1
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
2
|
Ni K, Che B, Gu R, Wang C, Xu H, Li H, Cen S, Luo M, Deng L. BitterDB database analysis plus cell stiffness screening identify flufenamic acid as the most potent TAS2R14-based relaxant of airway smooth muscle cells for therapeutic bronchodilation. Theranostics 2024; 14:1744-1763. [PMID: 38389834 PMCID: PMC10879871 DOI: 10.7150/thno.92492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional β-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 μM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 μM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional β-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, and School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Dwivedi R, Drumm BT, Alkawadri T, Martin SL, Sergeant GP, Hollywood MA, Thornbury KD. The TMEM16A blockers benzbromarone and MONNA cause intracellular Ca2+-release in mouse bronchial smooth muscle cells. Eur J Pharmacol 2023; 947:175677. [PMID: 36967079 DOI: 10.1016/j.ejphar.2023.175677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
We investigated effects of TMEM16A blockers benzbromarone, MONNA, CaCCinhA01 and Ani9 on isometric contractions in mouse bronchial rings and on intracellular calcium in isolated bronchial myocytes. Separate concentrations of carbachol (0.1-10 μM) were applied for 10 min periods to bronchial rings, producing concentration-dependent contractions that were well maintained throughout each application period. Benzbromarone (1 μM) markedly reduced the contractions with a more pronounced effect on their sustained component (at 10 min) compared to their initial component (at 2 min). Iberiotoxin (0.3 μM) enhanced the contractions, but they were still blocked by benzbromarone. MONNA (3 μM) and CaCCinhA01 (10 μM) had similar effects to benzbromarone, but were less potent. In contrast, Ani9 (10 μM) had no effect on carbachol-induced contractions. Confocal imaging revealed that benzbromarone (0.3 μM), MONNA (1 μM) and CaCCinhA01 (10 μM) increased intracellular calcium in isolated myocytes loaded with Fluo-4AM. In contrast, Ani9 (10 μM) had no effect on intracellular calcium. Benzbromarone and MONNA also increased calcium in calcium-free extracellular solution, but failed to do so when intracellular stores were discharged with caffeine (10 mM). Caffeine was unable to cause further discharge of the store when applied in the presence of benzbromarone. Ryanodine (100 μM) blocked the ability of benzbromarone (0.3 μM) to increase calcium, while tetracaine (100 μM) reversibly reduced the rise in calcium induced by benzbromarone. We conclude that benzbromarone and MONNA caused intracellular calcium release, probably by opening ryanodine receptors. Their ability to block carbachol contractions was likely due to this off-target effect.
Collapse
|
4
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
5
|
Naffaa MM, Al-Ewaidat OA. Ligand modulation of KCNQ-encoded (K V7) potassium channels in the heart and nervous system. Eur J Pharmacol 2021; 906:174278. [PMID: 34174270 DOI: 10.1016/j.ejphar.2021.174278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
KCNQ-encoded (KV7) potassium channels are diversely distributed in the human tissues, associated with many physiological processes and pathophysiological conditions. These channels are increasingly used as drug targets for treating diseases. More selective and potent molecules on various types of the KV7 channels are desirable for appropriate therapies. The recent knowledge of the structure and function of human KCNQ-encoded channels makes it more feasible to achieve these goals. This review discusses the role and mechanism of action of many molecules in modulating the function of the KCNQ-encoded potassium channels in the heart and nervous system. The effects of these compounds on KV7 channels help to understand their involvement in many diseases, and to search for more selective and potent ligands to be used in the treatment of many disorders such as various types of cardiac arrhythmias, epilepsy, and pain.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Ola A Al-Ewaidat
- Faculty of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Qu M, Lu P, Bellve K, Fogarty K, Lifshitz L, Shi F, Zhuge R. Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length, or litter size in mice†. Biol Reprod 2020; 101:318-327. [PMID: 31175367 DOI: 10.1093/biolre/ioz096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance, and parturition; thus, identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found that myometrial cells from TMEM16ASMKO mice generated the same pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin, and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e. KCl, oxytocin, and PGF2α)-induced contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO mice.
Collapse
Affiliation(s)
- Mingzi Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ping Lu
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ronghua Zhuge
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Sun JF, Zhao MY, Xu YJ, Su Y, Kong XH, Wang ZY. Fenamates Inhibit Human Sodium Channel Nav1.2 and Protect Glutamate-Induced Injury in SH-SY5Y Cells. Cell Mol Neurobiol 2020; 40:1405-1416. [PMID: 32162200 DOI: 10.1007/s10571-020-00826-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
Voltage-gated sodium channels are crucial mediators of neuronal damage in ischemic and excitotoxicity disease models. Fenamates have been reported to have anti-inflammatory properties following a decrease in prostaglandin synthesis. Several researches showed that fenamates appear to be ion channel modulators and potential neuroprotectants. In this study, the neuroprotective effects of tolfenamic acid, flufenamic acid, and mefenamic acid were tested by glutamate-induced injury in SH-SY5Y cells. Following this, fenamates' effects were examined on both the expression level and the function of hNav1.1 and hNav1.2, which were closely associated with neuroprotection, using Western blot and patch clamp. Finally, the effect of fenamates on the expression of apoptosis-related proteins in SH-SY5Y cells was examined. The results showed that both flufenamic acid and mefenamic acid exhibited neuroprotective effects against glutamate-induced injury in SH-SY5Y cells. They inhibited peak currents of both hNav1.1 and hNav1.2. However, fenamates exhibited decreased inhibitory effects on hNav1.1 when compared to hNav1.2. Correspondingly, the inhibitory effect of fenamates was found to be consistent with the level of neuroprotective effects in vitro. Fenamates inhibited glutamate-induced apoptosis through the modulation of the Bcl-2/Bax-dependent cell death pathways. Taken together, Nav1.2 might play a part in fenamates' neuroprotection mechanism. Nav1.2 and NMDAR might take part in the neuroprotection mechanism of the fenamates. The fenamates inhibited glutamate-induced apoptosis through modulation of the Bcl-2/Bax-dependent cell death pathways.
Collapse
Affiliation(s)
- Jian-Fang Sun
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, People's Republic of China
| | - Ming-Yi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yi-Jia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Xiao-Hua Kong
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, People's Republic of China.
| |
Collapse
|
8
|
Sun JF, Xu YJ, Kong XH, Su Y, Wang ZY. Fenamates inhibit human sodium channel Nav1.7 and Nav1.8. Neurosci Lett 2019; 696:67-73. [DOI: 10.1016/j.neulet.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
|
9
|
Okada Y, Okada T, Sato-Numata K, Islam MR, Ando-Akatsuka Y, Numata T, Kubo M, Shimizu T, Kurbannazarova RS, Marunaka Y, Sabirov RZ. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev 2019; 71:49-88. [PMID: 30573636 DOI: 10.1124/pr.118.015917] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are a number of mammalian anion channel types associated with cell volume changes. These channel types are classified into two groups: volume-activated anion channels (VAACs) and volume-correlated anion channels (VCACs). VAACs can be directly activated by cell swelling and include the volume-sensitive outwardly rectifying anion channel (VSOR), which is also called the volume-regulated anion channel; the maxi-anion channel (MAC or Maxi-Cl); and the voltage-gated anion channel, chloride channel (ClC)-2. VCACs can be facultatively implicated in, although not directly activated by, cell volume changes and include the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, the Ca2+-activated Cl- channel (CaCC), and the acid-sensitive (or acid-stimulated) outwardly rectifying anion channel. This article describes the phenotypical properties and activation mechanisms of both groups of anion channels, including accumulating pieces of information on the basis of recent molecular understanding. To that end, this review also highlights the molecular identities of both anion channel groups; in addition to the molecular identities of ClC-2 and CFTR, those of CaCC, VSOR, and Maxi-Cl were recently identified by applying genome-wide approaches. In the last section of this review, the most up-to-date information on the pharmacological properties of both anion channel groups, especially their half-maximal inhibitory concentrations (IC50 values) and voltage-dependent blocking, is summarized particularly from the standpoint of pharmacological distinctions among them. Future physiologic and pharmacological studies are definitely warranted for therapeutic targeting of dysfunction of VAACs and VCACs.
