1
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
2
|
Sluter M, Bhuniya R, Yuan X, Ramaraju A, Chen Y, Yu Y, Parmar KR, Temrikar ZH, Srivastava A, Meibohm B, Jiang J, Yang CY. Novel, Brain-Permeable, Cross-Species Benzothiazole Inhibitors of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Dampen Neuroinflammation In Vitro and In Vivo. ACS Pharmacol Transl Sci 2023; 6:587-599. [PMID: 37082746 PMCID: PMC10111624 DOI: 10.1021/acsptsci.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 04/22/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme of the cyclooxygenase (COX) cascade that generates prostaglandin E2 (PGE2) during inflammatory conditions. PGE2 is known to be a potent immune signaling molecule that mediates both peripheral and central inflammations. Inhibition of mPGES-1, rather than COX, may overcome the cardiovascular side effects associated with long-term COX inhibition by providing a more specific strategy to target inflammation. However, mPGES-1 inhibitor development is hampered by the large differences in cross-species activity due to the structural differences between the human and murine mPGES-1. Here, we report that our thiazole-based mPGES-1 inhibitors, compounds 11 (UT-11) and 19 derived from two novel scaffolds, were able to suppress PGE2 production in human (SK-N-AS) and murine (BV2) cells. The IC50 values of inhibiting PGE2 production in human and murine cells were 0.10 and 2.00 μM for UT-11 and 0.43 and 1.55 μM for compound 19, respectively. Based on in vitro and in vivo pharmacokinetic data, we selected UT-11 for evaluation in a lipopolysaccharide (LPS)-induced inflammation model. We found that our compound significantly suppressed proinflammatory cytokines and chemokines in the hippocampus but not in the kidney. Taken together, we demonstrated the potential of UT-11 in treating neuroinflammatory conditions, including epilepsy and stroke, and warrant further optimization.
Collapse
Affiliation(s)
- Madison
N. Sluter
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- College
of Graduate Health Sciences, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rajib Bhuniya
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xinrui Yuan
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Andhavaram Ramaraju
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yu Chen
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Keyur R. Parmar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zaid H. Temrikar
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ashish Srivastava
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bernd Meibohm
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chao-Yie Yang
- Departments
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol 2023; 60:2062-2069. [PMID: 36596965 DOI: 10.1007/s12035-022-03197-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8-10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood-brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Yasmen N, Sluter MN, Li L, Yu Y, Jiang J. Transient inhibition of microsomal prostaglandin E synthase-1 after status epilepticus blunts brain inflammation and is neuroprotective. Mol Brain 2023; 16:14. [PMID: 36694204 PMCID: PMC9875432 DOI: 10.1186/s13041-023-01008-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Status epilepticus (SE) in humans is characterized by prolonged convulsive seizures that are generalized and often difficult to control. The current antiseizure drugs (ASDs) aim to stop seizures quickly enough to prevent the SE-induced brain inflammation, injury, and long-term sequelae. However, sole reliance on acute therapies is imprudent because prompt treatment may not always be possible under certain circumstances. The pathophysiological mechanisms underlying the devastating consequences of SE are presumably associated with neuroinflammatory reactions, where prostaglandin E2 (PGE2) plays a pivotal role. As the terminal synthase for pathogenic PGE2, the microsomal prostaglandin E synthase-1 (mPGES-1) is rapidly and robustly induced by prolonged seizures. Congenital deletion of mPGES-1 in mice is neuroprotective and blunts gliosis following chemoconvulsant seizures, suggesting the feasibility of mPGES-1 as a potential antiepileptic target. Herein, we investigated the effects of a dual species mPGES-1 inhibitor in a mouse pilocarpine model of SE. Treatment with the mPGES-1 inhibitor in mice after SE that was terminated by diazepam, a fast-acting benzodiazepine, time-dependently abolished the SE-induced PGE2 within the brain. Its negligible effects on cyclooxygenases, the enzymes responsible for the initial step of PGE2 biosynthesis, validated its specificity to mPGES-1. Post-SE inhibition of mPGES-1 also blunted proinflammatory cytokines and reactive gliosis in the hippocampus and broadly prevented neuronal damage in a number of brain areas. Thus, pharmacological inhibition of mPGES-1 by small-molecule inhibitors might provide an adjunctive strategy that can be implemented hours after SE, together with first-line ASDs, to reduce SE-provoked brain inflammation and injury.
