1
|
Mizuno T, Ohara T, Mizuta I, Naito A, Nakata M, Uno-Kadowaki A, Iwami Y, Watanabe-Hosomi A, Matsuura H, Fukunaga D, Ito-Ihara T, Teramukai S. Study protocol for LOMCAD Trial: Effect of lomerizine hydrochloride to prevent recurrence of cerebral ischemic events in CADASIL patients. J Stroke Cerebrovasc Dis 2024; 33:108042. [PMID: 39454930 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common monogenic cerebral small vessel diseases. Our previous observational study suggested that lomerizine hydrochloride, a calcium channel blocker approved in Japan in 1999 for the prevention of migraine headaches, is also effective for preventing recurrent ischemic stroke in CADASIL patients. The aim of this study (LOMCAD trial) is to verify the efficacy of lomerizine hydrochloride. MATERIALS AND METHODS This is a multicenter, prospective, single-arm trial, using a historical control for comparison. CADASIL patients with a history of two or more cerebral ischemic events within the last two years will be administered lomerizine hydrochloride (5-mg tablet twice daily) for 24 months. The primary endpoint is symptomatic cerebral ischemic events during the 24-month period. Using our historical data and Bayesian sample size calculation based on a prior predictive distribution, the planned sample size was determined as 20 subjects. CONCLUSION We have planned a clinical trial to verify the effectiveness of lomerizine hydrochloride as prophylaxis to prevent recurrent cerebral ischemic events in CADASIL patients. REGISTRATION The LOMCAD trial has been registered in the Japan Registry of Clinical Trials (jRCTs051220072, https://jrct.niph.go.jp/latest-detail/jRCTs051220072).
Collapse
Affiliation(s)
- Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomoyuki Ohara
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akari Naito
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuko Nakata
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aoi Uno-Kadowaki
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Iwami
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Watanabe-Hosomi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiraku Matsuura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Fukunaga
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiko Ito-Ihara
- Division of Research Management, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Teramukai
- Division of Data Science, The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front Cell Neurosci 2023; 17:1292661. [PMID: 38162001 PMCID: PMC10757627 DOI: 10.3389/fncel.2023.1292661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jordan E. Weisend
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrew P. Carlson
- Department of Neurosurgery, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Russell A. Morton
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - David N. Linsenbardt
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - C. William Shuttleworth
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
3
|
Deligianni CI, Sacco S, Ekizoglu E, Uluduz D, Gil-Gouveia R, MaassenVanDenBrink A, Ornello R, Sanchez-Del-Rio M, Reuter U, Versijpt J, de Vries T, Hussain M, Zeraatkar D, Lampl C. European Headache Federation (EHF) critical re-appraisal and meta-analysis of oral drugs in migraine prevention-part 2: flunarizine. J Headache Pain 2023; 24:128. [PMID: 37723437 PMCID: PMC10507915 DOI: 10.1186/s10194-023-01657-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVE Novel disease-specific and mechanism-based treatments sharing good evidence of efficacy for migraine have been recently marketed. However, reimbursement by insurers depends on treatment failure with classic anti-migraine drugs. In this systematic review and meta-analysis, we aimed to identify and rate the evidence for efficacy of flunarizine, a repurposed, first- or second-line treatment for migraine prophylaxis. METHODS A systematic search in MEDLINE, Cochrane CENTRAL, and ClinicalTrials.gov was performed for trials of pharmacological treatment in migraine prophylaxis, following the Preferred Reporting Items for Systematic Reviews (PRISMA). Eligible trials for meta-analysis were randomized, placebo-controlled studies comparing flunarizine with placebo. Outcomes of interest according to the Outcome Set for preventive intervention trials in chronic and episodic migraine (COSMIG) were the proportion of patients reaching a 50% or more reduction in monthly migraine days, the change in monthly migraine days (MMDs), and Adverse Events (AEs) leading to discontinuation. RESULTS Five trials were eligible for narrative description and three for data synthesis and analysis. No studies reported the predefined outcomes, but one study assessed the 50% reduction in monthly migraine attacks with flunarizine as compared to placebo showing a benefit from flunarizine with a low or probably low risk of bias. We found that flunarizine may increase the proportion of patients who discontinue due to adverse events compared to placebo (risk difference: 0.02; 95% CI -0.03 to 0.06). CONCLUSIONS Published flunarizine trials predate the recommended endpoints for evaluating migraine prophylaxis drugs, hence the lack of an adequate assessment for these endpoints. Further, modern-day, large-scale studies would be valuable in re-evaluating the efficacy of flunarizine for the treatment of migraines, offering additional insights into its potential benefits.