Collapse
Affiliation(s)
- Yasunobu Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Toshiaki Okada
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Kaori Sato-Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Md Rafiqul Islam
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yuhko Ando-Akatsuka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Tomohiro Numata
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Machiko Kubo
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Takahiro Shimizu
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ranohon S Kurbannazarova
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Yoshinori Marunaka
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| | - Ravshan Z Sabirov
- Departments of Physiology and Systems Bioscience (Y.O.) and Molecular Cell Physiology (Y.M.), Kyoto Prefectural University of Medicine, Kyoto, Japan; Division of Cell Signaling, National Institute for Physiological Sciences, Okazaki, Japan (Y.O., T.O., M.R.I., M.K., R.Z.S.); Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan (K.S.-N., T.N.); Department of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan (Y.A.-A.); Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan (T.S.); Laboratory of Molecular Physiology, Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan (R.S.K., R.Z.S.); and Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan (Y.M.)
| |
Collapse
|
10
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
11
|
Network model predicts that CatSper is the main Ca 2+ channel in the regulation of sea urchin sperm motility. Sci Rep 2017; 7:4236. [PMID: 28652586 PMCID: PMC5484689 DOI: 10.1038/s41598-017-03857-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Spermatozoa sea urchin swimming behaviour is regulated by small peptides from the egg outer envelope. Speract, such a peptide, after binding to its receptor in Strongylocentrotus purpuratus sperm flagella, triggers a signaling pathway that culminates with a train of intracellular calcium oscillations, correlated with changes in sperm swimming pattern. This pathway has been widely studied but not fully characterized. Recent work on Arbacia punctulata sea urchin spermatozoa has documented the presence of the Ca2+ CatSper channel in their flagella and its involvement in chemotaxis. However, if other calcium channels participate in chemotaxis remains unclear. Here, based on an experimentally-backed logical network model, we conclude that CatSper is fundamental in the S. purpuratus speract-activated sea urchin sperm signaling cascade, although other Ca2+ channels could still be relevant. We also present for the first time experimental corroboration of its active presence in S. purpuratus sperm flagella. We argue, prompted by in silico knock-out calculations, that CatSper is the main generator of calcium oscillations in the signaling pathway and that other calcium channels, if present, have a complementary role. The approach adopted here allows us to unveil processes, which are hard to detect exclusively by experimental procedures.
Collapse
|
12
|
Zhao L, Li LI, Ma KT, Wang Y, Li J, Shi WY, Zhu HE, Zhang ZS, Si JQ. NSAIDs modulate GABA-activated currents via Ca 2+-activated Cl - channels in rat dorsal root ganglion neurons. Exp Ther Med 2016; 11:1755-1761. [PMID: 27168798 PMCID: PMC4840517 DOI: 10.3892/etm.2016.3158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
The ability of non-steroidal anti-inflammatory drugs (NSAIDs) to modulate γ-aminobutyrate (GABA)-activated currents via Ca2+-activated Cl− channels in rat dorsal root ganglion neurons (DRG), was examined in the present study. During the preparation of DRG neurons harvested from Sprague-Dawley rats, the whole-cell recording technique was used to record the effect of NSAIDs on GABA-activated inward currents, and the expression levels of the TMEM16A and TMEM16B subunits were revealed. In the event that DRG neurons were pre-incubated for 20 sec with niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) prior to the administration of GABA, the GABA-induced inward currents were diminished markedly in the majority of neurons examined (96.3%). The inward currents induced by 100 µmol/l GABA were attenuated by (0±0.09%; neurons = 4), (5.32±3.51%; neurons = 6), (21.3±4.00%; neurons = 5), (33.8±5.20%; neurons = 17), (52.2±5.10%; neurons = 4) and (61.1±4.12%; neurons = 12) by 0.1, 1, 3, 10, 30 and 100 µmol/l NFA, respectively. The inward currents induced by 100 µmol/l GABA were attenuated by (13.8±6%; neurons = 6), (23.2±14.7%; neurons = 6) and (29.7±9.1%; neurons = 9) by 3, 10 and 30 µmol/l NPPB, respectively. NFA and NPPB dose-dependently inhibited GABA-activated currents with half maximal inhibitory concentration (IC50) values of 6.7 and 11 µmol/l, respectively. The inhibitory effect of 100 µmol/l NFA on the GABA-evoked inward current were also strongly inhibited by nitrendipine (NTDP; an L-type calcium channel blocker), 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis (a highly selective calcium chelating reagent), caffeine (a widely available Ca2+ consuming drug) and calcium-free extracellular fluid, in a concentration-dependent manner. Immunofluorescent staining indicated that TMEM16A and TMEM16B expression was widely distributed in DRG neurons. The results suggest that NSAIDs may be able to regulate Ca2+-activated chloride channels to reduce GABAA receptor-mediated inward currents in DRGs.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - L I Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Yang Wang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Li
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - H E Zhu
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Zhong-Shuang Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Electrophysiological Laboratory, Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China; Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China; Department of Physiology, School of Basic Medical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
13
|
Dam VS, Boedtkjer DMB, Aalkjaer C, Matchkov V. The bestrophin- and TMEM16A-associated Ca(2+)- activated Cl(–) channels in vascular smooth muscles. Channels (Austin) 2015; 8:361-9. [PMID: 25478625 PMCID: PMC4203738 DOI: 10.4161/chan.29531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The presence of Ca2+-activated Cl– currents (ICl(Ca)) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca2+]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with ICl(Ca). Two distinct ICl(Ca) are characterized in VSMCs; the cGMP-dependent ICl(Ca) dependent upon bestrophin expression and the ‘classical’ Ca2+-activated Cl– current, which is bestrophin-independent. Interestingly, TMEM16A is essential for both the cGMP-dependent and the classical ICl(Ca). Furthermore, TMEM16A has a role in arterial contraction while bestrophins do not. TMEM16A’s role in the contractile response cannot be explained however only by a simple suppression of the depolarization by Cl– channels. It is suggested that TMEM16A expression modulates voltage-gated Ca2+ influx in a voltage-independent manner and recent studies also demonstrate a complex role of TMEM16A in modulating other membrane proteins.
Collapse
|
14
|
Leblanc N, Forrest AS, Ayon RJ, Wiwchar M, Angermann JE, Pritchard HAT, Singer CA, Valencik ML, Britton F, Greenwood IA. Molecular and functional significance of Ca(2+)-activated Cl(-) channels in pulmonary arterial smooth muscle. Pulm Circ 2015; 5:244-68. [PMID: 26064450 DOI: 10.1086/680189] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022] Open
Abstract
Increased peripheral resistance of small distal pulmonary arteries is a hallmark signature of pulmonary hypertension (PH) and is believed to be the consequence of enhanced vasoconstriction to agonists, thickening of the arterial wall due to remodeling, and increased thrombosis. The elevation in arterial tone in PH is attributable, at least in part, to smooth muscle cells of PH patients being more depolarized and displaying higher intracellular Ca(2+) levels than cells from normal subjects. It is now clear that downregulation of voltage-dependent K(+) channels (e.g., Kv1.5) and increased expression and activity of voltage-dependent (Cav1.2) and voltage-independent (e.g., canonical and vanilloid transient receptor potential [TRPC and TRPV]) Ca(2+) channels play an important role in the functional remodeling of pulmonary arteries in PH. This review focuses on an anion-permeable channel that is now considered a novel excitatory mechanism in the systemic and pulmonary circulations. It is permeable to Cl(-) and is activated by a rise in intracellular Ca(2+) concentration (Ca(2+)-activated Cl(-) channel, or CaCC). The first section outlines the biophysical and pharmacological properties of the channel and ends with a description of the molecular candidate genes postulated to encode for CaCCs, with particular emphasis on the bestrophin and the newly discovered TMEM16 and anoctamin families of genes. The second section provides a review of the various sources of Ca(2+) activating CaCCs, which include stimulation by mobilization from intracellular Ca(2+) stores and Ca(2+) entry through voltage-dependent and voltage-independent Ca(2+) channels. The third and final section summarizes recent findings that suggest a potentially important role for CaCCs and the gene TMEM16A in PH.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Ramon J Ayon
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Michael Wiwchar
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Harry A T Pritchard
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Maria L Valencik
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Fiona Britton
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Cardiovascular and Cell Sciences, St. George's University of London, London, United Kingdom
| |
Collapse
|
15
|
Cherian OL, Menini A, Boccaccio A. Multiple effects of anthracene-9-carboxylic acid on the TMEM16B/anoctamin2 calcium-activated chloride channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1005-13. [PMID: 25620774 DOI: 10.1016/j.bbamem.2015.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Ca(2+)-activated Cl(-) currents (CaCCs) play important roles in many physiological processes. Recent studies have shown that TMEM16A/anoctamin1 and TMEM16B/anoctamin2 constitute CaCCs in several cell types. Here we have investigated for the first time the extracellular effects of the Cl(-) channel blocker anthracene-9-carboxylic acid (A9C) and of its non-charged analogue anthracene-9-methanol (A9M) on TMEM16B expressed in HEK 293T cells, using the whole-cell patch-clamp technique. A9C caused a voltage-dependent block of outward currents and inhibited a larger fraction of the current as depolarization increased, whereas the non-charged A9M produced a small, not voltage dependent block of outward currents. A similar voltage-dependent block by A9C was measured both when TMEM16B was activated by 1.5 and 13μM Ca(2+). However, in the presence of 1.5μM Ca(2+) (but not in 13μM Ca(2+)), A9C also induced a strong potentiation of tail currents measured at -100mV after depolarizing voltages, as well as a prolongation of the deactivation kinetics. On the contrary, A9M did not produce potentiation of tail currents, showing that the negative charge is required for potentiation. Our results provide the first evidence that A9C has multiple effects on TMEM16B and that the negative charge of A9C is necessary both for voltage-dependent block and for potentiation. Future studies are required to identify the molecular mechanisms underlying these complex effects of A9C on TMEM16B. Understanding these mechanisms will contribute to the elucidation of the structure and functional properties of TMEM16B channels.