Collapse
Affiliation(s)
- Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
6
|
Liu Y, Liu R, Huang L, Zuo G, Dai J, Gao L, Shi H, Fang Y, Lu Q, Okada T, Wang Z, Hu X, Lenahan C, Tang J, Xiao J, Zhang JH. Inhibition of Prostaglandin E2 Receptor EP3 Attenuates Oxidative Stress and Neuronal Apoptosis Partially by Modulating p38MAPK/FOXO3/Mul1/Mfn2 Pathway after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7727616. [PMID: 36531208 PMCID: PMC9757947 DOI: 10.1155/2022/7727616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/23/2022] [Accepted: 11/19/2022] [Indexed: 09/30/2023]
Abstract
Oxidative stress and neuronal apoptosis contribute to pathological processes of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies demonstrated that the inhibition of prostaglandin E2 receptor EP3 suppressed oxidative stress and apoptotic effects after Alzheimer's disease and intracerebral hemorrhage. This study is aimed at investigating the antioxidative stress and antiapoptotic effect of EP3 inhibition and the underlying mechanisms in a rat mode of SAH. A total of 263 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Selective EP3 antagonist L798106 was administered intranasally at 1 h, 25 h, and 49 h after SAH induction. EP3 knockout CRISPR and FOXO3 activation CRISPR were administered intracerebroventricularly at 48 h prior to SAH, while selective EP3 agonist sulprostone was administered at 1 h prior to SAH. SAH grade, neurological deficits, western blots, immunofluorescence staining, Fluoro-Jade C staining, TUNEL staining, 8-OHdG staining, and Nissl staining were conducted after SAH. The expression of endogenous PGES2 increased and peaked at 12 h while the expression of EP1, EP2, EP3, EP4, and Mul1 increased and peaked at 24 h in the ipsilateral brain after SAH. EP3 was expressed mainly in neurons. The inhibition of EP3 with L798106 or EP3 KO CRISPR ameliorated the neurological impairments, brain tissue oxidative stress, and neuronal apoptosis after SAH. To examine potential downstream mediators of EP3, we examined the effect of the increased expression of activated FOXO3 following the administration of FOXO3 activation CRISPR. Mechanism studies demonstrated that L798106 treatment significantly decreased the expression of EP3, p-p38, p-FOXO3, Mul1, 4-HNE, Bax, and cleaved caspase-3 but upregulated the expression of Mfn2 and Bcl-2 in SAH rats. EP3 agonist sulprostone or FOXO3 activation CRISPR abolished the neuroprotective effects of L798106 and its regulation on expression of p38MAPK/FOXO3/Mul1/Mfn2 in the ipsilateral brain after SAH. In conclusion, the inhibition of EP3 by L798106 attenuated oxidative stress and neuronal apoptosis partly through p38MAPK/FOXO3/Mul1/Mfn2 pathway post-SAH in rats. EP3 may serve as a potential therapeutic target for SAH patients.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiaxing Dai
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuanjian Fang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Emergency, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, McCormick B, Sampson TR, Alam A, Ye K. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 2022; 71:2233-2252. [PMID: 35017199 PMCID: PMC10720732 DOI: 10.1136/gutjnl-2021-326269] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study is to investigate the role of gut dysbiosis in triggering inflammation in the brain and its contribution to Alzheimer's disease (AD) pathogenesis. DESIGN We analysed the gut microbiota composition of 3×Tg mice in an age-dependent manner. We generated germ-free 3×Tg mice and recolonisation of germ-free 3×Tg mice with fecal samples from both patients with AD and age-matched healthy donors. RESULTS Microbial 16S rRNA sequencing revealed Bacteroides enrichment. We found a prominent reduction of cerebral amyloid-β plaques and neurofibrillary tangles pathology in germ-free 3×Tg mice as compared with specific-pathogen-free mice. And hippocampal RNAseq showed that inflammatory pathway and insulin/IGF-1 signalling in 3×Tg mice brain are aberrantly altered in the absence of gut microbiota. Poly-unsaturated fatty acid metabolites identified by metabolomic analysis, and their oxidative enzymes were selectively elevated, corresponding with microglia activation and inflammation. AD patients' gut microbiome exacerbated AD pathologies in 3×Tg mice, associated with C/EBPβ/asparagine endopeptidase pathway activation and cognitive dysfunctions compared with healthy donors' microbiota transplants. CONCLUSIONS These findings support that a complex gut microbiome is required for behavioural defects, microglia activation and AD pathologies, the gut microbiome contributes to pathologies in an AD mouse model and that dysbiosis of the human microbiome might be a risk factor for AD.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Jianming Liao
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Rheinallt Jones
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - John Haran
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Center for Microbiome Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ashfaqul Alam
- Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
