1
|
Danis T, Rokas A. The evolution of gestation length in eutherian mammals. Proc Biol Sci 2024; 291:20241412. [PMID: 39471860 PMCID: PMC11521618 DOI: 10.1098/rspb.2024.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Eutherian mammals exhibit considerable variation in their gestation lengths, which has traditionally been linked to variation in other traits, including body mass and lifespan. To understand how gestation length variation, including its association with body mass and lifespan variation, changed over mammalian evolution, we conducted phylogeny-informed analyses of 845 representative extant species. We found that gestation length substantially differed in both whether and how strongly it was associated with body mass and lifespan across mammals. For example, gestation length was not associated with lifespan or body mass in Chiroptera and Cetacea but was strongly associated only with body mass in Carnivora. We also identified 52 evolutionary shifts in gestation length variation across the mammal phylogeny and 14 shifts when we jointly considered variation of all three traits; six shifts were shared. Notably, two of these shifts, both positive, occurred at the roots of Cetacea and Pinnipedia, respectively, coinciding with the transition of these clades to the marine environment, whereas a negative shift occurred at the root of Chiroptera, coinciding with the evolution of flight in this clade. These results suggest that the relationship between gestation length and the two other traits has varied substantially across mammalian phylogeny.
Collapse
Affiliation(s)
- Thodoris Danis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235, USA
| |
Collapse
|
2
|
Szarka EZ, Lendvai ÁZ. Trophic guilds differ in blood glucose concentrations: a phylogenetic comparative analysis in birds. Proc Biol Sci 2024; 291:20232655. [PMID: 39106953 PMCID: PMC11303027 DOI: 10.1098/rspb.2023.2655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/24/2024] [Indexed: 08/09/2024] Open
Abstract
Glucose is a central metabolic compound used as an energy source across all animal taxa. There is high interspecific variation in glucose concentration between taxa, the origin and the consequence of which remain largely unknown. Nutrition may affect glucose concentrations because carbohydrate content of different food sources may determine the importance of metabolic pathways in the organism. Birds sustain high glucose concentrations that may entail the risks of oxidative damage. We collected glucose concentration and life-history data from 202 bird species from 171 scientific publications, classified them into seven trophic guilds and analysed the data with a phylogenetically controlled model. We show that glucose concentration is negatively associated with body weight and is significantly associated with trophic guilds with a moderate phylogenetic signal. After controlling for allometry, glucose concentrations were highest in carnivorous birds, which rely on high rates of gluconeogenesis to maintain their glycaemia, and lowest in frugivorous/nectarivorous species, which take in carbohydrates directly. However, trophic guilds with different glucose concentrations did not differ in lifespan. These results link nutritional ecology to physiology and suggest that at the macroevolutionary scale, species requiring constantly elevated glucose concentrations may have additional adaptations to avoid the risks associated with high glycaemia.
Collapse
Affiliation(s)
- Endre Z. Szarka
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, Debrecen, Hungary
| | - Ádám Z. Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Clauss M, Müller DWH. Putting zoo animal cancer into perspective. Zoo Biol 2024; 43:15-21. [PMID: 37664965 DOI: 10.1002/zoo.21802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
As part of a comparative research agenda that promises insights that help extend the human lifespan and combat cancer, cancer prevalence in zoo animals has received recent attention. Here, we want to draw attention to a principle of cancer research that was introduced into the zoo world as early on as 1933, but that seems to have gone somewhat forgotten: Cancer is mainly a disease of old age, and therefore studies aiming at identifying taxa that are particularly susceptible or resistant to cancer must control for whether the respective zoo populations are 'old.' In a comparative context, 'old age' cannot be measured in absolute terms (e.g., years), but only in relation to a species' maximum lifespan: Species that achieve, across zoos, a higher mean lifespan as a percent of their maximum lifespan are 'older.' When applying this metric to former as well as more recently published data on cancer prevalence, it appears that those species that become relatively old in zoos-in particular, the carnivores-have a relatively high cancer prevalence. Any improvement in animal husbandry-which reduces premature deaths-should, by default, lead to more cancer. Cancer in zoo animals, like any other old-age condition, might therefore be embraced as a proxy for good husbandry. Rather than following a sensationalist approach that dramatizes disease and death per se, zoos should be clear about what their husbandry goals are, what relative longevities they want to achieve for which species, and what old-age diseases they should therefore expect: in the end, one has to die of something.
Collapse
Affiliation(s)
- Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Delhey K, Valcu M, Muck C, Dale J, Kempenaers B. Evolutionary predictors of the specific colors of birds. Proc Natl Acad Sci U S A 2023; 120:e2217692120. [PMID: 37579151 PMCID: PMC10450850 DOI: 10.1073/pnas.2217692120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/23/2023] [Indexed: 08/16/2023] Open
Abstract
Animal coloration is one of the most conspicuous aspects of human-perceived organismal diversity, yet also one of the least understood. In particular, explaining why species have specific colors (e.g., blue vs. red) has proven elusive. Here, we quantify for nearly all bird species, the proportion of the body covered by each of 12 human-visible color categories, and test whether existing theory can predict the direction of color evolution. The most common colors are black, white, gray and brown, while the rarest are green, blue, purple, and red. Males have more blue, purple, red, or black, whereas females have more yellow, brown, or gray. Sexual dichromatism is partly due to sexual selection favoring ornamental colors in males but not in females. However, sexual selection also correlated positively with brown in both sexes. Strong social selection favors red and black, colors used in agonistic signaling, with the strongest effects in females. Reduced predation risk selects against cryptic colors (e.g., brown) and favors specific ornamental colors (e.g., black). Nocturnality is mainly associated with brown. The effects of habitat use support the sensory drive theory for camouflage and signaling. Darker colors are more common in species living in wet and cold climates, matching ecogeographical rules. Our study unambiguously supports existing theories of color evolution across an entire class of vertebrates, but much variation remains unexplained.
Collapse
Affiliation(s)
- Kaspar Delhey
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - Mihai Valcu
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - Christina Muck
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| | - James Dale
- School of Natural Sciences, Massey University, Palmerston North4442, New Zealand
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, 82319Seewiesen, Germany
| |
Collapse
|
6
|
Jiménez AG. Inflammaging in domestic dogs: basal level concentrations of IL-6, IL-1β, and TNF-α in serum of healthy dogs of different body sizes and ages. Biogerontology 2023:10.1007/s10522-023-10037-y. [PMID: 37195482 DOI: 10.1007/s10522-023-10037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Inflammaging, a "hallmark of aging," refers to a chronic, progressive increase in the proinflammatory status of mammals as they age, and this phenotype has been associated with many age-related diseases, including cardiovascular disease, arthritis and cancer. Though, inflammaging research is common in humans, there is a lack of data for this process for the domestic dog. Here, serum concentrations of IL-6, IL-1β and TNF-α in healthy dogs of different body sizes and ages were measured to determine whether inflammaging may play a mechanistic role in aging rates in dogs, similar to those found in humans. Using a four-way ANOVA, a significant decrease in IL-6 concentrations in young dogs with the rest of the age categories showing increased IL-6 concentrations was found, similar to humans. However, only young dogs have decreased IL-6 concentrations, with adult dogs having similar IL-6 concentrations to senior and geriatric dogs, implying differences in aging rates between humans and dogs. And, there was a marginally significant interaction between sex*spayed or neutered status and IL-1β concentrations with intact females having the lowest IL-1β concentrations compared with intact males, and spayed and neutered dogs. The presence of estrogen in intact females may, overall, decrease inflammatory pathways. This implies that age at spaying or neutering may be an important aspect to consider for inflammaging pathways in dogs. Furthermore, sterilized dogs often die of immune-related diseases, which could be linked to the increases in IL-1β in sterilized dogs found in this study.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr., Hamilton, NY, 13346, USA.