Collapse
Affiliation(s)
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L´Aquila, L´Aquila, Italy
| | - Esme Ekizoglu
- Department of Neurology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Derya Uluduz
- Department of Neurology, Istanbul University-Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Raquel Gil-Gouveia
- Neurology Department, Hospital da Luz Headache Center, Hospital da Luz Lisboa, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L´Aquila, L´Aquila, Italy
| | | | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany and Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Tessa de Vries
- Department of Internal Medicine, Erasmus MC Medical Center, Rotterdam, The Netherlands
| | - Muizz Hussain
- Department of Anesthesia and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Dena Zeraatkar
- Department of Anesthesia and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Christian Lampl
- Department of Neurology and Stroke Unit, Konventhospital Barmherzige Brüder Linz, Linz, Austria
- Headache Medical Center Linz, Linz, Austria
| |
Collapse
|
4
|
Song Y, Gou Y, Gao J, Chen D, Zhang H, Zhao W, Qian F, Xu A, Shen Y. Lomerizine attenuates LPS-induced acute lung injury by inhibiting the macrophage activation through reducing Ca 2+ influx. Front Pharmacol 2023; 14:1236469. [PMID: 37693893 PMCID: PMC10484514 DOI: 10.3389/fphar.2023.1236469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening lung diseases with high mortality rates, predominantly attributable to acute and severe pulmonary inflammation. Lomerizine (LMZ) is a calcium channel blocker previously used in preventing and treating migraine. Here, we found that LMZ inhibited inflammatory responses and lung pathological injury by reducing pulmonary edema, neutrophil infiltration and pro-inflammatory cytokine production in lipopolysaccharide (LPS)-induced ALI mice. In vitro experiments, upon treating with LMZ, the expression of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was attenuated in macrophages. The phosphorylation of p38 MAPK, ERK1/2, JNK, and NF-κB p65 was inhibited after LMZ treatment. Furthermore, LPS-induced Ca2+ influx was reduced by treating with LMZ, which correlated with inhibition of pro-inflammatory cytokine production. And L-type Ca2+ channel agonist Bay K8644 (BK) could restore cytokine generation. In conclusion, our study demonstrated that LMZ alleviates LPS-induced ALI and is a potential agent for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yunduan Song
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiameng Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dongxin Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
5
|
Varga DP, Menyhárt Á, Pósfai B, Császár E, Lénárt N, Cserép C, Orsolits B, Martinecz B, Szlepák T, Bari F, Farkas E, Dénes Á. Microglia alter the threshold of spreading depolarization and related potassium uptake in the mouse brain. J Cereb Blood Flow Metab 2020; 40:S67-S80. [PMID: 31987008 PMCID: PMC7687034 DOI: 10.1177/0271678x19900097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective elimination of microglia from the brain was shown to dysregulate neuronal Ca2+ signaling and to reduce the incidence of spreading depolarization (SD) during cerebral ischemia. However, the mechanisms through which microglia interfere with SD remained unexplored. Here, we identify microglia as essential modulators of the induction and evolution of SD in the physiologically intact brain in vivo. Confocal- and super-resolution microscopy revealed that a series of SDs induced rapid morphological changes in microglia, facilitated microglial process recruitment to neurons and increased the density of P2Y12 receptors (P2Y12R) on recruited microglial processes. In line with this, depolarization and hyperpolarization during SD were microglia- and P2Y12R-dependent. An absence of microglia was associated with altered potassium uptake after SD and increased the number of c-fos-positive neurons, independently of P2Y12R. Thus, the presence of microglia is likely to be essential to maintain the electrical elicitation threshold and to support the full evolution of SD, conceivably by interfering with the extracellular potassium homeostasis of the brain through sustaining [K+]e re-uptake mechanisms.
Collapse
Affiliation(s)
- Dániel P Varga
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Balázs Pósfai
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Császár
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tamás Szlepák
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
6
|
Mercadal B, Vicente R, Ivorra A. Pulsed radiofrequency for chronic pain: In vitro evidence of an electroporation mediated calcium uptake. Bioelectrochemistry 2020; 136:107624. [PMID: 32784104 DOI: 10.1016/j.bioelechem.2020.107624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
Pulsed radiofrequency (PRF) treatments for chronic pain consist in the delivery of a train of sinusoidal electric bursts to the targeted nerve. Despite numerous clinical evidence of its efficiency, the mechanism of action of PRF remains unclear. Since most of the reported biological effects of PRF can be initiated by a calcium influx into the neurons, we hypothesized that PRF may induce a mild electroporation effect causing a calcium uptake. To test this hypothesis, HEK-293 cells were exposed to PRF bursts and cytosolic calcium and Yo-Pro-1 uptake were monitored. After a single burst, calcium peaks were observed for electric fields above 480 V/cm while the uptake of Yo-pro-1 was insignificant. After a train of 120 bursts, the electric fields required to induce a calcium and Yo-pro-1 uptake decreased to 330 V/cm and 880 V/cm respectively. Calcium peaks were not detected when cells were treated in calcium free media. The temperature increase during the treatments was lower than 5 °C in all cases. Finally, the cell response for different burst frequencies and extracellular media conductivities correlated with the induced transmembrane voltage calculated with a numerical model. Our results support the hypothesis of an electroporation mediated calcium influx.
Collapse
Affiliation(s)
- Borja Mercadal
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain.
| | - Rubén Vicente
- Laboratory of Molecular Physiology, Experimental and Health Sciences Department, Universitat Pompeu Fabra, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Antoni Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain; Serra Húnter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. J Cereb Blood Flow Metab 2018; 38:1149-1179. [PMID: 29673289 PMCID: PMC6434447 DOI: 10.1177/0271678x18771440] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharmacological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anesthetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses could be of therapeutic use against SD in humans.
Collapse
Affiliation(s)
- Anna Klass
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| | | | - Edgar Santos
- Neurosurgery Department, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Preventive Treatment with Lomerizine Increases Cerebral Blood Flows during the Interictal Phase of Migraine. J Stroke Cerebrovasc Dis 2018; 27:998-1002. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023] Open
|
9
|
Li C, Narayan RK, Wang P, Hartings JA. Regional temperature and quantitative cerebral blood flow responses to cortical spreading depolarization in the rat. J Cereb Blood Flow Metab 2017; 37:1634-1640. [PMID: 27581720 PMCID: PMC5435295 DOI: 10.1177/0271678x16667131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regional temperature and quantitative regional cerebral blood flow responses to cortical spreading depolarization in the rat were continuously monitored in the same tissue using a microfabricated thermal diffusion sensor that recalibrates and measures in 5-s cycles. The regional cerebral blood flow response had four phases, including early hyperemia (peak: 226% of baseline; duration: 113.1 ± 14.4 s) and late oligemia (minimum: 57%, duration: 28.4 ± 3.7 min). Temperature rose with the start of the regional cerebral blood flow response to a peak increase of 0.28 ± 0.06℃ and returned to baseline near the start of oligemia. This technology may be useful for multimodal monitoring in both the laboratory and clinic.