- Faculty of Life and Health Sciences, The Brain Cognition and Brain Disorders Institute (BCBDI), Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, Zhao Y, Miao S, Lv C, Zhao J. COX-2/PGE2 Pathway Inhibits the Ferroptosis Induced by Cerebral Ischemia Reperfusion. Mol Neurobiol 2022; 59:1619-1631. [PMID: 35013936 DOI: 10.1007/s12035-021-02706-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Cerebral ischemia reperfusion (I/R) injury easily develops in ischemic stroke, resulting in more serious injury. Ferroptosis is involved in cerebral I/R injury, but the mechanism remains unclear. Prostaglandin E2 (PGE2) is potential to regulate ferroptosis. This study mainly explored the regulation effects of PGE2 on ferroptosis induced by cerebral I/R. We first detected PGE2 levels and ferroptosis status in 11 human brain tissues. Then, we induced a cerebral I/R animal model to examine ferroptosis status in cerebral I/R. We further injected a ferroptosis inhibitor to define the response of the PGE2 pathway to ferroptosis. Finally, we injected PGE2 and pranoprofen to explore the regulation of the cyclooxygenases 2 (COX-2)/PGE2 pathway on ferroptosis in cerebral I/R. We found that PGE2 release was correlated with the levels of reactive oxygen species, malondialdehyde, glutathione peroxidase 4, COX-2, and Spermidine/spermine N1-acetyltransferase 1. Ferroptosis can be induced by cerebral I/R, while inhibition of ferroptosis induced by cerebral I/R can inactivate PGE2 synthases, degrade enzyme, and parts of PGE2 receptors, and reduce cerebral infarct volume. In turn, PGE2 inhibited ferroptosis through the reduction of Fe2+, glutathione oxidation, and lipid peroxidation, while pranoprofen, one of the COX inhibitors, played an opposite role. In conclusion, PGE2 was positively correlated with ferroptosis, inhibition of ferroptosis induced by cerebral I/R can inactivate COX-2/PGE2 pathway, and PGE2 inhibited ferroptosis induced by cerebral I/R, possibly via PGE2 receptor 3 and PGE2 receptor 4. Graphical abstract Inhibition of ferroptosis inactivates the COX-2/PGE2 pathway. Cerebral ischemia reperfusion injury induces the secretion of PGE2. After the inhibition of ferroptosis by Fer-1, the expression of cyclooxygenases (COX-1 and COX-2) decreased, and PGE2 synthases cPGES, mPGES-1, and mPGES-2 were also reduced. At the same time, the PGE2 degradation enzyme 15-PGDH was also reduced. Changes in these enzymes ultimately result in the declination of PGE2. Besides, the expression of PGE2 receptors EP3 and EP4 is also inhibited, indicating that the function they mediate is also impaired. In conclusion, after cerebral ischemia reperfusion injury, the inhibition of ferroptosis inactivates the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shun Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuying Miao
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Caihong Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, 410008, Hunan, China. .,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.
| |
Collapse
|
9
|
Li L, Yasmen N, Hou R, Yang S, Lee JY, Hao J, Yu Y, Jiang J. Inducible Prostaglandin E Synthase as a Pharmacological Target for Ischemic Stroke. Neurotherapeutics 2022; 19:366-385. [PMID: 35099767 PMCID: PMC9130433 DOI: 10.1007/s13311-022-01191-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/03/2023] Open
Abstract
As the inducible terminal enzyme for prostaglandin E2 (PGE2) synthesis, microsomal PGE synthase-1 (mPGES-1) contributes to neuroinflammation and secondary brain injury after cerebral ischemia via producing excessive PGE2. However, a proof of concept that mPGES-1 is a therapeutic target for ischemic stroke has not been established by a pharmacological strategy mainly due to the lack of drug-like mPGES-1 inhibitors that can be used in relevant rodent models. To this end, we recently developed a series of novel small-molecule compounds that can inhibit both human and rodent mPGES-1. In this study, blockade of mPGES-1 by our several novel compounds abolished the lipopolysaccharide (LPS)-induced PGE2 and pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) in mouse primary brain microglia. Inhibition of mPGES-1 also decreased PGE2 produced by neuronal cells under oxygen-glucose deprivation (OGD) stress. Among the five enzymes for PGE2 biosynthesis, mPGES-1 was the most induced one in cerebral ischemic lesions. Systemic treatment with our lead compound MPO-0063 (5 or 10 mg/kg, i.p.) in mice after transient middle cerebral artery occlusion (MCAO) improved post-stroke well-being, decreased infarction and edema, suppressed induction of brain cytokines (IL-1β, IL-6, and TNF-α), alleviated locomotor dysfunction and anxiety-like behavior, and reduced the long-term cognitive impairments. The therapeutic effects of MPO-0063 in this proof-of-concept study provide the first pharmacological evidence that mPGES-1 represents a feasible target for delayed, adjunct treatment - along with reperfusion therapies - for acute brain ischemia.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ruida Hou
