1
|
Ma S, Chen Y, Zhou Z, Ma A. Effect of Wei Qi Booster on immune and anti-oxidative function in aged mice. Front Vet Sci 2024; 11:1446770. [PMID: 39113720 PMCID: PMC11303205 DOI: 10.3389/fvets.2024.1446770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
This research was conducted to examine the impact of Wei Qi Booster (WQB) on immune parameters and anti-oxidative function in aged mice. Fifty aged mice were randomly assigned to five different groups. Group A was designated as the control group. Mice in Group B were receiving Levamisole at 10 mg/kg body weight. Each mouse in groups C, D and E received 0.1, 1, and 2% WQB, respectively. Another ten young mice, designated as group F, were fed regularly. The mice were fed according to the above methods for 28 days. Results showed that relative to the control group, the body weight and immune organs indexes experienced a substantial rise in the group with 1% WQB. In addition, 1% WQB could improve the activity of SOD and reduce the MDA levels. Expressions of CD4 and sIgA increased while CD8 decreased in the jejunum of aged mice treated with WQB. IL2 and IFN-γ levels increased in the 1% WQB group, showing no notable difference compared to the young mice group. The results demonstrated that WQB can elevate immune levels and enhance anti-oxidative functions in aged mice.
Collapse
Affiliation(s)
- Shuang Ma
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Yuming Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Zhilong Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Heibei, China
| | - Aituan Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Hastings MH, Castro C, Freeman R, Abdul Kadir A, Lerchenmüller C, Li H, Rhee J, Roh JD, Roh K, Singh AP, Wu C, Xia P, Zhou Q, Xiao J, Rosenzweig A. Intrinsic and Extrinsic Contributors to the Cardiac Benefits of Exercise. JACC Basic Transl Sci 2024; 9:535-552. [PMID: 38680954 PMCID: PMC11055208 DOI: 10.1016/j.jacbts.2023.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 05/01/2024]
Abstract
Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Margaret H. Hastings
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Claire Castro
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Freeman
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Azrul Abdul Kadir
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Haobo Li
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason D. Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kangsan Roh
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anand P. Singh
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Wu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Peng Xia
- Cardiovascular Research Center, Division of Cardiology, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiulian Zhou
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Anthony Rosenzweig
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Hai C, Bai C, Yang L, Wei Z, Wang H, Ma H, Ma H, Zhao Y, Su G, Li G. Effects of Different Generations and Sex on Physiological, Biochemical, and Growth Parameters of Crossbred Beef Cattle by Myostatin Gene-Edited Luxi Bulls and Simmental Cows. Animals (Basel) 2023; 13:3216. [PMID: 37893940 PMCID: PMC10603717 DOI: 10.3390/ani13203216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Myostatin (MSTN) is a protein that regulates skeletal muscle development and plays a crucial role in maintaining animal body composition and muscle structure. The loss-of-function mutation of MSTN gene can induce the muscle hypertrophic phenotype. (2) Methods: Growth indexes and blood parameters of the cattle of different months were analyzed via multiple linear regression. (3) Results: Compared with the control group, the body shape parameters of F2 cattle were improved, especially the body weight, cross height, and hip height, representing significant development of hindquarters, and the coat color of the F2 generation returned to the yellow of Luxi cattle. As adults, MSTN gene-edited bulls have a tall, wide acromion and a deep, wide chest. Both the forequarters and hindquarters are double-muscled with clear muscle masses. The multiple linear regression demonstrates that MSTN gene-edited hybrid beef cattle gained weight due to the higher height of the hindquarters. Significant differences in blood glucose, calcium, and low-density lipoprotein. Serum insulin levels decreased significantly at 24 months of age. MSTN gene editing improves the adaptability of cattle. (4) Conclusions: Our findings suggest that breeding with MSTN gene-edited Luxi bulls can improve the growth and performance of hybrid cattle, with potential benefits for both farmers and consumers.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Hong Wang
- Sheng-Quan Ecological Animal Husbandry Company, Chifeng 024500, China;
| | - Haoran Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haibing Ma
- Inner Mongolia Aokesi Animal Husbandry Co., Ltd., Hesge Ula Ranch, Ulagai Management Area, Xilingol League 026321, China;
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| |
Collapse
|
4
|
Mitra A, Qaisar R, Bose B, Sudheer SP. The elusive role of myostatin signaling for muscle regeneration and maintenance of muscle and bone homeostasis. Osteoporos Sarcopenia 2023; 9:1-7. [PMID: 37082359 PMCID: PMC10111947 DOI: 10.1016/j.afos.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in synergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to diseases and disorders, namely, age-related muscle disorder called sarcopenia, a group of genetic muscle disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia. However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertrophy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in multiple conditions. In this review, we try to put together the role and regulation of myostatin as a function of muscle regeneration extrapolated to multiple aspects of its molecular functions.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| | - Shenoy P Sudheer
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| |
Collapse
|
5
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Lee JY, Lee M, Lee DH, Lee YH, Lee BW, Kang ES, Cha BS. Protective Effect of Delta-Like 1 Homolog Against Muscular Atrophy in a Mouse Model. Endocrinol Metab (Seoul) 2022; 37:684-697. [PMID: 36065648 PMCID: PMC9449104 DOI: 10.3803/enm.2022.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGRUOUND Muscle atrophy is caused by an imbalance between muscle growth and wasting. Delta-like 1 homolog (DLK1), a protein that modulates adipogenesis and muscle development, is a crucial regulator of myogenic programming. Thus, we investigated the effect of exogenous DLK1 on muscular atrophy. METHODS We used muscular atrophy mouse model induced by dexamethasone (Dex). The mice were randomly divided into three groups: (1) control group, (2) Dex-induced muscle atrophy group, and (3) Dex-induced muscle atrophy group treated with DLK1. The effects of DLK1 were also investigated in an in vitro model using C2C12 myotubes. RESULTS Dex-induced muscular atrophy in mice was associated with increased expression of muscle atrophy markers and decreased expression of muscle differentiation markers, while DLK1 treatment attenuated these degenerative changes together with reduced expression of the muscle growth inhibitor, myostatin. In addition, electron microscopy revealed that DLK1 treatment improved mitochondrial dynamics in the Dex-induced atrophy model. In the in vitro model of muscle atrophy, normalized expression of muscle differentiation markers by DLK1 treatment was mitigated by myostatin knockdown, implying that DLK1 attenuates muscle atrophy through the myostatin pathway. CONCLUSION DLK1 treatment inhibited muscular atrophy by suppressing myostatin-driven signaling and improving mitochondrial biogenesis. Thus, DLK1 might be a promising candidate to treat sarcopenia, characterized by muscle atrophy and degeneration.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Molecular, Cellular and Cancer Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Yuan Y, Zhang Y, Zheng R, Yuan H, Zhou R, Jia S, Liu J. Elucidating the anti-aging mechanism of Si Jun Zi Tang by integrating network pharmacology and experimental validation in vivo. Aging (Albany NY) 2022; 14:3941-3955. [PMID: 35537009 PMCID: PMC9134961 DOI: 10.18632/aging.204055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Si Jun Zi Tang (SJZT) is a classic Traditional Chinese Medicine (TCM) prescription used to treat aging-related diseases. However, the potential molecular mechanisms of the anti-aging effects of the bioactive compounds and their targets remain elusive. In this study, we combined network pharmacology and molecular docking with in vivo experiments to elucidate the anti-aging molecular mechanism of SJZT. A series of network pharmacology strategies were used to predict potential targets and therapeutic mechanisms of SJZT, including compound screening, pathway enrichment analysis and molecular docking studies. Based on the network pharmacology predictions and observation of outward signs of aging, the expression levels of selected genes and proteins and possible key targets were subsequently validated and analysed using qRT-PCR and immunoblotting. Using a data mining approach, 235 effective targets of SJZT and aging were obtained. AKT1, STAT3, JUN, MAPK3, TP53, MAPK1, TNF, RELA, MAPK14 and IL6 were identified as core genes in the Protein-Protein Interaction Networks (PPI) analysis. The results of the effective target Gene Ontology (Go) functional enrichment analysis suggested that SJZT may be involved aging and antiapoptotic biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the anti-aging mechanism of SJZT may be associated with the PI3K-AKT and P38 MAPK signalling pathways. Molecular docking analysis suggested that kaempferol and quercetin could fit in the binding pockets of the core targets. In addition, SJZT alleviated the aging symptoms of mice such as osteoporosis and hair loss. In conclusion, the anti-aging effect of SJZT was associated with the inhibition of the PI3K-AKT and P38 MAPK signalling pathways, and these findings were consistent with the network pharmacology prediction.