| |
Collapse
|
7
|
Vrtílek M, Žák J, Reichard M. Evidence for reproductive senescence across ray-finned fishes: A review. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The origin, incidence, and consequences of reproductive senescence vary greatly across the tree of life. In vertebrates, research on reproductive senescence has been mainly focused on mammals and birds, demonstrating that its variation is largely linked to critical life history traits, such as growth patterns, juvenile, and adult mortality, and reproductive strategy. Fishes represent half of the vertebrate taxonomic diversity and display remarkable variation in life history. Based on a thorough literature review, we summarize current evidence on reproductive senescence in ray-finned fishes (Actinopterygii). While survival and physiological senescence are acknowledged in fish, their potential age-related reproductive decline has often been disregarded due to the prevalence of indeterminate growth. We demonstrate that age-related reproductive decline is reported across fish phylogeny, environments, and traits. An important point of our review is that the incidence of reproductive senescence in a species depends on both the number of studies for that species and the coverage of its maximum lifespan by the study. Reproductive senescence was documented for one-third of the studied fish species, with females suffering an age-related decline in reproductive traits less often than males or both parents combined. Neither parental care nor migratory strategy corresponded with the occurrence of reproductive senescence in fish. The traits that were affected by reproductive senescence most often were sex-specific, with pre-mating and mating categories of traits declining in females and sperm quality and quantity in males. We also demonstrate that reproductive senescence can be buffered by indeterminate growth. We provide rich evidence of reproductive senescence across ray-finned fishes, but we highlight the need for better data on age-related reproduction in fishes.
Collapse
|
8
|
Fernandez OE, Beltrán-Sánchez H. On the emergence of the correlation between life expectancy and the variance in the age at death. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220020. [PMID: 36405639 PMCID: PMC9653246 DOI: 10.1098/rsos.220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Recent empirical studies have found various patterns in the correlations between lifespan inequality and life expectancy in modern human populations. However, it is unclear how general these regularities are. Here we establish three theorems that provide theoretical foundations for such regularities. We show that for populations with a finite maximum lifespan ω, and under certain continuity assumptions, the variance in the age at death is bounded by a function of lifespan that has a maximum and tends to zero as life expectancy tends to zero and ω. We show how the change in said variance is determined by a particular interplay between the coefficient of variation and the mean age in the population. These results lead to three hypotheses-a three-phased pattern of change for the correlation between the variance and life expectancy, a particular shape of the associated variance function, and that survival curve Type is one driver of the pattern. We illustrate those hypotheses empirically via a study of the 10 countries in the Human Mortality Database with the oldest available data. Our results elucidate the emergence of the aforementioned correlation patterns and provide demographically meaningful conditions under which those correlations reverse.
Collapse
Affiliation(s)
| | - Hiram Beltrán-Sánchez
- Fielding School of Public Health and California Center for Population Research, UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Hubert S, Athrey G. Transcriptomic signals of mitochondrial dysfunction and OXPHOS dynamics in fast-growth chicken. PeerJ 2022; 10:e13364. [PMID: 35535239 PMCID: PMC9078135 DOI: 10.7717/peerj.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 04/09/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Birds are equipped with unique evolutionary adaptations to counter oxidative stress. Studies suggest that lifespan is inversely correlated with oxidative damage in birds. Mitochondrial function and performance are critical for cellular homeostasis, but the age-related patterns of mitochondrial gene expression and oxidative phosphorylation (OXPHOS) in birds are not fully understood. The domestic chicken is an excellent model to understand aging in birds; modern chickens are selected for rapid growth and high fecundity and oxidative stress is a recurring feature in chicken. Comparing fast- and slow-growing chicken phenotypes provides us an opportunity to disentangle the nexus of oxidative homeostasis, growth rate, and age in birds. Methods and Results We compared pectoralis muscle gene expression patterns between a fast and a slow-growing chicken breed at 11 and 42 days old. Using RNAseq analyses, we found that mitochondrial dysfunction and reduced oxidative phosphorylation are major features of fast-growth breast muscle, compared to the slow-growing heritage breed. We found transcriptomic evidence of reduced OXPHOS performance in young fast-growth broilers, which declined further by 42 days. Discussion OXPHOS performance declines are a common feature of aging. Sirtuin signaling and NRF2 dependent oxidative stress responses support the progression of oxidative damage in fast-growth chicken. Our gene expression datasets showed that fast growth in early life places immense stress on oxidative performance, and rapid growth overwhelms the OXPHOS system. In summary, our study suggests constraints on oxidative capacity to sustain fast growth at high metabolic rates, such as those exhibited by modern broilers.
Collapse
Affiliation(s)
- Shawna Hubert
- Thoracic Head Neck Medical Oncology, MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States
- Faculty of Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
10
|
Baker P, Cooper-Mullin CM, Jimenez AG. Differences in advanced glycation endproducts (AGEs) in plasma from birds and mammals of different body sizes and ages. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111164. [PMID: 35158049 DOI: 10.1016/j.cbpa.2022.111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
Birds and mammals provide a physiological paradox: similar-sized mammals live shorter lives than birds; yet, birds have higher blood glucose concentrations than mammals, and higher basal metabolic rates. We have previously shown that oxidative stress patterns between mammals and birds differ, so that birds, generally, have lower blood antioxidant capacity, and lower lipid peroxidation concentration. There is a close association between oxidative stress and the production of carbohydrate-based damaged biomolecules, Advanced Glycation End-products (AGEs). In mammals, AGEs can bind to their receptor (RAGE), which can lead to increases in reactive oxygen species (ROS) production, and can decrease antioxidant capacity. Here, we used plasma from birds and mammals to address whether blood plasma AGE-BSA concentration is associated with body mass and age in these two groups. We found a statistically significantly higher average concentrations of AGE-BSA in birds compared with mammals, and we found a significantly positive correlation between AGE-BSA and age in mammals, though, this correlation disappeared after phylogenetic correction. We propose that the higher AGE concentration in birds is mainly attributable to greater AGE-production due to elevated basal glucose concentrations and decreased AGE-clearance given differences in glomerular filtration rates in birds compared with mammals. Additionally, due to the potential lack of an AGE receptor in birds, AGE accumulation may not be closely linked to oxidative stress and therefore pose a lesser physiological challenge in birds compared to mammals.
