1
|
Zhou Y, Nan F, Zhang Q, Xu W, Fang S, Liu K, Zhao B, Han H, Xie X, Qin C, Pang X. Natural products that alleviate depression: The putative role of autophagy. Pharmacol Ther 2024; 264:108731. [PMID: 39426604 DOI: 10.1016/j.pharmthera.2024.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/04/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Major depressive disorder (MDD) is a common mental disorder that severely disrupts psychosocial function and decreases the quality of life. Although the pathophysiological mechanism underlying MDD is complex and remains unclear, emerging evidence suggests that autophagy dysfunction plays a role in MDD occurrence and progression. Natural products serve as a major source of drug discovery and exert tremendous potential in developing antidepressants. Recently published reports are paying more attention on the autophagy regulatory effect of antidepressant natural products. In this review, we comprehensively discuss the abnormal changes occurred in multiple autophagy stages in MDD patients, and animal and cell models of depression. Importantly, we emphasize the regulatory mechanism of antidepressant natural products on disturbed autophagy, including monomeric compounds, bioactive components, crude extracts, and traditional Chinese medicine formulae. Our comprehensive review suggests that enhancing autophagy might be a novel approach for MDD treatment, and natural products restore autophagy homeostasis to facilitate the renovation of mitochondria, impede neuroinflammation, and enhance neuroplasticity, thereby alleviating depression.
Collapse
Affiliation(s)
- Yunfeng Zhou
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Fengwei Nan
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qianwen Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wangjun Xu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Shaojie Fang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ke Liu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bingxin Zhao
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xinmei Xie
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Xiaobin Pang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Rudrala LC, Challa RR, Subramanyam S, Ayyappa Gouru S, Singh G, Sirisha Mulukuri NVL, Pasala PK, Dintakurthi PSNBK, Gajula S, Rudrapal M. Cerebroprotective Potential of Andrographolide Nanoparticles: In silico and In vivo Investigations. Drug Res (Stuttg) 2024; 74:335-346. [PMID: 38991529 DOI: 10.1055/a-2345-5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Ischemic stroke remains the leading cause of death and disability, while the main mechanisms of dominant neurological damage in stroke contain oxidative stress and inflammation. Docking studies revealed a binding energy of - 6.1 kcal/mol for AG, while the co-crystallized ligand (CCl) exhibited a binding energy of - 7.3 kcal/mol with NOS. AG demonstrated favourable hydrogen bond interactions with amino acids ASN A:354 and ARG A:388 and hydrophobic interactions with GLU A:377. Molecular dynamics simulations throughout 100 ns indicated a binding affinity of - 27.65±2.88 kcal/mol for AG, compared to - 18.01±4.02 kcal/mol for CCl. These findings suggest that AG possesses a superior binding affinity for NOS compared to CCl, thus complementing the stability of NOS at the docked site.AG has limited applications owing to its low bioavailability, poor water solubility, and high chemical and metabolic instability.The fabrication method was employed in the preparation of AGNP, SEM analysis confirmed spherical shape with size in 19.4±5 nm and investigated the neuroprotective effect in cerebral stroke rats induced by 30 min of carotid artery occlusion followed by 4 hr reperfusion, evaluated by infarction size, ROS/RNS via GSH, MPO, NO estimationand AchE activity, and monitoring EEG function. Cortex and hippocampal histology were compared between groups. AGNP treatment significantly decreased Infarction size and increased GSH levels (p<0.01**), decreased MPO (p<0.01**), NO (p<0.01**), AchE (p<0.01**), restored to normal EEG amplitude, minimizing unsynchronized polyspikes and histological data revealed that increased pyramidal cell layer thickness and decreased apoptotic neurons in hippocampus, cortex appeared normal neurons with central large vesicular nuclei, containing one or more nucleoli in compared to AG treatment. Based on brain biochemical, histopathology reports AGNP exhibited significant cerebroprotective activity compared to AG on ischemic rats.
Collapse
Affiliation(s)
- Lakshmi Charitha Rudrala
- Department of Pharmacology, SKU College of Pharmaceutical Sciences, S. K. University, Anantapur, India
| | | | - Sibbala Subramanyam
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | | | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | | | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapur, India
| | | | - Somasekhar Gajula
- Department of Pharmacology, SKU College of Pharmaceutical Sciences, S. K. University, Anantapur, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| |
Collapse
|
3
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Li L, Wang L, Zhang L. Therapeutic Potential of Natural Compounds from Herbs and Nutraceuticals in Alleviating Neurological Disorders: Targeting the Wnt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2411-2433. [PMID: 38284360 DOI: 10.1021/acs.jafc.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
As an important signaling pathway in multicellular eukaryotes, the Wnt signaling pathway participates in a variety of physiological processes. Recent studies have confirmed that the Wnt signaling pathway plays an important role in neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. The regulation of Wnt signaling by natural compounds in herbal medicines and nutraceuticals has emerged as a potential strategy for the development of new drugs for neurological disorders. Purpose: The aim of this review is to evaluate the latest research results on the efficacy of natural compounds derived from herbs and nutraceuticals in the prevention and treatment of neurological disorders by regulating the Wnt pathway in vivo and in vitro. A manual and electronic search was performed for English articles available from PubMed, Web of Science, and ScienceDirect from the January 2010 to February 2023. Keywords used for the search engines were "natural products,″ "plant derived products,″ "Wnt+ clinical trials,″ and "Wnt+,″ and/or paired with "natural products″/″plant derived products", and "neurological disorders." A total of 22 articles were enrolled in this review, and a variety of natural compounds from herbal medicine and nutritional foods have been shown to exert therapeutic effects on neurological disorders through the Wnt pathway, including curcumin, resveratrol, and querctrin, etc. These natural products possess antioxidant, anti-inflammatory, and angiogenic properties, confer neurovascular unit and blood-brain barrier integrity protection, and affect neural stem cell differentiation, synaptic formation, and neurogenesis, to play a therapeutic role in neurological disorders. In various in vivo and in vitro studies and clinical trials, these natural compounds have been shown to be safe and tolerable with few adverse effects. Natural compounds may serve a therapeutic role in neurological disorders by regulating the Wnt pathway. This summary of the research progress of natural compounds targeting the Wnt pathway may provide new insights for the treatment of neurological disorders and potential targets for the development of new drugs.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning PR China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning PR China
| |
Collapse
|
5
|
Bosco F, Ruga S, Citraro R, Leo A, Guarnieri L, Maiuolo J, Oppedisano F, Macrì R, Scarano F, Nucera S, Bava I, Palma E, Muscoli C, Hancke J, De Sarro G, Mollace V. The Effects of Andrographis paniculata (Burm.F.) Wall. Ex Nees and Andrographolide on Neuroinflammation in the Treatment of Neurodegenerative Diseases. Nutrients 2023; 15:3428. [PMID: 37571363 PMCID: PMC10421033 DOI: 10.3390/nu15153428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide, and to date, Alzheimer's and Parkinson's diseases are the most common NDs. Of the many risk factors for neurodegeneration, the aging process has the most significant impact, to the extent that it is tempting to consider neurodegenerative disease as a manifestation of accelerated aging. However, genetic and environmental factors determine the course of neurodegenerative disease progression. It has been proposed that environmental stimuli influence neuroplasticity. Some clinical studies have shown that healthy lifestyles and the administration of nutraceuticals containing bioactive molecules possessing antioxidant and anti-inflammatory properties have a preventive impact or mitigate symptoms in previously diagnosed patients. Despite ongoing research efforts, the therapies currently used for the treatment of NDs provide only marginal therapeutic benefits; therefore, the focus is now directly on the search for natural products that could be valuable tools in combating these diseases, including the natural compound Andrographis paniculata (Ap) and its main constituent, andrographolide (Andro). Preclinical studies have shown that the aqueous extract of Ap can modulate neuroinflammatory and neurodegenerative responses, reducing inflammatory markers and oxidative stress in various NDs. Therefore, in this review, we will focus on the molecular mechanisms by which Ap and Andro can modulate the processes of neurodegeneration and neuroinflammation, which are significant causes of neuronal death and cognitive decline.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, IRC-FSH Center, Department of Health Sciences, School of Pharmacy and Nutraceutical, Faculty of Pharmacy, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| | | | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (R.C.); (A.L.); (G.D.S.)
- Research Center FAS@UMG, Science of Health Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food, Safety, and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.O.); (R.M.); (F.S.); (S.N.); (I.B.); (E.P.); (C.M.); (V.M.)