Collapse
Affiliation(s)
- Chunyan Li
- 1 Cushing Neuromonitoring Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA.,2 Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Raj K Narayan
- 2 Department of Neurosurgery, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- 3 Center for Translational Research, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jed A Hartings
- 4 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, UC Neuroscience Institute, and Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
10
|
Kurauchi Y, Mokudai K, Mori A, Sakamoto K, Nakahara T, Morita M, Kamimura A, Ishii K. l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway. J Pharmacol Sci 2017; 133:146-155. [PMID: 28325558 DOI: 10.1016/j.jphs.2017.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
l-Citrulline is a potent precursor of l-arginine, and exerts beneficial effect on cardiovascular system via nitric oxide (NO) production. Migraine is one of the most popular neurovascular disorder, and imbalance of cerebral blood flow (CBF) observed in cortical spreading depression (CSD) contributes to the mechanism of migraine aura. Here, we investigated the effect of l-citrulline on cardiovascular changes to KCl-induced CSD. in rats. Intravenous injection of l-citrulline prevented the decrease in CBF, monitored by laser Doppler flowmetry, without affecting mean arterial pressure and heart rate during CSD. Moreover, l-citrulline attenuated propagation velocity of CSD induced by KCl. The effect of l-citrulline on CBF change was prevented by l-NAME, an inhibitor of NO synthase, but not by indomethacin, an inhibitor of cyclooxygenase. On the other hand, attenuation effect of l-citrulline on CSD propagation velocity was prevented not only by l-NAME but also by indomethacin. In addition, propagation velocity of CSD was attenuated by intravenous injection of NOR3, a NO donor, which was diminished by ODQ, an inhibitor of soluble guanylyl cyclase. These results suggest that NO/cyclic GMP- and prostanoids-mediated pathway differently contribute to the effect of l-citrulline on the maintenance of CBF.
Collapse
Affiliation(s)
- Yuki Kurauchi
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Koichi Mokudai
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masahiko Morita
- Healthcare Products Development Center, Kyowa Hakko Bio Co., Ltd., 2 Miyukigaoka, Tsukuba-shi, Ibaraki 305-0841, Japan
| | - Ayako Kamimura
- Healthcare Products Development Center, Kyowa Hakko Bio Co., Ltd., 2 Miyukigaoka, Tsukuba-shi, Ibaraki 305-0841, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
11
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
12
|
Ishii M, Katoh H, Takagi M, Kawamura M, Shimizu S. Influence of the Tohoku-Pacific Ocean Earthquake and Its Aftershocks on the Response to Prophylactic Therapy with Lomerizine in Patients with Migraine in Tokyo: A Retrospective Study. Eur Neurol 2014; 71:252-8. [DOI: 10.1159/000357209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
|
13
|
Characteristics of inconsistent responders to prophylaxis therapy with lomerizine in patients with migraine: a retrospective study in Japan. J Neurol Sci 2013; 335:118-23. [PMID: 24074550 DOI: 10.1016/j.jns.2013.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 01/14/2023]
Abstract
Although lomerizine is used as a first-line prophylactic drug for migraines in Japan, approximately 30% of patients fail to respond to this treatment. On the basis of medical records, we investigated the involvement of clinical factors in response to lomerizine used in patients with migraine as primary headache and established a scoring system for predicting clinical responses to prophylactic therapy. Ninety-four consistent responders and 33 inconsistent responders to lomerizine were enrolled in this study. Multivariate stepwise logistic regression analysis revealed that migraine plus tension-type headache as primary headache and frequency of headache attacks were significant factors that contributed independently to negative response [odds ratio, 3.817 (no vs. yes; 95% confidence interval (CI), 1.264-11.628) and 5.814 (>15 episode days/month vs. 0-14 episode days/month; 95% CI, 2.381-14.286), respectively]. The predictive index (PI) of clinical responses to lomerizine in patients with migraine was calculated using the regression coefficients of two factors as an integer, where the score for inconsistent responders (1.00±0.71) was significantly higher than that for consistent responders (0.37±0.53, p<0.001). Sensibility of the low-scoring group (PI=0) was 75.8%, and specificity of the high-scoring group (PI=2) was 97.9%. Groups scoring low, intermediated and high included 11.6%, 35.4% and 80.0% of inconsistent responders, respectively. The PI value obtained might represent an appropriate scoring system to predict responses in these patients.
Collapse
|
14
|
Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 2013; 35:941-57. [PMID: 24360503 DOI: 10.1016/j.neurobiolaging.2013.11.019] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, share a common cellular and molecular pathogenetic mechanism involving aberrant misfolded protein or peptide aggregation and deposition. Autophagy represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Emerging studies have demonstrated that up-regulation of autophagy can lead to decreased levels of these toxic aggregate-prone proteins, and is beneficial in the context of aging and various models of neurodegenerative diseases. Understanding the signaling pathways involved in the regulation of autophagy is crucial to the development of strategies for therapy. This review will discuss the cellular and molecular mechanisms of autophagy and its important role in the pathogenesis of aging and neurodegenerative diseases, and the ongoing drug discovery strategies for therapeutic modulation.