Collapse
Affiliation(s)
- Peter Baker
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY 13346, United States of America
| | - Clara M Cooper-Mullin
- University of Rhode Island, Natural Resources Science, 1 Greenhouse Drive, Kingston, RI 02881, United States of America
| | - Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY 13346, United States of America.
| |
Collapse
|
11
|
Trujillo N, Martínez-Pacheco M, Soldatini C, Ancona S, Young RC, Albores-Barajas YV, Orta AH, Rodríguez C, Székely T, Drummond H, Urrutia AO, Cortez D. Lack of age-related mosaic loss of W chromosome in long-lived birds. Biol Lett 2022; 18:20210553. [PMID: 35193370 PMCID: PMC8864339 DOI: 10.1098/rsbl.2021.0553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Females and males often exhibit different survival in nature, and it has been hypothesized that sex chromosomes may play a role in driving differential survival rates. For instance, the Y chromosome in mammals and the W chromosome in birds are often degenerated, with reduced numbers of genes, and loss of the Y chromosome in old men is associated with shorter life expectancy. However, mosaic loss of sex chromosomes has not been investigated in any non-human species. Here, we tested whether mosaic loss of the W chromosome (LOW) occurs with ageing in wild birds as a natural consequence of cellular senescence. Using loci-specific PCR and a target sequencing approach we estimated LOW in both young and adult individuals of two long-lived bird species and showed that the copy number of W chromosomes remains constant across age groups. Our results suggest that LOW is not a consequence of cellular ageing in birds. We concluded that the inheritance of the W chromosome in birds, unlike the Y chromosome in mammals, is more stable.
Collapse
Affiliation(s)
- Nancy Trujillo
- Centro de Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México
| | - Mónica Martínez-Pacheco
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, CP76010, Querétaro, México
| | - Cecilia Soldatini
- Centro de Investigación Científica y Educación Superior de Ensenada - Unidad La Paz, Calle Miraflores 334, CP23050, La Paz, Baja California Sur, México
| | - Sergio Ancona
- Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Rebecca C Young
- Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Yuri V Albores-Barajas
- CONACYT. Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor. Alcaldía Benito Juárez, CP03940, Ciudad de México, México.,Universidad Autónoma de Baja California Sur., Km. 5.5 Carr. 1. La Paz, Baja California Sur, México
| | - Alberto H Orta
- Centro de Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México
| | - Cristina Rodríguez
- Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Tamas Székely
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen H-4032, Hungary
| | - Hugh Drummond
- Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Araxi O Urrutia
- Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Diego Cortez
- Centro de Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México
| |
Collapse
|
12
|
Huttener R, Thorrez L, Veld TI, Granvik M, Van Lommel L, Waelkens E, Derua R, Lemaire K, Goyvaerts L, De Coster S, Buyse J, Schuit F. Sequencing refractory regions in bird genomes are hotspots for accelerated protein evolution. BMC Ecol Evol 2021; 21:176. [PMID: 34537008 PMCID: PMC8449477 DOI: 10.1186/s12862-021-01905-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 1000 protein encoding genes common for vertebrates are still unannotated in avian genomes. Are these genes evolutionary lost or are they not yet found for technical reasons? Using genome landscapes as a tool to visualize large-scale regional effects of genome evolution, we reexamined this question. Results On basis of gene annotation in non-avian vertebrate genomes, we established a list of 15,135 common vertebrate genes. Of these, 1026 were not found in any of eight examined bird genomes. Visualizing regional genome effects by our sliding window approach showed that the majority of these "missing" genes can be clustered to 14 regions of the human reference genome. In these clusters, an additional 1517 genes (often gene fragments) were underrepresented in bird genomes. The clusters of “missing” genes coincided with regions of very high GC content, particularly in avian genomes, making them “hidden” because of incomplete sequencing. Moreover, proteins encoded by genes in these sequencing refractory regions showed signs of accelerated protein evolution. As a proof of principle for this idea we experimentally characterized the mRNA and protein products of four "hidden" bird genes that are crucial for energy homeostasis in skeletal muscle: ALDOA, ENO3, PYGM and SLC2A4. Conclusions A least part of the “missing” genes in bird genomes can be attributed to an artifact caused by the difficulty to sequence regions with extreme GC% (“hidden” genes). Biologically, these “hidden” genes are of interest as they encode proteins that evolve more rapidly than the genome wide average. Finally we show that four of these “hidden” genes encode key proteins for energy metabolism in flight muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01905-7.
Collapse
Affiliation(s)
- R Huttener
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.,Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - T In't Veld
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - M Granvik
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Van Lommel
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - E Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - R Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
| | - K Lemaire
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - L Goyvaerts
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - S De Coster
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium
| | - J Buyse
- Laboratory of Livestock Physiology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - F Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Shoemaker WR, Jones SE, Muscarella ME, Behringer MG, Lehmkuhl BK, Lennon JT. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc Natl Acad Sci U S A 2021; 118:e2101691118. [PMID: 34385301 PMCID: PMC8379937 DOI: 10.1073/pnas.2101691118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Biology, Indiana University, Bloomington, IN, 47405;
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Stuart E Jones
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | | | | | - Brent K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, 47405
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405;
| |
Collapse
|
14
|
Young KG, Regnault TRH, Guglielmo CG. Extraordinarily rapid proliferation of cultured muscle satellite cells from migratory birds. Biol Lett 2021; 17:20210200. [PMID: 34403643 PMCID: PMC8370802 DOI: 10.1098/rsbl.2021.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Migratory birds experience bouts of muscle growth and depletion as they prepare for, and undertake prolonged flight. Our studies of migratory bird muscle physiology in vitro led to the discovery that sanderling (Calidris alba) muscle satellite cells proliferate more rapidly than other normal cell lines. Here we determined the proliferation rate of muscle satellite cells isolated from five migratory species (sanderling; ruff, Calidris pugnax; western sandpiper, Calidris mauri; yellow-rumped warbler, Setophaga coronata; Swainson's thrush, Catharus ustulatus) from two families (shorebirds and songbirds) and with different migratory strategies. Ruff and sanderling satellite cells exhibited rapid proliferation, with population doubling times of 9.3 ± 1.3 and 11.4 ± 2 h, whereas the remaining species' cell doubling times were greater than or equal to 24 h. The results indicate that the rapid proliferation of satellite cells is not associated with total migration distance but may be related to flight bout duration and interact with lifespan.
Collapse
Affiliation(s)
- Kevin G. Young
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Children's Health Research Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Xia C, Møller AP. Linking the maximum reported life span to the aging rate in wild birds. Ecol Evol 2021; 11:5682-5689. [PMID: 34026039 PMCID: PMC8131785 DOI: 10.1002/ece3.7471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
Dozens of surrogates have been used to reflect the rate of aging in comparative biology. For wild organisms, the maximum reported life span is often considered a key metric. However, the connection between the maximum reported life span for a single individual and the aging rate of that species is far from clear. Our objective was to identify a pragmatic solution to calculate the aging rate from the maximum reported life span of wild birds. We explicitly linked the maximum reported life span to the aging process by employing a Weibull distribution and calculating the shape parameter in this model, which reflects the change in mortality across ages and be used as a surrogate for the aging rate. From simulated data, we demonstrated that the percentile estimator is suitable for calculating the aging rate based on the maximum reported life span. We also calculated the aging rate in 246 bird species based on published information from EURING and tested its relationship with body mass. Our study constitutes a new approach for using maximum reported life span in aging research. The aging rate calculated in the study is based on numerous assumptions/prerequisites and can be improved as more is learned about these assumptions/prerequisites.