| |
Collapse
|
6
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
7
|
Baru Venkata R, Prasanth DSNBK, Pasala PK, Panda SP, Tatipamula VB, Mulukuri S, Kota RK, Rudrapal M, Khan J, Aldosari S, Alshehri B, Banawas S, Challa MC, Kammili JK. Utilizing Andrographis paniculata leaves and roots by effective usage of the bioactive andrographolide and its nanodelivery: investigation of antikindling and antioxidant activities through in silico and in vivo studies. Front Nutr 2023; 10:1185236. [PMID: 37324729 PMCID: PMC10266967 DOI: 10.3389/fnut.2023.1185236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
To valorise the bioactive constituents abundant in leaves and other parts of medicinal plants with the objective to minimize the plant-based wastes, this study was undertaken. The main bioactive constituent of Andrographis paniculata, an Asian medicinal plant, is andrographolide (AG, a diterpenoid), which has shown promising results in the treatment of neurodegenerative illnesses. Continuous electrical activity in the brain is a hallmark of the abnormal neurological conditions such as epilepsy (EY). This can lead to neurological sequelae. In this study, we used GSE28674 as a microarray expression profiling dataset to identify DEGs associated with andrographolide and those with fold changes >1 and p-value <0.05 GEO2R. We obtained eight DEG datasets (two up and six down). There was marked enrichment under various Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) terms for these DEGs (DUSP10, FN1, AR, PRKCE, CA12, RBP4, GABRG2, and GABRA2). Synaptic vesicles and plasma membranes were the predominant sites of DEG expression. AG acts as an antiepileptic agent by upregulating GABA levels. The low bioavailability of AG is a significant limitation of its application. To control these limitations, andrographolide nanoparticles (AGNPs) were prepared and their neuroprotective effect against pentylenetetrazol (PTZ)-induced kindling epilepsy was investigated using network pharmacology (NP) and docking studies to evaluate the antiepileptic multi-target mechanisms of AG. Andrographolide is associated with eight targets in the treatment of epilepsy. Nicotine addiction, GABAergic synapse, and morphine addiction were mainly related to epilepsy, according to KEGG pathway enrichment analysis (p < 0.05). A docking study showed that andrographolide interacted with the key targets. AG regulates epilepsy and exerts its therapeutic effects by stimulating GABA production. Rats received 80 mg/kg body weight of AG and AGNP, phenytoin and PTZ (30 mg/kg i.p. injection on alternate days), brain MDA, SOD, GSH, GABAand histological changes of hippocampus and cortex were observed. PTZ injected rats showed significantly (***p < 0.001) increased kindling behavior, increased MDA, decreased GSH, SOD, GABA activities, compared with normal rats, while treatment AGNPs significantly reduced kindling score and reversed oxidative damage. Finally, we conclude that the leaves and roots of A. Paniculata can be effectively utilized for its major bioactive constituent, andrographolide as a potent anti-epileptic agent. Furthermore, the findings of novel nanotherapeutic approach claim that nano-andrographolide can be successfully in the management of kindling seizures and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | | | - Sirisha Mulukuri
- Department of Natural Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Bengaluru, India
| | - Ravi Kumar Kota
- Santhiram College of Pharmacy, JNTUA, Nandyal, Andhra Pradesh, India
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research, Guntur, India
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Sahar Aldosari
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma’ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma’ah, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | | | | |
Collapse
|
8
|
Nguyen HD, Kim MS. In silico identification of molecular mechanisms for stroke risk caused by heavy metals and their mixtures: sponges and drugs involved. Neurotoxicology 2023; 96:222-239. [PMID: 37121440 DOI: 10.1016/j.neuro.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
This study used various approaches and databases to evaluate the molecular processes and identify miRNA sponges and drugs associated with the development of stroke caused by heavy metals and their combinations. We found that the genes ALB (albumin), IL1B (Interleukin-1β), F2 (coagulation factor II), APOA1 (apolipoprotein A1), IL6 (Interleukin 6), and NOS2 (nitric oxide synthase 2) were linked to the development of strokes by 18 chemicals and a combination of cadmium, copper, and lead. These results may point to the significance of detoxification and neuroinflammation in stroke as well as the potential for targeting these genes in future stroke therapies. ALB and IL1B were the most common and significant genes. The "selenium micronutrient network," "vitamin B12 metabolism," and "folate metabolism" were shown to be the most significant pathways connected to the risk of stroke brought on by combined heavy metals. The two main cellular elements that may increase the risk of stroke caused by heavy metals were discovered to be "blood microparticle" and "endoplasmic reticulum lumen." We also observed an important chromosome (chr7p15.3), two transcription factors (NFKB2 [nuclear factor kappa B subunit 2] and NR1I2 [nuclear receptor subfamily 1 group, member 2]), and four microRNAs (hsa-miR-26a-5p, hsa-miR-9-5p, hsa-miR-124-3p, and hsa-miR-155-5p) associated with stroke caused by combined heavy metals. Additionally, for these miRNAs, we created and examined in silico microRNA sponge sequences. Triflusal and andrographolide have been identified as potential treatments for heavy metal-induced stroke. Taken together, heavy metals may be a significant contributor to the pathophysiology of stroke, but further investigation into the precise molecular pathways implicated in stroke pathophysiology is required to corroborate these findings.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Safaeian L, Shafiee F, Haghighatnazar S. Andrographolide protects against doxorubicin-and arsenic trioxide-induced toxicity in cardiomyocytes. Mol Biol Rep 2023; 50:389-397. [PMID: 36335523 DOI: 10.1007/s11033-022-08042-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Andrographolide (AG) is a lactone diterpene with valuable biological activities. This in vitro study evaluated whether AG can protect cardiomyocytes under toxicities triggered with anti-cancer chemotherapeutic agents, doxorubicin (DOX) and arsenic trioxide (ATO). METHODS AND RESULTS H9C2 cells were pretreated with AG (0.5-10 µM) for 24 h and then exposed to DOX (1 μM) or ATO (35 μM) for another 24 h period. For determination of cell viability or cytotoxicity, MTT and lactate dehydrogenase (LDH) assay were used. Total oxidant and antioxidant capacities were estimated by determining hydroperoxides and ferric reducing antioxidant power (FRAP) levels. Real time-polymerase chain reaction was also used for quantitative evaluation of TLR4 gene expression. AG inhibited cardiomyocytes proliferation at the concentrations of more than 20 μM. However, it considerably enhanced cell viability and decreased cytotoxicity of DOX and ATO at the concentration range of 2.5-10 μM in MTT and LDH assays. AG significantly declined hydroperoxides concentration in ATO-treated cardiomyocytes and raised FRAP value in DOX- and ATO-treated cells. Furthermore, AG notably lessened TLR4 expression in H9C2 cells after exposure to DOX- and ATO. CONCLUSION In conclusion, these data presented that AG was able to reverse DOX- and ATO-induced cardiotoxicity in vitro. The cardiomyocyte protective activities of AG may be due to the decrease in TLR4 expression and total oxidant capacity and increase in total antioxidant capacity.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Haghighatnazar
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front Pharmacol 2022; 13:920435. [PMID: 36238575 PMCID: PMC9551308 DOI: 10.3389/fphar.2022.920435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals have attracted much attention in the field of anti-inflammatory due to their good pharmacological activity and efficacy. Andrographis paniculata is a natural plant ingredient that is widely used around the world. Andrographolide is the main active ingredient derived from Andrographis paniculata, which has a good effect on the treatment of inflammatory diseases. This article reviews the application, anti-inflammatory mechanism and molecular targets of andrographolide in different inflammatory diseases, including respiratory, digestive, immune, nervous, cardiovascular, skeletal, and tumor system diseases. And describe its toxicity and explain its safety. Studies have shown that andrographolide can be used to treat inflammatory lesions of various systemic diseases. In particular, it acts on many inflammation-related signalling pathways. The future direction of andrographolide research is also introduced, as is the recent research that indicates its potential clinical application as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaohong Li
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaohong Li,
| | - Weichen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minmin Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Souza LC, Andrade MK, Azevedo EM, Ramos DC, Bail EL, Vital MABF. Andrographolide Attenuates Short-Term Spatial and Recognition Memory Impairment and Neuroinflammation Induced by a Streptozotocin Rat Model of Alzheimer's Disease. Neurotox Res 2022; 40:1440-1454. [PMID: 36029454 DOI: 10.1007/s12640-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.
Collapse
Affiliation(s)
- Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniele C Ramos
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
12
|
Sun Y, Xu H, Tan B, Yi Q, Liu H, Chen T, Xiang H, Wang R, Xie Q, Tian J, Zhu J. Andrographolide protects bone marrow mesenchymal stem cells against glucose and serum deprivation under hypoxia via the NRF2 signaling pathway. Stem Cell Res Ther 2022; 13:326. [PMID: 35850702 PMCID: PMC9290240 DOI: 10.1186/s13287-022-03016-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bone marrow mesenchymal stem cell (BMSCs) therapy is an important cell transplantation strategy in the regenerative medicine field. However, a severely ischemic microenvironment, such as nutrient depletion and hypoxia, causes a lower survival rate of transplanted BMSCs, limiting the application of BMSCs. Therefore, improving BMSCs viability in adverse microenvironments is an important means to improve the effectiveness of BMSCs therapy. Objective To illustrate the protective effect of andrographolide (AG) against glucose and serum deprivation under hypoxia (1% O2) (GSDH)-induced cell injury in BMSCs and investigate the possible underlying mechanisms. Methods An in vitro primary rat BMSCs cell injury model was established by GSDH, and cellular viability, proliferation and apoptosis were observed after AG treatment under GSDH. Reactive oxygen species levels and oxidative stress-related genes and proteins were measured by flow cytometry, RT-qPCR and Western blotting. Mitochondrial morphology, function and number were further assessed by laser confocal microscopy and flow cytometry. Results AG protected BMSCs against GSDH-induced cell injury, as indicated by increases in cell viability and proliferation and mitochondrial number and decreases in apoptosis and oxidative stress. The metabolic status of BMSCs was changed from glycolysis to oxidative phosphorylation to increase the ATP supply. We further observed that the NRF2 pathway was activated by AG, and treatment of BMSCs with a specific NRF2 inhibitor (ML385) blocked the protective effect of AG. Conclusion Our results suggest that AG is a promising agent to improve the therapeutic effect of BMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03016-6.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Tangtian Chen
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Han Xiang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Qiumin Xie
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
13
|