Collapse
Affiliation(s)
- Yang Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ruoyu Zhou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
8
|
Srivastava H, Pozzoli M, Lau E. Defining the Roles of Cardiokines in Human Aging and Age-Associated Diseases. FRONTIERS IN AGING 2022; 3:884321. [PMID: 35821831 PMCID: PMC9261440 DOI: 10.3389/fragi.2022.884321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
In recent years an expanding collection of heart-secreted signaling proteins have been discovered that play cellular communication roles in diverse pathophysiological processes. This minireview briefly discusses current evidence for the roles of cardiokines in systemic regulation of aging and age-associated diseases. An analysis of human transcriptome and secretome data suggests the possibility that many other cardiokines remain to be discovered that may function in long-range physiological regulations. We discuss the ongoing challenges and emerging technologies for elucidating the identity and function of cardiokines in endocrine regulations.
Collapse
Affiliation(s)
- Himangi Srivastava
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Marina Pozzoli
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Edward Lau
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
9
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
11
|
Hilton C, Vasan SK, Neville MJ, Christodoulides C, Karpe F. The associations between body fat distribution and bone mineral density in the Oxford Biobank: a cross sectional study. Expert Rev Endocrinol Metab 2022; 17:75-81. [PMID: 34859739 PMCID: PMC8944227 DOI: 10.1080/17446651.2022.2008238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Body composition is associated with bone mineral density (BMD), but the precise associations between body fat distribution and BMD remain unclear. The regional adipose tissue depots have different metabolic profiles. We hypothesized that they would have independent associations with BMD. RESEARCH DESIGN AND METHODS We used data from 4,900 healthy individuals aged 30-50 years old from the Oxford Biobank to analyze associations between regional fat mass, lean mass and total BMD. RESULTS Total lean mass was strongly positively associated with BMD. An increase in total BMD was observed with increasing mass of all the fat depots, as measured either by anthropometry or DXA, when accounting for lean mass. However, on adjustment for both total fat mass and lean mass, fat depot specific associations emerged. Increased android and visceral adipose tissue mass in men, and increased visceral adipose tissue mass in women, were associated with lower BMD. CONCLUSIONS Fat distribution alters the association between adiposity and BMD.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Senthil K Vasan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Trust, Oxford, UK
| |
Collapse
|
12
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
13
|
Baek KW, Jung YK, Park JS, Kim JS, Hah YS, Kim SJ, Yoo JI. Two Types of Mouse Models for Sarcopenia Research: Senescence Acceleration and Genetic Modification Models. J Bone Metab 2021; 28:179-191. [PMID: 34520651 PMCID: PMC8441530 DOI: 10.11005/jbm.2021.28.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia leads to loss of skeletal muscle mass, quality, and strength due to aging; it was recently given a disease code (International Classification of Diseases, Tenth Revision, Clinical Modification, M62.84). As a result, in recent years, sarcopenia-related research has increased. In addition, various studies seeking to prevent and treat sarcopenia by identifying the various mechanisms related to the reduction of skeletal muscle properties have been conducted. Previous studies have identified muscle synthesis and breakdown; investigating them has generated evidence for preventing and treating sarcopenia. Mouse models are still the most useful ones for determining mechanisms underlying sarcopenia through correlations and interventions involving specific genes and their phenotypes. Mouse models used to study sarcopenia often induce muscle atrophy by hindlimb unloading, denervation, or immobilization. Though it is less frequently used, the senescence-accelerated mouse can also be useful for sarcopenia research. Herein, we discuss cases where senescence-accelerated and genetically engineered mouse models were used in sarcopenia research and different perspectives to use them.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, Korea.,Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Youn-Kwan Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - Jin Sung Park
- Department of Orthopaedic Surgery and Institute of Health Sciences, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| | - So-Jeong Kim
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Korea
| | - Jun-Il Yoo
- Department of Orthopaedic Surgery, Gyeongsang National University Hospital, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
14
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
15
|
Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Arch 2021; 473:969-976. [PMID: 33895875 PMCID: PMC8164604 DOI: 10.1007/s00424-021-02561-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Myostatin is a signaling molecule produced by skeletal muscle cells (myokine) that inhibits muscle hypertrophy and has further paracrine and endocrine effects in other organs including bone. Myostatin binds to activin receptor type 2B which forms a complex with transforming growth factor-β type I receptor (TGF-βRI) and induces intracellular p38MAPK and NFκB signaling. Fibroblast growth factor 23 (FGF23) is a paracrine and endocrine mediator produced by bone cells and regulates phosphate and vitamin D metabolism in the kidney. P38MAPK and NFκB-dependent store-operated Ca2+ entry (SOCE) are positive regulators of FGF23 production. Here, we explored whether myostatin influences the synthesis of FGF23. Fgf23 gene expression was determined by qRT-PCR and FGF23 protein by ELISA in UMR106 osteoblast–like cells. UMR106 cells expressed activin receptor type 2A and B. Myostatin upregulated Fgf23 gene expression and protein production. The myostatin effect on Fgf23 was significantly attenuated by TGF-βRI inhibitor SB431542, p38MAPK inhibitor SB202190, and NFκB inhibitor withaferin A. Moreover, SOCE inhibitor 2-APB blunted the myostatin effect on Fgf23. Taken together, myostatin is a stimulator of Fgf23 expression in UMR106 cells, an effect at least partially mediated by downstream TGF-βRI/p38MAPK signaling as well as NFκB-dependent SOCE.