Collapse
Affiliation(s)
- Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| | - Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
- Ecologie Systématique EvolutionUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐SaclayOrsay CedexFrance
| |
Collapse
|
16
|
Abstract
Across Mammalia, body size and lifespan are positively correlated. However, in domestic dogs, the opposite is true: small dogs have longer lives compared with large dogs. Here, I present literature-based data on life-history traits that may affect dog lifespan, including adaptations at the whole-organism, and organ-level. Then, I compare those same traits to wild canids. Because oxidative stress is a byproduct of aerobic metabolism, I also present data on oxidative stress in dogs that suggests that small breed dogs accumulate significantly more circulating lipid peroxidation damage compared with large breed dogs, in opposition to lifespan predictions. Further, wild canids have increased antioxidant concentrations compared with domestic dogs, which may aid in explaining why wild canids have longer lifespans than similar-sized domestic dogs. At the cellular level, I describe mechanisms that differ across size classes of dogs, including increases in aerobic metabolism with age, and increases in glycolytic metabolic rates in large breed dogs across their lifespan. To address potential interventions to extend lifespan in domestic dogs, I describe experimental alterations to cellular architecture to test the "membrane pacemaker" hypotheses of metabolism and aging. This hypothesis suggests that increased lipid unsaturation and polyunsaturated fatty acids in cell membranes can increase cellular metabolic rates and oxidative damage, leading to potential decreased longevity. I also discuss cellular metabolic changes of primary fibroblast cells isolated from domestic dogs as they are treated with commercially available drugs that are linked to lifespan and health span expansion.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
17
|
Hussain T, Murtaza G, Kalhoro DH, Kalhoro MS, Metwally E, Chughtai MI, Mazhar MU, Khan SA. Relationship between gut microbiota and host-metabolism: Emphasis on hormones related to reproductive function. ACTA ACUST UNITED AC 2021; 7:1-10. [PMID: 33997325 PMCID: PMC8110851 DOI: 10.1016/j.aninu.2020.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
It has been well recognized that interactions between the gut microbiota and host-metabolism have a proven effect on health. The gut lumen is known for harboring different bacterial communities. Microbial by-products and structural components, which are derived through the gut microbiota, generate a signaling response to maintain homeostasis. Gut microbiota is not only involved in metabolic disorders, but also participates in the regulation of reproductive hormonal function. Bacterial phyla, which are localized in the gut, allow for the metabolization of steroid hormones through the stimulation of different enzymes. Reproductive hormones such as progesterone, estrogen and testosterone play a pivotal role in the successful completion of reproductive events. Disruption in this mechanism may lead to reproductive disorders. Environmental bacteria can affect the metabolism, and degrade steroid hormones and their relevant compounds. This behavior of the bacteria can safely be implemented to eliminate steroidal compounds from a polluted environment. In this review, we summarize the metabolism of steroid hormones on the regulation of gut microbiota and vice-versa, and also examined the significant influence this process has on various events of reproductive function. Altogether, the evidence suggests that steroid hormones and gut microbiota exert a central role in the modification of host bacterial action and impact the reproductive efficiency of animals and humans.
Collapse
Affiliation(s)
- Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Dildar H Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Muhammad S Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Muhammad I Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Muhammad U Mazhar
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Shahzad A Khan
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, 12350, Pakistan
| |
Collapse
|
18
|
Mikula P, Valcu M, Brumm H, Bulla M, Forstmeier W, Petrusková T, Kempenaers B, Albrecht T. A global analysis of song frequency in passerines provides no support for the acoustic adaptation hypothesis but suggests a role for sexual selection. Ecol Lett 2020; 24:477-486. [DOI: 10.1111/ele.13662] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Peter Mikula
- Department of Zoology Faculty of Science Charles University Viničná 7 Praha12844Czech Republic
- Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno603 65Czech Republic
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 7 Seewiesen82319Germany
| | - Henrik Brumm
- Communication and Social Behaviour GroupMax Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 11 Seewiesen82319Germany
| | - Martin Bulla
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 7 Seewiesen82319Germany
- Department of Ecology Faculty of Environmental Sciences Czech University of Life Sciences Praha16521Czech Republic
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 7 Seewiesen82319Germany
| | - Tereza Petrusková
- Department of Ecology Faculty of Science Charles University Viničná 7 Praha12843Czech Republic
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary GeneticsMax Planck Institute for Ornithology Eberhard‐Gwinner‐Str. 7 Seewiesen82319Germany
| | - Tomáš Albrecht
- Department of Zoology Faculty of Science Charles University Viničná 7 Praha12844Czech Republic
- Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno603 65Czech Republic
| |
Collapse
|
19
|
|
20
|
Abstract
Aging occurs in all sexually reproducing organisms. That is, physical degradation over time occurs from conception until death. While the life span of a species is often viewed as a benchmark of aging, the pace and intensity of physical degradation over time varies owing to environmental influences, genetics, allocation of energetic investment, and phylogenetic history. Significant variation in aging within mammals, primates, and great apes, including humans, is therefore common across species. The evolution of aging in the hominin lineage is poorly known; however, clues can be derived from the fossil record. Ongoing advances continue to shed light on the interactions between life-history variables such as reproductive effort and aging. This review presents our current understanding of the evolution of aging in humans, drawing on population variation, comparative research, trade-offs, and sex differences, as well as tissue-specific patterns of physical degradation. Implications for contemporary health challenges and the future of human evolutionary anthropology research are also discussed.
Collapse
|
21
|
Carballo L, Delhey K, Valcu M, Kempenaers B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J Evol Biol 2020; 33:1543-1557. [PMID: 32797649 DOI: 10.1111/jeb.13690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023]
Abstract
Psittaciformes (parrots, cockatoos and lorikeets) comprise one of the most colourful clades of birds. Their unique pigments and safe cavity nesting habits are two potential explanations for their colourful character. However, plumage colour varies substantially between parrot species and sometimes also between males and females of the same species. Here, we use comparative analyses to evaluate what factors correlate with colour elaboration, colour diversity and sexual dichromatism. Specifically, we test the association between different aspects of parrot colouration and (a) the intensity of sexual selection and social interactions, (b) variation along the slow-fast life-history continuum and (c) climatic variation. We show that larger species and species that live in warm environments display more elaborated colours, yet smaller species have higher levels of sexual dichromatism. Larger parrots tend to have darker and more blue and red colours. Parrots that live in wetter environments are darker and redder, whereas species inhabiting warm regions have more blue plumage colours. In general, each of the variables we considered explain small to moderate amounts of variation in parrot colouration (up to 15%). Our data suggest that sexual selection may be acting more strongly on males in small, short-lived parrots leading to sexual dichromatism. More elaborate colouration in both males and females of the larger, long-lived species with slow tropical life histories suggests that mutual mate choice, social selection and reduced selection for crypsis may be important in these species, as has been shown for passerines.
Collapse
Affiliation(s)
- Luisana Carballo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Kaspar Delhey
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.,School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
22
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
23
|
Mallott EK, Borries C, Koenig A, Amato KR, Lu A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre's leaf monkeys. Sci Rep 2020; 10:9961. [PMID: 32561791 PMCID: PMC7305161 DOI: 10.1038/s41598-020-66865-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Studies in multiple host species have shown that gut microbial diversity and composition change during pregnancy and lactation. However, the specific mechanisms underlying these shifts are not well understood. Here, we use longitudinal data from wild Phayre's leaf monkeys to test the hypothesis that fluctuations in reproductive hormone concentrations contribute to gut microbial shifts during pregnancy. We described the microbial taxonomic composition of 91 fecal samples from 15 females (n = 16 cycling, n = 36 pregnant, n = 39 lactating) using 16S rRNA gene amplicon sequencing and assessed whether the resulting data were better explained by overall reproductive stage or by fecal estrogen (fE) and progesterone (fP) concentrations. Our results indicate that while overall reproductive stage affected gut microbiome composition, the observed patterns were driven by reproductive hormones. Females had lower gut microbial diversity during pregnancy and fP concentrations were negatively correlated with diversity. Additionally, fP concentrations predicted both unweighted and weighted UniFrac distances, while reproductive state only predicted unweighted UniFrac distances. Seasonality (rainfall and periods of phytoprogestin consumption) additionally influenced gut microbial diversity and composition. Our results indicate that reproductive hormones, specifically progestagens, contribute to the shifts in the gut microbiome during pregnancy and lactation.