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Seyoung Yang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Li L, Sluter MN, Yu Y, Jiang J. Prostaglandin E receptors as targets for ischemic stroke: Novel evidence and molecular mechanisms of efficacy. Pharmacol Res 2020; 163:105238. [PMID: 33053444 DOI: 10.1016/j.phrs.2020.105238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Over the past two decades the interest has waned in therapeutically targeting cyclooxygenase-2 (COX-2) due to growing concerns over the potential cardiovascular and cerebrovascular toxicities of the long-term use of COX-2 inhibitors. Attention thus has recently been shifted downstream to the prostaglandin signaling pathways for new druggable anti-inflammatory targets aiming for higher therapeutic specificity. Prostaglandin E2 (PGE2) is robustly synthesized in the ischemic cortex by quickly induced COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) following cerebral ischemia. The elevated PGE2, in turn, divergently regulates the excitotoxic injury and neuroinflammation by acting on four membrane-bound G protein-coupled receptors (GPCRs), namely, EP1-EP4. Markedly, all four EP receptors have been implicated in the excitotoxicity-associated brain inflammation and injury in animal models of cerebral ischemia. However promising, these preclinical studies have not yet led to a clinical trial targeting any PGE2 receptor for ischemic stroke. The goal of this article is to review the recent progress in understanding the pathogenic roles of PGE2 in cerebral ischemia as well as to provide new mechanistic insights into the PGE2 signaling via these four GPCRs in neuronal excitotoxicity and inflammation. We also discuss the feasibility of targeting EP1-EP4 receptors as an emerging delayed treatment, together with the first-line reperfusion strategy, to manage acute ischemic stroke with potentially extended window as well as improved specificity.
Collapse
Affiliation(s)
- Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
12
|
Soldner ELB, Hartz AMS, Akanuma SI, Pekcec A, Doods H, Kryscio RJ, Hosoya KI, Bauer B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J 2019; 33:13966-13981. [PMID: 31638830 DOI: 10.1096/fj.201901460rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.
Collapse
Affiliation(s)
- Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shin-Ichi Akanuma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Epilepsy Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Ikeda-Matsuo Y, Miyata H, Mizoguchi T, Ohama E, Naito Y, Uematsu S, Akira S, Sasaki Y, Tanabe M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson's disease. Neurobiol Dis 2018; 124:81-92. [PMID: 30423474 DOI: 10.1016/j.nbd.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Although increased production of prostaglandin E2 (PGE2) has been implicated in tissue damage in several pathological settings, the role of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, in dopaminergic neurodegeneration remains unclear. Here we show that mPGES-1 is up-regulated in the dopaminergic neurons of the substantia nigra of postmortem brain tissue from PD patients and in neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. The expression of mPGES-1 was also up-regulated in cultured dopaminergic neurons stimulated with 6-OHDA. The genetic deletion of mPGES-1 not only abolished 6-OHDA-induced PGE2 production but also inhibited 6-OHDA-induced dopaminergic neurodegeneration both in vitro and in vivo. Nigrostriatal projections, striatal dopamine content, and neurological functions were significantly impaired by 6-OHDA administration in wild-type (WT) mice, but not in mPGES-1 knockout (KO) mice. Furthermore, in cultured primary mesencephalic neurons, addition of PGE2 to compensate for the deficiency of 6-OHDA-induced PGE2 production in mPGES-1 KO neurons recovered 6-OHDA toxicity to almost the same extent as that seen in WT neurons. These results suggest that induction of mPGES-1 enhances 6-OHDA-induced dopaminergic neuronal death through excessive PGE2 production. Thus, mPGES-1 may be a valuable therapeutic target for treatment of PD.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan.
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels - AKITA, Japan
| | - Tomoko Mizoguchi
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | | | - Yasuhito Naito
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | - Satoshi Uematsu
- Department of Mucosal Immunology, School of Medicine, Chiba University, Japan; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Japan
| | - Yasuharu Sasaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| |
Collapse
|
14
|
Abstract
Prostaglandin E2 (PGE2) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE2 and amelioration of symptoms, and it had been thought that PGE2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE2, but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE2. Therefore, to elucidate the role of PGE2, studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
15
|
Guo Y, Lei W, Wang J, Hu X, Wei Y, Ji C, Yang J. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats. Curr Alzheimer Res 2017; 13:1006-16. [PMID: 27033056 PMCID: PMC4997938 DOI: 10.2174/1567205013666160401114601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/06/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dosedependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
16
|
Bhatia HS, Roelofs N, Muñoz E, Fiebich BL. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE 2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s. Sci Rep 2017; 7:116. [PMID: 28273917 PMCID: PMC5428011 DOI: 10.1038/s41598-017-00225-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system’s (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1–25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1−/−) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.