Collapse
|
16
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
17
|
Tang L, An S, Zhang Z, Fan X, Guo J, Sun L, Ta D. MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats. Bone 2021; 143:115610. [PMID: 32829040 DOI: 10.1016/j.bone.2020.115610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture healing. However, the issue whether LIPUS is effective in preventing osteoporosis has not been clarified, and if so, what possible mechanisms might be responsible. Myostatin (MSTN) is a negative regulator of muscle growth, and its absence will trigger a positive response to bone. In this study, we examined the effects of LIPUS on bone micro-structure, mechanical properties and damage healing of hindlimb-suspended rats, and investigated whether the inhibition of MSTN plays a role in this process. The rats were randomly divided into four groups: Normal control group (NC), Hind limb suspension group (HLS), Hind limb suspension and 80 mW/cm2 LIPUS irradiation group (HLS+ 80 mW/cm2), Hind limb suspension and 30 mW/cm2 LIPUS irradiation group (HLS+ 30 mW/cm2). The HLS+ 80 mW/cm2 rats were treated with LIPUS (1 MHz, 80 mW/cm2) and the HLS+ 30 mW/cm2 rats were treated with LIPUS (1 MHz, 30 mW/cm2) on the femur for 20 min/day for 28 days. MC3T3-E1 cells were respectively cultured with the serum of wild type mouse and MSTN knockout mouse at 1% concentration for 7 days. After 28 days, LIPUS effectively prevented the destruction of bone microstructure and the decline of mechanical properties, and promoted bone defect healing in the tail-suspended rats. In addition, LIPUS effectively reduced the MSTN content in the quadriceps and serum of the tail-suspended rats, inhibited its receptor and downstream signaling molecules and activated the Wnt signaling pathway in femurs. Growth of MC-3T3-E1 cell cultured with the serum of MSTN knockout mice was superior to that with wild mice serum on day 7. These results indicate that MSTN is a key mediator in LIPUS preventing bone loss caused by hindlimb-suspension.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Shasha An
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhihao Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; Human Phenome Institute, Fudan University, Shanghai 201203, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai 200032, China.
| |
Collapse
|
18
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
19
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
20
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
21
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
22
|
Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L. Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant 2020; 36:1986-1993. [PMID: 32974666 DOI: 10.1093/ndt/gfaa129] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients often exhibit a low muscle mass and strength, leading to physical impairment and an increased mortality. Two major signalling pathways control protein synthesis, the insulin-like growth factor-1/Akt (IGF-1/Akt) pathway, acting as a positive regulator, and the myostatin (Mstn) pathway, acting as a negative regulator. Mstn, also known as the growth development factor-8 (GDF-8), is a member of the transforming growth factor-β superfamily, which is secreted by mature muscle cells. Mstn inhibits satellite muscle cell proliferation and differentiation and induces a proteolytic phenotype of muscle cells by activating the ubiquitin-proteasome system. Recent advances have been made in the comprehension of the Mstn pathway disturbance and its role in muscle wasting during CKD. Most studies report higher Mstn concentrations in CKD and dialysis patients than in healthy subjects. Several factors increase Mstn production in uraemic conditions: low physical activity, chronic or acute inflammation and oxidative stress, uraemic toxins, angiotensin II, metabolic acidosis and glucocorticoids. Mstn seems to be only scarcely removed during haemodialysis or peritoneal dialysis, maybe because of its large molecule size in plasma where it is linked to its prodomain. In dialysis patients, Mstn has been proposed as a biomarker of muscle mass, muscle strength or physical performances, but more studies are needed in this field. This review outlines the interconnection between Mstn activation, muscle dysfunction and CKD. We discuss mechanisms of action and efficacy of pharmacological Mstn pathway inhibition that represents a promising treatment approach of striated muscle dysfunction. Many approaches and molecules are in development but until now, no study has proved a benefit in CKD.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, Marseille, France
| | | | - Denis Fouque
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, Lyon, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
23
|
Suh J, Lee YS. Myostatin Inhibitors: Panacea or Predicament for Musculoskeletal Disorders? J Bone Metab 2020; 27:151-165. [PMID: 32911580 PMCID: PMC7571243 DOI: 10.11005/jbm.2020.27.3.151] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
Myostatin, also known as growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member that functions to limit skeletal muscle growth. Accordingly, loss-of-function mutations in myostatin result in a dramatic increase in muscle mass in humans and various animals, while its overexpression leads to severe muscle atrophy. Myostatin also exerts a significant effect on bone metabolism, as demonstrated by enhanced bone mineral density and bone regeneration in myostatin null mice. The identification of myostatin as a negative regulator of muscle and bone mass has sparked an enormous interest in developing myostatin inhibitors as therapeutic agents for treating a variety of clinical conditions associated with musculoskeletal disorders. As a result, various myostatin-targeting strategies involving antibodies, myostatin propeptides, soluble receptors, and endogenous antagonists have been generated, and many of them have progressed to clinical trials. Importantly, most myostatin inhibitors also repress the activities of other closely related TGF-β family members including GDF11, activins, and bone morphogenetic proteins (BMPs), increasing the potential for unwanted side effects, such as vascular side effects through inhibition of BMP 9/10 and bone weakness induced by follistatin through antagonizing several TGF-β family members. Therefore, a careful distinction between targets that may enhance the efficacy of an agent and those that may cause adverse effects is required with the improvement of the target specificity. In this review, we discuss the current understanding of the endogenous function of myostatin, and provide an overview of clinical trial outcomes from different myostatin inhibitors.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Szabó Z, Vainio L, Lin R, Swan J, Hulmi JJ, Rahtu-Korpela L, Serpi R, Laitinen M, Pasternack A, Ritvos O, Kerkelä R, Magga J. Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function. FASEB J 2020; 34:9911-9924. [PMID: 32427381 DOI: 10.1096/fj.201903074rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.
Collapse
Affiliation(s)
- Zoltán Szabó
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Laura Vainio
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Ruizhu Lin
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Julia Swan
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Juha J Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lea Rahtu-Korpela
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mika Laitinen
- Department of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Modification of Muscle-Related Hormones in Women with Obesity: Potential Impact on Bone Metabolism. J Clin Med 2020; 9:jcm9041150. [PMID: 32316563 PMCID: PMC7230770 DOI: 10.3390/jcm9041150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Lean body mass (LBM) is a determinant of areal bone mineral density (aBMD) through its mechanical actions and quite possibly through its endocrine functions. The threefold aims of this study are: to determine the effects of obesity (OB) on aBMD and myokines; to examine the potential link between myokines and bone parameters; and to determine whether the effects of LBM on aBMD are mediated by myokines. aBMD and myokine levels were evaluated in relation to the body mass index (BMI) in 179 women. Compared with normal-weight controls (CON; n = 40), women with OB (n = 139) presented higher aBMD, myostatin and follistatin levels and lower irisin levels. Except for irisin levels, all differences between the OB and CON groups were accentuated with increasing BMI. For the whole population (n = 179), weight, BMI, fat mass (FM) and LBM were positively correlated with aBMD at all bone sites, while log irisin were negatively correlated. The proportion of the LBM effect on aBMD was partially mediated (from 14.8% to 29.8%), by log irisin, but not by follistatin or myosin. This study showed that myokine levels were greatly influenced by obesity. However, irisin excepted, myokines do not seem to mediate the effect of LBM on bone tissue.