Collapse
Affiliation(s)
| | - Carola Borries
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andreas Koenig
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
24
|
|
25
|
Abstract
Sleep duration and lifespan vary greatly across Animalia. Human studies have demonstrated that ageing reduces the ability to obtain deep restorative sleep, and this may play a causative role in the development of age-related neurodegenerative disorders. Animal models are widely used in sleep and ageing studies. Importantly, in contrast to human studies, evidence from laboratory rodents suggests that sleep duration is increased with ageing, while evidence for reduced sleep intensity and consolidation is inconsistent. Here we discuss two possible explanations for these species differences. First, methodological differences between studies in humans and laboratory rodents may prevent straightforward comparison. Second, the role of ecological factors, which have a profound influence on both ageing and sleep, must be taken into account. We propose that the dynamics of sleep across the lifespan reflect both age-dependent changes in the neurobiological substrates of sleep as well as the capacity to adapt to the environment.
Collapse
|
26
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
27
|
Aleksieva AA, Treberg JR, Diamond AW, Hatch SA, Elliott KH. Foot web pentosidine does not covary strongly with age in four species of wild seabirds. Exp Gerontol 2020; 132:110833. [PMID: 31923625 DOI: 10.1016/j.exger.2020.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
Age is an important parameter for a variety of ecological applications, including population viability analyses, contaminants monitoring and targeting of individuals for conservation. While many organisms can be aged by annual rings, dentition and other techniques (i.e., fish otoliths, clam growth rings, mammal tooth wear), there are no minimally invasive biomarkers for accurately aging birds in the wild. For the past century, banding has been the only way to identify a bird of known age, which requires continuous effort on a large scale with possibly low return rates. Recent studies have identified pentosidine as a potential biomarker of chronological aging in several bird species. To test this idea in four species of long-lived seabirds, we collected skin biopsies from the foot webs of previously banded, known-age seabirds: black-legged kittiwakes (Rissa tridactyla; 0-19 y old), Atlantic puffins (Fratercula arctica; 5-26 y old), razorbills (Alca torda; 0-15 d old) and thick-billed murres (Uria lomvia; 0-35 y old). Foot web samples were specifically chosen because this was the least invasive site for substantial skin biopsy. Samples were analysed with high performance liquid chromatography to quantify pentosidine levels. Collagen levels were estimated through hydroxyproline assays to normalize pentosidine content across individuals. Kittiwakes displayed a weak correlation (r2 = 0.20) between age and pentosidine/collagen. Puffins (adults only, r2 = 0.02), razorbills (chicks only, r2 = 0.08), and murres (adults, r2 = 0.04) did not show any associations with age. We concluded that pentosidine content in the foot web does not appear to be a reliable method for aging seabirds in the wild. An absence of change in pentosidine in the foot web with age is further evidence that long-lived seabirds may maintain physiological performance into old age.
Collapse
Affiliation(s)
- Angelika A Aleksieva
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Centre on Aging, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Antony W Diamond
- Atlantic Laboratory for Avian Research, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Anchorage, AK 99516, USA
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
28
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
29
|
Johnson AA, Shokhirev MN, Shoshitaishvili B. Revamping the evolutionary theories of aging. Ageing Res Rev 2019; 55:100947. [PMID: 31449890 DOI: 10.1016/j.arr.2019.100947] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/20/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Radical lifespan disparities exist in the animal kingdom. While the ocean quahog can survive for half a millennium, the mayfly survives for less than 48 h. The evolutionary theories of aging seek to explain why such stark longevity differences exist and why a deleterious process like aging evolved. The classical mutation accumulation, antagonistic pleiotropy, and disposable soma theories predict that increased extrinsic mortality should select for the evolution of shorter lifespans and vice versa. Most experimental and comparative field studies conform to this prediction. Indeed, animals with extreme longevity (e.g., Greenland shark, bowhead whale, giant tortoise, vestimentiferan tubeworms) typically experience minimal predation. However, data from guppies, nematodes, and computational models show that increased extrinsic mortality can sometimes lead to longer evolved lifespans. The existence of theoretically immortal animals that experience extrinsic mortality - like planarian flatworms, panther worms, and hydra - further challenges classical assumptions. Octopuses pose another puzzle by exhibiting short lifespans and an uncanny intelligence, the latter of which is often associated with longevity and reduced extrinsic mortality. The evolutionary response to extrinsic mortality is likely dependent on multiple interacting factors in the organism, population, and ecology, including food availability, population density, reproductive cost, age-mortality interactions, and the mortality source.
Collapse
Affiliation(s)
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Boris Shoshitaishvili
- Division of Literatures, Cultures, and Languages, Stanford University, Stanford, CA, United States
| |
Collapse
|
30
|
Jimenez AG, O'Connor ES, Elliott KH. Muscle myonuclear domain, but not oxidative stress, decreases with age in a long-lived seabird with high activity costs. ACTA ACUST UNITED AC 2019; 222:jeb.211185. [PMID: 31488626 DOI: 10.1242/jeb.211185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
Abstract
In birds, many physiological parameters appear to remain constant with increasing age, showing no deterioration until 'catastrophic' mortality sets in. Given their high whole-organism metabolic rate and the importance of flight in foraging and predator avoidance, flight muscle deterioration and accumulated oxidative stress and tissue deterioration may be an important contributor to physiological senescence in wild birds. As a by-product of aerobic respiration, reactive oxygen species are produced and can cause structural damage within cells. The anti-oxidant system deters oxidative damage to macromolecules. We examined oxidative stress and muscle ultrastructure in thick-billed murres aged 8 to 37 years (N=50) in pectoralis muscle biopsies. When considered in general linear models with body mass, body size and sex, no oxidative stress parameter varied with age. In contrast, there was a decrease in myonuclear domain similar to that seen in human muscle aging. We conclude that for wild birds with very high flight activity levels, muscle ultrastructural changes may be an important contributor to demographic senescence. Such gradual, linear declines in muscle morphology may eventually contribute to 'catastrophic' failure in foraging or predator avoidance abilities, leading to demographic senescence.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Erin S O'Connor
- Colgate University, Department of Biology, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Kyle H Elliott
- McGill University, Department of Natural Resources Sciences, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada, H9X 3L9
| |
Collapse
|
31
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
32
|
McQueen A, Kempenaers B, Dale J, Valcu M, Emery ZT, Dey CJ, Peters A, Delhey K. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol Lett 2019; 22:1838-1849. [PMID: 31441210 DOI: 10.1111/ele.13375] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Some birds undergo seasonal colour change by moulting twice each year, typically alternating between a cryptic, non-breeding plumage and a conspicuous, breeding plumage ('seasonal plumage colours'). We test for potential drivers of the evolution of seasonal plumage colours in all passerines (N = 5901 species, c. 60% of all birds). Seasonal plumage colours are uncommon, having appeared on multiple occasions but more frequently lost during evolution. The trait is more common in small, ground-foraging species with polygynous mating systems, no paternal care and strong sexual dichromatism, suggesting it evolved under strong sexual selection and high predation risk. Seasonal plumage colours are also more common in species predicted to have seasonal breeding schedules, such as migratory birds and those living in seasonal climates. We propose that seasonal plumage colours have evolved to resolve a trade-off between the effects of natural and sexual selection on colouration, especially in seasonal environments.