Collapse
|
15
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
16
|
Enhanced subcortical spreading depression in familial hemiplegic migraine type 1 mutant mice. J Neurosci 2011; 31:5755-63. [PMID: 21490217 DOI: 10.1523/jneurosci.5346-10.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial hemiplegic migraine type 1, a monogenic migraine variant with aura, is linked to gain-of-function mutations in the CACNA1A gene encoding Ca(V)2.1 channels. The S218L mutation causes severe channel dysfunction, and paroxysmal migraine attacks can be accompanied by seizures, coma, and hemiplegia; patients expressing the R192Q mutation exhibit hemiplegia only. Familial hemiplegic migraine knock-in mice expressing the S218L or R192Q mutation are highly susceptible to cortical spreading depression, the electrophysiological surrogate for migraine aura, and develop severe and prolonged motor deficits after spreading depression. The S218L mutants also develop coma and seizures and sometimes die. To investigate underlying mechanisms for these symptoms, we used multielectrode electrophysiological recordings, diffusion-weighted magnetic resonance imaging, and c-fos immunohistochemistry to trace spreading depression propagation into subcortical structures. We showed that unlike the wild type, cortical spreading depression readily propagated into subcortical structures in both familial hemiplegic migraine type 1 mutants. Whereas the facilitated subcortical spread appeared limited to the striatum in R192Q, hippocampal and thalamic spread was detected in the S218L mutants with an allele-dosage effect. Both strains exhibited increased susceptibility to subcortical spreading depression and reverberating spreading depression waves. Altogether, these data show that spreading depression propagates between cortex, basal ganglia, diencephalon, and hippocampus in genetically susceptible brains, which could explain the prolonged hemiplegia, coma, and seizure phenotype in this variant of migraine with aura.
Collapse
|
17
|
Li F, Qiu E, Dong Z, Liu R, Wu S, Yu S. Protection of flunarizine on cerebral mitochondria injury induced by cortical spreading depression under hypoxic conditions. J Headache Pain 2011; 12:47-53. [PMID: 21350793 PMCID: PMC3055997 DOI: 10.1007/s10194-011-0300-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/25/2010] [Indexed: 10/27/2022] Open
Abstract
A rat cortical spreading depression (CSD) model was established to explore whether cerebral mitochondria injury was induced by CSD under both normoxic and hypoxic conditions and whether flunarizine had a protective effect on cerebral mitochondria. SD rats, which were divided into seven groups, received treatment as follows: no intervention (control Group I); 1 M NaCl injections (Group II); 1 M KCl injections (Group III); intraperitoneal flunarizine (3 mg/kg) 30 min before KCl injections (Group IV); 14% O(2) inhalation before NaCl injections (Group V); 14% O(2) inhalation followed by KCl injections (Group VI); 14% O(2) inhalation and intraperitoneal flunarizine followed by KCl injections (Group VII). Following treatment, brains were removed for the analysis of mitochondria transmembrane potential (MMP) and oxidative respiratory function after recording the number, amplitude and duration of CSD. The duration of CSD was significantly longer in Group VI than that in Group III. The number and duration of CSD in Group VII was significantly lower than that in Group VI. MMP in Group VI was significantly lower than that in Group III, and MMP in Group VII was significantly higher than that in Group VI. State 4 respiration in Group VI was significantly higher than that in Group III, and state 3 respiration in Group VII was significantly higher than that in Group VI. Respiration control of rate in Group VII was also significantly higher than that in Group VI. Thus, we concluded that aggravated cerebral mitochondria injury might be attributed to CSD under hypoxic conditions. Flunarizine can alleviate such cerebral mitochondria injury under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Fengpeng Li
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Ruozhuo Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shiwen Wu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
18
|
Alleviation of brain hypoperfusion after preventative treatment with lomerizine in an elderly migraineur with aura. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2010; 2011:782758. [PMID: 21490733 PMCID: PMC3065840 DOI: 10.1155/2011/782758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 12/06/2010] [Indexed: 11/17/2022]
Abstract
Previous studies of brain single-photon emission tomography (SPECT) showed changes of regional cerebral blood flow (rCBF) in migraineurs during prodromes or headache attacks. Little is known about how successful medication of migraine prevention can reflect rCBF in migraineurs. We highlighted alternation of brain SPECT findings in a migraineur with aura before and after prophylactic treatment with lomerizine, a calcium channel blocker. A 70-year-old man with migraine developed visual disturbance frequently at walking exercise for the recent 3 months. After this visual attack, a mild-degree of throbbing headache occured occasionally. Brain SPECT using 99mTc-ethyl cysteinate dimer was performed at interictal time of migraine. Brain SPECT before lomerizine treatment revealed hypoperfusion in the frontal, parietal, and occipital regions. He was diagnosed with recurrence of migraine with aura (MA). Lomerizine (10 mg/day, po) was administered for 3 months. MA and visual aura without headache were dramatically improved. Migraine attacks and visual disturbance were not induced at exercise. At 3 months after lomerizine medication, brain SPECT showed remarkable increase of rCBF. These SPECT changes of our patient indicated that antimigraine mechanism of lomerizine could contribute to restoration of cerebral hypoperfusion.
Collapse
|
19
|
Wolthausen J, Sternberg S, Gerloff C, May A. Are Cortical Spreading Depression and Headache in Migraine Causally Linked? Cephalalgia 2009; 29:244-9. [DOI: 10.1111/j.1468-2982.2008.01713.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the past few decades, much controversy has surrounded the pathophysiology of migraine. Cortical spreading depression (CSD) is widely accepted as the neuronal process underlying visual auras. It has been proposed that CSD can also cause the headaches, at least in migraine with aura. We describe three patients, each fulfilling the International Headache Society criteria for migraine with aura, who suffered from headaches 6–10 days per month. Two patients were treated with flunarizine and the third patient with topiramate for the duration of 4 months. All patients reported that aura symptoms resolved completely, whereas the migraine headache attacks persisted or even increased. These observations question the theory that CSD (silent or not) is a prerequisite for migraine headaches.