Collapse
|
26
|
Leuchtmann AB, Handschin C. Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacol Res 2020; 154:104191. [PMID: 30844535 PMCID: PMC7100900 DOI: 10.1016/j.phrs.2019.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, increases the risk of developing chronic diseases in older individuals and is a strong predictor of disability and death. Because of the ongoing demographic transition, age-related muscle weakness is responsible for an alarming and increasing contribution to health care costs in Western countries. Exercise-based interventions are most successful in preventing the decline in skeletal muscle mass and in preserving or ameliorating functional capacities with increasing age. However, other treatment options are still scarce. In this review, we explore currently applied nutritional and pharmacological approaches to mitigate age-related muscle wasting, and discuss potential future therapeutic avenues.
Collapse
Affiliation(s)
- Aurel B Leuchtmann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland.
| |
Collapse
|
27
|
|
28
|
Abstract
During aging, deterioration in cardiac structure and function leads to increased susceptibility to heart failure. The need for interventions to combat this age-related cardiac decline is becoming increasingly urgent as the elderly population continues to grow. Our understanding of cardiac aging, and aging in general, is limited. However, recent studies of age-related decline and its prevention through interventions like exercise have revealed novel pathological and cardioprotective pathways. In this review, we summarize recent findings concerning the molecular mechanisms of age-related heart failure and highlight exercise as a valuable experimental platform for the discovery of much-needed novel therapeutic targets in this chronic disease.
Collapse
Affiliation(s)
- Haobo Li
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Margaret H Hastings
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - James Rhee
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.).,Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston (J.R.)
| | - Lena E Trager
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Jason D Roh
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| |
Collapse
|
29
|
Tang L, Kang Y, Sun S, Zhao T, Cao W, Fan X, Guo J, Sun L, Ta D. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Miner Metab 2020; 38:14-26. [PMID: 31414284 DOI: 10.1007/s00774-019-01029-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Menopause can lead to osteoporosis, which is characterized by destruction of bone microstructure, poor mechanical properties, and prone to fracture. LIPUS can effectively promote bone formation and fracture healing. MSTN is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle growth. A MSTN deficiency also has a positive effect on bone formation. However, whether LIPUS could inhibit bone loss and promote healing of bone injury of menopause through the inhibition of the MSTN signaling pathway has not been previously investigated. We herein investigated the effects of LIPUS on bone architecture, mechanical properties, the healing of bone defects, and its potential molecular mechanisms in ovariectomized rats. MATERIALS AND METHODS The rats were randomly divided into three groups: sham ovariectomized group (Sham), ovariectomized model group (OVX), ovariectomized model with LIPUS therapy group (OVX + LIPUS). The OVX + LIPUS rats were treated with LIPUS (1.5 MHz, 30 mW/cm2) on the femur for 20 min/day that lasted for 19 days. RESULTS LIPUS effectively improved the bone microstructure, increased mechanical properties and promoted the healing of bone defects in ovariectomized rats. Moreover, LIPUS effectively decreased the MSTN content in serum and quadriceps muscle in ovariectomized rats, and inhibited the expression of MSTN downstream signaling molecules and activated the Wnt signaling pathway in the femur. CONCLUSIONS The present study shows that LIPUS improved osteoporosis and promoted bone defect healing in the ovariectomized rats may through the inhibition of the MSTN signal pathway.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiting Kang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Tingting Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Wenxin Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
30
|
Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:175-185. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
The human genome contains around 20,000-25,000 genes coding for 30,000 proteins. Some proteins and genes represent therapeutic targets for human diseases. RNA and protein expression profiling tools allow the study of the molecular basis of aging and drug discovery validation. Throughout the life, there is an age-related and disease-related muscle decline. Sarcopenia is defined as a loss of muscle mass and a decrease in functional properties such as muscle strength and physical performance. Yet, there is still no consensus on the evaluation methods of sarcopenia prognosis. The main challenge of this complex biological phenomena is its multifactorial etiology. Thus, functional genomics methods attempt to shape the related scientific approaches via an innovative in-depth view on sarcopenia. Gene and drug high throughput screening combined with functional genomics allow the generation and the interpretation of a large amount of data related to sarcopenia and therapeutic progress. This review focuses on the application of selected functional genomics techniques such as RNA interference, RNA silencing, proteomics, transgenic mice, metabolomics, genomics, and epigenomics to better understand sarcopenia mechanisms.
Collapse
Affiliation(s)
- Aicha Melouane
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Abdelaziz Ghanemi
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada
| | - Jonny St-Amand
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada.
| |
Collapse
|
31
|
Sun L, Sun S, Zhao X, Zhang J, Guo J, Tang L, Ta D. Inhibition of myostatin signal pathway may be involved in low-intensity pulsed ultrasound promoting bone healing. J Med Ultrason (2001) 2019; 46:377-388. [PMID: 31377938 DOI: 10.1007/s10396-019-00962-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Low-intensity pulsed ultrasound (LIPUS) is effective in promoting bone healing, and a myostatin deficiency also has a positive effect on bone formation. In this study, we evaluated the effects of LIPUS on bone healing in rats in vivo and investigated the mechanisms in vitro, aiming to explore whether LIPUS promotes bone healing through inhibition of the myostatin signaling pathway. METHODS Rats with both drill-hole defects and MC3T3-E1 cells were randomly assigned to a LIPUS group and a control group. The LIPUS group received LIPUS treatment (1.5 MHz, 30 mW/cm2) for 20 min/day. RESULTS After 21 days, the myostatin expression in quadriceps was significantly inhibited in the LIPUS group, and remodeling of the newly formed bone in the drill-hole site was significantly better in the LIPUS group than that in the control group, which was confirmed by micro-CT analysis. After 3 days, LIPUS significantly promoted osteoblast proliferation; inhibited the expression of AcvrIIB (the myostatin receptor), Smad3, p-Smad3, and GSK-3β; and increased Wnt1 and β-catenin expression. Moreover, translocation of β-catenin from the cytolemma to the nucleus was observed in the LIPUS group. However, these effects were blocked by treatment with myostatin recombinant protein. CONCLUSIONS The results indicate that LIPUS may promote bone healing through inhibition of the myostatin signal pathway.