Collapse
Affiliation(s)
- Alexandra McQueen
- School of Biological Sciences, Monash University, VIC, Clayton Campus, 3800, Australia
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str, 82319, Seewiesen, Germany
| | - James Dale
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, 0745, New Zealand
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str, 82319, Seewiesen, Germany
| | - Zachary T Emery
- School of Biological Sciences, Monash University, VIC, Clayton Campus, 3800, Australia
| | - Cody J Dey
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada
| | - Anne Peters
- School of Biological Sciences, Monash University, VIC, Clayton Campus, 3800, Australia
| | - Kaspar Delhey
- School of Biological Sciences, Monash University, VIC, Clayton Campus, 3800, Australia
| |
Collapse
|
33
|
Peters A, Delhey K, Nakagawa S, Aulsebrook A, Verhulst S. Immunosenescence in wild animals: meta‐analysis and outlook. Ecol Lett 2019; 22:1709-1722. [DOI: 10.1111/ele.13343] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Peters
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
| | - Kaspar Delhey
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
| | - Shinichi Nakagawa
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Anne Aulsebrook
- School of Biological Sciences Monash University Clayton Vic. 3800 Australia
- School of BioSciences University of Melbourne Parkville Vic. 3010 Australia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences University of Groningen 9747 AGGroningen The Netherlands
| |
Collapse
|
34
|
Brown K, Jimenez AG, Whelan S, Lalla K, Hatch SA, Elliott KH. Muscle fiber structure in an aging long-lived seabird, the black-legged kittiwake (Rissa tridactyla). J Morphol 2019; 280:1061-1070. [PMID: 31077454 DOI: 10.1002/jmor.21001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Many long-lived animals do not appear to show classic signs of aging, perhaps because they show negligible senescence until dying from "catastrophic" mortality. Muscle senescence is seldom examined in wild animals, yet decline in muscle function is one of the first signs of aging in many lab animals and humans. Seabirds are an excellent study system for physiological implications of aging because they are long-lived animals that actively forage and reproduce in the wild. Here, we examined linkages between pectoralis muscle fiber structure and age in black-legged kittiwakes (Rissa tridactyla). Pectoralis muscle is the largest organ complex in birds, and responsible for flight and shivering. We obtained and fixed biopsies from wild black-legged kittiwakes of known age. We then measured muscle fiber diameter, myonuclear domain and capillaries per fiber area among birds of differing ages. All muscle parameters were independent of age. Number of nuclei per mm of fiber showed a positive correlation with muscle fiber cross-sectional area, and myonuclear domain increased with muscle fiber diameter. Thus, as muscle fibers increased in size, they may not have recruited satellite cells, increasing the protein turnover load per nuclei. We conclude that senescence in a long-lived bird with an active lifestyle, does not entail mammalian-like changes in muscle structure.
Collapse
Affiliation(s)
- Karl Brown
- Department of Biology, Colgate University, Hamilton, New York
| | | | - Shannon Whelan
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| | - Kristen Lalla
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| | - Scott A Hatch
- Institute for Seabird Research and Conservation, Mountain Place, Anchorage, Alaska
| | - Kyle H Elliott
- Department of Natural Resources Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec
| |
Collapse
|
35
|
Gabriela Jimenez A. "The Same Thing That Makes You Live Can Kill You in the End": Exploring the Effects of Growth Rates and Longevity on Cellular Metabolic Rates and Oxidative Stress in Mammals and Birds. Integr Comp Biol 2019; 58:544-558. [PMID: 29982421 DOI: 10.1093/icb/icy090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All aerobic organisms are subjected to metabolic by-products known as reactive species (RS). RS can wreak havoc on macromolecules by structurally altering proteins and inducing mutations in DNA, among other deleterious effects. To combat accumulating damage, organisms have an antioxidant system to sequester RS before they cause cellular damage. The balance between RS production, antioxidant defences, and accumulated cellular damage is termed oxidative stress. Physiological ecologists, gerontologists, and metabolic biochemists have turned their attention to whether oxidative stress is the principal, generalized mechanism that mediates and limits longevity, growth rates, and other life-history trade-offs in animals, as may be the case in mammals and birds. At the crux of this theory lies the regulation and activities of the mitochondria with respect to the organism and its metabolic rate. At the whole-animal level, evolutionary theory suggests that developmental trajectories and growth rates can shape the onset and rate of aging. Mitochondrial function is important for aging since it is the main source of energy in cells, and the main source of RS. Altering oxidative stress levels, either increase in oxidative damage or reduction in antioxidants, has proven to also decrease growth rates, which implies that oxidative stress is a cost of, as well as a constraint on, growth. Yet, in nature, many animals exhibit fast growth rates that lead to higher loads of oxidative stress, which are often linked to shorter lifespans. In this article, I summarize the latest findings on whole-animal life history trade-offs, such as growth rates and longevity, and how these can be affected by mitochondrial cellular metabolism, and oxidative stress.
Collapse
|
36
|
Snyder ML, Schmitt D. Effects of aging on the biomechanics of Coquerel's sifaka (Propithecus coquereli): Evidence of robustness to senescence. Exp Gerontol 2018; 111:235-240. [PMID: 30071287 DOI: 10.1016/j.exger.2018.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/21/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
It is well-known that as humans age they experience significant changes in gait including reduction in velocity and ground reaction forces and changes in leg mechanics. Progressive changes in gait can lead to disability and frailty, defined as an inability to carry out activities of daily living. This topic is relevant to basic understanding of the aging process and for clinical intervention. As such, studies of frailty can benefit from nonhuman animal models, yet little is known about gait frailty in nonhuman primates. This study examines a nonhuman primate model to evaluate its relevance to understanding human aging processes. To test the null hypothesis that age-related changes in joint function and gait do occur in primate models in a similar fashion to humans, a detailed gait analysis, including velocity, footfall timings, and vertical ground reaction forces, on bipedal locomotion was performed in Coquerel's sifaka (Propithecus coquereli), ranging in age from 5 years to 24 years. None of the spatiotemporal or kinetic gait variables measured was significantly correlated with age alone. There was a slight but significant reduction in locomotor velocity when animals were grouped into "young" and "old" categories. These data show that aging P. coquereli experience only subtle age-related changes, that were not nearly as extensive as reported in humans. This lack of change suggests that unlike humans, lemurs maintain gait competency at high levels, possibly because these animals maintain reproductive capacity close to their age of death and that frailty may be selected against, since gait disability would result in injury and death that would preclude independent living. Although nonhuman primates should experience age-related senescence, their locomotor performance should remain robust throughout their lifetimes, which raises questions about the use of primate models of gait disability, an area that deserves further investigation.
Collapse
Affiliation(s)
- Megan L Snyder
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America.