Collapse
Affiliation(s)
- J Wolthausen
- Department of Neurology, University of Hamburg, Hamburg, Germany
| | - S Sternberg
- Department of Systems Neuroscience, University of Hamburg, Hamburg, Germany
| | - C Gerloff
- Department of Neurology, University of Hamburg, Hamburg, Germany
| | - A May
- Department of Systems Neuroscience, University of Hamburg, Hamburg, Germany
| |
Collapse
|
20
|
Iwasaki S, Ushio M, Chihara Y, Ito K, Sugasawa K, Murofushi T. Migraine-associated vertigo: clinical characteristics of Japanese patients and effect of lomerizine, a calcium channel antagonist. Acta Otolaryngol 2007:45-9. [PMID: 18340570 DOI: 10.1080/03655230701596491] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSION Lomerizine, a calcium channel blocker, may be effective as a treatment for migraine-associated vertigo (MAV). Objective. To determine the clinical characteristics of patients with MAV in Japan and the effectiveness of lomerizine. PATIENTS AND METHODS This was a retrospective chart review carried out in a university hospital of 33 patients who fulfilled the diagnostic criteria for MAV. All patients were initially treated with dietary manipulation. If this therapy was unsuccessful, oral medications, mainly lomerizine, were administered. Medical records were reviewed to find clinical characteristics of patients with MAV and to evaluate the effects of the therapy on vertigo/dizziness symptoms. RESULTS A marked female predominance was found (23 women, 10 men). The frequency and the duration of vertigo varied across patients. About 60% of the patients had cochlear symptoms during an attack, among which bilateral aural fullness was most frequent. Oto-neurological examination showed abnormalities in 33% of the patients. Overall, 27 of the 33 patients (82%) responded to our therapy. Among the 22 patients who were prescribed lomerizine, 19 patients (87%) showed resolution or significant improvement of the symptoms.
Collapse
|
21
|
Richter F, Lehmenkühler A, Schaible HG. Voltage-gated calcium channels are not involved in generation and propagation of spreading depression (SD) in the brainstem of immature rats. Neurosci Lett 2005; 390:15-20. [PMID: 16112454 DOI: 10.1016/j.neulet.2005.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/18/2005] [Accepted: 07/26/2005] [Indexed: 11/21/2022]
Abstract
Spreading depression (SD) can be elicited in the brainstem of rats younger than 13 days when excitability is enhanced by acetate superfusion [F. Richter, S. Rupprecht, A. Lehmenkühler, H.-G. Schaible, Spreading depression can be elicited in brain stem in immature but not adult rats, J. Neurophysiol. 90 (2003) 2163--2170]. To investigate whether voltage-gated calcium channels (VGCCs) modify initiation and propagation of SD in this type of tissue, we applied specific blockers to L-, T-, P/Q-, and N-type VGCCs locally or systemically. SD-related d.c. potentials and concomitant increases in extracellular potassium concentration ([K(+)](e)) were unaffected by the L- and T-type VGCC blocker flunarizine that was applied either systemically (up to 2mg/kg body weight) or by superfusion onto the brainstem (40 microM). In addition, local application of the P/Q-type VGCC blocker omega-agatoxin (1 microM) or of the N-type VGCC blocker omega-conotoxin (1 microM) to the brainstem surface did not influence SD. The results indicate that VGCCs do not modify the generation or propagation of SDs in the brainstem of the immature rat. Blockade of N-type VGCCs disturbed the normal breathing rhythm. Application of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) (250-1000 microM) that elicited SD in the immature cortex, failed to elicit SD in the immature brainstem. In summary, it is likely that K(+) initiates and propagates brainstem SDs.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I - Neurophysiology, Friedrich Schiller University Jena, Teichgraben 8, D-07740 Jena, Germany.
| | | | | |
Collapse
|
22
|
Hara H, Toriu N, Shimazawa M. Clinical potential of lomerizine, a Ca2+ channel blocker as an anti-glaucoma drug: effects on ocular circulation and retinal neuronal damage. ACTA ACUST UNITED AC 2005; 22:199-214. [PMID: 15492768 DOI: 10.1111/j.1527-3466.2004.tb00141.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glaucoma is defined as an optic neuropathy with characteristic changes in the optic nerve head and ultimate loss of visual field. Previous studies have suggested that (a) mechanical damage due to raised intraocular pressure and (b) a compromised tissue circulation in the optic nerve head play significant roles in the development of glaucomatous damage in the optic nerve head. Recently, we found that lomerizine, a new Ca(2+) channel blocker, increased ocular circulation and protected neuronal cells against retinal neurotoxicity both in vitro and in vivo with minimal cardiovascular side effects. We examined the effect of lomerizine on the ocular circulation and compared it with those of other Ca(2+) channel blockers in normal rabbits and in rabbits with an endothelin-1-disturbed circulation in the optic nerve head. In anesthetized rabbits, lomerizine and the other Ca(2+) channel blockers increased the ocular circulation and also inhibited the hypoperfusion induced in optic nerve head tissue by an intravitreous injection of endothelin-1. Whereas the other Ca(2+) channel blockers produced changes in blood pressure and heart rate, the effects of lomerizine on these parameters were slight. In healthy humans, lomerizine increased blood velocity in the optic nerve head, without significantly altering blood pressure or heart rate. Moreover, lomerizine reduced retinal damage in rats both in vitro and in vivo, presumably through a Ca(2+) channel blocking effect via an action that may involve a direct protection of retinal neurons as well as an improvement in the ocular circulation. These results indicate that lomerizine may be useful as a therapeutic drug against ischemic retinal diseases (such as glaucoma and retinal vascular occlusive diseases) that involve a disturbance of the ocular circulation.