Collapse
Affiliation(s)
- Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Shuxin Sun
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China
| | - Xinjuan Zhao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianzhong Guo
- Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an, 710119, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Dean Ta
- Department of Electronic Engineering, Fudan University, Shanghai, 200433, China. .,Human Phenome Institute, Fudan University, Shanghai, 201203, China. .,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
32
|
Moriwaki K, Matsumoto H, Tanishima S, Tanimura C, Osaki M, Nagashima H, Hagino H. Association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults: a cross-sectional study. BMC Musculoskelet Disord 2019; 20:276. [PMID: 31164134 PMCID: PMC6549364 DOI: 10.1186/s12891-019-2650-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/22/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Understanding interactions between bone and muscle based on endocrine factors may help elucidate the relationship between osteoporosis and sarcopenia. However, whether the abundance or activity of these endocrine factors is affected by age and sex or whether these factors play a causal role in bone and muscle formation and function is unclear. We aimed to evaluate the association of serum bone- and muscle-derived factors with age, sex, body composition, and physical function in community-dwelling middle-aged and elderly adults. METHODS In all, 254 residents (97 men, 157 women) participated in this cross-sectional study conducted in Japan. The calcaneal speed of sound (SOS) was evaluated by quantitative ultrasound examination. Skeletal muscle mass index (SMI) was calculated by bioelectrical impedance analysis. Grip strength was measured using a dynamometer. Gait speed was measured by optical-sensitive gait analysis. Serum sclerostin, osteocalcin (OC), insulin-like growth factor-1 (IGF-1), myostatin, and tartrate-resistant acid phosphatase-5b (TRACP-5b) concentrations were measured simultaneously. The difference by sex was determined using t test. Correlations between serum bone- and muscle-derived factors and age, BMI, SOS, SMI, grip strength, gait speed, and TRACP-5b in men and women were determined based on Pearson's correlation coefficients. Multiple regression analysis was performed using the stepwise method. RESULTS There was no significant difference with regard to age between men (75.0 ± 8.9 years) and women (73.6 ± 8.1 years). Sclerostin was significantly higher in men than in women and tended to increase with age in men; it was significantly associated with SOS and TRACP-5b levels. OC was significantly higher in women than in men and was significantly associated with TRACP-5b levels and age. IGF-1 tended to decrease with age in both sexes and was significantly associated with SOS and body mass index. Myostatin did not correlate with any assessed variables. CONCLUSIONS Sclerostin was significantly associated with sex, age, and bone metabolism, although there was no discernable relationship between serum sclerostin levels and muscle function. There was no obvious relationship between OC and muscle parameters. This study suggests that IGF-1 is an important modulator of muscle mass and function and bone metabolism in community-dwelling middle-aged and elderly adults.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan.
| | - Hiromi Matsumoto
- Department of Rehabilitation, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Matsushima 288, Kurashiki, Okayama, 701-0193, Japan
| | - Shinji Tanishima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Chika Tanimura
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan
| | - Mari Osaki
- Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hideki Nagashima
- Department of Orthopedic Surgery, Faculty of Medicine, Tottori University, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| | - Hiroshi Hagino
- School of Health Science, Faculty of Medicine, Tottori University, Nishicho 86, Yonago, Tottori, 683-8504, Japan.,Rehabilitation Division, Tottori University Hospital, Nishicho 36-1, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
33
|
Roh JD, Hobson R, Chaudhari V, Quintero P, Yeri A, Benson M, Xiao C, Zlotoff D, Bezzerides V, Houstis N, Platt C, Damilano F, Lindman BR, Elmariah S, Biersmith M, Lee SJ, Seidman CE, Seidman JG, Gerszten RE, Lach-Trifilieff E, Glass DJ, Rosenzweig A. Activin type II receptor signaling in cardiac aging and heart failure. Sci Transl Med 2019; 11:eaau8680. [PMID: 30842316 PMCID: PMC7124007 DOI: 10.1126/scitranslmed.aau8680] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Activin type II receptor (ActRII) ligands have been implicated in muscle wasting in aging and disease. However, the role of these ligands and ActRII signaling in the heart remains unclear. Here, we investigated this catabolic pathway in human aging and heart failure (HF) using circulating follistatin-like 3 (FSTL3) as a potential indicator of systemic ActRII activity. FSTL3 is a downstream regulator of ActRII signaling, whose expression is up-regulated by the major ActRII ligands, activin A, circulating growth differentiation factor-8 (GDF8), and GDF11. In humans, we found that circulating FSTL3 increased with aging, frailty, and HF severity, correlating with an increase in circulating activins. In mice, increasing circulating activin A increased cardiac ActRII signaling and FSTL3 expression, as well as impaired cardiac function. Conversely, ActRII blockade with either clinical-stage inhibitors or genetic ablation reduced cardiac ActRII signaling while restoring or preserving cardiac function in multiple models of HF induced by aging, sarcomere mutation, or pressure overload. Using unbiased RNA sequencing, we show that activin A, GDF8, and GDF11 all induce a similar pathologic profile associated with up-regulation of the proteasome pathway in mammalian cardiomyocytes. The E3 ubiquitin ligase, Smurf1, was identified as a key downstream effector of activin-mediated ActRII signaling, which increased proteasome-dependent degradation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), a critical determinant of cardiomyocyte function. Together, our findings suggest that increased activin/ActRII signaling links aging and HF pathobiology and that targeted inhibition of this catabolic pathway holds promise as a therapeutic strategy for multiple forms of HF.