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| |
Collapse
|
37
|
Porteus TA, Reynolds JC, McAllister MK. Establishing Bayesian priors for natural mortality rate in carnivore populations. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tom A. Porteus
- Department of Zoology; University of British Columbia; 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
| | | | - Murdoch K. McAllister
- Institute for the Oceans and Fisheries; University of British Columbia, AERL; 2202 Main Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
38
|
Manolagas SC. The Quest for Osteoporosis Mechanisms and Rational Therapies: How Far We've Come, How Much Further We Need to Go. J Bone Miner Res 2018; 33:371-385. [PMID: 29405383 PMCID: PMC6816306 DOI: 10.1002/jbmr.3400] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
During the last 40 years, understanding of bone biology and the pathogenesis of osteoporosis, the most common and impactful bone disease of old age, has improved dramatically thanks to basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies. Culprits of osteoporosis are no longer a matter of speculation based on in vitro observations. Instead, they can be identified and dissected at the cellular and molecular level using genetic approaches; and their effect on distinct bone envelopes and anatomic regions can be functionally assessed in vivo. The landscape of pharmacotherapies for osteoporosis has also changed profoundly with the emergence of several potent antiresorptive drugs as well as anabolic agents, displacing estrogen replacement as the treatment of choice. In spite of these major positive developments, the optimal duration of the available therapies and their long-term safety remain matters of conjecture and some concern. Moreover, antiresorptive therapies are used indiscriminately for patients of all ages on the assumption that suppressing remodeling is always beneficial for bone, but rebound remodeling upon their discontinuation suggests otherwise. In this invited perspective, I highlight the latest state of knowledge of bone-intrinsic and extrinsic mechanisms responsible for the development of osteoporosis in both sexes; differences between the mechanisms responsible for the effects of aging and estrogen deficiency; and the role of old osteocytes in the development of cortical porosity. In addition, I highlight advances toward the goal of developing drugs for several degenerative diseases of old age at once, including osteoporosis, by targeting shared mechanisms of aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
39
|
Ancona S, Zúñiga-Vega JJ, Rodríguez C, Drummond H. Experiencing El Niño conditions during early life reduces recruiting probabilities but not adult survival. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170076. [PMID: 29410788 PMCID: PMC5792865 DOI: 10.1098/rsos.170076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
In wild long-lived animals, analysis of impacts of stressful natal conditions on adult performance has rarely embraced the entire age span, and the possibility that costs are expressed late in life has seldom been examined. Using 26 years of data from 8541 fledglings and 1310 adults of the blue-footed booby (Sula nebouxii), a marine bird that can live up to 23 years, we tested whether experiencing the warm waters and food scarcity associated with El Niño in the natal year reduces recruitment or survival over the adult lifetime. Warm water in the natal year reduced the probability of recruiting; each additional degree (°C) of water temperature meant a reduction of roughly 50% in fledglings' probability of returning to the natal colony as breeders. Warm water in the current year impacted adult survival, with greater effect at the oldest ages than during early adulthood. However, warm water in the natal year did not affect survival at any age over the adult lifespan. A previous study showed that early recruitment and widely spaced breeding allow boobies that experience warm waters in the natal year to achieve normal fledgling production over the first 10 years; our results now show that this reproductive effort incurs no survival penalty, not even late in life. This pattern is additional evidence of buffering against stressful natal conditions via life-history adjustments.
Collapse
Affiliation(s)
- Sergio Ancona
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J. Jaime Zúñiga-Vega
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Cristina Rodríguez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Hugh Drummond
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
40
|
Influence of aging on brain and web characteristics of an orb web spider. J ETHOL 2017; 36:85-91. [PMID: 30679883 PMCID: PMC6323080 DOI: 10.1007/s10164-017-0530-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Abstract
In animals, it is known that age affects the abilities of the brain. In spiders, we showed that aging affects web characteristics due to behavioral alterations during web building. In this study, we investigated the effects of age on the associations between morphological changes to the spider brain and changes in web characteristics. The orb web spider Zygiella x-notata (Araneae, Araneidae) was used to test these relationships. Experiments were conducted on young (19 ± 2 days after adult molt, N = 13) and old (146 ± 32 days, N = 20) virgin females. The brain volume decreased with age (by 10%). Age also had an impact on the number of anomalies in the capture area generated during web building. The statistical relationships between the volume of the brain and web characteristics showed that there was an effect of age on both. Our results showed that in spiders, aging affects the brain volume and correlates with characteristics (anomalies) of the web. As web building is the result of complex behavioral processes, we suggest that aging affects spider behavior by causing some brain alterations.
Collapse
|
41
|
Reichard M. Evolutionary perspectives on ageing. Semin Cell Dev Biol 2017; 70:99-107. [DOI: 10.1016/j.semcdb.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023]
|
42
|
Florea M. Aging and immortality in unicellular species. Mech Ageing Dev 2017; 167:5-15. [PMID: 28844968 DOI: 10.1016/j.mad.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/21/2017] [Accepted: 08/13/2017] [Indexed: 12/22/2022]
Abstract
It has been historically thought that in conditions that permit growth, most unicellular species do not to age. This was particularly thought to be the case for symmetrically dividing species, as such species lack a clear distinction between the soma and the germline. Despite this, studies of the symmetrically dividing species Escherichia coli and Schizosaccharomyces pombe have recently started to challenge this notion. They indicate that E. coli and S. pombe do age, but only when subjected to environmental stress. If true, this suggests that aging may be widespread among microbial species in general, and that studying aging in microbes may inform other long-standing questions in aging. This review examines the recent evidence for and against replicative aging in symmetrically dividing unicellular organisms, the mechanisms that underlie aging, why aging evolved in these species, and how microbial aging fits into the context of other questions in aging.
Collapse
Affiliation(s)
- Michael Florea
- Graduate School of Arts and Sciences, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Rudolf AM, Dańko MJ, Sadowska ET, Dheyongera G, Koteja P. Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Exp Gerontol 2017; 98:70-79. [PMID: 28803134 DOI: 10.1016/j.exger.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/20/2017] [Accepted: 08/06/2017] [Indexed: 12/21/2022]
Abstract
Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.
Collapse
Affiliation(s)
- Agata Marta Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Maciej Jan Dańko
- Max Planck Institute for Demographic Research, Konrad-Zuse-Strasse 1, 18057 Rostock, Germany
| | - Edyta Teresa Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
44
|
Fleischer T, Gampe J, Scheuerlein A, Kerth G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci Rep 2017; 7:7370. [PMID: 28779071 PMCID: PMC5544728 DOI: 10.1038/s41598-017-06392-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Bats are remarkably long-lived with lifespans exceeding even those of same-sized birds. Despite a recent interest in the extraordinary longevity of bats very little is known about the shape of mortality over age, and how mortality rates are affected by the environment. Using a large set of individual-based data collected over 19 years in four free-ranging colonies of Bechstein's bats (Myotis bechsteinii), we found no increase in the rate of mortality and no decrease in fertility demonstrating no senescence until high ages. Our finding of negligible senescence is highly unusual for long-lived mammals, grouping Bechstein's bats with long-lived seabirds. The most important determinant of adult mortality was one particular winter season, which affected all ages and sizes equally. Apart from this winter, mortality risk did not differ between the winter and the summer season. Colony membership, a proxy for local environmental conditions, also had no effect. In addition to their implications for understanding the extra-ordinary longevity in bats, our results have strong implications for the conservation of bats, since rare catastrophic mortality events can only be detected in individual based long-term field studies. With many bat species globally threatened, such data are crucial for the successful implementation of conservation programs.