Collapse
Affiliation(s)
- Harsharan S Bhatia
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany. .,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany.
| | - Nora Roelofs
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avda Menéndez Pidal s/n., 14004, Córdoba, Spain.,VivaCell Biotechnology España, Parque Científico Tecnológico Rabanales 21, 14014, Córdoba, Spain
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany.,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany
| |
Collapse
|
17
|
Leclerc JL, Lampert AS, Diller MA, Doré S. PGE2-EP3 signaling exacerbates intracerebral hemorrhage outcomes in 24-mo-old mice. Am J Physiol Heart Circ Physiol 2016; 310:H1725-34. [PMID: 27084388 DOI: 10.1152/ajpheart.00638.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/07/2016] [Indexed: 01/15/2023]
Abstract
With the population aging at an accelerated rate, the prevalence of stroke and financial burden of stroke-related health care costs are expected to continue to increase. Intracerebral hemorrhage (ICH) is a devastating stroke subtype more commonly affecting the elderly population, who display increased mortality and worse functional outcomes compared with younger patients. This study aimed to investigate the contribution of the prostaglandin E2 (PGE2) E prostanoid (EP) receptor subtype 3 in modulating anatomical outcomes and functional recovery following ICH in 24-mo-old mice. EP3 is the most abundant EP receptor in the brain and we have previously shown that signaling through the PGE2-EP3 axis exacerbates ICH outcomes in young mice. Here, we show that EP3 receptor deletion results in 17.9 ± 6.1% less ICH-induced brain injury (P < 0.05) and improves neurological functional recovery (P < 0.01), as identified by lower neurological deficit scores, decreased resting time, and more gross and fine motor movements. Immunohistological staining was performed to investigate possible mechanisms of EP3-mediated neurotoxicity. Identified mechanisms include reduced blood accumulation and modulation of angiogenic and astroglial responses. Using this aged cohort of mice, we have confirmed and extended our previous results in young mice demonstrating the deleterious role of the PGE2-EP3 signaling axis in modulating brain injury and functional recovery after ICH, further supporting the notion of the EP3 receptor as a putative therapeutic avenue for the treatment of ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, Florida; Department of Neuroscience, University of Florida, Gainesville, Forida; and
| | - Andrew S Lampert
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, Florida; Department of Neuroscience, University of Florida, Gainesville, Forida; and Departments of Neurology, Psychiatry, Psychology and Pharmaceutics, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol Neurobiol 2015; 53:4754-71. [PMID: 26328537 DOI: 10.1007/s12035-015-9355-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
Cyclooxygenases (COXs) oxidize arachidonic acid to prostaglandin (PG) G2 and H2 followed by PG synthases that generates PGs and thromboxane (TX) A2. COXs are divided into COX-1 and COX-2. In the central nervous system, COX-1 is constitutively expressed in neurons, astrocytes, and microglial cells. COX-2 is upregulated in these cells under pathophysiological conditions. In hippocampal long-term potentiation, COX-2, PGE synthase, and PGE2 are induced in post-synaptic neurons. PGE2 acts pre-synaptic EP2 receptor, generates cAMP, stimulates protein kinase A, modulates voltage-dependent calcium channel, facilitates glutamatergic synaptic transmission, and potentiates long-term plasticity. PGD2, PGE2, and PGI2 exhibit neuroprotective effects via Gs-coupled DP1, EP2/EP4, and IP receptors, respectively. COX-2, PGD2, PGE2, PGF2α, and TXA2 are elevated in stroke. COX-2 inhibitors exhibit neuroprotective effects in vivo and in vitro models of stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, and schizophrenia, suggesting neurotoxicities of COX products. PGE2, PGF2α, and TXA2 can contribute to the neurodegeneration via EP1, FP, and TP receptors, respectively, which are coupled with Gq, stimulate phospholipase C and cleave phosphatidylinositol diphosphate to produce inositol triphosphate and diacylglycerol. Inositol triphosphate binds to inositol triphosphate receptor in endoplasmic reticulum, releases calcium, and results in increasing intracellular calcium concentrations. Diacylglycerol activates calcium-dependent protein kinases. PGE2 disrupts Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange via EP1, resulting in the excess Ca(2+) accumulation. Neither PGE2, PGF2α, nor TXA2 causes neuronal cell death by itself, suggesting that they might enhance the ischemia-induced neurodegeneration. Alternatively, PGE2 is non-enzymatically dehydrated to a cyclopentenone PGA2, which induces neuronal cell death. Although PGD2 induces neuronal apoptosis after a lag time, neither DP1 nor DP2 is involved in the neurotoxicity. As well as PGE2, PGD2 is non-enzymatically dehydrated to a cyclopentenone 15-deoxy-Δ(12,14)-PGJ2, which induces neuronal apoptosis without a lag time. However, neurotoxicities of these cyclopentenones are independent of their receptors. The COX-2 inhibitor inhibits both the anchorage-dependent and anchorage-independent growth of glioma cell lines regardless of COX-2 expression, suggesting that some COX-2-independent mechanisms underlie the antineoplastic effect of the inhibitor. PGE2 attenuates this antineoplastic effect, suggesting that the predominant mechanism is COX-dependent. COX-2 or EP1 inhibitors show anti-neoplastic effects. Thus, our review presents evidences for pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system.