Collapse
Affiliation(s)
- O Lijo Cherian
- Neurobiology Group, SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Boccaccio
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| |
Collapse
|
16
|
In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility. PLoS One 2014; 9:e104451. [PMID: 25162222 PMCID: PMC4146467 DOI: 10.1371/journal.pone.0104451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl- channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work.
Collapse
|
17
|
Possibility of inhibition of calcium-activated chloride channel rescuing erectile failures in diabetes. Int J Impot Res 2014; 26:151-5. [PMID: 24522228 DOI: 10.1038/ijir.2014.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/07/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
Although calcium-activated chloride channel (CaCC) blockers, niflumic acid (NFA) and anthracene-9-carboxylic acid (A9C), have been shown as potential erectogenic agents in healthy corpus cavernosum (CC) tissues, the pharmacological characteristics of CaCC blockers in diabetic state are relatively unknown. This study compares the direct muscle relaxant property of NFA and A9C with their influence on contraction and nitrergic relaxation as elicited by electrical field stimulation in normal and 16-week-old diabetic rabbit CC (n=8). Mean blood glucose level in alloxan-treated rabbits was elevated threefold (21.9±0.5 mmol l(-1) vs 7.1±0.2 mmol l(-1) in untreated rabbits; P<0.05). There was no significant alteration in the efficacies of NFA and A9C in eliciting a concentration-dependent relaxation of noradrenaline-induced cavernosum tone and in inhibiting neurogenic contraction of CC from diabetic rabbits. The capability of NFA (100 μM) and A9C (1 mM) in augmenting nitrergic transmission was also not adversely affected by diabetes. However, in CC from diabetic rabbits, A9C markedly increased nitrergic relaxation response to 1-10 Hz by 10.6-36.6% (vs -5.1-0.8% in nondiabetic control). CaCC sensitivity to A9C appears to be enhanced in diabetic CC tissue. Inhibiting the CaCC activity in diabetes-related ED may tip the balance between proerectile/relaxant and antierectile/contractile mechanisms in favor of cavernosum relaxation.
Collapse
|
18
|
GE RUILIANG, HU LEI, TAI YILIN, XUE FENG, YUAN LEI, WEI GONGTIAN, WANG YI. Flufenamic acid promotes angiogenesis through AMPK activation. Int J Oncol 2013; 42:1945-50. [DOI: 10.3892/ijo.2013.1891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/21/2013] [Indexed: 11/06/2022] Open
|
19
|
Chen GL, Zeng B, Eastmond S, Elsenussi SE, Boa AN, Xu SZ. Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. Br J Pharmacol 2013; 167:1232-43. [PMID: 22646516 DOI: 10.1111/j.1476-5381.2012.02058.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fenamate analogues, econazole and 2-aminoethoxydiphenyl borate (2-APB) are inhibitors of transient receptor potential melastatin 2 (TRPM2) channels and are used as research tools. However, these compounds have different chemical structures and therapeutic applications. Here we have investigated the pharmacological profile of TRPM2 channels by application of newly synthesized fenamate analogues and the existing channel blockers. EXPERIMENTAL APPROACH Human TRPM2 channels in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells and the expression was induced by tetracycline. Whole cell currents were recorded by patch-clamp techniques. Ca(2+) influx or release was monitored by fluorometry. KEY RESULTS Flufenamic acid (FFA), mefenamic acid (MFA) and niflumic acid (NFA) concentration-dependently inhibited TRPM2 current with potency order FFA > MFA = NFA. Modification of the 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with -CH(3), -F, -CF(3), -OCH(3), -OCH(2)CH(3), -COOH, and -NO(2) at various positions, reduced channel blocking potency. The conservative substitution of 3-CF(3) in FFA by -CH(3) (3-MFA), however, gave the most potent fenamate analogue with an IC(50) of 76 µM, comparable to that of FFA, but unlike FFA, had no effect on Ca(2+) release. 3-MFA and FFA inhibited the channel intracellularly. Econazole and 2-APB showed non-selectivity by altering cytosolic Ca(2+) movement. Econazole also evoked a non-selective current. CONCLUSION AND IMPLICATIONS The fenamate analogue 3-MFA was more selective than other TRPM2 channel blockers. FFA, 2-APB and econazole should be used with caution as TRPM2 channel blockers, as these compounds can interfere with intracellular Ca(2+) movement.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | | | | | | | | | | |
Collapse
|
20
|
Guinamard R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator. Pharmacol Ther 2013; 138:272-84. [PMID: 23356979 DOI: 10.1016/j.pharmthera.2013.01.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/26/2012] [Indexed: 12/29/2022]
Abstract
Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly not only affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10(-6)M in TRPM4 channel inhibition to 10(-3)M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and system levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential.
Collapse
|
21
|
Abstract
To succeed in fertilization, spermatozoa must decode environmental cues which require a set of ion channels. Recent findings have revealed that K(+) and Cl(-) channels participate in some of the main sperm functions. This work reviews the evidence indicating the involvement of K(+) and Cl(-) channels in motility, maturation, and the acrosome reaction, and the advancement in identifying their molecular identity and modes of regulation. Improving our insight on how these channels operate will strengthen our ability to surmount some infertility problems, improve animal breeding, preserve biodiversity, and develop selective and secure male contraceptives.
Collapse
|
22
|
Matchkov VV, Secher Dam V, Bødtkjer DMB, Aalkjær C. Transport and Function of Chloride in Vascular Smooth Muscles. J Vasc Res 2013; 50:69-87. [DOI: 10.1159/000345242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022] Open
|
23
|
Guerrero A, Espinal J, Wood CD, Rendón JM, Carneiro J, Martínez-Mekler G, Darszon A. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. J Cell Sci 2013; 126:1477-87. [DOI: 10.1242/jcs.121442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In many broadcast-spawning marine organisms, oocytes release chemicals that guide conspecific spermatozoa towards their source through chemotaxis. In the sea urchin Lytechinus pictus, the chemoattractant peptide speract triggers a train of fluctuations of intracellular Ca2+ concentration in the sperm flagella. Each transient Ca2+ elevation leads to a momentary increase in flagellar bending asymmetry, known as a chemotactic turn. Furthermore, chemotaxis requires a precise spatiotemporal coordination between the Ca2+-dependent turns and the form of chemoattractant gradient. Spermatozoa that display Ca2+-dependent turns while swimming down the chemoattractant gradient, and conversely suppress turning events while swimming up gradient, successfully approach the center of the gradient. Previous experiments in Strongylocentrotus purpuratus sea urchin spermatozoa showed that niflumic acid (NFA), an inhibitor of several ion channels, drastically altered the speract-induced Ca2+ fluctuations and swimming patterns. In this study, mathematical modeling of the speract-dependent Ca2+ signaling pathway suggests that NFA, by potentially affecting HCN, CaCC and CaKC channels, may alter the temporal organization of Ca2+ fluctuations, and therefore disrupt chemotaxis. Here we investigate our hypothesis using a novel automated method for analyzing sperm behavior. We show that NFA does indeed disrupt chemotactic responses of L. pictus spermatozoa, although the temporal coordination between the Ca2+-dependent turns and the form of chemoattractant gradient is unaltered. Instead, NFA disrupts sperm chemotaxis by altering the arc length traveled during each chemotactic turning event. This alteration in the chemotactic turn trajectory disorientates spermatozoa at the termination of the turning event. We conclude that NFA disrupts chemotaxis without affecting how the spermatozoa decode environmental cues.