Fan X, Chen H, Xu C, Wang Y, Yin P, Li M, Tang Z, Jiang F, Wei W, Song J, Li G, Zhong D. S1PR3, as a Core Protein Related to Ischemic Stroke, is Involved in the Regulation of Blood–Brain Barrier Damage. Front Pharmacol 2022; 13:834948. [PMID: 35685645 PMCID: PMC9173650 DOI: 10.3389/fphar.2022.834948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ischemic stroke is the most common stroke incident. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3) is a member of the downstream G protein-coupled receptor family of S1P. The effect of S1PR3 on ischemic stroke remains elusive. Methods: We downloaded two middle cerebral artery occlusion (MCAO) microarray datasets from the Gene Expression Omnibus (GEO) database and screened differentially expressed genes (DEGs). Then, we performed a weighted gene coexpression network analysis (WGCNA) and identified the core module genes related to ischemic stroke. We constructed a protein–protein interaction (PPI) network for the core genes in which DEGs and WGCNA intersected. Finally, we discovered that S1PR3 was involved as the main member of the red proteome. Then, we explored the mechanism of S1PR3 in the mouse tMCAO model. The S1PR3-specific inhibitor CAY10444 was injected into the abdominal cavity of mice after cerebral ischemia/reperfusion (I/R) injury, and changes in the expression of blood–brain barrier-related molecules were measured using PCR, western blotting, and immunofluorescence staining. Results: Both GEO datasets showed that S1PR3 was upregulated during cerebral I/R in mice. WGCNA revealed that the light yellow module had the strongest correlation with the occurrence of IS. We determined the overlap with DEGs, identified 146 core genes that are potentially related to IS, and constructed a PPI network. Finally, S1PR3 was found to be the main member of the red proteome. In the mouse cerebral I/R model, S1PR3 expression increased 24 h after ischemia. After the administration of CAY10444, brain edema and neurological deficits in mice were ameliorated. CAY10444 rescued the decreased expression of the tight junction (TJ) proteins zonula occludens 1 (ZO1) and occludin after ischemia induced by transient MCAO (tMCAO) and reduced the increase in aquaporin 4 (AQP4) levels after tMCAO, preserving the integrity of the BBB. Finally, we found that S1PR3 is involved in regulating the mitogen-activated protein kinase (MAPK) and (phosphatidylinositol-3 kinase/serine-threonine kinase) PI3K-Akt signaling pathways. Conclusion: S1PR3 participates in the regulation of blood–brain barrier damage after cerebral I/R. S1PR3 is expected to be an indicator and predictor of cerebral ischemia, and drugs targeting S1PR3 may also provide new ideas for clinical medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Di Zhong
- *Correspondence: Guozhong Li, ; Di Zhong,
| |
Collapse
|
14
|
Zhao Y, Zhang J, Zhang Y, Zhang Y, Zhang X, Zheng Y, Wang H, Wang X, Fu J. Network pharmacology-based strategy to investigate pharmacological mechanisms of Andrographolide for treatment of vascular cognitive impairment. Int Immunopharmacol 2022; 108:108756. [PMID: 35397390 DOI: 10.1016/j.intimp.2022.108756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/23/2022]
Abstract
Vascular cognitive impairment (VCI) is the second most common form of dementia. Andrographolide (Andro) shows potential effects in anti-inflammation, anti-oxidative stress, and anti-apoptosis. We have obtained 48 potential genes related to the effect of Andro on VCI through network pharmacology analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to reveal significant enriched pathway of potential genes, and the mitogen-activated protein kinase (MAPK) pathway was screened out. To verify the results of network pharmacology, we tested the effects of Andro in VCI model induced by bilateral common carotid artery occlusion (BCCAO) surgery. The results showed that Andro treatment ameliorated the cognitive impairment induced by BCCAO. Immunohistochemistry study revealed that Andro could reduce neuronal damage and activation of microglia in the cortex and hippocampus in BCCAO rats. To test the MAPK pathway changes, we analyzed the expression of JNK, p38 and ERK and found that Andro reduced the levels of phosphorylated-ERK (p-ERK) and phosphorylated-p38 (p-p38) in BCCAO rats. In conclusion, Andro could improve neuronal survival, reduce neuroinflammation and ameliorate cognitive impairment in VCI. The underlying mechanisms of Andro treatment may be through the inhibition of MAPK pathway.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yaling Zheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
15
|
Hossain R, Quispe C, Herrera-Bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-Martins N, Martorell M, Kumar M, Sharifi-Rad J, Ozdemir FA, Setzer WN, Alshehri MM, Calina D, Cho WC. Neurobiological Promises of the Bitter Diterpene Lactone Andrographolide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3079577. [PMID: 35154564 PMCID: PMC8825670 DOI: 10.1155/2022/3079577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.
Collapse
Affiliation(s)
- Rajib Hossain
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F. Beltrán
- 5Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco, Chile
| | - Muhammad Torequl Islam
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | | | - Natália Cruz-Martins
- 7Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- 8Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- 9Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
- 10TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Miquel Martorell
- 11Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- 12Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Manoj Kumar
- 13Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | | | - Fethi Ahmet Ozdemir
- 15Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - William N. Setzer
- 16Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mohammed M. Alshehri
- 17Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- 18Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 19Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Bhosale S, Kumar A. Screening of phytoconstituents of Andrographis paniculata against various targets of Japanese encephalitis virus: An in-silico and in-vitro target-based approach. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100043. [PMID: 34909671 PMCID: PMC8663989 DOI: 10.1016/j.crphar.2021.100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023] Open
Abstract
Japanese encephalitis (JE) is one of the viral diseases affecting millions of peoples across the globe specifically developing countries. There is no specific treatment available, however, vaccines are available for its prevention. Unfortunately, available vaccines are not effective against all clinical isolates and are also associated with neurological complications in some individuals. We have screened the selected phytoconstituents of Andrographis paniculata against various targets of Japanese encephalitis virus (JEV) using Schrodinger suite 2019-3. Among all selected phytoconstituents, andrographolide has shown a good binding affinity towards NS3 protease as compared to NS3 helicase and NS5 Rdrp (RNA dependent RNA polymerase) of JEV. The molecular dynamics (MD) results have also shown good stability of andrographolide in the active site of NS3 protease. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis has also indicated a good pharmacokinetic and safety profile of andrographolide. Finally, the in-vitro target-based assay have confirmed the inhibitory potential of andrographolide against the NS3 protease of JEV. In conclusion, andrographolide could have the potential to develop as an antiviral agent against JEV through inhibition of protease, however, further investigations are required. Andrographolide has shown stable binding conformation in the active site of protease of JEV. The protease of JEV was inhibited in a concentration dependent manner.
Collapse
Affiliation(s)
- Shailesh Bhosale
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, UP, India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, UP, India
| |
Collapse
|
17
|
Khan RA, Hossain R, Siyadatpanah A, Al-Khafaji K, Khalipha ABR, Dey D, Asha UH, Biswas P, Saikat ASM, Chenari HA, Wilairatana P, Islam MT. Diterpenes/Diterpenoids and Their Derivatives as Potential Bioactive Leads against Dengue Virus: A Computational and Network Pharmacology Study. Molecules 2021; 26:6821. [PMID: 34833913 PMCID: PMC8623982 DOI: 10.3390/molecules26226821] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.
Collapse
Affiliation(s)
- Rasel Ahmed Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9280, Bangladesh;
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (A.B.R.K.); (U.H.A.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; (A.S.); (H.A.C.)
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, Al-Nisour University College, Baghdad 10001, Iraq;
| | - Abul Bashar Ripon Khalipha
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (A.B.R.K.); (U.H.A.)
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (D.D.); (A.S.M.S.)
| | - Umma Hafsa Asha
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (A.B.R.K.); (U.H.A.)
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore 7408, Bangladesh;
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (D.D.); (A.S.M.S.)
| | - Hadi Ahmadi Chenari
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; (A.S.); (H.A.C.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (A.B.R.K.); (U.H.A.)
| |
Collapse
|
18
|
Li W, Pan B, Shi Y, Wang M, Han T, Wang Q, Duan G, Fu H. Identification of poly(ADP-ribose)polymerase 1 and 2 (PARP1/2) as targets of andrographolide using an integrated chemical biology approach. Chem Commun (Camb) 2021; 57:6308-6311. [PMID: 34075974 DOI: 10.1039/d1cc02272e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we describe the identification of PARP1/2 as direct binding proteins of andrographolide (Andro) using protein microarray, surface plasmon resonance (SPR), and enzyme activity assays. We then evaluated the proliferation inhibition, apoptosis, and cell migration effects of Andro on the MDA-MB-436 cell line in vitro. The final biological evaluation confirmed that Andro was a highly effective single agent in the MDA-MB-436 xenograft model and had a low hERG-mediated cardiac toxicity. Therefore, Andro represents the first natural product, non-amide member of a novel nanomolar-potency PARP1/2 inhibitor family.
Collapse
Affiliation(s)
- Wenchao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Bowen Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China. and College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Yang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China. and College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, People's Republic of China
| | - Meiying Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Tianjiao Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Qing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Hongzheng Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
19
|
Abstract
Andrographolide is a labdane diterpenoid extracted and purified from the aerial parts of plants belonging to genus Andrographis (Acanthaceae). The research has shown the plant based compound is low cytotoxic, having antimicrobial, anti-cancer, antiviral and anti-parasitic effects. Andrographolide both prevent spread as well as transmission of virus to neighboring cells by interfering with different cell signaling pathways. In addition to its medicinal value, plant has been found having nutritional value. Therefore being cost effective, easy availability and having nutritional value as a natural supplement, can be used to improve the quality of life in countries having low standard of living. Due to the limited number of effective vaccines, the plant-based antiviral drugs have provided considerable hope for fighting against the viral infections. The plant-derived compound when produced in large quantities is cost effective with low cytotoxic effects. However, much deep insight research at the molecular level is needed to develop the molecules against the viral infection. This paper aims to highlight the antiviral role of Andrographolide that can made significant contributions toward the improvement of human health and will also summarize the current status and future strategies concerning the therapeutic applications of Andrographolide to combat different viral disease in humans.