Collapse
|
20
|
Ikeda-Matsuo Y. [Role of prostaglandin E synthase and EP receptors in ischemic brain injury]. Nihon Yakurigaku Zasshi 2014; 144:110-114. [PMID: 25213610 DOI: 10.1254/fpj.144.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
21
|
Korotkova M, Jakobsson PJ. Characterization of Microsomal Prostaglandin E Synthase 1 Inhibitors. Basic Clin Pharmacol Toxicol 2013; 114:64-9. [DOI: 10.1111/bcpt.12162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/19/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Korotkova
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
22
|
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
23
|
Straccia M, Dentesano G, Valente T, Pulido-Salgado M, Solà C, Saura J. CCAAT/enhancer binding protein β regulates prostaglandin E synthase expression and prostaglandin E2 production in activated microglial cells. Glia 2013; 61:1607-19. [PMID: 23893854 DOI: 10.1002/glia.22542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 11/11/2022]
Abstract
The eicosanoid prostaglandin E2 (PGE2 ) plays important roles in neuroinflammation and it is produced by the sequential action of the enzymes cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES). The expression of both enzymes and the production of PGE2 are increased in neuroinflammation. The objective of this study was to elucidate whether the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) regulates the expression of prostaglandin synthesis enzymes in neuroinflammation. To this aim, the expression of these enzymes in wild-type and C/EBPβ-null mice was analyzed in vitro and in vivo. In mixed glial cultures, lipopolysaccharide (LPS) ± interferon γ (IFN-γ) induced C/EBPβ binding to COX-2 and PTGES promoters. LPS ± IFN-γ-induced increases in PTGES expression and in PGE2 production in mixed glial and microglial cultures were abrogated in the absence of C/EBPβ. Also, increased brain PTGES expression induced by systemic LPS administration was markedly reduced in C/EBPβ-null mice. In contrast to PTGES, the induction of COX-2 expression in vitro or in vivo was not markedly affected by the absence of C/EBPβ. These results demonstrate that C/EBPβ regulates PTGES expression and PGE2 production by activated microglial cells in vitro and point to C/EBPβ as a regulator of PTGES expression in vivo in the inflamed central nervous system. Altogether, these findings strengthen the proposed role of C/EBPβ as a key player in the orchestration of neuroinflammatory gene response.