Collapse
|
24
|
Garg P, Sanguinetti MC. Structure-activity relationship of fenamates as Slo2.1 channel activators. Mol Pharmacol 2012; 82:795-802. [PMID: 22851714 PMCID: PMC3477229 DOI: 10.1124/mol.112.079194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/31/2012] [Indexed: 11/22/2022] Open
Abstract
Niflumic acid, 2-{[3-(trifluoromethyl)phenyl]amino}pyridine-3-carboxylic acid (NFA), a nonsteroidal anti-inflammatory drug that blocks cyclooxygenase (COX), was shown previously to activate [Na(+)](i)-regulated Slo2.1 channels. In this study, we report that other fenamates, including flufenamic acid, mefenamic acid, tolfenamic acid, meclofenamic acid, and a phenyl acetic acid derivative, diclofenac, also are low-potency (EC(50) = 80 μM to 2.1 mM), partial agonists of human Slo2.1 channels heterologously expressed in Xenopus oocytes. Substituent analysis determined that N-phenylanthranilic acid was the minimal pharmacophore for fenamate activation of Slo2.1 channels. The effects of fenamates were biphasic, with an initial rapid activation phase followed by a slow phase of current inhibition. Ibuprofen, a structurally dissimilar COX inhibitor, did not activate Slo2.1. Preincubation of oocytes with ibuprofen did not significantly alter the effects of NFA, suggesting that neither channel activation nor inhibition is associated with COX activity. A point mutation (A278R) in the pore-lining S6 segment of Slo2.1 increased the sensitivity to activation and reduced the inhibition induced by NFA. Together, our results suggest that fenamates bind to two sites on Slo2.1 channels: an extracellular accessible site to activate and a cytoplasmic accessible site in the pore to inhibit currents.
Collapse
Affiliation(s)
- Priyanka Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Department of Physiology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
25
|
Chadha PS, Zunke F, Davis AJ, Jepps TA, Linders JTM, Schwake M, Towart R, Greenwood IA. Pharmacological dissection of K(v)7.1 channels in systemic and pulmonary arteries. Br J Pharmacol 2012; 166:1377-87. [PMID: 22251082 DOI: 10.1111/j.1476-5381.2012.01863.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature. EXPERIMENTAL APPROACH Mesenteric arteries, intrapulmonary arteries and thoracic aortae were isolated from adult rats. K(v)7.1 channel expression was established by fluorescence immunocytochemistry. Wire myography determined functionality of these channels in response to selective blockers and activators. Xenopus oocytes expressing K(v)7.1 channels were used to assess the effectiveness of selective K(v)7.1 channel blockers. KEY RESULTS K(v)7.1 channels were identified in arterial myocytes by immunocytochemistry. K(v)7.1 blockers HMR1556, L-768,673 (10 µM) and JNJ39490282 (JNJ282; 1 µM) had no contractile effects in arteries, whereas the pan-K(v)7 channel blocker linopirdine (10 µM) evoked robust contractions. Application of two compounds purported to activate K(v)7.1 channels, L-364 373 (R-L3) and mefenamic acid, relaxed mesenteric arteries preconstricted by methoxamine. These responses were reversed by HMR1556 or L-768,673 but not JNJ282. Similar effects were observed in the thoracic aorta and intrapulmonary arteries. CONCLUSIONS AND IMPLICATIONS In contrast to previous assumptions, K(v)7.1 channels expressed in arterial myocytes are functional ion channels. Although these channels do not appear to contribute to resting vascular tone, K(v)7.1 activators were effective vasorelaxants.
Collapse
Affiliation(s)
- Preet S Chadha
- Division of Biomedical Sciences: Ion Channels and Cell Signalling Group, St George's, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Forrest AS, Joyce TC, Huebner ML, Ayon RJ, Wiwchar M, Joyce J, Freitas N, Davis AJ, Ye L, Duan DD, Singer CA, Valencik ML, Greenwood IA, Leblanc N. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension. Am J Physiol Cell Physiol 2012; 303:C1229-43. [PMID: 23034390 DOI: 10.1152/ajpcell.00044.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 μM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 μM, with or without 10 μM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 μM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.
Collapse
Affiliation(s)
- Abigail S Forrest
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0573, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Simard C, Sallé L, Rouet R, Guinamard R. Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br J Pharmacol 2012; 165:2354-64. [PMID: 22014185 DOI: 10.1111/j.1476-5381.2011.01715.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hypoxia and subsequent re-oxygenation are associated with cardiac arrhythmias such as early afterdepolarizations (EADs), which may be partly explained by perturbations in cytosolic calcium concentration. Transient receptor potential melastatin 4 (TRPM4), a calcium-activated non-selective cation channel, is functionally expressed in the heart. Based on its biophysical properties, it is likely to participate in EADs. Hence, modulators of TRPM4 activity may influence arrhythmias. The aim of this study was to investigate the possible anti-arrhythmic effect of 9-phenanthrol, a TRPM4 inhibitor in a murine heart model of hypoxia and re-oxygenation-induced EADs. EXPERIMENTAL APPROACH Mouse heart was removed, and the right ventricle was pinned in a superfusion chamber. After a period of normoxia, the preparation was superfused for 2 h with a hypoxic solution and then re-oxygenated. Spontaneous electrical activity was investigated by intracellular microelectrode recordings. KEY RESULTS In normoxic conditions, the ventricle exhibited spontaneous action potentials. Application of the hypoxia and re-oxygenation protocol unmasked hypoxia-induced EADs, the occurrence of which increased under re-oxygenation. The frequency of these EADs was reduced by superfusion with either flufenamic acid, a blocker of Ca(2+) -dependent cation channels or with 9-phenanthrol. Superfusion with 9-phenanthrol (10(-5) or 10(-4) mol·L(-1) ) caused a dramatic dose-dependent abolition of EADs. CONCLUSIONS AND IMPLICATIONS Hypoxia and re-oxygenation-induced EADs can be generated in the mouse heart model. 9-Phenanthrol abolished EADs, which strongly suggests the involvement of TRPM4 in the generation of EAD. This identifies non-selective cation channels inhibitors as new pharmacological candidates in the treatment of arrhythmias.
Collapse
|
28
|
Angermann JE, Forrest AS, Greenwood IA, Leblanc N. Activation of Ca2+-activated Cl- channels by store-operated Ca2+ entry in arterial smooth muscle cells does not require reverse-mode Na+/Ca2+ exchange. Can J Physiol Pharmacol 2012; 90:903-21. [PMID: 22734601 DOI: 10.1139/y2012-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.
Collapse
Affiliation(s)
- Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
29
|
Orta G, Ferreira G, José O, Treviño CL, Beltrán C, Darszon A. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction. J Physiol 2012; 590:2659-75. [PMID: 22473777 DOI: 10.1113/jphysiol.2011.224485] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Motility, maturation and the acrosome reaction (AR) are fundamental functions of mammalian spermatozoa. While travelling through the female reproductive tract, spermatozoa must mature through a process named capacitation, so that they can reach the egg and undergo the AR, an exocytotic event necessary to fertilize the egg. Though Cl⁻ is important for sperm capacitation and for the AR, not much is known about the molecular identity of the Cl⁻ transporters involved in these processes.We implemented a modified perforated patch-clamp strategy to obtain whole cell recordings sealing on the head of mature human spermatozoa.Our whole cell recordings revealed the presence of a Ca²⁺-dependent Cl⁻ current. The biophysical characteristics of this current and its sensitivity to niflumic acid (NFA) and 4,4-diisothiocyano-2,2-stilbene disulphonic acid (DIDIS) are consistent with those displayed by the Ca²⁺-dependent Cl⁻ channel from the anoctamin family (TMEM16). Whole cell patch clamp recordings in the cytoplasmic droplet of human spermatozoa corroborated the presence of these currents, which were sensitive to NFA and to a small molecule TMEM16A inhibitor (TMEM16Ainh, an aminophenylthiazole). Importantly, the human sperm AR induced by a recombinant human glycoprotein from the zona pellucida, rhZP3, displayed a similar sensitivity to NFA, DIDS and TMEM16Ainh as the sperm Ca²⁺-dependent Cl⁻ currents. Our findings indicate the presence of Ca²⁺-dependent Cl⁻ currents in human spermatozoa, that TMEM16A may contribute to these currents and also that sperm Ca²⁺-dependent Cl⁻ currents may participate in the rhZP3-induced AR.