Collapse
Affiliation(s)
- Hideaki Hara
- Department of Biofunctional Molecules, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan.
| | | | | |
Collapse
|
23
|
Iqbal Chowdhury GM, Liu Y, Tanaka M, Fujioka T, Ishikawa A, Nakamura S. Cortical spreading depression affects Fos expression in the hypothalamic paraventricular nucleus and the cerebral cortex of both hemispheres. Neurosci Res 2003; 45:149-55. [PMID: 12573461 DOI: 10.1016/s0168-0102(02)00207-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present experiments were performed to clarify the brain sites whose activity is affected exclusively by cortical spreading depression (CoSD). For this purpose, Fos protein, a product of an immediate early gene, was used as a marker of neuronal activation. Because Fos can be induced by many manipulations such as stress stimuli, we verified CoSD-induced Fos expression by excluding the influence of other factors such as anaesthesia and surgical manipulation. CoSD was induced by applying a KCl solution directly to the dura mater over the cerebral cortex, and Fos expression in the brain was assessed by immunohistochemistry using antibodies against Fos protein. We found that during CoSD, Fos expression was increased specifically in the magnocellular region of the hypothalamic paraventricular nucleus (PVN), as well as in the ipsilateral cortex, whereas reduced Fos expression was observed in both the parvocellular region of the PVN and the whole cortex contralateral to the CoSD site. Consistent with the reduced Fos expression, approximately 40% of neurons in the contralateral cortex revealed a suppression of electrical activity during CoSD. These results suggest that in addition to the ipsilateral cortex, CoSD affects Fos expression exclusively in the PVN and the contralateral cortex.
Collapse
|
24
|
Abstract
Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT(1B/1D) agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease.Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.
Collapse
Affiliation(s)
- Kelly L Rogers
- Genomics Research Centre, Griffith University Gold Coast, Gold Coast Mail Centre, Southport, Queensland 9726, Australia
| | | | | |
Collapse
|
25
|
Yenari MA, Onley D, Hedehus M, deCrespigny A, Sun GH, Moseley ME, Steinberg GK. Diffusion- and perfusion-weighted magnetic resonance imaging of focal cerebral ischemia and cortical spreading depression under conditions of mild hypothermia. Brain Res 2000; 885:208-19. [PMID: 11102575 DOI: 10.1016/s0006-8993(00)02942-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In a model of experimental stroke, we characterize the effects of mild hypothermia, an effective neuroprotectant, on fluid shifts, cerebral perfusion and spreading depression (SD) using diffusion- (DWI) and perfusion-weighted MRI (PWI). Twenty-two rats underwent 2 h of middle cerebral artery (MCA) occlusion and were either kept normothermic or rendered mildly hypothermic shortly after MCA occlusion for 2 h. DWI images were obtained 0.5, 2 and 24 h after MCA occlusion, and maps of the apparent diffusion coefficient (ADC) were generated. SD-like transient ADC decreases were also detected using DWI in animals subjected to topical KCl application (n=4) and ischemia (n=6). Mild hypothermia significantly inhibited DWI lesion growth early after the onset of ischemia as well as 24 h later, and improved recovery of striatal ADC by 24 h. Mild hypothermia prolonged SD-like ADC transients and further decreased the ADC following KCl application and immediately after MCA occlusion. Cerebral perfusion, however, was not affected by temperature changes. We conclude that mild hypothermia is neuroprotective and suppresses infarct growth early after the onset of ischemia, with better ADC recovery. The ADC decrease during SD was greater during mild hypothermia, and suggests that the source of the ADC is more complex than previously believed.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurosurgery, Stanford University Medical Center, 120 Welch Road, HSLS Bldg. P304, Stanford, CA 94305-5487, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kuge Y, Hasegawa Y, Yokota C, Minematsu K, Hashimoto N, Miyake Y, Yamaguchi T. Effects of single and repetitive spreading depression on cerebral blood flow and glucose metabolism in cats: a PET study. J Neurol Sci 2000; 176:114-23. [PMID: 10930593 DOI: 10.1016/s0022-510x(00)00327-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the effects of spreading depression (SD) on cerebral circulation and metabolism, we elicited a single or repetitive episode of SD and evaluated CBF and CMRglc three-dimensionally in normal cats (n=4, in each group) using a high-resolution positron emission tomography (PET) scanner. SD was evoked by applying KCl to the left occipital cortex. We then monitored DC potential changes with tungsten electrodes inserted into the left temporal cortex. CBF was measured twice before and three times (immediately, 30-60 min, and 60-120 min) following KCl application using [15O]H(2)O, and CMRglc was determined using 2-[18F]fluoro-2-deoxy-D-glucose immediately following the last CBF measurement. The following results were obtained: (1) a single episode of SD produced a temporary CBF increase, followed by a long-lasting hypoperfusion in the cortex, with no significant changes to CBF observed in the subcortex; (2) no significant CMRglc changes were observed in either cortical or subcortical regions following a single episode of SD; (3) a flow-metabolism uncoupling was observed in the cortical regions concurrently with persistent hypoperfusion; (4) repetitive SD produced significant CBF changes in the cortex; and (5) the cortical CMRglc increased as a result of repeated episodes of SD, with no significant changes observed in the subcortex. Thus, we succeeded in determining three-dimensionally the effects of single and repetitive SD on CBF and CMRglc in cats using a high-resolution PET scanner. The present study provides the first direct evidence of CBF-CMRglc uncoupling occurring concurrently with persistent hypoperfusion following SD.
Collapse
Affiliation(s)
- Y Kuge
- Institute for Biofunctional Research Co., Inc., Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Toriu N, Akaike A, Yasuyoshi H, Zhang S, Kashii S, Honda Y, Shimazawa M, Hara H. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000; 70:475-84. [PMID: 10865996 DOI: 10.1006/exer.1999.0809] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of a new Ca2+ channel blocker, lomerizine, on the intraocular hypertension-induced ischemia/reperfusion injury in rat retina and on the glutamate-induced neurotoxicity in rat cultured retinal neurons, and compared its effects with those of a Ca2+ channel blocker (flunarizine) and an N-methyl-D-aspartate receptor antagonist (MK-801). Morphometric evaluation at 7 days after ischemia/reperfusion showed that treatment with lomerizine (0.1 and 1 mg kg(-1), i.v.) prior to ischemia and again immediately after reperfusion dose-dependently reduced the retinal damage. Treatment with MK-801 (1 mg kg(-1), i.v.) before ischemia significantly reduced the resulting retinal damage. Flunarizine (0.1 and 1 mg kg(-1), i.v.) tended to reduce the retinal damage, but its effect did not reach statistical significance. In an in vitro study, pretreatment with lomerizine (0.1 and 1 microM) or flunarizine (1 microM) significantly reduced glutamate-induced neurotoxicity, the effects being concentration dependent. Lomerizine (1 microM) also exhibited protective effects against both the N-methyl-D-aspartate and kainate induced types of neurotoxicity. However, lomerizine (1 microM) had little effect on the neurotoxicity induced by ionomycin (1 microM) application. Glutamate-induced neurotoxicity was abolished by removing Ca2+ from the medium. These results indicate that lomerizine protects neuronal cells against retinal neurotoxicity both in vivo and in vitro, and that this Ca2+ channel blocker may be useful as a therapeutic drug against retinal diseases that cause neuronal injury, such as normal tension glaucoma (NTG).