Collapse
Affiliation(s)
- Marco Straccia
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Blaylock RL, Maroon J. Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system. Surg Neurol Int 2012; 3:19. [PMID: 22439110 PMCID: PMC3307240 DOI: 10.4103/2152-7806.92935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/11/2012] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the pathophysiological and biochemical basis of a number of neurological disorders has increased enormously over the last three decades. Parallel with this growth of knowledge has been a clearer understanding of the mechanism by which a number of naturally occurring plant extracts, as well as whole plants, can affect these mechanisms so as to offer protection against injury and promote healing of neurological tissues. Curcumin, quercetin, green tea catechins, balcalein, and luteolin have been extensively studied, and they demonstrate important effects on cell signaling that go far beyond their antioxidant effects. Of particular interest is the effect of these compounds on immunoexcitotoxicity, which, the authors suggest, is a common mechanism in a number of neurological disorders. By suppressing or affecting microglial activation states as well as the excitotoxic cascade and inflammatory mediators, these compounds dramatically affect the pathophysiology of central nervous system disorders and promote the release and generation of neurotrophic factors essential for central nervous system healing. We discuss the various aspects of these processes and suggest future directions for study.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, Department of Biology, Belhaven University, Jackson, MS 39157, USA
| | | |
Collapse
|
25
|
Liu ML, Zhang YQ, Zhang YN, Pei LC, Liu X. Prostaglandin E2 receptor 1 activity regulates cell survival following hypoxia in cultured rat cortical neurons. Neurosci Lett 2011; 508:31-6. [PMID: 22198374 DOI: 10.1016/j.neulet.2011.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/09/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022]
Abstract
The clinical side-effects of increased cyclooxygenase (COX) activity induced by pathologic conditions have raised concerns recently. However, a better understanding of the mechanisms underlying the subsequent neurotoxicity requires knowledge of pathways downstream of COX, especially prostaglandin E2 (PGE2) and its receptors. Therefore, this study was performed to investigate the effects of PGE2 receptor 1 (EP1) activity on neuronal cell death resulting from hypoxia/reoxygenation (Hyp). As cyclinD1 activity has been shown to regulate neuronal apoptosis as well, the role of cyclinD1 was investigated, as well. Cortical neural cells isolated from fetal Wistar rats were cultured for 12 d and exposed to Hyp conditions to establish an in vitro Hyp model. To determine the effects of EP1 activity on Hyp-induced neurotoxicity, cells were treated with 17-phenyl trinor-PGE2 (17-pt), a synthetic EP1 agonist, or sc-51089, an EP1 antagonist, then exposed to hypoxic conditions for 3h and reoxygenated for 21 h. Following Hyp, cell viability was quantified by MTT assays, and apoptosis was assessed by flow cytometry. Protein expression levels of caspase-3 and cyclinD1 were examined by Western blot analysis. Treatment of cultured cortical neurons with 17-pt significantly decreased the survival rate of Hyp-treated neurons (p<0.05), while treatment with sc-51089 increased the survival rate. Treatment with 17-pt also led to increased expression levels of caspase-3, further supporting a role for EP1 in the observed neurotoxicity. However, cyclinD1 expression levels were unchanged following treatment with either 17-pt or sc-51089. Therefore, EP1 may play an important role in Hyp-induced neuronal apoptosis, but this neurotoxic activity is unlikely to involve cyclinD1.
Collapse
Affiliation(s)
- Mei-ling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | | | | | | | | |
Collapse
|
26
|
Iwanaga K, Okada M, Murata T, Hori M, Ozaki H. Prostaglandin E2 Promotes Wound-Induced Migration of Intestinal Subepithelial Myofibroblasts via EP2, EP3, and EP4 Prostanoid Receptor Activation. J Pharmacol Exp Ther 2011; 340:604-11. [DOI: 10.1124/jpet.111.189845] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 2011; 33:223-37. [PMID: 22044990 DOI: 10.1007/s10072-011-0828-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 10/20/2011] [Indexed: 12/21/2022]
Abstract
Although being a physiologically important excitatory neurotransmitter, glutamate plays a pivotal role in various neurological disorders including ischemic neurological diseases. Its level is increased during cerebral ischemia with excessive neurological stimulation causing the glutamate-induced neuronal toxicity, excitotoxicity, and this is considered the triggering spark in the ischemic neuronal damage. The glutamatergic stimulation will lead to rise in the intracellular sodium and calcium, and the elevated intracellular calcium will lead to mitochondrial dysfunction, activation of proteases, accumulation of reactive oxygen species and release of nitric oxide. Interruption of the cascades of glutamate-induced cell death during ischemia may provide a way to prevent, or at least reduce, the ischemic damage. Various therapeutic options are suggested interrupting the glutamatergic pathways, e.g., inhibiting the glutamate synthesis or release, increasing its clearance, blocking of its receptors or preventing the rise in intracellular calcium. Development of these strategies may provide future treatment options in the management of ischemic stroke.