Collapse
Affiliation(s)
- Gerardo Orta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, CP 62210, México
| | | | | | | | | | | |
Collapse
|
30
|
Jiang H, Zeng B, Chen GL, Bot D, Eastmond S, Elsenussi SE, Atkin SL, Boa AN, Xu SZ. Effect of non-steroidal anti-inflammatory drugs and new fenamate analogues on TRPC4 and TRPC5 channels. Biochem Pharmacol 2012; 83:923-31. [PMID: 22285229 DOI: 10.1016/j.bcp.2012.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 01/13/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used anti-inflammatory therapeutic agents, among which the fenamate analogues play important roles in regulating intracellular Ca²⁺ transient and ion channels. However, the effect of NSAIDs on TRPC4 and TRPC5 is still unknown. To understand the structure-activity of fenamate analogues on TRPC channels, we have synthesized a series of fenamate analogues and investigated their effects on TRPC4 and TRPC5 channels. Human TRPC4 and TRPC5 cDNAs in tetracycline-regulated vectors were transfected into HEK293 T-REx cells. The whole cell current and Ca²⁺ movement were recorded by patch clamp and calcium imaging, respectively. Flufenamic acid (FFA), mefenamic acid (MFA), niflumic acid (NFA) and diclofenac sodium (DFS) showed inhibition on TRPC4 and TRPC5 channels in a concentration-dependent manner. The potency was FFA>MFA>NFA>DFS. Modification of 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with F, CH₃, OCH₃, OCH₂CH₃, COOH, and NO₂ led to the changes in their channel blocking activity. However, 2-(2'-methoxy-5'-methylphenyl)aminobenzoic acid stimulated TRPC4 and TRPC5 channels. Selective COX1-3 inhibitors (aspirin, celecoxib, acetaminophen, and indomethacin) had no effect on the channels. Longer perfusion (> 5 min) with FFA (100 μM) and MFA (100 μM) caused a potentiation of TRPC4 and TRPC5 currents after their initial blocking effects that appeared to be partially mediated by the mitochondrial Ca²⁺ release. Our results suggest that fenamate analogues are direct modulators of TRPC4 and TRPC5 channels. The substitution pattern and conformation of the 2-phenylamino ring could alter their blocking activity, which is important for understanding fenamate pharmacology and new drug development targeting the TRPC channels.
Collapse
Affiliation(s)
- Hongni Jiang
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bautista-Cruz F, Paterson WG. Evidence for altered circular smooth muscle cell function in lower esophageal sphincter of W/Wv mutant mice. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1059-65. [PMID: 21885685 DOI: 10.1152/ajpgi.00020.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrergic neurotransmission to gut smooth muscle is impaired in W/W(v) mutant mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). In addition, these mice have been reported to have smaller amplitude unitary potentials (UPs) and a more negative resting membrane potential (RMP) than control mice. These abnormalities have been attributed to absence of ICC-IM, but it remains possible that they are due to alterations at the level of the smooth muscle itself. Amphotericin-B-perforated patch-clamp recordings and Ca(2+) imaging (fura 2) were compared between freshly isolated single circular smooth muscle cells (CSM) from W/W(v) mutant and control mice lower esophageal sphincter (LES). There was no significant difference in seal resistance, capacitance, or input resistance in response to applied electrotonic current pulses between CSM cells from W/W(v) mutants and controls. Compared with control mice, RMP was more negative and UPs significantly smaller in CSM cells from mutant mice LES. Administration of caffeine induced an inward current in cells from both mutant and control mice, but the current density was significantly larger in cells from W/W(v) mutants. Membrane potential hyperpolarization induced by sodium nitroprusside was larger in cells from control mice vs. W/W(v) mutants. In addition, intracellular Ca(2+) transients induced by caffeine were significantly increased in cells from mutants. These findings indicate that LES CSM is abnormal in W/W(v) mutant mice. Thus some physiological functions attributed to ICC-IM based on experiments in smooth muscle of ICC deficient mice may need to be reconsidered.
Collapse
Affiliation(s)
- Francisco Bautista-Cruz
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Department of Medicine, Queen's University Kingston, Ontario, Canada
| | | |
Collapse
|
32
|
Guinamard R, Sallé L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:147-71. [PMID: 21290294 DOI: 10.1007/978-94-007-0265-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca(2+)-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca(2+) is a major regulator of their activity since both channels are activated by a rise in internal Ca(2+). Thus TRPM4 and TRPM5 are responsible for most of the Ca(2+)-activated non-selective cationic currents (NSC(Ca)) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Cœur et Ischémie, EA 3212, Université de Caen, Sciences D, F-14032, Caen Cedex, France,
| | | | | |
Collapse
|
33
|
Abstract
Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+.
Collapse
Affiliation(s)
- Li Dai
- Department of Physiology, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
34
|
Sones WR, Davis AJ, Leblanc N, Greenwood IA. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Cardiovasc Res 2010; 87:476-84. [PMID: 20172862 DOI: 10.1093/cvr/cvq057] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Calcium-activated chloride channels (CACCs) share common pharmacological properties with Kcnma1-encoded large conductance K(+) channels (BK(Ca) or K(Ca)1.1) and it has been suggested that they may co-exist in a macromolecular complex. As K(Ca)1.1 channels are known to localize to cholesterol and caveolin-rich lipid rafts (caveolae), the present study investigated whether Ca(2+)-sensitive Cl(-) currents in vascular myocytes were affected by the cholesterol depleting agent methyl-beta-cyclodextrin (M-betaCD). METHODS AND RESULTS Calcium-activated chloride and potassium currents were recorded from single murine portal vein myocytes in whole cell voltage clamp. Western blot was undertaken following sucrose gradient ultracentrifugation using protein lysates from whole portal veins. Ca(2+)-activated Cl(-) currents were augmented by 3 mg mL(-1) M-betaCD with a rapid time course (t(0.5) = 1.8 min). M-betaCD had no effect on the bi-modal response to niflumic acid or anthracene-9-carboxylate but completely removed the inhibitory effects of the K(Ca)1.1 blockers, paxilline and tamoxifen, as well as the stimulatory effect of the K(Ca)1.1 activator NS1619. Discontinuous sucrose density gradients followed by western blot analysis revealed that the position of lipid raft markers caveolin and flotillin-2 was altered by 15 min application of 3 mg mL(-1) M-betaCD. The position of K(Ca)1.1 and the newly identified candidate for CACCs, TMEM16A, was also affected by M-betaCD. CONCLUSION These data reveal that CACC properties are influenced by lipid raft integrity.
Collapse
Affiliation(s)
- William R Sones
- Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK
| | | | | | | |
Collapse
|
35
|
Wiwchar M, Ayon R, Greenwood IA, Leblanc N. Phosphorylation alters the pharmacology of Ca(2+)-activated Cl channels in rabbit pulmonary arterial smooth muscle cells. Br J Pharmacol 2009; 158:1356-65. [PMID: 19785656 DOI: 10.1111/j.1476-5381.2009.00405.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca(2+)-activated Cl(-) currents (I(Cl(Ca))) in arterial smooth muscle cells are inhibited by phosphorylation. The Ca(2+)-activated Cl(-) channel (Cl(Ca)) blocker niflumic acid (NFA) produces a paradoxical dual effect on I(Cl(Ca)), causing stimulation or inhibition at potentials below or above 0 mV respectively. We tested whether the effects of NFA on I(Cl(Ca)) were modulated by phosphorylation. EXPERIMENTAL APPROACH I(Cl(Ca)) was elicited with 500 nM free internal Ca(2+) in rabbit pulmonary artery myocytes. The state of global phosphorylation was altered by cell dialysis with either 5 mM ATP or 0 mM ATP with or without an inhibitor of calmodulin-dependent protein kinase type II, KN-93 (10 microM). KEY RESULTS Dephosphorylation enhanced the ability of 100 microM NFA to inhibit I(Cl(Ca)). This effect was attributed to a large negative shift in the voltage-dependence of block, which was converted to stimulation at potentials <-50 mV, approximately 70 mV more negative than cells dialysed with 5 mM ATP. NFA dose-dependently blocked I(Cl(Ca)) in the range of 0.1-250 microM in cells dialysed with 0 mM ATP and KN-93, which contrasted with the stimulation induced by 0.1 microM, which converted to block at concentrations >1 microM when cells were dialysed with 5 mM ATP. CONCLUSIONS AND IMPLICATIONS Our data indicate that the presumed state of phosphorylation of the pore-forming or regulatory subunit of Cl(Ca) channels influenced the interaction of NFA in a manner that obstructs interaction of the drug with an inhibitory binding site.
