun 2018; 9:1526. [PMID: 29670103 PMCID: PMC5906610 DOI: 10.1038/s41467-018-03948-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
ATM drives DNA repair by phosphorylating the histone variant H2AX. While ATM mutations elicit prominent neurobehavioral phenotypes, neural roles for H2AX have been elusive. We report impaired motor learning and balance in H2AX-deficient mice. Mitigation of reactive oxygen species (ROS) with N-acetylcysteine (NAC) reverses the behavioral deficits. Mouse embryonic fibroblasts deficient for H2AX exhibit increased ROS production and failure to activate the antioxidant response pathway controlled by the transcription factor NRF2. The NRF2 targets GCLC and NQO1 are depleted in the striatum of H2AX knockouts, one of the regions most vulnerable to ROS-mediated damage. These findings establish a role for ROS in the behavioral deficits of H2AX knockout mice and reveal a physiologic function of H2AX in mediating influences of oxidative stress on NRF2-transcriptional targets and behavior. H2AX is a histone variant with an essential function in DNA double-strand break repair and genome stability. Here, Weyemi and colleagues show that loss of neuronal H2AX leads to locomotor dysfunction and alteration in oxidative stress response.
Collapse
|
45
|
Lidzbarsky G, Gutman D, Shekhidem HA, Sharvit L, Atzmon G. Genomic Instabilities, Cellular Senescence, and Aging: In Vitro, In Vivo and Aging-Like Human Syndromes. Front Med (Lausanne) 2018; 5:104. [PMID: 29719834 PMCID: PMC5913290 DOI: 10.3389/fmed.2018.00104] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism’s health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic “senescence” stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the “hallmarks” of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.
Collapse
Affiliation(s)
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Lital Sharvit
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
46
|
Lenart P, Novak J, Bienertova-Vasku J. PIWI-piRNA pathway: Setting the pace of aging by reducing DNA damage. Mech Ageing Dev 2018; 173:29-38. [PMID: 29580825 DOI: 10.1016/j.mad.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
Transposable elements (TEs) are powerful drivers of genome evolutionary dynamics but are principally deleterious to the host organism by compromising the integrity and function of the genome. The transposition of TEs may result in mutations and DNA damage. DNA double-strand breaks (DSBs), which may be caused by the transposition, are one of the processes directly linked to aging. TEs may thus be considered to constitute an internal source of aging and the frequency of transposition may, in turn, be considered to affect the pace of aging. The PIWI-piRNA pathway is a widespread strategy used by most animals to effectively suppress transposition. Interestingly, the PIWI-piRNA pathway is expressed predominantly in the animal germline, a more or less continuous immortal lineage set aside after the first few cell divisions of a developing embryo. Recent findings further imply that the PIWI-piRNA pathway and TE suppression constitute an important mechanism regulating aging. This article discusses the proposed role of the PIWI-piRNA pathway in setting the pace of aging as well as the possible mechanisms underlying this process.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Jan Novak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic.
| |
Collapse
|
47
|
Chung JH. The role of DNA-PK in aging and energy metabolism. FEBS J 2018; 285:1959-1972. [PMID: 29453899 DOI: 10.1111/febs.14410] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/15/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Abstract
DNA-dependent protein kinase (DNA-PK) is a very large holoenzyme comprised of the p470 kDa DNA-PK catalytic subunit (DNA-PKcs ) and the Ku heterodimer consisting of the p86 (Ku 80) and p70 (Ku 70) subunits. It is best known for its nonhomologous end joining (NHEJ) activity, which repairs double-strand DNA (dsDNA) breaks (DSBs). As expected, the absence of DNA-PK activity results in sensitivity to ionizing radiation, which generates DSBs and defect in lymphocyte development, which requires NHEJ of the V(D)J region in the immunoglobulin and T-cell receptor loci. DNA-PK also has been reported to have functions seemingly unrelated to NHEJ. For example, DNA-PK responds to insulin signaling to facilitate the conversion of carbohydrates to fatty acids in the liver. More recent evidence indicates that DNA-PK activity increases with age in skeletal muscle, promoting mitochondrial loss and weight gain. These discoveries suggest that our understanding of DNA-PK is far from complete. As many excellent reviews have already been written about the role of DNA-PK in NHEJ, here we will review the non-NHEJ role of DNA-PK with a focus on its role in aging and energy metabolism.