Collapse
Affiliation(s)
- Toni Fleischer
- Applied Zoology and Conservation, Zoological Institute, University of Greifswald, Johann, Sebastian Bach-Strasse 11/12, 17487, Greifswald, Germany.
- Evolutionary Biodemography, Max Planck Institute for Demographic Research, Konrad-Zuse-Str., 1 D-18057, Rostock, Germany.
| | - Jutta Gampe
- Statistical Demography, Max Planck Institute for Demographic Research, Konrad-Zuse-Str., 1 D-18057, Rostock, Germany
| | - Alexander Scheuerlein
- Evolutionary Biodemography, Max Planck Institute for Demographic Research, Konrad-Zuse-Str., 1 D-18057, Rostock, Germany
| | - Gerald Kerth
- Applied Zoology and Conservation, Zoological Institute, University of Greifswald, Johann, Sebastian Bach-Strasse 11/12, 17487, Greifswald, Germany
| |
Collapse
|
45
|
Reduced activity in middle-aged thick-billed murres: evidence for age related trends in fine-scale foraging behaviour. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Blažek R, Polačik M, Kačer P, Cellerino A, Řežucha R, Methling C, Tomášek O, Syslová K, Terzibasi Tozzini E, Albrecht T, Vrtílek M, Reichard M. Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution 2016; 71:386-402. [PMID: 27859247 DOI: 10.1111/evo.13127] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/22/2023]
Abstract
Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition-dependent survival. Using within-species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace-of-life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life-history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly.
Collapse
Affiliation(s)
- Radim Blažek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Petr Kačer
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Alessandro Cellerino
- Bio@SNS, Scuola Normale Superiore, Department of Neurosciences, Piazza dei Cavalieri 7, 56126, Pisa, Italy.,Fritz Lipmann Institute for Age Research, Leibniz Institute, Beutenbergstr. 11, D-07745, Jena, Germany
| | - Radomil Řežucha
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Caroline Methling
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Faculty of Sciences, Charles University in Prague, Viničná 7, 128 44, Praha, Czech Republic
| | - Kamila Syslová
- Laboratory of Medicinal Diagnostics, Department of Organic Technology, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Eva Terzibasi Tozzini
- Bio@SNS, Scuola Normale Superiore, Department of Neurosciences, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Faculty of Sciences, Charles University in Prague, Viničná 7, 128 44, Praha, Czech Republic
| | - Milan Vrtílek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
47
|
Holm S, Davis RB, Javoiš J, Õunap E, Kaasik A, Molleman F, Tammaru T. A comparative perspective on longevity: the effect of body size dominates over ecology in moths. J Evol Biol 2016; 29:2422-2435. [PMID: 27536807 DOI: 10.1111/jeb.12966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/06/2023]
Abstract
Both physiologically and ecologically based explanations have been proposed to account for among-species differences in lifespan, but they remain poorly tested. Phylogenetically explicit comparative analyses are still scarce and those that exist are biased towards homoeothermic vertebrates. Insect studies can significantly contribute as lifespan can feasibly be measured in a high number of species, and the selective forces that have shaped it may differ largely between species and from those acting on larger animals. We recorded adult lifespan in 98 species of geometrid moths. Phylogenetic comparative analyses were applied to study variation in species-specific values of lifespan and to reveal its ecological and life-history correlates. Among-species and between-gender differences in lifespan were found to be notably limited; there was also no evidence of phylogenetic signal in this trait. Larger moth species were found to live longer, with this result supporting a physiological rather than ecological explanation of this relationship. Species-specific lifespan values could not be explained by traits such as reproductive season and larval diet breadth, strengthening the evidence for the dominance of physiological determinants of longevity over ecological ones.
Collapse
Affiliation(s)
- S Holm
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - R B Davis
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - J Javoiš
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - E Õunap
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - A Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - F Molleman
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Vanasiri Evolutionary Ecology Group, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.,Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - T Tammaru
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
48
|
Simons MJP, Briga M, Verhulst S. Stabilizing survival selection on presenescent expression of a sexual ornament followed by a terminal decline. J Evol Biol 2016; 29:1368-78. [PMID: 27061923 PMCID: PMC4957616 DOI: 10.1111/jeb.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Accepted: 04/05/2016] [Indexed: 11/27/2022]
Abstract
Senescence is a decrease in functional capacity, increasing mortality rate with age. Sexual signals indicate functional capacity, because costs of ornamentation ensure signal honesty, and are therefore expected to senesce, tracking physiological deterioration and mortality. For sexual traits, mixed associations with age and positive associations with life expectancy have been reported. However, whether these associations are caused by selective disappearance and/or within-individual senescence of sexual signals, respectively, is not known. We previously reported that zebra finches with redder bills had greater life expectancy, based on a single bill colour measurement per individual. We here extend this analysis using longitudinal data and show that this finding is attributable to terminal declines in bill redness in the year before death, with no detectable change in presenescent redness. Additionally, there was a quadratic relationship between presenescent bill colouration and survival: individuals with intermediate bill redness have maximum survival prospects. This may reflect that redder individuals overinvest in colouration and/or associated physiological changes, while below-average bill redness probably reflects poorer phenotypic quality. Together, this pattern suggests that bill colouration is defended against physiological deterioration, because of mate attraction benefits, or that physiological deterioration is not a gradual process, but accelerates sharply prior to death. We discuss these possibilities in the context of the reliability theory of ageing and sexual selection.
Collapse
Affiliation(s)
- M J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - M Briga
- Behavioural Biology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - S Verhulst
- Behavioural Biology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
49
|
Reichard M. Evolutionary ecology of aging: time to reconcile field and laboratory research. Ecol Evol 2016; 6:2988-3000. [PMID: 27069592 PMCID: PMC4809807 DOI: 10.1002/ece3.2093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
Aging is an increase in mortality risk with age due to a decline in vital functions. Research on aging has entered an exciting phase. Advances in biogerontology have demonstrated that proximate mechanisms of aging and interventions to modify lifespan are shared among species. In nature, aging patterns have proven more diverse than previously assumed. The paradigm that extrinsic mortality ultimately determines evolution of aging rates has been questioned and there appears to be a mismatch between intra‐ and inter‐specific patterns. The major challenges emerging in evolutionary ecology of aging are a lack of understanding of the complexity in functional senescence under natural conditions and unavailability of estimates of aging rates for matched populations exposed to natural and laboratory conditions. I argue that we need to reconcile laboratory and field‐based approaches to better understand (1) how aging rates (baseline mortality and the rate of increase in mortality with age) vary across populations within a species, (2) how genetic and environmental variation interact to modulate individual expression of aging rates, and (3) how much intraspecific variation in lifespan is attributable to an intrinsic (i.e., nonenvironmental) component. I suggest integration of laboratory and field assays using multiple matched populations of the same species, along with measures of functional declines.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
| |
Collapse
|
50
|
Abstract
Biodemographic analysis would be essential to understand population ecology and aging of tyrannosaurs. Here we address a methodology that quantifies tyrannosaur survival and mortality curves by utilizing modified stretched exponential survival functions. Our analysis clearly shows that mortality patterns for tyrannosaurs are seemingly analogous to those for 18th-century humans. This result suggests that tyrannosaurs would live long to undergo aging before maximum lifespans, while their longevity strategy is more alike to big birds rather than 18th-century humans.
Collapse
Affiliation(s)
- Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|