Collapse
|
20
|
Saha P, Skidmore PT, Holland LA, Mondal A, Bose D, Seth RK, Sullivan K, Janulewicz PA, Horner R, Klimas N, Nagarkatti M, Nagarkatti P, Lim ES, Chatterjee S. Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk. Brain Sci 2021; 11:brainsci11070905. [PMID: 34356139 PMCID: PMC8304847 DOI: 10.3390/brainsci11070905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut–Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut–Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut–Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Peter T. Skidmore
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Ratanesh K. Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Ronnie Horner
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
- Columbia VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-777-8120 or +1-919-599-2278
| |
Collapse
|
21
|
Kanazawa LKS, Radulski DR, Pereira GS, Prickaerts J, Schwarting RKW, Acco A, Andreatini R. Andrographolide blocks 50-kHz ultrasonic vocalizations, hyperlocomotion and oxidative stress in an animal model of mania. J Psychiatr Res 2021; 139:91-98. [PMID: 34058655 DOI: 10.1016/j.jpsychires.2021.05.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023]
Abstract
In rats, lisdexamfetamine (LDX) induces manic-like behaviors such as hyperlocomotion and increases in appetitive 50-kHz ultrasonic vocalizations (USV), which are prevented by antimanic drugs, such as lithium. Inhibition of glycogen synthase kinase 3 beta (GSK3β) and antioxidant activity have been associated with antimanic effects. Thus, the aim of the present study was to evaluate the possible antimanic-like effects of andrographolide (ANDRO), a GSK3β inhibitor, on LDX-induced hyperlocomotion and 50-kHz USV increases. In addition, the effect of ANDRO was studied on LDX-induced oxidative stress. Lithium was used as positive control. Adult Wistar rats were treated with vehicle, lithium (100 mg/kg i.p., daily) or ANDRO (2 mg/kg i.p., 3 times a week) for 21 days. On the test day, either 10 mg/kg LDX or saline was administered i.p. and USV and locomotor activity were recorded. LDX administration increased the number of 50-kHz calls, as well as locomotor activity. Repeated treatment with lithium or ANDRO prevented these effects of LDX on 50-kHz USV and locomotor activity. LDX increased lipid peroxidation (LPO) levels in rat striatum and both lithium and ANDRO prevented this effect. LPO levels in rat striatum were positively correlated with increases in 50-kHz USV emission as well as hyperlocomotion. In conclusion, the present results indicate that ANDRO has antimanic-like effects, which may be mediated by its antioxidant properties.
Collapse
Affiliation(s)
- Luiz K S Kanazawa
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Débora R Radulski
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Gabriela S Pereira
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Rainer K W Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, and Center for Mind, Brain, and Behavior (CMBB), Philipps-Universität Marburg, Marburg, 35032, Germany
| | - Alexandra Acco
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990, Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Elasoru SE, Rhana P, de Oliveira Barreto T, Naves de Souza DL, Menezes-Filho JER, Souza DS, Loes Moreira MV, Gomes Campos MT, Adedosu OT, Roman-Campos D, Melo MM, Cruz JS. Andrographolide protects against isoproterenol-induced myocardial infarction in rats through inhibition of L-type Ca 2+ and increase of cardiac transient outward K + currents. Eur J Pharmacol 2021; 906:174194. [PMID: 34044012 DOI: 10.1016/j.ejphar.2021.174194] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Myocardial infarction (MI) is the irreversible injury of the myocardium caused by prolonged myocardial ischemia and is a major cause of heart failure and eventual death among ischemic patients. The present study assessed the protective potentials of andrographolide against isoproterenol-induced myocardial infarction in rats. Animals were randomly divided into four groups: Control (Ctr) group received 0.9% saline solution once daily for 21 days, Isoproterenol (Iso) group received 0.9% saline solution once daily for 19 days followed by 80 mg/kg/day of isoproterenol hydrochloride solution on day 20 and 21, Andrographolide (Andro) group received 20 mg/kg/day of andrographolide for 21 days, and Andrographolide plus Isoproterenol (Andro + Iso) group received 20 mg/kg/day of andrographolide for 21 days with co-administration of 80 mg/kg/day of isoproterenol hydrochloride solution on day 20 and 21. After all treatments, cardiac-specific parameters that define cardiac health and early subacute MI were measured in all groups using both biophysical and pharmacological assay methods. Isoproterenol administration significantly (P < 0.05) increased cardiac mass indexes, systemic cardiac biomarkers, infarct size and caused cardiac histological alterations; significantly (P < 0.05) increased heart rate, QRS & QTc intervals and caused ST-segment elevation; significantly (P < 0.05) increased myocytes shortening, action potential duration (APD), L-type Ca2+ current (ICa,L) density and significantly (P < 0.05) decreased transient outward K+ current (Ito) density typical of the early subacute MI. Interestingly, pretreatment with andrographolide prevented and or minimized these anomalies, notably, by reducing ICa,L density and increasing Ito density significantly. Therefore, andrographolide could be seen as a promising therapeutic agent capable of making the heart resistant to early subacute infarction and it could be used as template for the development of semisynthetic drug(s) for cardiac protection against MI.
Collapse
Affiliation(s)
- Seyi Elijah Elasoru
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Rhana
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane de Oliveira Barreto
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dayane Lorena Naves de Souza
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Diego Santos Souza
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Matheus Vilardo Loes Moreira
- Department of Clinical and Veterinary Surgery, School of Veterinary, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco Tulio Gomes Campos
- Department of Clinical and Veterinary Surgery, School of Veterinary, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Danilo Roman-Campos
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Marilia Martins Melo
- Department of Clinical and Veterinary Surgery, School of Veterinary, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jader Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
23
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
24
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
25
|
Ahmed S, Kwatra M, Ranjan Panda S, Murty USN, Naidu VGM. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 2021; 91:142-158. [PMID: 32971182 DOI: 10.1016/j.bbi.2020.09.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular communication linking microglia activation and dopaminergic neuronal loss play an imperative role in the progression of Parkinson's disease (PD); however, underlying molecular mechanisms are not precise and require further elucidation. NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation is extensively studied in context to microglial activation and progressive dopaminergic neuronal loss in PD. Several pathophysiological factors such as oxidative stress, mitochondrial dysfunction impaired mitophagy plays a crucial role in activating NLRP3 inflammasome complex. Hence, regulation of microglial activation through mitophagy could be a valuable strategy in controlling microglia mediated neurodegeneration. In this study we have developed a model of inflammasome activation by combining LPS with a mitochondrial complex-I inhibitor MPP+. The idea of using MPP+ after priming mouse microglia with LPS was to disrupt mitochondria and release reactive oxygen species, which act as Signal 2 in augmenting NLRP3 assembly, thereby releasing potent inflammatory mediators such as active interleukin-1 beta (IL-1β) and IL-18. LPS-MPP+ combination was seen to impaired the mitophagy by inhibiting the initial step of autophagosome formation as evidenced by protein expression and confocal imaging data. Treatment with Andrographolide promoted the parkin-dependent autophagic flux formation in microglia; resulting in the removal of defective mitochondria which in turn inhibit NLRP3 inflammasome activation. Additionally, the neuroprotective role of Andrographolide in inhibiting NLRP3 activation together with salvage ATP level via promoting parkin-dependent mitophagy was seen in the substantial nigra par compacta (SNpc) region of mice brain. Furthermore, Andrographolide rescued the dopaminergic neuron loss and improved the behavioural parameters in animal model. Collectively, our results reveal the role of mitophagy in the regulation of NLRP3 inflammasome by removing defective mitochondria. In addition, andrographolide was seen to abate NLRP3 inflammasome activation in microglia and rescue dopaminergic neuron loss.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - U S N Murty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam 781101, India.
| |
Collapse
|
26
|
Hao M, Lv M, Xu H. Andrographolide: Synthetic Methods and Biological Activities. Mini Rev Med Chem 2020; 20:1633-1652. [DOI: 10.2174/1389557520666200429100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Andrographolide, a labdane diterpenoid, is extracted and isolated from the plants of
Andrographis paniculata. Andrographolide and its derivatives exhibited a wide range of biological
properties, including anticancer activity, antibacterial activity, hepatoprotective activity, antiinflammatory
activity, antiviral activity, antimalarial activity, antidiabetic activity, insecticidal activity,
etc. As a continuation, this review aims at giving an overview of the recent advances (from 2015 to
2018) of andrographolide and its derivatives with regard to bioactivities, mechanisms of action, structural
modifications, and structure-activity relationships.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
27
|
Bi R, Deng Y, Tang C, Xuan L, Xu B, Du Y, Wang C, Wei W. Andrographolide sensitizes human renal carcinoma cells to TRAIL‑induced apoptosis through upregulation of death receptor 4. Oncol Rep 2020; 44:1939-1948. [PMID: 33000263 PMCID: PMC7551412 DOI: 10.3892/or.2020.7737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells, with minimal toxicity to normal tissues. However, accumulating evidence suggests that certain cancer types are insensitive to TRAIL signaling. The aim of this study was to identify an effective combination regimen, which can overcome TRAIL resistance in renal cancer cell. Herein, we found that human renal carcinoma cells (RCCs) are widely resistant to TRAIL-mediated growth inhibition and subsequently identified that andrographolide (Andro), a major constituent of Andrographis paniculate, an annual herbaceous plant in the family Acanthaceae, counteracts TRAIL resistance in RCCs. Combined treatment with TRAIL and Andro suppressed cell viability as determined by MTS and proliferation as determined by EdU in a dose-dependent manner and inactivated the clonogenic and migration ability of RCCs. Andro significantly enhances TRAIL-mediated cell cycle arrest at the G2/M phase as determined by flow cytometry and senescence. Moreover, Andro restored TRAIL signaling, which in turns activated pro-apoptosis caspases as determined by immunoblot assay. The TRAIL receptor, death receptor (DR)4, but not DR5, was found to be significantly upregulated in Andro-treated RCC cells, which contributed to the role of Andro as a TRAIL sensitizer. The present study demonstrated that the combined treatment of Andro and TRAIL has potential therapeutic value against renal cancer.