Collapse
Affiliation(s)
- Jason D Roh
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Hobson
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinita Chaudhari
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Quintero
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Yeri
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark Benson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyang Xiao
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Zlotoff
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vassilios Bezzerides
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Houstis
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Colin Platt
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Federico Damilano
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Brian R Lindman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Sammy Elmariah
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Biersmith
- Division of Cardiovascular Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Se-Jin Lee
- The Jackson Laboratory, Farmington, CT 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02114, USA
| | | | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - David J Glass
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Butcher JT, Ali MI, Ma MW, McCarthy CG, Islam BN, Fox LG, Mintz JD, Larion S, Fulton DJ, Stepp DW. Effect of myostatin deletion on cardiac and microvascular function. Physiol Rep 2018; 5. [PMID: 29192067 PMCID: PMC5727279 DOI: 10.14814/phy2.13525] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/13/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
The objective of this study is to test the hypothesis that increased muscle mass has positive effects on cardiovascular function. Specifically, we tested the hypothesis that increases in lean body mass caused by deletion of myostatin improves cardiac performance and vascular function. Echocardiography was used to quantify left ventricular function at baseline and after acute administration of propranolol and isoproterenol to assess β‐adrenergic reactivity. Additionally, resistance vessels in several beds were removed, cannulated, pressurized to 60 mmHg and reactivity to vasoactive stimuli was assessed. Hemodynamics were measured using in vivo radiotelemetry. Myostatin deletion results in increased fractional shortening at baseline. Additionally, arterioles in the coronary and muscular microcirculations are more sensitive to endothelial‐dependent dilation while nonmuscular beds or the aorta were unaffected. β‐adrenergic dilation was increased in both coronary and conduit arteries, suggesting a systemic effect of increased muscle mass on vascular function. Overall hemodynamics and physical characteristics (heart weight and size) remained unchanged. Myostatin deletion mimics in part the effects of exercise on cardiovascular function. It significantly increases lean muscle mass and results in muscle‐specific increases in endothelium‐dependent vasodilation. This suggests that increases in muscle mass may serve as a buffer against pathological states that specifically target cardiac function (heart failure), the β‐adrenergic system (age), and nitric oxide bio‐availability (atherosclerosis). Taken together, pharmacological inhibition of the myostatin pathway could prove an excellent mechanism by which the benefits of exercise can be conferred in patients that are unable to exercise.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - M Irfan Ali
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Merry W Ma
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Bianca N Islam
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Lauren G Fox
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - James D Mintz
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Sebastian Larion
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - David J Fulton
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| | - David W Stepp
- Department of Pharmacology, Department of Physiology, Vascular Biology Center, Augusta University, Augusta, Georgia
| |
Collapse
|
35
|
Guo W, Pencina KM, Gagliano-Jucá T, Jasuja R, Morris N, O'Connell KE, Westmoreland S, Bhasin S. Effects of an ActRIIB.Fc Ligand Trap on Cardiac Function in Simian Immunodeficiency Virus-Infected Male Rhesus Macaques. J Endocr Soc 2018; 2:817-831. [PMID: 30019021 PMCID: PMC6041778 DOI: 10.1210/js.2018-00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
An important safety consideration in the use of antagonists of myostatin and activins is whether these drugs induce myocardial hypertrophy and impair cardiac function. The current study evaluated the effects of a soluble ActRIIB receptor Fc fusion protein (ActRIIB.Fc), a ligand trap for TGF-β/activin family members including myostatin, on myocardial mass and function in simian immunodeficiency virus (SIV)-infected juvenile rhesus macaques (Macaca mulatta). Fourteen pair-housed, juvenile male rhesus macaques were inoculated with SIVmac239; 4 weeks postinoculation, they were treated with weekly injections of 10 mg/kg ActRIIB.Fc or saline for 12 weeks. Myocardial mass and function were evaluated using two-dimensional echocardiography at baseline and after 12 weeks. The administration of ActRIIB.Fc was associated with a significantly greater increase in thickness of left ventricular posterior wall and interventricular septum both in diastole and systole. Cardiac output and cardiac index increased with time, more in animals treated with ActRIIB.Fc than in those treated with saline, but the difference was not statistically significant. The changes in ejection fraction, fractional shortening, and stroke volume did not differ significantly between groups. The changes in end-diastolic and end-systolic volumes did not differ between groups. In addition to a large reduction in IGF1 mRNA expression in the ActRIIB.Fc-treated animals, complex changes were detected in the myocardial expression of proteins related to calcium transport and storage. In conclusion, ActRIIB.Fc administration for 12 weeks was associated with increased myocardial mass but did not adversely affect myocardial function in juvenile SIV-infected rhesus macaques. Further studies are necessary to establish long-term cardiac safety.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karol M Pencina
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thiago Gagliano-Jucá
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nancy Morris
- Division of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts
| | - Karyn E O'Connell
- Division of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts
| | - Susan Westmoreland
- Division of Comparative Pathology, New England Primate Research Center, Southborough, Massachusetts
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Gosch M, Wicklein S. [Antibodies as treatment option in older adults]. Z Gerontol Geriatr 2017; 51:152-156. [PMID: 29264687 DOI: 10.1007/s00391-017-1352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/30/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies are already used for many different clinical indications. Besides oncology and rheumatology, denosumab is the only antibody that is currently prescribed in older adults with osteoporosis; however, apart from osteoporosis there might be more possible indications for the use of antibodies in chronic diseases and geriatric syndromes. Particularly, with respect to sarcopenia the transition to "doping for older adults" seems to be fluent. The present review provides an overview on the newest developments and prospective options.
Collapse
Affiliation(s)
- M Gosch
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland.
| | - S Wicklein
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland
| |
Collapse
|
38
|
Cardozo CP, Graham ZA. Muscle-bone interactions: movement in the field of mechano-humoral coupling of muscle and bone. Ann N Y Acad Sci 2017; 1402:10-17. [PMID: 28763828 DOI: 10.1111/nyas.13411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022]
Abstract
Cyclical, mechanical loading of bone by skeletal muscle is widely recognized as a critical determinant of bone structure and mass. A growing body of evidence indicates that substances released from skeletal muscle into the bloodstream also regulate bone mass and metabolism. In this commentary, we discuss the status of research in the area of humoral regulation of bone mass by the skeletal muscle secretome, with an emphasis on the roles of myostatin, irisin, interleukin-6, and exosomes. The interplay between muscle, bone, and other modulators of bone mass, including circadian rhythm and sympathetic tone, is also discussed.
Collapse
Affiliation(s)
- Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pharmacologic Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary A Graham
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
39
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
40
|
Lim S, McMahon CD, Matthews KG, Devlin GP, Elston MS, Conaglen JV. Absence of Myostatin Improves Cardiac Function Following Myocardial Infarction. Heart Lung Circ 2017; 27:693-701. [PMID: 28690022 DOI: 10.1016/j.hlc.2017.05.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Myostatin inhibits the development of skeletal muscle and regulates the proliferation of skeletal muscle fibroblasts. However, the role of myostatin in regulating cardiac muscle or myofibroblasts, specifically in acute myocardial infarction (MI), is less clear. This study sought to determine whether absence of myostatin altered left ventricular function post-MI. METHODS Myostatin-null mice (Mstn-/-) and wild-type (WT) mice underwent ligation of the left anterior descending artery to induce MI. Left ventricular function was measured at baseline, days 1 and 28 post-MI. Immunohistochemistry and immunofluorescence were obtained at day 28 for cellular proliferation, collagen deposition, and myofibroblastic activity. RESULTS Whilst left ventricular function at baseline and size of infarct were similar, significant differences in favour of Mstn-/- compared to WT mice post-MI include a greater recovery of ejection fraction (61.8±1.1% vs 57.1±2.3%, p<0.01), less collagen deposition (41.9±2.8% vs 54.7±3.4%, p<0.05), and lower mortality (0 vs. 20%, p<0.05). There was no difference in the number of BrdU positive cells, percentage of apoptotic cardiomyocytes, or size of cardiomyocytes post-MI between WT and Mstn-/- mice. CONCLUSIONS Absence of myostatin potentially protects the function of the heart post-MI with improved survival, possibly by limiting extent of fibrosis.