Collapse
Affiliation(s)
- Botros B Kostandy
- Department of Pharmacology, Faculty of Medicine, University of Assiut, Assiut 71526, Egypt.
| |
Collapse
|
28
|
Wu T, Wu H, Wang J, Wang J. Expression and cellular localization of cyclooxygenases and prostaglandin E synthases in the hemorrhagic brain. J Neuroinflammation 2011; 8:22. [PMID: 21385433 PMCID: PMC3062590 DOI: 10.1186/1742-2094-8-22] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/08/2011] [Indexed: 01/05/2023] Open
Abstract
Background Although cyclooxygenases (COX) and prostaglandin E synthases (PGES) have been implicated in ischemic stroke injury, little is known about their role in intracerebral hemorrhage (ICH)-induced brain damage. This study examines the expression and cellular localization of COX-1, COX-2, microsomal PGES-1 (mPGES-1), mPGES-2, and cytosolic PGES (cPGES) in mice that have undergone hemorrhagic brain injury. Methods ICH was induced in C57BL/6 mice by intrastriatal injection of collagenase. Expression and cellular localization of COX-1, COX-2, mPGES-1, mPGES-2, and cPGES were examined by immunofluorescence staining. Results In the hemorrhagic brain, COX-1, mPGES-2, and cPGES were expressed constitutively in neurons; COX-1 was also constitutively expressed in microglia. The immunoreactivity of COX-2 was increased in neurons and astrocytes surrounding blood vessels at 5 h and then tended to decrease in neurons and increase in astrocytes at 1 day. At 3 days after ICH, COX-2 was observed primarily in astrocytes but was absent in neurons. Interestingly, the immunoreactivity of mPGES-1 was increased in neurons in the ipsilateral cortex and astrocytes in the ipsilateral striatum at 1 day post-ICH; the immunoreactivity of astrocytic mPGES-1 further increased at 3 days. Conclusion Our data suggest that microglial COX-1, neuronal COX-2, and astrocytic COX-2 and mPGES-1 may work sequentially to affect ICH outcomes. These findings have implications for efforts to develop anti-inflammatory strategies that target COX/PGES pathways to reduce ICH-induced secondary brain damage.
Collapse
Affiliation(s)
- Tao Wu
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
29
|
Li CL, Chang TT, Sun MF, Chen HY, Tsai FJ, Fisher M, Chen CYC, Lee CL, Fang WC, Wong YH. Structure-based and ligand-based drug design for microsomal prostaglandin E synthase-1 inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.538054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Affiliation(s)
- Makoto MURAKAMI
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science
- Department of Health Chemistry, School of Pharmaceutical Science, Showa University
| |
Collapse
|
31
|
Doeppner TR, Hermann DM. Free radical scavengers and spin traps – therapeutic implications for ischemic stroke. Best Pract Res Clin Anaesthesiol 2010; 24:511-20. [DOI: 10.1016/j.bpa.2010.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/11/2010] [Indexed: 01/03/2023]
|
32
|
Ikeda-Matsuo Y, Tanji H, Ota A, Hirayama Y, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 contributes to ischaemic excitotoxicity through prostaglandin E2 EP3 receptors. Br J Pharmacol 2010; 160:847-59. [PMID: 20590584 DOI: 10.1111/j.1476-5381.2010.00711.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Although microsomal prostaglandin E synthase (mPGES)-1 is known to contribute to stroke injury, the underlying mechanisms remain poorly understood. This study examines the hypothesis that EP(3) receptors contribute to stroke injury as downstream effectors of mPGES-1 neurotoxicity through Rho kinase activation. EXPERIMENTAL APPROACH We used a glutamate-induced excitotoxicity model in cultured rat and mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model. Effects of an EP(3) receptor antagonist on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. KEY RESULTS In cultures of rat hippocampal slices, the mRNAs of EP(1-4) receptors were constitutively expressed and only the EP(3) receptor antagonist ONO-AE3-240 attenuated and only the EP(3) receptor agonist ONO-AE-248 augmented glutamate-induced excitotoxicity in CA1 neurons. Hippocampal slices from mPGES-1 KO mice showed less excitotoxicity than those from WT mice and the EP(3) receptor antagonist did not attenuate the excitotoxicity. In transient focal ischaemia models, injection (i.p.) of an EP(3) antagonist reduced infarction, oedema and neurological dysfunction in WT mice, but not in mPGES-1 KO mice, which showed less injury than WT mice. EP(3) receptor agonist-induced augmentation of excitotoxicity in vitro was ameliorated by the Rho kinase inhibitor Y-27632 and Pertussis toxin. The Rho kinase inhibitor HA-1077 also ameliorated stroke injury in vivo. CONCLUSION AND IMPLICATIONS Activity of mPGES-1 exacerbated stroke injury through EP(3) receptors and activation of Rho kinase and/or G(i). Thus, mPGES-1 and EP(3) receptors may be valuable therapeutic targets for treatment of human stroke.
Collapse
Affiliation(s)
- Y Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Ikeda-Matsuo Y. Microsomal prostaglandin E synthase-1 is involved in the brain ischemic injury. Inflamm Regen 2010. [DOI: 10.2492/inflammregen.30.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|