Collapse
Affiliation(s)
- Ran Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuyou Deng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xuan
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Xu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yujun Du
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chunxi Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Wei
- Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, Institute of Translational Medicine, Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
28
|
Zhao Y, Yang J, Li C, Zhou G, Wan H, Ding Z, Wan H, Zhou H. Role of the neurovascular unit in the process of cerebral ischemic injury. Pharmacol Res 2020; 160:105103. [PMID: 32739425 DOI: 10.1016/j.phrs.2020.105103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemic injury exhibits both high morbidity and mortality worldwide. Traditional research of the pathogenesis of cerebral ischemic injury has focused on separate analyses of the involved cell types. In recent years, the neurovascular unit (NVU) mechanism of cerebral ischemic injury has been proposed in modern medicine. Hence, more effective strategies for the treatment of cerebral ischemic injury may be provided through comprehensive analysis of brain cells and the extracellular matrix. However, recent studies that have investigated the function of the NVU in cerebral ischemic injury have been insufficient. In addition, the metabolism and energy conversion of the NVU depend on interactions among multiple cell types, which make it difficult to identify the unique contribution of each cell type. Therefore, in the present review, we comprehensively summarize the regulatory effects and recovery mechanisms of four major cell types (i.e., astrocytes, microglia, brain-microvascular endothelial cells, and neurons) in the NVU under cerebral ischemic injury, as well as discuss the interactions among these cell types in the NVU. Furthermore, we discuss the common signaling pathways and signaling factors that mediate cerebral ischemic injury in the NVU, which may help to provide a theoretical basis for the comprehensive elucidation of cerebral ischemic injury.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoying Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
29
|
Ciampi E, Uribe-San-Martin R, Cárcamo C, Cruz JP, Reyes A, Reyes D, Pinto C, Vásquez M, Burgos RA, Hancke J. Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial. BMC Neurol 2020; 20:173. [PMID: 32380977 PMCID: PMC7203851 DOI: 10.1186/s12883-020-01745-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune mediated disease and the progressive phase appears to have significant neurodegenerative mechanisms. The classification of the course of progressive MS (PMS) has been re-organized into categories of active vs. not active inflammatory disease and the presence vs. absence of gradual disease progression. Clinical trial experience to date in PMS with anti-inflammatory medications has shown limited effect. Andrographolide is a new class of anti-inflammatory agent, that has been proposed as a potential drug for autoimmune disorders, including MS. In the present trial, we perform an exploratory pilot study on the efficacy and safety of andrographolide (AP) compared to placebo in not active PMS. METHODS A pilot clinical trial using 140 mg oral AP or placebo twice daily for 24 months in patients with not active primary or secondary progressive MS was conducted. The primary efficacy endpoint was the mean percentage brain volume change (mPBVC). Secondary efficacy endpoints included 3-month confirmed disability progression (3-CDP) and mean EDSS change. RESULTS Forty-four patients were randomized: 23 were assigned to the AP group, and 21 were assigned to the placebo group. The median baseline EDSS of both groups was 6.0. Annualized mPBVC was - 0.679% for the AP group and - 1.069% for the placebo group (mean difference: -0.39; 95% CI [- 0.836-0.055], p = 0.08, relative reduction: 36.5%). In the AP group, 30% had 3-CDP compared to 41% in the placebo group (HR: 0.596; 95% CI [0.200-1.777], p = 0.06). The mean EDSS change was - 0.025 in the AP group and + 0.352 in the placebo group (mean difference: 0.63, p = 0.042). Adverse events related to AP were mild rash and dysgeusia. CONCLUSIONS AP was well tolerated and showed a potential effect in reducing brain atrophy and disability progression, that need to be further evaluated in a larger clinical trial. TRIAL REGISTRATION ClinicalTrials.gov NCT02273635 retrospectively registered on October 24th, 2014.
Collapse
Affiliation(s)
- Ethel Ciampi
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile. .,Neurology, Hospital Dr. Sótero del Río, Av. Concha y Toro, 3459, Santiago, Chile.
| | - Reinaldo Uribe-San-Martin
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile.,Neurology, Hospital Dr. Sótero del Río, Av. Concha y Toro, 3459, Santiago, Chile
| | - Claudia Cárcamo
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile.
| | - Juan Pablo Cruz
- Radiology, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Ana Reyes
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Diego Reyes
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Carmen Pinto
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Macarena Vásquez
- Neurology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Diagonal Paraguay, 362, 5° floor, Santiago, Chile
| | - Rafael A Burgos
- Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia, 613, Valdivia, Chile
| | - Juan Hancke
- Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Independencia, 613, Valdivia, Chile
| |
Collapse
|
30
|
Wang DP, Chen SH, Wang D, Kang K, Wu YF, Su SH, Zhang YY, Hai J. Neuroprotective effects of andrographolide on chronic cerebral hypoperfusion-induced hippocampal neuronal damage in rats possibly via PTEN/AKT signaling pathway. Acta Histochem 2020; 122:151514. [PMID: 32019701 DOI: 10.1016/j.acthis.2020.151514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
To explore the potential effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced neuronal damage as well as the underlying mechanisms. Rat CCH model was established by 2-vessel occlusion (2VO). The CCH rats received andrographolide treatment for 4 weeks. The neuron loss was detected by using neuronal nuclei (NeuN) immunofluorescent staining. The expression levels of phospho-phosphatase and tensin homolog deleted on chromosome ten (p-PTEN), protein kinase B (AKT), p-AKT, and cysteinyl aspartate specific proteinase-3 (Caspase-3) proteins were accessed by Western blotting. Moreover, the neuronal apoptosis of hippocampus tissues was detected via terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL) staining. CCH reduced the number of NeuN-positive cells, while the number was significant increased after andrographolide treatment. CCH increased the proteins expression level of p-PTEN, Caspase-3, and decreased the p-AKT, which were reversed by andrographolide treatment. Furthermore, andrographolide treatment also down-regulated CCH-induced TUNEL-apoptosis rate. Our results suggest that the PTEN/AKT pathway may be modulated by andrographolide and the damaging effects of CCH on hippocampus may be ameliorated by andrographolide treatment. Andrographolide may act as a potential therapeutic approach for chronic ischemic insults.
Collapse
|
31
|
Zhang J, Jiang Y, Liu N, Shen T, Jung HW, Liu J, Yan BC. A Network-Based Method for Mechanistic Investigation and Neuroprotective Effect on Post-treatment of Senkyunolid-H Against Cerebral Ischemic Stroke in Mouse. Front Neurol 2019; 10:1299. [PMID: 31920923 PMCID: PMC6930873 DOI: 10.3389/fneur.2019.01299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Senkyunolide-H (SEH), a major bioactive compound extracted from Ligusticum chuanxiong, has been reported to be effective in preventing cerebral ischemic stroke (CIS). In this study, we employed network pharmacology to reveal potential mechanism of SEH against CIS on a system level and confirmed the therapeutic effects of SEH on CIS by models of cerebral ischemia-reperfusion in vivo and in vitro. Through protein-protein interaction networks construction of SEH- and CIS-related targets, a total of 62 key targets were obtained by screening topological indices and analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Gene Ontology analysis indicated that SEH might have a role in treating CIS via regulating some biological processes including regulation of transcription from RNA polymerase II promoter, epidermal growth factor receptor signaling pathway, phosphatidylinositol-mediated signaling, and some molecular function, such as transcription factor and protein phosphatase binding and nitric oxide synthase regulator activity. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes analysis showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was significantly enriched. In addition, our result showed that SEH posttreatment significantly decreased the neurological scores, infarct volume, and neuronal death in the middle cerebral artery occlusion mice. Moreover, the PI3K/Akt/nuclear factor kappa B signaling pathway was activated by intragastric administration of 40 mg/kg SEH, as verified by Western blot. In vitro, treatment of PC12 cells with 100 μM SEH markedly reduced cell death induced by oxygen-glucose deprivation through the activation of PI3K/Akt/nuclear factor kappa B pathway, and the therapeutic effect of SEH was obviously inhibited by 10 μM LY294002. In summary, these results suggested that SEH carries a therapeutic potential in CIS involving multiple targets and pathways, and the most crucial mechanism might be through the activation of PI3K/Akt/nuclear factor kappa B (NF-κB) signaling pathway to inhibit inflammatory factor releases and increase the antiapoptosis capacity. Our study furnishes the future traditional Chinese medicine research with a network pharmacology framework.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Nan Liu
- Beijing Increase Research for Drug Efficacy and Safety Co., Ltd., Beijing, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju-si, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju-si, South Korea
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
32
|
Geng J, Liu W, Gao J, Jiang C, Fan T, Sun Y, Qin Z, Xu Q, Guo W, Gao J. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br J Pharmacol 2019; 176:4574-4591. [PMID: 31389613 PMCID: PMC6932945 DOI: 10.1111/bph.14823] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Accumulating evidence indicates that mitochondrial dynamics play an important role in the progressive deterioration of dopaminergic neurons. Andrographolide has been found to exert neuroprotective effects in several models of neurological diseases. However, the mechanism of how andrographolide protects neurons in Parkinson's disease (PD) remains not fully understood. EXPERIMENTAL APPROACH Behavioural experiments were performed to examine the effect of andrographolide in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-PD mice. Mitochondrial mass and morphology were visualized using transmission electron microscopy (TEM). SH-SY5Y cells and primary mouse neurons were exposed to rotenone to mimic PD in vitro. Western blotting, co-immunoprecipitation and immunofluorescence were performed. The target protein of andrographolide was identified by biotin-andrographolide pulldown assay as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), and surface plasmon resonance (SPR) assays. KEY RESULTS Andrographolide administration improved behavioural deficits and attenuated loss of dopaminergic neurons in MPTP-exposed mice and reduced cell death induced by rotenone in vitro. An increased mitochondrial mass, and decreased surface area were found in the striatum from MPTP-PD mice, as well as in rotenone-treated primary neurons and SH-SY5Y cells, while andrographolide treatment preserved mitochondrial mass and morphology. Dynamin-related protein 1 (DRP1) was identified as a target protein of andrographolide. Andrographolide bound to DRP1 and inhibited its GTPase activity, thereby preventing excessive mitochondria fission and neuronal damage in PD. CONCLUSIONS AND IMPLICATIONS Our findings suggest that andrographolide may protect neurons against rotenone- or MPTP-induced damage in vitro and in vivo through inhibiting mitochondrial fission.