Collapse
Affiliation(s)
- M Wiwchar
- Department of Pharmacology, Center of Biomedical Research Excellence (COBRE), University of Nevada School of Medicine, Reno, NV 89557-0270, USA
| | | | | | | |
Collapse
|
36
|
Sones WR, Leblanc N, Greenwood IA. Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels. Br J Pharmacol 2009; 158:521-31. [PMID: 19645713 DOI: 10.1111/j.1476-5381.2009.00332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent pharmacological studies have proposed there is a high degree of similarity between calcium-activated Cl(-) channels (CaCCs) and large conductance, calcium-gated K(+) channels (K(Ca)1.1). The goal of the present study was to ascertain whether blockers of K(Ca)1.1 inhibited calcium-activated Cl(-) currents (I(ClCa)) and if the pharmacological overlap between K(Ca)1.1 and CaCCs extends to intermediate and small conductance, calcium-activated K(+) channels. EXPERIMENTAL APPROACHES Whole-cell Cl(-) and K(+) currents were recorded from murine portal vein myocytes using the whole-cell variant of the patch clamp technique. CaCC currents were evoked by pipette solutions containing 500 nM free [Ca(2+)]. KEY RESULTS The selective K(Ca)1.1 blocker paxilline (1 microM) inhibited I(ClCa) by approximately 90%, whereas penitrem A (1 microM) and iberiotoxin (100 and 300 nM) reduced the amplitude of I(ClCa) by approximately 20%, as well as slowing channel deactivation. Paxilline also abolished the stimulatory effect of niflumic acid on the CaCC. In contrast, an antibody against the Ca(2+)-binding domain of murine K(Ca)1.1 had no effect on I(ClCa) while inhibiting spontaneous K(Ca)1.1 currents. Structurally different modulators of small and intermediate conductance calcium-activated K(+) channels (K(Ca)2.1 and K(Ca)2.3), namely 1-EBIO, (100 microM); NS309, (1 microM); TRAM-34, (10 microM); UCL 1684, (1 microM) had no effect on I(ClCa). CONCLUSIONS AND IMPLICATIONS These data show that the selective K(Ca)1.1 blockers also reduce I(ClCa) considerably. However, the pharmacological overlap that exists between CaCCs and K(Ca)1.1 does not extend to the calcium-binding domain or to other calcium-gated K(+) channels.
Collapse
Affiliation(s)
- W R Sones
- Division of Basic Medical Sciences, St George's, University of London, London, UK
| | | | | |
Collapse
|
37
|
Pace RW, Del Negro CA. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur J Neurosci 2008; 28:2434-42. [PMID: 19032588 DOI: 10.1111/j.1460-9568.2008.06540.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Excitatory transmission mediated by AMPA receptors is critical for respiratory rhythm generation. However, the role of AMPA receptors has not been fully explored. Here we tested the functional role of AMPA receptors in inspiratory neurons of the neonatal mouse preBötzinger complex (preBötC) using an in vitro slice model that retains active respiratory function. Immediately before and during inspiration, preBötC neurons displayed envelopes of depolarization, dubbed inspiratory drive potentials, that required AMPA receptors but largely depended on the Ca(2+)-activated non-specific cation current (I(CAN)). We showed that AMPA receptor-mediated depolarization opened voltage-gated Ca(2+) channels to directly evoke I(CAN). Inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release also evoked I(CAN). Inositol 1,4,5-trisphosphate receptors acted downstream of group I metabotropic glutamate receptor activity but, here too, AMPA receptor-mediated Ca(2+) influx was essential to trigger the metabotropic glutamate receptor contribution to inspiratory drive potential generation. This study helps to elucidate the role of excitatory transmission in respiratory rhythm generation in vitro. AMPA receptors in preBötC neurons initiate convergent signaling pathways that evoke post-synaptic I(CAN), which underlies inspiratory drive potentials. The coupling of AMPA receptors with I(CAN) suggests that latent burst-generating intrinsic conductances are recruited by excitatory synaptic interactions among preBötC neurons in the context of respiratory network activity in vitro, exemplifying a rhythmogenic mechanism based on emergent properties of the network.
Collapse
Affiliation(s)
- Ryland W Pace
- Department of Applied Science, McGlothlin Street Hall, Room 318, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | |
Collapse
|
38
|
O'Driscoll KE, Hatton WJ, Burkin HR, Leblanc N, Britton FC. Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am J Physiol Cell Physiol 2008; 295:C1610-24. [PMID: 18945938 DOI: 10.1152/ajpcell.00461.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bestrophins are a novel family of proteins that encode calcium-activated chloride channels. In this study we establish that Bestrophin transcripts are expressed in the mouse and human heart. Native mBest3 protein expression and localization in heart was demonstrated by using a specific polyclonal mBest3 antibody. Immunostaining of isolated cardiac myocytes indicates that mBest3 is present at the membrane. Using the patch-clamp technique, we characterized the biophysical and pharmacological properties of mBest3 cloned from heart. Whole cell chloride currents were evoked in both HEK293 and COS-7 cells expressing mBest3 by elevation of intracellular calcium. mBest3 currents displayed a K(D) for Ca(2+) of approximately 175 nM. The calcium-activated chloride current was found to be time and voltage independent and displayed slight outward rectification. The anion permeability sequence of the channel was SCN(-)>I(-)>Cl(-), and the current was inhibited by niflumic acid and DIDS in the micromolar range. In addition, we generated a site-specific mutation (F80L) in the putative pore region of mBest3 that significantly altered the ion conduction and pharmacology of this channel. Our functional and mutational studies examining the biophysical properties of mBest3 indicate that it functions as a pore-forming chloride channel that is activated by physiological levels of calcium. This study reports novel findings regarding the molecular expression, tissue localization, and functional properties of mBest3 cloned from heart.
Collapse
Affiliation(s)
- Kate E O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | | | | | | | |
Collapse
|
39
|
Li L, Ma KT, Zhao L, Si JQ, Zhang ZS, Zhu H, Li J. Niflumic acid hyperpolarizes smooth muscle cells via calcium-activated potassium channel in spiral modiolar artery of guinea pigs. Acta Pharmacol Sin 2008; 29:789-99. [PMID: 18565276 DOI: 10.1111/j.1745-7254.2008.00803.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM The influence of niflumic acid (NFA), a Cl(-)channel antagonist, on the membrane potentials in smooth muscle cells (SMC) of the cochlear spiral modiolar artery (SMA) in guinea pigs was examined. METHODS The intracellular recording and whole-cell recording technique were used to record the NFA-induced response on the acutely-isolated SMA preparation. RESULTS The SMC had 2 stable but mutually convertible levels of resting potentials (RP), that is, one was near -45 mV and the other was approximately -75 mV, termed as low and high RP, respectively. The bath application of NFA could cause a hyperpolarization in all the low RP cells, but had little effect on high RP cells. The induced responses were concentration-dependent. Large concentrations of NFA (>or=100 micromol/L) often induced a shift of a low RP to high RP in cells with an initial RP at low level, and NFA (up to 100 micromol/L) had little effect on the membrane potentials of the high RP cells. However, when the high RP cells were depolarized to a level beyond -45 mV by barium and ouabain, NFA hyperpolarized these cells with the similar effect on those cells initially being the low RP. The NFA-induced response was almost completely blocked by charybdotoxin, iberiotoxin, tetraethylammonium, 1,2-bis(2- aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester, but not by 4-aminopyridine, barium, glipizide, apamin, ouabain, and CdCl2. CONCLUSION NFA induces a concentration-dependent reversible hyperpolarization in SMC in the cochlear SMA via activation of the Ca2+-activated potassium channels.