Collapse
Affiliation(s)
- Sarina Lim
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Chris D McMahon
- Developmental Biology Group, AgResearch Limited, Hamilton, New Zealand
| | | | - Gerard P Devlin
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Marianne S Elston
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - John V Conaglen
- Waikato Clinical Campus, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
41
|
Age and sex differences in human skeletal muscle fibrosis markers and transforming growth factor-β signaling. Eur J Appl Physiol 2017; 117:1463-1472. [PMID: 28493029 DOI: 10.1007/s00421-017-3639-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of the study was to determine whether higher fibrosis markers in skeletal muscle of older adults are accompanied by increased expression of components of the canonical TGF-β signal transduction pathway. METHODS Fourteen healthy young (21-35 years; 9 males and 5 females) and seventeen older (55-75 years; 9 males and 8 females) participants underwent vastus lateralis biopsies to determine intramuscular mRNA and protein expression of fibrogenic markers and TGF-β signaling molecules related to TGF-β1 and myostatin. RESULTS Expression of mRNA encoding the pro-fibrotic factors; axin 2, collagen III, β-catenin and fibronectin, were all significantly higher (all p < 0.05) in the older participants (350, 170, 298, and 641%, respectively). Furthermore, axin 2 and β-catenin mRNA were significantly higher in older females than older males (p < 0.05). Gene expression of ActRIIB, myostatin, and TGF-β1 were higher in older adults compared to younger adults (all p < 0.05). There was, however, no difference in the total protein content of myostatin, myoD or myogenin (all p > 0.05), whereas Smad3 protein phosphorylation was 48% lower (p < 0.05) in muscle from older adults. CONCLUSIONS Increased abundance of mRNA of fibrotic markers was observed in muscle from older adults and was partly accompanied by altered abundance of pro-fibrotic ligands in a sex specific manner.
Collapse
|
42
|
Belloum Y, Rannou-Bekono F, Favier FB. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep 2017; 37:2543-2552. [PMID: 28393216 DOI: 10.3892/or.2017.5542] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Cachexia is a wasting syndrome observed in many patients suffering from several chronic diseases including cancer. In addition to the progressive loss of skeletal muscle mass, cancer cachexia results in cardiac function impairment. During the severe stage of the disease, patients as well as animals bearing cancer cells display cardiac atrophy. Cardiac energy metabolism is also impeded with disruption of mitochondrial homeostasis and reduced oxidative capacity, although the available data remain equivocal. The release of inflammatory cytokines by tumor is a key mechanism in the initiation of heart failure. Oxidative stress, which results from the combination of chemotherapy, inadequate antioxidant consumption and chronic inflammation, will further foster heart failure. Protein catabolism is due to the concomitant activation of proteolytic systems and inhibition of protein synthesis, both processes being triggered by the deactivation of the Akt/mammalian target of rapamycin pathway. The reduction in oxidative capacity involves AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1α dysregulation. The nuclear factor-κB transcription factor plays a prominent role in the coordination of these alterations. Physical exercise appears as an interesting non-pharmaceutical way to counteract cancer cachexia-induced-heart failure. Indeed, aerobic training has anti-inflammatory effects, increases anti-oxidant defenses, prevents atrophy and promotes oxidative metabolism. The present review points out the importance of better understanding the concurrent structural and metabolic changes within the myocardium during cancer and the protective effects of exercise against cardiac cachexia.
Collapse
Affiliation(s)
| | - Françoise Rannou-Bekono
- EA 1274, Laboratoire 'Mouvement, Sport, Santé', Université de Rennes 2-ENS Rennes, Bruz 35170, France
| | | |
Collapse
|
43
|
Deng B, Zhang F, Wen J, Ye S, Wang L, Yang Y, Gong P, Jiang S. The function of myostatin in the regulation of fat mass in mammals. Nutr Metab (Lond) 2017; 14:29. [PMID: 28344633 PMCID: PMC5360019 DOI: 10.1186/s12986-017-0179-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 03/12/2023] Open
Abstract
Myostatin (MSTN), also referred to as growth and differentiation factor-8, is a protein secreted in muscle tissues. Researchers believe that its primary function is in negatively regulating muscle because a mutation in its coding region can lead to the famous double muscle trait in cattle. Muscle and adipose tissue develop from the same mesenchymal stem cells, and researchers have found that MSTN is expressed in fat tissues and plays a key role in adipogenesis. Interestingly, MSTN can exert a dual function, either inhibiting or promoting adipogenesis, according to the situation. Due to its potential function in controlling body fat mass, MSTN has attracted the interest of researchers. In this review, we explore its function in regulating adipogenesis in mammals, including preadipocytes, multipotent stem cells and fat mass.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Feng Zhang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jianghui Wen
- Wuhan University of Technology, Wuhan, 430074 People's Republic of China
| | - Shengqiang Ye
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Yu Yang
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan, Hubei 430208 People's Republic of China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of the Agricultural Ministry and Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
| |
Collapse
|
44
|
Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016; 54:284-305. [PMID: 26718191 DOI: 10.1007/s12020-015-0834-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022]
Abstract
Physical inactivity has been recognized, by the World Health Organization as the fourth cause of death (5.5 % worldwide). On the contrary, physical activity (PA) has been associated with improved quality of life and decreased risk of several diseases (i.e., stroke, hypertension, myocardial infarction, obesity, malignancies). Bone turnover is profoundly affected from PA both directly (load degree is the key determinant for BMD) and indirectly through the activation of several endocrine axes. Several molecules, secreted by muscle (myokines) and adipose tissues (adipokines) in response to exercise, are involved in the fine regulation of bone metabolism in response to the energy availability. Furthermore, bone regulates energy metabolism by communicating its energetic needs thanks to osteocalcin which acts on pancreatic β-cells and adipocytes. The beneficial effects of exercise on bone metabolism depends on the intermittent exposure to myokines (i.e., irisin, IL-6, LIF, IGF-I) which, instead, act as inflammatory/pro-resorptive mediators when chronically elevated; on the other hand, the reduction in the circulating levels of adipokines (i.e., leptin, visfatin, adiponectin, resistin) sustains these effects as well as improves the whole-body metabolic status. The aim of this review is to highlight the newest findings about the exercise-dependent regulation of these molecules and their role in the fine regulation of bone metabolism.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | | | - Silvia Perego
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
45
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
46
|
Roh J, Rhee J, Chaudhari V, Rosenzweig A. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms. Circ Res 2016; 118:279-95. [PMID: 26838314 DOI: 10.1161/circresaha.115.305250] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population.