Collapse
Affiliation(s)
- Jay H Chung
- Laboratory of Obesity and Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Siddiqui MS, Francois M, Hecker J, Faunt J, Fenech MF, Leifert WR. γH2AX is increased in peripheral blood lymphocytes of Alzheimer's disease patients in the South Australian Neurodegeneration, Nutrition and DNA Damage (SAND) study of aging. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:6-18. [PMID: 29704994 DOI: 10.1016/j.mrgentox.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
An early cellular response to DNA double-strand breaks is the phosphorylation of histone H2AX to form γH2AX. Although increased levels of γH2AX have been reported in neuronal nuclei of Alzheimer's disease (AD) patients, γH2AX responses in the lymphocytes of individuals with mild cognitive impairment (MCI) and AD remain unexplored. In this study, the endogenous γH2AX level was measured, using laser scanning cytometry (LSC) and visual scoring, in lymphocyte nuclei from MCI (n = 18), or AD (n = 20) patients and healthy controls (n = 40). Levels were significantly elevated in nuclei of the AD group compared to the MCI and control groups, and there was a concomitant increase, with a significant trend, from the control group through MCI to the AD group. A significant negative correlation was seen between γH2AX and the mini mental state examination (MMSE) score, when the analysis included all subjects. Receiver Operation Characteristic curves were carried out for different γH2AX parameters; visually scored percent cells containing overlapping γH2AX foci displayed the best area under the curve value of 0.9081 with 85% sensitivity and 92% specificity for the identification of AD patients versus control. Plasma homocysteine, creatinine, and chitinase-3-like protein 1 (CHI3L1) were positively correlated with lymphocyte γH2AX signals, while glomerular filtration rate (GFR) was negatively correlated. Finally, there was a diminished γH2AX response to X-rays in lymphocytes of the MCI and AD groups compared to the control group. Our results indicate that lymphocyte γH2AX levels are a potential marker for identifying individuals at increased risk of developing AD. Prospective studies with normal healthy individuals are needed to test whether there is indeed a link between γH2AX levels and AD risk.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition, Personalised Nutrition and DNA Damage, Adelaide, South Australia, 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia, 5064, Australia
| | - Maxime Francois
- CSIRO Food and Nutrition, Personalised Nutrition and DNA Damage, Adelaide, South Australia, 5000, Australia
| | - Jane Hecker
- Department of Internal Medicine, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Jeffrey Faunt
- Department of General Medicine, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition, Personalised Nutrition and DNA Damage, Adelaide, South Australia, 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition, Personalised Nutrition and DNA Damage, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
49
|
Ainsbury EA, Samaga D, Della Monaca S, Marrale M, Bassinet C, Burbidge CI, Correcher V, Discher M, Eakins J, Fattibene P, Güçlü I, Higueras M, Lund E, Maltar-Strmecki N, McKeever S, Rääf CL, Sholom S, Veronese I, Wieser A, Woda C, Trompier F. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS. RADIATION PROTECTION DOSIMETRY 2018; 178:382-404. [PMID: 28981844 DOI: 10.1093/rpd/ncx125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 05/16/2023]
Abstract
Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Daniel Samaga
- Bundesamt für Strahlenschutz, Ingolstaedter Landstr. 1, 85764 Oberschleissheim, Germany
| | - Sara Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry and Advanced Technologies Network Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Celine Bassinet
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| | - Christopher I Burbidge
- Environmental Protection Agency, Office of Radiological Protection, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland
| | - Virgilio Correcher
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Centro de la Moncloa, Complutense, 40, 28040 Madrid, Spain
| | - Michael Discher
- University of Salzburg, Department of Geography and Geology, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Jon Eakins
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxford OX11 ORQ, UK
| | - Paola Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Inci Güçlü
- Turkish Atomic Energy Authority, Mustafa Kemal Mahallesi, Dumlupinar Bulvari, No: 192, 06510, Çankaya - Ankara, Turkey
| | - Manuel Higueras
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
| | - Eva Lund
- Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Nadica Maltar-Strmecki
- Ruder Boškovic Institute, Division of Physical Chemistry, Laboratory for Magnetic Resonances, Bijenicka cesta 54,10000 Zagreb, Croatia
| | - Stephen McKeever
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Christopher L Rääf
- Medicinsk strålningsfysik, Institutionen för Translationell Medicin, Lunds universitet, Skånes universitetssjukhus SUS, SE-205 02 Malmö, Sweden
| | - Sergey Sholom
- Oklahoma State University, 145 Physical Sciences, Campus, Stillwater, OK 74078, USA
| | - Ivan Veronese
- Università degli Studi di Milano, Department of Physics and National Institute of Nuclear Physics, Section of Milan, Via Celoria 16, 20133 - Milano, Italy
| | - Albrecht Wieser
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Clemens Woda
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Radiation Protection, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Francois Trompier
- Institut de radioprotection et de sûreté nucléaire, BP 17 - 92262 Fontenay-aux-Roses Cedex 31, Avenue de la Division Leclerc 92260 Fontenay-aux-Roses, Paris, France
| |
Collapse
|
50
|
p53 isoforms regulate premature aging in human cells. Oncogene 2018; 37:2379-2393. [PMID: 29429991 PMCID: PMC5954431 DOI: 10.1038/s41388-017-0101-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/05/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Cellular senescence is a hallmark of normal aging and aging-related syndromes, including the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), a rare genetic disorder caused by a single mutation in the LMNA gene that results in the constitutive expression of a truncated splicing mutant of lamin A known as progerin. Progerin accumulation leads to increased cellular stresses including unrepaired DNA damage, activation of the p53 signaling pathway and accelerated senescence. We previously established that the p53 isoforms Δ133p53 and p53β regulate senescence in normal human cells. However, their role in premature aging is unknown. Here, we report that p53 isoforms are expressed in primary fibroblasts derived from HGPS patients, are associated with their accelerated senescence and that their manipulation can restore the replication capacity of HGPS fibroblasts. We found that in near-senescent HGPS fibroblasts, which exhibit low levels of Δ133p53 and high levels of p53β, restoration of Δ133p53 expression was sufficient to extend replicative lifespan and delay senescence, despite progerin levels and abnormal nuclear morphology remaining unchanged. Conversely, Δ133p53 depletion or p53β overexpression accelerated the onset of senescence in otherwise proliferative HGPS fibroblasts. Our data indicate that Δ133p53 exerts its role by modulating full-length p53 (FLp53) signaling to extend the replicative lifespan and promotes the repair of spontaneous progerin-induced DNA double strand breaks (DSBs). We showed that Δ133p53 dominant-negative inhibition of FLp53 occurs directly at the p21/CDKN1A and miR-34a promoters, two p53-senescence associated genes. In addition, Δ133p53 expression increased expression of the DNA repair RAD51, likely through upregulation of E2F1, a transcription factor that activates RAD51, to promote repair of DSBs. In summary, our data indicate that Δ133p53 modulates p53 signaling to repress progerin-induced early onset of senescence in HGPS cells. Therefore, restoration of Δ133p53 expression may be a novel therapeutic strategy to treat aging-associated phenotypes of HGPS in vivo.
Collapse
|