Collapse
Affiliation(s)
- Ji Geng
- School of PharmacyJiangsu UniversityZhenjiangChina
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro‐Psycho‐Diseases, College of Pharmaceutical ScienceSoochow UniversitySuzhouChina
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Chunhong Jiang
- State Key Laboratory of Innovative Nature Medicine and TCM InjectionsJiangxi Qingfeng Pharmaceutical Co., Ltd.GanzhouChina
| | - Ting Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zheng‐Hong Qin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro‐Psycho‐Diseases, College of Pharmaceutical ScienceSoochow UniversitySuzhouChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jing Gao
- School of PharmacyJiangsu UniversityZhenjiangChina
| |
Collapse
|
33
|
Chiu CC, Lin JM, Wu LY, Hsu TC, Tzang BS. The Beneficial Effects of Raffinee in Permanent Occulted Stroke Mice. J Med Food 2019; 22:1226-1234. [PMID: 31545135 DOI: 10.1089/jmf.2019.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality globally. Although thrombolytic therapy is routinely adopted in cases of ischemic stroke, various alternative natural neuroprotectants are also used as effective adjuvant therapies to recover neurofunction following ischemic stroke. Raffinee, a natural fermented product with strong antioxidant and neuroprotective activities, has antiatherogenic effects in animals and has exhibited neuroprotective effects in a clinical trial by recovering motor and sensory function following spinal cord lesion. This study reveals the advantageous effects of Raffinee on PC12 cells by decreasing hypoxia-induced apoptosis in mice with permanent middle cerebral artery occlusion (pMCAO) by increasing the levels of neurotrophic factors such as S100β, reducing serum inflammatory factors such as matrix metalloproteinases (MMP)-9/MMP-2 ratio, tumor necrosis factor-α, and interleukin (IL)-6 level, and increasing IL-10 levels. Significantly reduced brain infarct volume along with a favorable survival ratio was observed for pMCAO mice that received Raffinee, suggesting a neuroprotective potential of Raffinee in cases of acute ischemic stroke by suppressing apoptosis.
Collapse
Affiliation(s)
- Chun-Ching Chiu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Intensive Care Unit, Changhua Christian Hospital, Changhua, Taiwan
| | - Jer-Min Lin
- Ziel Enterprise Co., Ltd., Kaohsiung, Taiwan
| | - Li-Yi Wu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Tsai-Ching Hsu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
| | - Bor-Show Tzang
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan.,Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Geng J, Liu J, Yuan X, Liu W, Guo W. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol Appl Pharmacol 2019; 379:114688. [DOI: 10.1016/j.taap.2019.114688] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
|
35
|
Zhang JJ, Gao TT, Wang Y, Wang JL, Guan W, Wang YJ, Wang CN, Liu JF, Jiang B. Andrographolide Exerts Significant Antidepressant-Like Effects Involving the Hippocampal BDNF System in Mice. Int J Neuropsychopharmacol 2019; 22:585-600. [PMID: 31181145 PMCID: PMC6754737 DOI: 10.1093/ijnp/pyz032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Major depressive disorder is a worldwide neuropsychiatric disorder associated with various symptoms, but current antidepressants used in clinical practice have various side effects and high failure rates. Andrographolide is the main bioactive ingredient of Andrographis paniculata and exhibits numerous pharmacological actions. This study aimed to evaluate the antidepressant-like effects of andrographolide in male C57BL/6J mice. METHODS The antidepressant-like effects of andrographolide in mice were explored in a forced swim test, tail suspension test, and chronic unpredictable mild stress model of depression. Western blotting and immunofluorescence were further performed to assess the effects of chronic unpredictable mild stress and andrographolide on the brain-derived neurotrophic factor signalling cascade and hippocampal neurogenesis. Moreover, a pharmacological inhibitor (K252a) and a lentiviral-short hairpin RNA (LV-TrkB-shRNA) were used to clarify the antidepressant-like mechanism of andrographolide. RESULTS Andrographolide exhibited antidepressant-like potential in the forced swim test and tail suspension test without influencing the locomotor activity of mice. Repeated andrographolide treatment not only produced significant antidepressant-like effects in the chronic unpredictable mild stress model but also prevented the decreasing effects of chronic unpredictable mild stress on hippocampal brain-derived neurotrophic factor signalling and neurogenesis in mice. Importantly, blockade of the hippocampal brain-derived neurotrophic factor system by K252a and TrkB-shRNA fully abolished the antidepressant-like effects of andrographolide in mice. CONCLUSIONS Andrographolide exerts antidepressant-like effects in mice via promoting the hippocampal brain-derived neurotrophic factor signalling cascade.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ting-Ting Gao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Yuan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jian-Feng Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Jiangsu, China
| |
Collapse
|
36
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
37
|
Bilia AR, Nardiello P, Piazzini V, Leri M, Bergonzi MC, Bucciantini M, Casamenti F. Successful Brain Delivery of Andrographolide Loaded in Human Albumin Nanoparticles to TgCRND8 Mice, an Alzheimer's Disease Mouse Model. Front Pharmacol 2019; 10:910. [PMID: 31507412 PMCID: PMC6713928 DOI: 10.3389/fphar.2019.00910] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 11/29/2022] Open
Abstract
Andrographolide (AG) was encapsulated in human albumin nanoparticles (AG NPs), and their crossing properties of the blood-brain barrier (BBB), brain distribution, and effects in TgCRND8 mice were evaluated. The development of appropriate NP formulations is mandatory because of the scarce BBB permeability properties of AG. Developed NPs had proper size (mean size: 159.2 ± 4.5 nm), size distribution (PDI nearby 0.12 ± 0.01), and ζ potential (-24.8 ± 1.2 mV), which were not affected by sodium fluorescein (NAF) loading. When AG was loaded to NPs, it slightly affected their size (210.4 ± 3.2 nm) and ζ potential (-20.3 ± 1.5) but not the PDI. Both NAF and AG had a remarkable encapsulation efficiency (more than 99%). The in vitro release of AG from the NPs reached the highest percentage (48%) after 24 h, and the Higuchi’s equation was found to be the best fitting model (R2 = 0.9635). Both AG and AG NPs did not alter the viability of N2a murine neuroblastoma cells when compared with the untreated control cells. In the step-down inhibitory avoidance test, AG NPs administered to TgCRND8 mice significantly improved their performance (P < 0.0001), reaching levels comparable to those displayed by wild-type mice. In the object recognition test, treated and untreated animals showed no deficiencies in exploratory activity, directional movement toward objects, and locomotor activity. No cognitive impairments (discrimination score) were detected in TgCRND8 mice (P < 0.0001) treated with AG NPs. After acute intravenous administration (200 µl), NPs loaded with the probe NAF were detected in the brain parenchyma of TgCRND8 mice. Immunofluorescent analyses evidenced the presence of NPs both in the pE3-Aβ plaque surroundings and inside the pE3-Aβ plaque, indicative of the ability of these NPs to cross the BBB and to penetrate in both undamaged and damaged brain tissues. Furthermore, the immunohistochemical analysis of GFAP-positive astrocytes in the hippocampus of Tg mice evidenced the anti-inflammatory activity of AG when AG NPs were intraperitoneally administered. AG was not effective in counteracting amyloid Aβ aggregation and the resulting toxicity but significantly decreased the oxidative stress levels. In conclusion, AG NPs have extraordinary versatility, nontoxicity, nonimmunogenicity, strong biocompatibility, high biodegradability, and astonishing loading capacity of drug.
Collapse
Affiliation(s)
- Anna Rita Bilia
- Dipartimento di Chimica "Ugo Schiff," University of Florence, Florence, Italy
| | - Pamela Nardiello
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Vieri Piazzini
- Dipartimento di Chimica "Ugo Schiff," University of Florence, Florence, Italy
| | - Manuela Leri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy.,Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio," University of Florence, Florence, Italy
| | | | - Monica Bucciantini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio," University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
38
|
Kandanur SGS, Tamang N, Golakoti NR, Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur J Med Chem 2019; 176:513-533. [DOI: 10.1016/j.ejmech.2019.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 01/11/2023]
|
39
|
Zhang G, Jiang C, Xie N, Xu Y, Liu L, Liu N. Treatment with andrographolide sulfonate provides additional benefits to imipenem in a mouse model of Klebsiella pneumoniae pneumonia. Biomed Pharmacother 2019; 117:109065. [PMID: 31220744 DOI: 10.1016/j.biopha.2019.109065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae is a primary cause of community-acquired and nosocomial respiratory infections, and K. pneumoniae resistance to the current treatment approach with carbapenem is worsening. Andrographolide is a natural diterpenoid from Andrographis paniculata that was shown to exert anti-inflammatory activity. We herein show that pretreatment with a water-soluble andrographolide sulfonate significantly attenuate lung injury and infiltration of inflammatory cells. Interestingly, mice receiving combined treatment with andrographolide sulfonate displayed perfect survival rate than the mice treatment with imipenem alone, and monocyte chemotactic protein 5 (MCP-5) level was decreased further. These findings suggest that andrographolide sulfonate could as a potential synergist for antibiotic treatment of bacteria-induced inflammation.