Collapse
Affiliation(s)
- Jason Roh
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Rhee
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Vinita Chaudhari
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anthony Rosenzweig
- From the Cardiovascular Division (J. Roh, J. Rhee, V.C., A.R.) and Department of Anesthesiology, Critical Care, and Pain Medicine (J. Rhee), Massachusetts General Hospital and Harvard Medical School, Boston.
| |
Collapse
|
47
|
Chabi B, Pauly M, Carillon J, Carnac G, Favier FB, Fouret G, Bonafos B, Vanterpool F, Vernus B, Coudray C, Feillet-Coudray C, Bonnieu A, Lacan D, Koechlin-Ramonatxo C. Protective effect of myostatin gene deletion on aging-related muscle metabolic decline. Exp Gerontol 2016; 78:23-31. [PMID: 26944368 DOI: 10.1016/j.exger.2016.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/21/2016] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
Abstract
While myostatin gene deletion is a promising therapy to fight muscle loss during aging, this approach induces also skeletal muscle metabolic changes such as mitochondrial deficits, redox alteration and increased fatigability. In the present study, we evaluated the effects of aging on these features in aged wild-type (WT) and mstn knockout (KO) mice. Moreover, to determine whether an enriched-antioxidant diet may be useful to prevent age-related disorders, we orally administered to the two genotypes a melon concentrate rich in superoxide dismutase for 12 weeks. We reported that mitochondrial functional abnormalities persisted (decreased state 3 and 4 of respiration; p<0.05) in skeletal muscle from aged KO mice; however, differences with WT mice were attenuated at old age in line with reduced difference on running endurance between the two genotypes. Interestingly, we showed an increase in glutathione levels, associated with lower lipid peroxidation levels in KO muscle. Enriched antioxidant diet reduced the aging-related negative effects on maximal aerobic velocity and running limit time (p<0.05) in both groups, with systemic adaptations on body weight. The redox status and the hypertrophic phenotype appeared to be beneficial to KO mice, mitigating the effect of aging on the skeletal muscle metabolic remodeling.
Collapse
Affiliation(s)
- B Chabi
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - M Pauly
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | | | - G Carnac
- Inserm U1046, Université ́ Montpellier, 34295 Montpellier, France
| | - F B Favier
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - G Fouret
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - B Bonafos
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - F Vanterpool
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - B Vernus
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - C Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - C Feillet-Coudray
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - A Bonnieu
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France
| | - D Lacan
- Bionov Sarl, Avignon, France
| | - C Koechlin-Ramonatxo
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université Montpellier, F-34060, Montpellier, France.
| |
Collapse
|
48
|
Guo W, Miller AD, Pencina K, Wong S, Lee A, Yee M, Toraldo G, Jasuja R, Bhasin S. Joint dysfunction and functional decline in middle age myostatin null mice. Bone 2016; 83:141-148. [PMID: 26549246 PMCID: PMC5461924 DOI: 10.1016/j.bone.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Andrew D Miller
- Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Karol Pencina
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Siu Wong
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Amanda Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Michael Yee
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gianluca Toraldo
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | - Ravi Jasuja
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Shalender Bhasin
- Research Program in Men's Health, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
49
|
Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, Wen Y, Riley LA, Yu Q, Christie A, Smith JD, Seward T, Wolf Horrell EM, Mula J, Peterson CA, Butterfield TA, Esser KA. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol 2015; 593:5387-404. [PMID: 26486627 PMCID: PMC4704520 DOI: 10.1113/jp271436] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The endogenous molecular clock in skeletal muscle is necessary for maintenance of phenotype and function. Loss of Bmal1 solely from adult skeletal muscle (iMSBmal1(-/-) ) results in reductions in specific tension, increased oxidative fibre type and increased muscle fibrosis with no change in feeding or activity. Disruption of the molecular clock in adult skeletal muscle is sufficient to induce changes in skeletal muscle similar to those seen in the Bmal1 knockout mouse (Bmal1(-/-) ), a model of advanced ageing. iMSBmal1(-/-) mice develop increased bone calcification and decreased joint collagen, which in combination with the functional changes in skeletal muscle results in altered gait. This study uncovers a fundamental role for the skeletal muscle clock in musculoskeletal homeostasis with potential implications for ageing. ABSTRACT Disruption of circadian rhythms in humans and rodents has implicated a fundamental role for circadian rhythms in ageing and the development of many chronic diseases including diabetes, cardiovascular disease, depression and cancer. The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop with Bmal1 encoding a core molecular clock transcription factor. Germline Bmal1 knockout (Bmal1 KO) mice have a shortened lifespan, show features of advanced ageing and exhibit significant weakness with decreased maximum specific tension at the whole muscle and single fibre levels. We tested the role of the molecular clock in adult skeletal muscle by generating mice that allow for the inducible skeletal muscle-specific deletion of Bmal1 (iMSBmal1). Here we show that disruption of the molecular clock, specifically in adult skeletal muscle, is associated with a muscle phenotype including reductions in specific tension, increased oxidative fibre type, and increased muscle fibrosis similar to that seen in the Bmal1 KO mouse. Remarkably, the phenotype observed in the iMSBmal1(-/-) mice was not limited to changes in muscle. Similar to the germline Bmal1 KO mice, we observed significant bone and cartilage changes throughout the body suggesting a role for the skeletal muscle molecular clock in both the skeletal muscle niche and the systemic milieu. This emerging area of circadian rhythms and the molecular clock in skeletal muscle holds the potential to provide significant insight into intrinsic mechanisms of the maintenance of muscle quality and function as well as identifying a novel crosstalk between skeletal muscle, cartilage and bone.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brianna D Harfmann
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiping Zhang
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ratchakrit Srikuea
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Brian A Hodge
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Lance A Riley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Qi Yu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Alexander Christie
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Tanya Seward
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jyothi Mula
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Karyn A Esser
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
50
|
Tang L, Yang X, Gao X, Du H, Han Y, Zhang D, Wang Z, Sun L. Inhibiting myostatin signaling prevents femoral trabecular bone loss and microarchitecture deterioration in diet-induced obese rats. Exp Biol Med (Maywood) 2015; 241:308-16. [PMID: 26438721 DOI: 10.1177/1535370215606814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 01/16/2023] Open
Abstract
Besides resulting in a dramatic increase in skeletal muscle mass, myostatin (MSTN) deficiency has a positive effect on bone formation. However, the issue about whether blocking MSTN can inhibit obesity-induced bone loss has not been previously investigated. In the present study, we have evaluated the effects of MSTN blocking on bone quality in high-fat (HF), diet-induced obese rats using a prepared polyclonal antibody for MSTN (MsAb). Twenty-four rats were randomly assigned to the Control, HF and HF + MsAb groups. Rats in the HF + MsAb group were injected once a week with purified MsAb for eight weeks. The results showed that MsAb significantly reduced body and fat weight, and increased muscle mass and strength in the HF group. MicroCT analysis demonstrated that obesity-induced bone loss and architecture deterioration were significantly mitigated by MsAb treatment, as evidenced by increased bone mineral density, bone volume over total volume, trabecular number and thickness, and decreased trabecular separation and structure model index. However, neither HF diet nor MsAb treatment had an impact on femoral biomechanical properties including maximum load, stiffness, energy absorption and elastic modulus. Moreover, MsAb significantly increased adiponectin concentrations, and decreased TNF-α and IL-6 levels in diet-induced obese rats. Taken together, blocking MSTN by MsAb improves bone quality in diet-induced obese rats through a mechanotransduction pathway from skeletal muscle, and the accompanying changes occurring in the levels of circulating adipokines and pro-inflammatory cytokines may also be involved in this process. It indicates that the administration of MSTN antagonists may be a promising therapy for treating obesity and obesity-induced bone loss.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoying Yang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaohang Gao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Haiping Du
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanqi Han
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Didi Zhang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiyuan Wang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China Postdoctoral Research Station of Biology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|