Collapse
Affiliation(s)
- N Toriu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hara H, Shimazawa M, Sasaoka M, Yamada C, Iwakura Y, Sakai T, Maeda Y, Yamaguchi T, Sukamoto T, Hashimoto M. Selective effects of lomerizine, a novel diphenylmethylpiperazine Ca2+ channel blocker, on cerebral blood flow in rats and dogs. Clin Exp Pharmacol Physiol 1999; 26:870-6. [PMID: 10561807 DOI: 10.1046/j.1440-1681.1999.03154.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study we examined the effects of a new Ca2+ channel blocker (lomerizine), an antimigraine drug, on cerebral cortical blood flow (CBF) in anaesthetized rats (laser Doppler flowmetry) and on vertebral blood flow in anaesthetized beagle dogs (electromagnetic flowmeter). 2. Lomerizine (1.25-10 mg/kg, p.o.) dose-dependently increased CBF in rats without affecting blood pressure (BP) or heart rate (HR). 3. The plasma concentration of lomerizine (free base) in anaesthetized rats at 30 and 60 min after the initial administration of 5 mg/kg, p.o., time at which there was a significant increase in CBF, was similar to that reported in healthy subjects receiving lomerizine at 10 mg (2 x 5 mg)/day, p.o., a dose that significantly reduces the frequency and mean duration of headache attacks. 4. Flunarizine (10 mg/kg, p.o.) did not increase CBF significantly. Flunarizine (20 mg/kg, p.o.) did not increase CBF, but did decrease BP 30-120 min after its administration. 5. Lomerizine (2.5 and 5 mg/kg, intraduodenally) dose-dependently increased vertebral blood flow in dogs without significantly changing BP or HR. With 10 mg/kg intraduodenal lomerazine, vertebral blood flow remained elevated from 20 to 240 min after administration and BP was decreased from 20 to 120 min. 6. Thus, lomerizine had a greater effect on CBF than on BP and HR and, therefore, it may be clinically effective in conditions associated with circulatory disturbances in the brain, such as migraine, without producing systemic effects (e.g. hypotension) generally seen with other Ca2+ channel blockers.
Collapse
Affiliation(s)
- H Hara
- Department of Pharmacology, Kanebo Ltd, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lambert GA, Michalicek J, Storer RJ, Zagami AS. Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia 1999; 19:631-8. [PMID: 10524656 DOI: 10.1046/j.1468-2982.1999.019007631.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of cortical spreading depression, a proposed initiating event for migraine pain, on cortical blood flow (laser Doppler method) and on the spontaneous firing rate and stimulus-evoked responses of trigemino-cervical neurons with craniovascular input was studied in 17 neurons in 8 cats anesthetized with chloralose. Cortical spreading depression, induced via cortical pinprick injury, produced an initial wave of cortical hyperemia (243+/-57% of control) and a later and smaller phase of oligemia (96+/-4% of control). Neither the basal discharge rate (6.7+/-1.7 sec(-1)) nor the evoked responses to electrical stimulation of the superior sagittal sinus (4.1+/-0.8 discharges per stimulus) of upper cervical spinal cord neurons was altered over periods of up to 2 h following one, two, or three waves of spreading cortical depression. We conclude that a small number of episodes of cortical spreading depression is not capable of activating C2 cervical spinal cord craniovascular sensory neurons in the cat.
Collapse
Affiliation(s)
- G A Lambert
- Institute of Neurological Sciences, The Prince Henry Hospital, University of New South Wales, Little Bay, Australia.
| | | | | | | |
Collapse
|
30
|
Shimazawa M, Sugiyama T, Azuma I, Araie M, Iwakura Y, Watari M, Sakai T, Hara H. Effect of lomerizine, a new Ca(2+)channel blocker, on the microcirculation in the optic nerve head in conscious rabbits: a study using a laser speckle technique. Exp Eye Res 1999; 69:185-93. [PMID: 10433855 DOI: 10.1006/exer.1999.0689] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of a new Ca(2+)channel blocker, lomerizine (KB-2796), and compared it with that of nilvadipine, on the optic nerve head circulation in conscious rabbits using a laser speckle method. Lomerizine (0.03, 0.1 and 0.3 mg kg(-1), i.v.) and nilvadipine (0.003, 0.01 and 0.03 mg kg(-1), i.v.) each significantly increased the normalized blur values (an index of tissue blood velocity) in the optic nerve head in a dose-dependent manner. Neither lomerizine nor nilvadipine caused a significant change in intraocular pressure. Lomerizine produced no significant change in mean arterial blood pressure, although at 0.3 mg kg(-1), i. v. heart rate was significantly increased 5 min after its administration. In contrast, nilvadipine significantly decreased mean arterial blood pressure at 5 to 15 min after its administration and increased heart rate at 5-30 min after its administration (both effects being dose-dependent). Our results indicate that while lomerizine, like nilvadipine, increased tissue blood velocity in the optic nerve head, it did not affect mean arterial blood pressure at the doses that affected optic nerve head circulation, unlike nilvadipine. The plasma concentration of lomerizine (free base) obtained from rabbits at 15 min after administration at a dose of 0. 03 mg kg(-1)i.v., when time there was a significant increase in tissue blood velocity in the optic nerve head, was very similar to plasma concentration with healthy subjects receiving lomerizine at 10 mg (5 mgx2) day(-1), p.o., a dose that achieved a significant reduction in the frequency and mean duration of headache attacks but did not affect the blood pressure or heart rate. These results suggest that lomerizine may be clinically effective in favorably affecting the optic nerve circulation without producing systemic effects such as the hypotension seen during treatment with other Ca(2+)channel blockers.