Collapse
Affiliation(s)
- Guorong Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Yang Xu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Li Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Professional and Technical Service Center for Biological Material Druggability Evaluation, Shanghai, China.
| | - Nan Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
40
|
Wang DP, Yin H, Lin Q, Fang SP, Shen JH, Wu YF, Su SH, Hai J. Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1277-1284. [PMID: 31187188 DOI: 10.1007/s00210-019-01672-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
Andrographolide is a medical herbal compound with documented anti-inflammatory activity and therapeutic efficacy in animal models of Alzheimer's disease, traumatic brain injury, and ischemic stroke. The present study examined the potential therapeutic effects of andrographolide on chronic cerebral hypoperfusion (CCH)-induced hippocampal neuronal damage and cognitive dysfunction. A CCH model was established in male Sprague Dawley (SD) rats using 2-vessel occlusion (2VO). After 4 weeks of CCH, spatial learning and memory were assessed in the Morris water maze and structural damage to the hippocampus by hematoxylin and eosin (HE) staining. Astrocyte activation was examined by immunohistochemical staining and Western blotting for glial fibrillary acid protein (GFAP), while expression levels of the pro-inflammatory cytokine-tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), the apoptosis effector cysteinyl aspartate specific proteinase-3 (caspase-3), and the neuroprotectant brain-derived neurotrophic factor (BDNF) and the TrkB receptor were estimated by Western blotting. After 4 weeks of CCH, the hippocampus of 2VO rats exhibited marked neurodegeneration as well as elevated GFAP, TNF-α, IL-1β, and caspase-3 compared to Sham controls. In addition, spatial learning was impaired compared to Sham controls. Andrographolide treatment during CCH suppressed astrocyte activation as evidenced by reduced GFAP expression, enhanced expression of BDNF and TrkB, improved impaired spatial learning and memory, and reversed upregulated TNF-α, IL-1β, and caspase-3 expression. These results reveal a potential neuroprotective effect of andrographolide on hippocampal neuronal damage and cognitive impairment from CCH due to suppression of astrocyte activation and enhancement of BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
| | - Hang Yin
- Department of Neurosurgery, Zao Zhuang Municipal Hospital, Zaozhuang, 277000, Shandong, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shu-Ping Fang
- Department of Neurosurgery, Feng Cheng Hospital, Shanghai, 201499, China
| | - Jian-Hua Shen
- Department of Neurosurgery, Affiliated Dongtai Hospital of Nantong University, Nantong, 224200, Jiangsu, China
| | - Yi-Fang Wu
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Postal address: No. 389, Xincun Road, Putuo District, Shanghai, 200065, China.
| |
Collapse
|
41
|
Yang MY, Yu QL, Huang YS, Yang G. Neuroprotective effects of andrographolide derivative CX-10 in transient focal ischemia in rat: Involvement of Nrf2/AE and TLR/NF-κB signaling. Pharmacol Res 2019; 144:227-234. [PMID: 31028905 DOI: 10.1016/j.phrs.2019.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide. To date there is no ideal effective treatment. 3, 14, 19-triacetyl andrographolide (CX-10) is a new molecule entity derived from andrographolide. The aim of the present study was to evaluate the neuroprotection of CX-10 against experimental cerebral ischemia. The anti-inflammation of CX-10 was screened using LPS-induced inflammation in vitro and in vivo. Rats were subjected to 1.5 h of middle cerebral occlusion (MCAO) and then reperfusion for 72 h. The infarct size was evaluated by TTC staining, and the behavioral disturbance was evaluated, and inflammatory cytokines and anti-oxidant enzymes in brain tissues were examined. Western blot was used to analyze the expression of proteins. The results showed that CX-10 exerted potent anti-inflammatory and anti-oxidation activities, which significantly inhibited LPS-induced TNF-α and NO release, lowered TNF-α and IL-1β levels in the brain, meanwhile increased activities of SOD, CAT and GSH-P × . The effect of CX-10 was equivalent to that of dexamethasone, and was obviously superior to that of andrographolide. CX-10 exhibited a neuroprotective effects, manifested as reducing infarct size, improving neurological function and reducing motor impairments. Furthermore, western blot analysis revealed that treatment with CX-10 down-regulated the expression of TLR4, NF-κB, TNF-α and iNOS, induced Nrf2 and HO-1 expression. Overall, CX-10 has a favorable neuroprotection in ischemic brain injury. The mechanism may involve inhibition of TLR4/NF-κB signaling pathway and upregulation of Nrf2/ARE signaling pathway. All these indicated that CX-10 is likely to be a promising agent for ischemic stroke.
Collapse
Affiliation(s)
- Ming-Yan Yang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China.
| | - Qing-Long Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yao-Shi Huang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China
| | - Guo Yang
- Shandong Target Drug Research Co. Ltd., Yantai 264005, Shandong Province, China
| |
Collapse
|
42
|
Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part III): Antitoxic effects of plant extracts towards cancer chemotherapy-induced toxicity - transcriptome-wide microarray analysis of neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:246-260. [PMID: 30668345 DOI: 10.1016/j.phymed.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Toxicity of chemotherapeutics is a serious problem in cancer therapy. Adaptogens are known to increase adaptability and survival organisms. AIM The aim of this study was to assess the effects of selected adaptogenic herbal extracts on FEC (fixed combination of 5-fluorouracil, epirubicin and cyclophosphamide) induced changes in transcriptome-wide microarray profiles of neuroglia cells. Another task of the study was to identify those genes, which are associated with FEC-induced hepato-, cardio- and nephrotoxicity to predict potential effects of andrographolide (AND), Andrographis herb, Eleutherococcus roots genuine extracts (ES), their fixed combination (AE) and the combination of Rhodiola roots, Schisandra berries and Eleutherococcus roots (RSE) on the organismal level. METHODS Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human T98G neuroglia cells after treatment with adaptogens. Interactive pathways downstream analysis was performed with data sets of significantly up- or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software. RESULT Significant differences of transcriptome-wide microarray profiles were observed after treatment of T98G cells with FEC and after co-incubation with adaptogens. FEC induced deregulation of certain genes with suggested toxicity associated with liver fibroses, necrosis and congenital heart diseases. Co-incubation of AE with FEC prevented FEC-induced deregulation of 66 genes increasing organismal death, 37 genes decreasing cell survival, 37 genes decreasing DNA repair, 37 genes decreasing viral infection and some other functions, indicating on potential beneficial effects of AE. Furthermore, FEC-induced hepato-, nephro- and cardiotoxicity related to deregulation of genes was predictably attenuated by AE. Moreover, co-incubation of AE with FEC caused differential expression of genes, which presumably are beneficial for an organism during chemotherapy. They include predicted activation of DNA repair, activation of movement of antigen presenting cells and inhibition of muscle cells death. The main active constituent of AE is AND. Co-incubation of FEC only with AND results in deregulation of 10 genes causing death of breast cancer cells, decrease of liver toxicity and attenuation of organismal death. Co-incubation of ES extract with FEC showed that ES suppressed FEC-induced deregulation of genes, which inhibit organismal death and fertility. Co-incubation of FEC with RSE indicated potential hepatoprotective effect against FEC-induced apoptosis of liver cells presumably due to suppression of FEC-induced expressions of genes, which increased liver cell apoptosis. Simultaneously, RSE activated expression of genes inhibiting tumor growth. Though, microarray analysis did not provide final proof that the genes induced by the AE, AP and ES are responsible for the physiological effects observed in human patients following their oral administration, it provided insights into putative genes and directions for future research and possible implementation into practice. CONCLUSION Application of cytostatic drugs in combination with adaptogenic plant extracts induced significant changes in transcriptome-wide microarray profiles of neuroglial cells. These changes indicate on potential beneficial effects of adaptogens on FEC induced adverse events in cancer chemotherapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, WI 54311; Phytomed AB, Vaxtorp, Halland, Sweden.
| |
Collapse
|
43
|
Seo EJ, Klauck SM, Efferth T, Panossian A. Adaptogens in chemobrain (Part I): Plant extracts attenuate cancer chemotherapy-induced cognitive impairment - Transcriptome-wide microarray profiles of neuroglia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:80-91. [PMID: 30668446 DOI: 10.1016/j.phymed.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer chemotherapy-induced cognitive impairments are presumably associated with undesirable effects of chemotherapy on physiological functions of brain cells. Adaptogens are natural compounds or plant extracts increasing an organism's adaptability and survival in stress. They exhibited neuroprotective effects and increased cognitive functions in clinical studies in human beings. HYPOTHESIS We hypothesized that selected adaptogenic plant extracts attenuate or prevent cancer chemotherapy-induced cognitive impairments. AIM We assessed the effects of selected adaptogenic herbal extracts on FEC (fixed combination 5-fluorouracil, epirubicin and cyclophosphamide) induced changes in transcriptome-wide RNA microarray profiles of neuroglia cells. The aim of the study was to predict potential effects of andrographolide, Andrographis herb, Eleutherococcus root genuine extracts, their fixed combination (AE) and the combination of Rhodiola roots, Schisandra berries and Eleutherococcus roots (RSE) on cellular and physiological, mostly cognitive functions. METHODS Gene expression profiling was performed by transcriptome-wide mRNA microarray in the human T98G neuroglia cells after treatment with adaptogens. Interactive pathways downstream analysis was performed with data sets of significantly up- or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software. RESULTS FEC deregulated 67 genes involved in decrease of neuronal development, 37 genes involved in development of the sensory system, 12 genes in extension of axons, and 3 genes in migration of neurons. Co-incubation with Andrographis paniculata (AP) suppressed FEC-induced deregulation of a large number of genes involved in predicted activation of neuronal death and inhibition of neurogenesis, and 16 genes related to inhibition of several functions in the nervous system. Co-incubation with AE suppressed FEC-induced deregulation of a number of genes involved in predicted inhibition of axon extension, migration of T98G neuroglia cells, conduction of nerves and other genes related to regulations of some other functions in the nervous system. CONCLUSION Application of cytostatic drugs in combination with apoptogenic plant extracts induced significant changes in transcriptome-wide mRNA microarray profiles of neuroglial cells. These changes indicate on potential beneficial effects on neuronal functions associated with mild cognitive impairments in cancer chemotherapy.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460 Heidelberg 69120, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
| | - Alexander Panossian
- EuroPharma USA Inc., 955 Challenger Dr., Green Bay, Wisconsin 54311 United States; Phytomed AB, Vaxtorp, Sweden.