Collapse
Affiliation(s)
- Li Li
- Departmeng of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Chu LL, Adaikan PG. Role of Chloride Channels in the Regulation of Corpus Cavernosum Tone: A Potential Therapeutic Target for Erectile Dysfunction. J Sex Med 2008; 5:813-821. [DOI: 10.1111/j.1743-6109.2007.00728.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Edwards G, Weston AH. Section Review Cardiovascular & Renal: Recent advances in the pharmacology and therapeutic potential of potassium channel openers. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.11.1453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Zhang Q, Cao C, Zhang Z, Wier WG, Edwards A, Pallone TL. Membrane current oscillations in descending vasa recta pericytes. Am J Physiol Renal Physiol 2008; 294:F656-66. [PMID: 18184740 DOI: 10.1152/ajprenal.00493.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the origin of spontaneous transient inward current (STIC) oscillations in descending vasa recta (DVR) pericytes. In cells clamped at -80 mV, angiotensin II (ANG II; 10 nmol/l) induced oscillations with mean amplitude and frequency of -65.5 pA and 1.2 Hz. Simultaneous recording of cytoplasmic calcium ([Ca(2+)](CYT)) and membrane current oscillations verified their synchrony and the correlation of their amplitudes. Confocal recording in fluo-4-loaded DVR showed that ANG II can induce either stable pericyte [Ca(2+)](CYT) elevation or oscillations, while decreasing adjacent endothelial [Ca(2+)](CYT). Oscillating currents reversed sign at -30.2 mV and were blocked by niflumic acid, implicating charge transfer via Cl(-) ion. Removal of extracellular Ca(2+), blockade of Ca(2+) influx with SKF96365 (30 micromol/l), ryanodine (30 micromol/l), or caffeine (10 mmol/l) inhibited oscillations. In contrast, they were insensitive to removal of extracellular Na(+) and exposure to either nifedipine (1 micromol/l) or 2-aminoethoxydiphenyl borate (10 micromol/l). Ouabain (100 nmol/l) increased basal pericyte [Ca(2+)](CYT) and the frequency of resting STICs but did not affect the larger oscillations that followed ANG II stimulation. We conclude that [Ca(2+)](CYT) oscillations stimulate Cl(-) currents. The former are most likely maintained by repetitive cycles of ryanodine-sensitive SR Ca(2+) release and SKF96365-sensitive store refilling.
Collapse
Affiliation(s)
- Qingli Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fellner SK, Arendshorst WJ. Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am J Physiol Renal Physiol 2008; 294:F212-9. [DOI: 10.1152/ajprenal.00244.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In afferent arterioles, the signaling events that lead to an increase in cytosolic Ca2+ concentration ([Ca2+]i) and initiation of vascular contraction are increasingly being delineated. We have recently studied angiotensin II (ANG II)-mediated effects on sarcoplasmic reticulum (SR) mobilization of Ca2+ and the role of superoxide and cyclic adenosine diphosphoribose in these processes. In the current study we investigated the participation of transient receptor potential canonical channels (TRPC) and a Na+/Ca2+ exchanger (NCX) in Ca2+ entry mechanisms. Afferent arterioles, isolated with the magnetized polystyrene bead method, were loaded with fura-2 to measure [Ca2+]i ratiometrically. We observed that the Ca2+-dependent chloride channel blocker niflumic acid (10 and 50 μ M) affects neither the peak nor plateau [Ca2+]i response to ANG II. Arterioles were pretreated with ryanodine (100 μM) and TMB-8 to block SR mobilization via the ryanodine receptor and inositol trisphosphate receptor, respectively. The peak [Ca2+]i response to ANG II was reduced by 40%. Addition of 2-aminoethoxydiphenyl borane to block TRPC-mediated Ca2+ entry inhibited the peak [Ca2+]i ANG II response by 80% and the plateau by 74%. Flufenamic acid (FFA; 50 μM), which stimulates TRPC6, caused a sustained increase of [Ca2+]i of 146 nM. This response was unaffected by diltiazem or nifedipine. KB-R7943 (at the low concentration of 10 μM) inhibits reverse (but not forward) mode NCX. KB-R7943 decreased the peak [Ca2+]i response to ANG II by 48% and to FFA by 38%. We conclude that TRPC6 and reverse-mode NCX may be important Ca2+ entry pathways in afferent arterioles.
Collapse
|
44
|
Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA. Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 2007; 582:1047-58. [PMID: 17599963 PMCID: PMC2075248 DOI: 10.1113/jphysiol.2007.134577] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the preBötzinger complex (preBötC) form local excitatory networks and synchronously discharge bursts of action potentials during the inspiratory phase of respiratory network activity. Synaptic input periodically evokes a Ca(2+)-activated non-specific cation current (I(CAN)) postsynaptically to generate 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, which underlie inspiratory bursts. The molecular identity of I(CAN) and its regulation by intracellular signalling mechanisms during inspiratory drive potential generation remains unknown. Here we show that mRNAs coding for two members of the transient receptor potential (TRP) family of ion channels, namely TRPM4 and TRPM5, are expressed within the preBötC region of neonatal mice. Hypothesizing that the phosphoinositides maintaining TRPM4 and TRPM5 channel sensitivity to Ca(2+) may similarly influence I(CAN) and thus regulate inspiratory drive potentials, we manipulated intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)) and measured its effect on preBötC neurons in the context of ongoing respiratory-related rhythms in slice preparations. Consistent with the involvement of TRPM4 and TRPM5, excess PIP(2) augmented the inspiratory drive potential and diminution of PIP(2) reduced it; sensitivity to flufenamic acid (FFA) suggested that these effects of PIP(2) were I(CAN) mediated. Inositol 1,4,5-trisphosphate (IP(3)), the product of PIP(2) hydrolysis, ordinarily causes IP(3) receptor-mediated I(CAN) activation. Simultaneously increasing PIP(2) while blocking IP(3) receptors intracellularly counteracted the reduction in the inspiratory drive potential that normally resulted from IP(3) receptor blockade. We propose that PIP(2) protects I(CAN) from rundown by interacting directly with underlying ion channels and preventing desensitization, which may enhance the robustness of respiratory rhythm.
Collapse
Affiliation(s)
- Erin A Crowder
- Department of Applied Science, McGlothlin-Street Hall, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pace RW, Mackay DD, Feldman JL, Del Negro CA. Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 2007; 582:113-25. [PMID: 17446214 PMCID: PMC2075310 DOI: 10.1113/jphysiol.2007.133660] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inspiratory neurons of the preBötzinger complex (preBötC) form local excitatory networks and display 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, with superimposed spiking. AMPA receptors are critical for rhythmogenesis under normal conditions in vitro but whether other postsynaptic mechanisms contribute to drive potential generation remains unknown. We examined synaptic and intrinsic membrane properties that generate inspiratory drive potentials in preBötC neurons using neonatal mouse medullary slice preparations that generate respiratory rhythm. We found that NMDA receptors, group I metabotropic glutamate receptors (mGluRs), but not group II mGluRs, contributed to inspiratory drive potentials. Subtype 1 of the group I mGluR family (mGluR1) probably regulates a K+ channel, whereas mGluR5 operates via an inositol 1,4,5-trisphosphate (IP3) receptor-dependent mechanism to augment drive potential generation. We tested for and verified the presence of a Ca2+-activated non-specific cation current (I(CAN)) in preBötC neurons. We also found that high concentrations of intracellular BAPTA, a high-affinity Ca2+ chelator, and the I(CAN) antagonist flufenamic acid (FFA) decreased the magnitude of drive potentials. We conclude that I(CAN) underlies robust inspiratory drive potentials in preBötC neurons, and is only fully evoked by ionotropic and metabotropic glutamatergic synaptic inputs, i.e. by network activity.
Collapse
MESH Headings
- Action Potentials
- Animals
- Animals, Newborn
- Calcium/metabolism
- Calcium Signaling
- Chelating Agents/pharmacology
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Flufenamic Acid/pharmacology
- Glutamic Acid/metabolism
- In Vitro Techniques
- Inhalation/drug effects
- Inhalation/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Kinetics
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/metabolism
- Periodicity
- Receptor, Metabotropic Glutamate 5
- Receptors, AMPA/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/metabolism
- Respiratory Center/cytology
- Respiratory Center/drug effects
- Respiratory Center/metabolism
- Synapses/drug effects
- Synapses/metabolism
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Ryland W Pace
- Department of Applied Science, McGlothlin-Street Hall, Room 303, The College of William and Mary, Williamsburg, VA 23187-8795, USA
| | | | | | | |
Collapse
|
46
|
Saleh SN, Angermann JE, Sones WR, Leblanc N, Greenwood IA. Stimulation of Ca2+-gated Cl- currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] and isopimaric acid. J Pharmacol Exp Ther 2007; 321:1075-84. [PMID: 17347326 DOI: 10.1124/jpet.106.118786] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Because chloride (Cl(-)) channel blockers such as niflumic acid enhance large-conductance Ca(2+)-activated potassium channels (BK(Ca)), the aim of this study was to determine whether there is a reciprocal modification of Ca(2+)-activated chloride Cl(-) currents (I(ClCa)) by two selective activators of BK(Ca). Single smooth muscle cells were isolated by enzymatic digestion from murine portal vein and rabbit pulmonary artery. The BK(Ca) activators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl-)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] and isopimaric acid (IpA) augmented macroscopic I(ClCa) elicited by pipette solutions containing [Ca(2+)](i) > 100 nM without any alteration in current kinetics. Enhanced currents recorded in the presence of NS1619 or IpA reversed at the theoretical Cl(-) equilibrium potential, which was shifted by approximately -40 mV upon replacement of the external anion with the more permeable thiocyanate anion. NS1619 increased the sensitivity of calcium-activated chloride channel (Cl(Ca)) to Ca(2+) (approximately 100 nM at +60 mV) and induced a leftward shift in their voltage dependence (approximately 80 mV with 1 micro Ca(2+)). Single-channel experiments revealed that NS1619 increased the number of open channels times the open probability of small-conductance (1.8-3.1 pS) Cl(Ca) without any alteration in their unitary amplitude or number of observable unitary levels of activity. These data, in addition to the established stimulatory effects of niflumic acid on BK(Ca), show that there is similarity in the pharmacology of calcium-activated chloride and potassium channels. Although nonspecific interactions are possible, one alternative hypothesis is that the channel underlying vascular I(ClCa) shares some structural similarity to the BK(Ca) or that the latter K(+) channel physically interacts with Cl(Ca).