Collapse
Affiliation(s)
- M Shimazawa
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Stroke is the third leading cause of death and the main disabling neurologic disease. The finding in experimental studies that neuronal death does not occur immediately after ischemic injury has encouraged the development of neuroprotective agents. Various Ca2+ channel antagonists, that is, L-type-selective or non-selective derivatives from classical Ca2+ channel antagonists, have been examined for their ability of neuroprotection through improvement of cerebral blood circulation or inhibition of Ca2+ overload induced by excessive glutamate release. Although some of the antagonists showed efficient neuroprotection in animal models, systemic hypotension limited the utility of these drugs, and none of the compounds showed beneficial effects in treatments for acute ischemic stroke in clinical trials. Drugs other than Ca2+ channel antagonists developed on the basis of the glutamate-Ca2+ overload hypothesis were shown also to lack clinical benefit. Recently, some mechanisms have been proposed to interpret neuronal death in relation to hyperexcitability or apoptosis after ischemic insult. In these hypotheses, activation of the Ca2+ channel types selectively expressed in neuronal tissues is proposed as a critical step of the pathways toward neurodegeneration. Thus, it is increasingly recognized that developing highly selective compounds for neuronal Ca2+ channels is not only important for treatment of stroke but also for elucidation of mechanisms that underlie neurodegeneration.
Collapse
Affiliation(s)
- T Kobayashi
- Pharmacological Research Laboratory, Tanabe Seiyaku, Toda, Saitama, Japan.
| | | |
Collapse
|
32
|
Abstract
Expression of c-fos-immunoreactivity (c-fos-ir) has been demonstrated in the dorsal horn of lumbar segments of an isolated spinal cord preparation from 3 week old rats. The method of preparation generated a low level of c-fos-ir activity which was not significantly altered by low intensity (1.5 times threshold) dorsal root stimulation, but was significantly increased by high intensity (20 times threshold) stimulation. Replacement of the calcium in the bathing medium by 2 mM manganese suppressed all detectable c-fos-ir, whereas inclusion of 0.5 microM capsaicin caused intense c-fos-ir expression in the absence of stimulation. The number of dorsal horn cells exhibiting c-fos-ir increased between 0.5 and 1 h after stimulation, reaching a maximum at 2 h, with no further increase at longer intervals. Few positive cells were found when the incubation temperature was reduced from 27 to 20 degrees C. The strongest increase in c-fos-ir was found in the dorsal horn ipsilateral to the stimulated dorsal root and a smaller, but significant, increase was also seen in the contralateral dorsal horn. Cords obtained from animals treated at 1 day old with capsaicin to destroy afferent C fibres showed a reduction in the number of c-fos-ir positive cells induced by high intensity dorsal root stimulation. This preparation will aid detailed investigation of the pharmacology of nociceptive pathways.
Collapse
Affiliation(s)
- L Zhang
- Department of Physiology and Pharmacology, University of Southampton, UK
| | | | | | | |
Collapse
|
33
|
Eickelberg O, Roth M, Block LH. Effects of amlodipine on gene expression and extracellular matrix formation in human vascular smooth muscle cells and fibroblasts: implications for vascular protection. Int J Cardiol 1997; 62 Suppl 2:S31-7. [PMID: 9488193 DOI: 10.1016/s0167-5273(97)00239-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMC) are involved in the pathogenesis of hypertension and coronary artery disease. Amlodipine, a calcium channel blocker of the dihydropyridine type, is widely used in the therapy of these diseases, and has been shown to reduce the progression of the underlying pathophysiological mechanisms, such as atherosclerosis and restenosis. Research on the impact of calcium channel blockers on cell behavior has revealed an antiproliferative effect on VSMC. Cell proliferation is tightly controlled by permanent interaction of cells with their surrounding microenvironment, the extracellular matrix (ECM). The ECM is subjected to a continuous turnover and implicated in (i) stabilization and compartmentalization of tissue architecture and (ii) local binding and preservation of growth factors and cytokines. These growth factors and cytokines can be released during degradation of the ECM, and can function as local inflammatory factors without de novo synthesis. In this context, we assessed the effects of amlodipine on the composition of the ECM and related factors. We investigated the effects of amlodipine on (i) the regulation of cellular cholesterol metabolism, (ii) the activation of genes encoding for inflammatory factors, (iii) gene expression and turnover of ECM compounds, and (iv) the activity of matrix-degrading enzymes. Most of these effects of calcium channel blockers require direct induction of gene expression. In this respect, we demonstrate that amlodipine increases expression of the cytokine interleukin-6 by directly activating the respective gene promoter in human VSMC.
Collapse
Affiliation(s)
- O Eickelberg
- Department of Internal Medicine and Research, University Hospital Basel, Switzerland
| | | | | |
Collapse
|
34
|
Hunter AJ. Calcium antagonists: their role in neuroprotection. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 40:95-108. [PMID: 8989618 DOI: 10.1016/s0074-7742(08)60717-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A J Hunter
- SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Harlow, Essex, UK
| |
Collapse
|
35
|
Hara H, Morita T, Sukamoto T, Cutrer FM. Lomerizine (KB-2796), a New Antimigraine Drug. CNS DRUG REVIEWS 1995. [DOI: 10.1111/j.1527-3458.1995.tb00284.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|