| |
Collapse
|
44
|
Lv H, Li J, Che YQ. CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-κB-signaling pathway in mice with ischemic stroke. J Cell Physiol 2018; 234:7341-7355. [PMID: 30362547 DOI: 10.1002/jcp.27493] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Ischemic stroke is known as a neurodegenerative disorder, which induces long-period tissue damage. Chemokine (C-X-C motif) ligand 8 (CXCL8) is involved in acute inflammation and tumor progression through the phosphoinositide-3-kinase/protein kinase B/nuclear factor-κB (PI3K/Akt/NF-κB)-signaling pathway. In this study, we aimed to explore the mechanism of CXCL8 in ischemic stroke in relation to the PI3K/Akt/NF-κB-signaling pathway. METHODS Microarray-based gene expression profiling of peripheral blood mononuclear cells was used to identify ischemic stroke-related differentially expressed genes and explore role of CXCL8 in ischemic stroke. Next, the ischemic mice model was successfully established, with transfection efficiency detected. After that, deflection index, recovery of nervous system, infarct sizes, ischemia-induced apoptosis, and neuroinflammatory response in ischemic stroke were measured. At last, the content of inflammatory factors as well as the expression of CXCL8, caspase-3, caspase-9, Bad, interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), Akt, PI3K, and NF-κB were determined. RESULTS Comprehensive gene expression profiling analysis identified that CXCL8 might affect the development of ischemic stroke through regulating the PI3K/Akt/NF-κB-signaling pathway. CXCL8 silencing significantly reduced deflection index and infarct size, improved neurological function, and suppressed neuroglial cell loss and apoptosis index. In addition, glial fibrillary acidic portein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1) expressions were decreased following CXCL8 suppression, suggesting CXCL8 affected neuroglial activation. Importantly, we also found that CXCL8 silencing activated neuroglial cell and suppressed inflammatory cytokine production in ischemic stroke mice. CONCLUSION Taken together, these findings highlight that functional suppression of CXCL8 promotes neuroglial activation and inhibits neuroinflammation by regulating the PI3K/Akt/NF-κB-signaling pathway in mice with ischemic stroke, which might provide new insight for ischemic stroke treatment.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Tao L, Zhang L, Gao R, Jiang F, Cao J, Liu H. Andrographolide Alleviates Acute Brain Injury in a Rat Model of Traumatic Brain Injury: Possible Involvement of Inflammatory Signaling. Front Neurosci 2018; 12:657. [PMID: 30294256 PMCID: PMC6158349 DOI: 10.3389/fnins.2018.00657] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation plays an important role in secondary injury after traumatic brain injury (TBI). Andrographolide (Andro), a diterpenoid lactone isolated from Andrographis paniculata, has been demonstrated to exhibit anti-inflammatory activity in neurodegenerative disorders. This study therefore aimed to investigate the potential neuroprotective effects of Andro after TBI and explore the underlying mechanisms. In our study, we used a weight-dropped model to induce TBI in Sprague–Dawley rats, the neurological deficits were assessed using modified neurological severity scores, Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining were employed to examine neuronal degeneration and apoptosis after TBI, immunofluorescence was designed to investigate microglial activation. Quantitative Real-time PCR and ELISA were conducted to detect the expression levels of pro-inflammatory cytokines, Western blot was used to examine the expression level of proteins of relative signaling pathway. Our results showed that after Andro administration, the neurological deficit was attenuated, and the cerebral edema and apoptosis in brain tissues were also decreased following TBI. Both microglial activation and the expression of pro-inflammatory cytokines were significantly inhibited by Andro after TBI. Moreover, Andro inhibited NF-κB p65 subunit translocation and decreased the expression levels of phosphorylated extracellular signal regulated kinase (ERK) and p38 MAPK after TBI. Altogether, this study suggests that Andro could improve neurobehavioral function by inhibiting NF-κB and MAPK signaling pathway in TBI, which might provide a new approach for treating brain injury.
Collapse
Affiliation(s)
- Li Tao
- Department of Pharmacy and Translational Medicine Center, Zhangjiagang First People's Hospital, Suzhou, China
| | - Li Zhang
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Suzhou, China
| | - Feng Jiang
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Suzhou, China
| | - Jianbo Cao
- Department of Pharmacy and Translational Medicine Center, Zhangjiagang First People's Hospital, Suzhou, China
| | - Huixiang Liu
- Department of Neurosurgery, Zhangjiagang First People's Hospital, Suzhou, China
| |
Collapse
|
46
|
Du J, Zhang C, Na X, Li A, Zhang Q, Li K, Ding Y. Andrographolide protects mouse astrocytes against hypoxia injury by promoting autophagy and S100B expression. ACTA ACUST UNITED AC 2018; 51:e7061. [PMID: 29694508 PMCID: PMC5937729 DOI: 10.1590/1414-431x20177061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022]
Abstract
Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0–12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.
Collapse
Affiliation(s)
- Juan Du
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunyan Zhang
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueqing Na
- Department of Anesthesiology, Hospital of Kunming Medical University, Kunming, China
| | - Aizhi Li
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qingfeng Zhang
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Kezhong Li
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongbo Ding
- Department of Anesthesiology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
47
|
Yi Z, Ouyang S, Zhou C, Xie L, Fang Z, Yuan H, Yang J, Zou L, Jia T, Zhao S, Li L, Shi L, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain. Front Pharmacol 2018; 9:593. [PMID: 29950989 PMCID: PMC6008568 DOI: 10.3389/fphar.2018.00593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aim: In this study, we investigated whether andrographolide (Andro) can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action. Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R), interleukin-1β (IL-1β), IL-10, phospho-extracellular regulated protein kinases (ERK) (p-ERK) in the L4-L6 dorsal root ganglia (DRG) were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP) in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7) receptor. Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4-L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4-L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4-L6 DRG on 14th day after surgery. Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.
Collapse
Affiliation(s)
- Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Nursing College, Medical College of Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shuai Ouyang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical College of Nanchang University, Nanchang, China
| | - Lihui Xie
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Zhi Fang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jinpu Yang
- Undergraduate Student of the Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Department of Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Shangdong Liang,
| |
Collapse
|
48
|
Andrographolide enhances cisplatin-mediated anticancer effects in lung cancer cells through blockade of autophagy. Anticancer Drugs 2017; 28:967-976. [PMID: 28692436 DOI: 10.1097/cad.0000000000000537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is the most common cause of cancer-related death worldwide and the platinum-based drugs such as cisplatin have been used as the first line of the treatment. However, the clinical effectiveness of such chemotherapy is limited by intrinsic or acquired resistance. In this study, we found that cisplatin induced autophagy that attenuated the sensitivity of both A549 and Lewis lung cancer (LLC) cells to cisplatin. In contrast, the clinical drug andrographolide (Andro) suppressed autophagy and enhanced cisplatin-mediated apoptosis in these cells. Using two murine lung cancer models, including a subcutaneously inoculated LLC model and an orthotopic LLC implantation model, we investigated the therapeutic efficacy of the combined treatment of cisplatin and Andro. Compared with the sole cisplatin treatment, combining cisplatin with Andro potentially inhibited tumor growth, reduced the incidence of lung metastases, and relieved renal tubular damage. Moreover, the combined treatment prolonged the life span of tumor-bearing mice. TUNEL and immunohistochemistry assays showed the increase in apoptotic cells and the decrease in both conversion of LC3B-I to LC3B-II and Atg5 protein expression in the tumor tissues from mice with the combined treatment. These results suggest that Andro offers an ideal candidate of autophagy inhibitors in clinical application, and combination of cisplatin with Andro could be a promising strategy for the treatment of lung cancer.
Collapse
|
49
|
Liu YH, Chan SJ, Pan HC, Bandla A, King NKK, Wong PTH, Chen YY, Ng WH, Thakor NV, Liao LD. Integrated treatment modality of cathodal-transcranial direct current stimulation with peripheral sensory stimulation affords neuroprotection in a rat stroke model. NEUROPHOTONICS 2017; 4:045002. [PMID: 29021986 PMCID: PMC5627795 DOI: 10.1117/1.nph.4.4.045002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/12/2017] [Indexed: 05/03/2023]
Abstract
Cathodal-transcranial direct current stimulation induces therapeutic effects in animal ischemia models by preventing the expansion of ischemic injury during the hyperacute phase of ischemia. However, its efficacy is limited by an accompanying decrease in cerebral blood flow. On the other hand, peripheral sensory stimulation can increase blood flow to specific brain areas resulting in rescue of neurovascular functions from ischemic damage. Therefore, the two modalities appear to complement each other to form an integrated treatment modality. Our results showed that hemodynamics was improved in a photothrombotic ischemia model, as cerebral blood volume and hemoglobin oxygen saturation ([Formula: see text]) recovered to 71% and 76% of the baseline values, respectively. Furthermore, neural activities, including somatosensory-evoked potentials (110% increase), the alpha-to-delta ratio (27% increase), and the [Formula: see text] ratio (27% decrease), were also restored. Infarct volume was reduced by 50% with a 2-fold preservation in the number of neurons and a 6-fold reduction in the number of active microglia in the infarct region compared with the untreated group. Grip strength was also better preserved (28% higher) compared with the untreated group. Overall, this nonpharmacological, nonintrusive approach could be prospectively developed into a clinical treatment modality.
Collapse
Affiliation(s)
- Yu-Hang Liu
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
| | - Su Jing Chan
- Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| | - Han-Chi Pan
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Aishwarya Bandla
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
| | - Nicolas K. K. King
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Peter Tsun Hon Wong
- National University of Singapore, Department of Pharmacology, Singapore, Singapore
| | - You-Yin Chen
- National Yang Ming University, Department of Biomedical Engineering, Taipei, Taiwan
| | - Wai Hoe Ng
- National Neuroscience Institute (NNI), Department of Neurosurgery, Singapore, Singapore
- National Neuroscience Institute (NNI), SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Nitish V. Thakor
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National University of Singapore, Department of Electrical and Computer Engineering, Singapore, Singapore
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States
| | - Lun-De Liao
- National University of Singapore, Singapore Institute for Neurotechnology (SINAPSE), Singapore, Singapore
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
- Address all correspondence to: Lun-De Liao, E-mail:
| |
Collapse
|
50
|
Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4210867. [PMID: 29085837 PMCID: PMC5632471 DOI: 10.1155/2017/4210867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022]
Abstract
Adipose tissue-derived stromal cells (ADSCs) are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract) on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9). Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.
Collapse
|