Collapse
Affiliation(s)
- Sohag N Saleh
- Ion Channels and Cell Signaling Research Centre, Division of Basic Medical Sciences, St. George's, University of London, SW17 0RE London, UK
| | | | | | | | | |
Collapse
|
47
|
Greenwood IA, Leblanc N. Overlapping pharmacology of Ca2+-activated Cl- and K+ channels. Trends Pharmacol Sci 2006; 28:1-5. [PMID: 17150263 DOI: 10.1016/j.tips.2006.11.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/13/2006] [Accepted: 11/22/2006] [Indexed: 11/22/2022]
Abstract
Research into Ca2+-activated Cl- channels is hampered by the inability to decipher their molecular identity and the fact that all extant Cl- channel blockers have effects on other ion channels. Most notably, Cl- channel blockers such as the fenamates (e.g. niflumic acid and flufenamic acid) activate Ca2+-dependent K+ channels, although other pharmacological overlaps have been discovered. In this article, we highlight the complex pharmacology of Ca2+-activated Cl- channels and the caveats associated with using these blockers--a necessary requirement because many researchers use Cl- channel blockers as probes for Cl- channel activity. Moreover, we discuss the argument for a common structural motif between Ca2+-activated Cl- channels and Ca2+-dependent K+ channels, which has led to the possibility that the molecular identity of Cl- channels will be revealed by research in this new direction, in addition to the use of existing candidates such as the CLCA, Bestrophin and tweety genes.
Collapse
Affiliation(s)
- Iain A Greenwood
- Ion Channels and Cell Signalling Research Centre, Division of Basic Medical Sciences, St George's, University of London, London SW17 0RE, UK.
| | | |
Collapse
|
48
|
Liu GJ, Kalous A, Werry EL, Bennett MR. Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol Pharmacol 2006; 70:851-9. [PMID: 16760362 DOI: 10.1124/mol.105.021436] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The propagation of Ca2+ waves in a network of microglial cells, after its initiation by glutamate, is mediated by purinergic transmission. In this study, we investigated the mechanisms by which glutamate releases ATP from cultured spinal cord microglia. The 4-fold increase in ATP release from microglia in response to glutamate (0.5 mM) was blocked by alpha-aminohydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptor antagonist 6-cyano-7-nitroguinoxaline-2,3-dione and specific AMPA receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) but not by N-methyl-d-aspartic acid or metabotropic glutamate receptor antagonists. Glutamate acting on AMPA receptors evoked an ATP release that was blocked by antagonizing the rise in intracellular Ca2+ as a result of its release from internal stores as well as by antagonizing protein kinase C with chelerythrine. Glutamate-stimulated ATP release was significantly antagonized by the cystic fibrosis transmembrane conductance regulator (CFTR) blockers flufenamic acid and glibenclamide. A role for the CFTR was further confirmed using microglia from CFTR knockout mice, which released significantly less ATP than microglia from control wild-type mice in response to glutamate. Use of 6-methoxy-1-(3-sulfopropyl)quinolinium fluorescence assay revealed functional CFTR in microglia. These observations suggest that glutamate acted on microglial AMPA receptors to stimulate release of Ca2+ from intracellular stores as well as a Ca2+-dependent isoform of protein kinase C, which then acts to trigger release of ATP with the CFTR acting as a regulator of the ATP release process, perhaps through another channel or transporter.
Collapse
Affiliation(s)
- Guo Jun Liu
- Neurobiology Laboratory, Discipline of Physiology, School of Medical Sciences, Institute for Biomedical Research, University of Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
49
|
Leblanc N, Ledoux J, Saleh S, Sanguinetti A, Angermann J, O'Driscoll K, Britton F, Perrino BA, Greenwood IA. Regulation of calcium-activated chloride channels in smooth muscle cells: a complex picture is emerging. Can J Physiol Pharmacol 2006; 83:541-56. [PMID: 16091780 DOI: 10.1139/y05-040] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium-activated chloride channels (ClCa) are ligand-gated anion channels as they have been shown to be activated by a rise in intracellular Ca2+ concentration in various cell types including cardiac, skeletal and vascular smooth muscle cells, endothelial and epithelial cells, as well as neurons. Because ClCa channels are normally closed at resting, free intracellular Ca2+ concentration (approximately 100 nmol/L) in most cell types, they have generally been considered excitatory in nature, providing a triggering mechanism during signal transduction for membrane excitability, osmotic balance, transepithelial chloride movements, or fluid secretion. Unfortunately, the genes responsible for encoding this class of ion channels is still unknown. This review centers primarily on recent findings on the properties of these channels in smooth muscle cells. The first section discusses the functional significance and biophysical and pharmacological properties of ClCa channels in smooth muscle cells, and ends with a description of 2 candidate gene families (i.e., CLCA and Bestrophin) that are postulated to encode for these channels in various cell types. The second section provides a summary of recent findings demonstrating the regulation of native ClCa channels in vascular smooth muscle cells by calmodulin-dependent protein kinase II and calcineurin and how their fine tuning by these enzymes may influence vascular tone.
Collapse
Affiliation(s)
- Normand Leblanc
- Department of Pharmacology, Centre of Biomedical Research Excellence (COBRE), University of Nevada School of Medicine, Reno, NV, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hotta A, Kito Y, Suzuki H. The effects of flufenamic acid on spontaneous activity of smooth muscle tissue isolated from the guinea-pig stomach antrum. J Smooth Muscle Res 2005; 41:207-20. [PMID: 16258234 DOI: 10.1540/jsmr.41.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of flufenamic acid were investigated on slow waves, follower potentials and pacemaker potentials recorded respectively from circular smooth muscle cells, longitudinal smooth muscle cells and interstitial cells of Cajal distributed in the myenteric layers (ICC-MY) of the guinea-pig stomach antrum. Flufenamic acid (>10(-5) M) inhibited the amplitude and rate of rise of the upstroke phase of the slow waves, with no marked alteration in their frequency of occurrence. The inhibitory actions of flufenamic acid appeared to be mainly on slow potentials recorded from circular smooth muscle cells, but not on follower or pacemaker potentials. After abolishing spontaneous slow potentials with flufenamic acid, depolarizing current stimuli could evoke slow potentials with an amplitude that was much smaller than in the absence of flufenamic acid, with no significant alteration to the input resistance of the membrane. The time elapsed for the generation of the 2nd component of the slow waves or the slow potentials evoked during depolarizing current pulse stimulation was increased by flufenamic acid. The rate of rise of unitary potentials, but not the frequency of occurrence, was inhibited by flufenamic acid. These results indicate that the inhibitory actions of flufenamic acid appear to be mainly on the circular muscle layer including the interstitial cells of Cajal distributed within the muscle bundles (ICC-IM). Nifedipine-sensitive spike potentials were not inhibited by flufenamic acid. It is concluded that the selective inhibition of the 2nd component of slow waves by flufenamic acid may be mainly due to the inhibition of ion channels, possibly Ca2+-sensitive Cl--channels, activated during generation of slow potentials in the ICC-IM distributed in the circular muscle layer.
Collapse
Affiliation(s)
- Aya Hotta
- Department of Physiology, Nagoya City University Medical School, Japan
| | | | | |
Collapse
|