1
|
Yin J, Lees JG, Gong S, Nguyen JT, Phang RJ, Shi Q, Huang Y, Kong AM, Dyson JM, Lim SY, Cheng W. Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosens Bioelectron 2025; 267:116752. [PMID: 39276439 DOI: 10.1016/j.bios.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Cardiac organoids differentiated from induced pluripotent stem cells are emerging as a promising platform for pre-clinical drug screening, assessing cardiotoxicity, and disease modelling. However, it is challenging to simultaneously measure mechanical contractile forces and electrophysiological signals of cardiac organoids in real-time and in-situ with the existing methods. Here, we present a biting-inspired sensory system based on a resistive skin sensor and a microelectrode array. The bite-like contact can be established with a micromanipulator to precisely position the resistive skin sensor on the top of the cardiac organoid while the 3D microneedle electrode array probes from underneath. Such reliable contact is key to achieving simultaneous electro-mechanical measurements. We demonstrate the use of our system for modelling cardiotoxicity with the anti-cancer drug doxorubicin. The electro-mechanical parameters described here elucidate the acute cardiotoxic effects induced by doxorubicin. This integrated electro-mechanical system enables a suite of new diagnostic options for assessing cardiac organoids and tissues.
Collapse
Affiliation(s)
- Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jarmon G Lees
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - John Tan Nguyen
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ren Jie Phang
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Qianqian Shi
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yifeng Huang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Anne M Kong
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia
| | - Jennifer M Dyson
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria, 3800, Australia; Faculty of Engineering, Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, 3800, Australia
| | - Shiang Y Lim
- Department of Medicine and Surgery, University of Melbourne, VIC, Australia; O'Brien Institute Department, St. Vincent's Institute of Medical Research, VIC, Australia; Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Victoria, Monash University, Australia; National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia; The Melbourne Centre for Nanofabrication, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
2
|
Deissler PM, Volders PGA, Ter Bekke RMA. The electromechanical window for arrhythmia-risk assessment. Heart Rhythm 2025; 22:118-127. [PMID: 38878938 DOI: 10.1016/j.hrthm.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 07/14/2024]
Abstract
The electromechanical window (EMW) is calculated by subtracting the repolarization duration from a mechanical reference representing contraction duration in the same heartbeat (eg, aortic valve closure during echocardiography with simultaneous electrocardiography). Here, we review the current knowledge on the role of the EMW as an independent parameter for ventricular arrhythmia-risk stratification. We (1) provide a standardized approach to echocardiographic EMW assessment, (2) define relevant cutoff values for both abnormal EMW negativity and positivity, (3) discuss pathophysiological underpinnings of EMW negativity, and (4) outline the potential future role of cardiac electromechanical relations in patients with proarrhythmic conditions.
Collapse
Affiliation(s)
- Peter M Deissler
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Paul G A Volders
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Rachel M A Ter Bekke
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Brložnik M, Lunka E, Avbelj V, Nemec Svete A, Domanjko Petrič A. Cardiac Electromechanical Activity in Healthy Cats and Cats with Cardiomyopathies. SENSORS (BASEL, SWITZERLAND) 2023; 23:8336. [PMID: 37837166 PMCID: PMC10574989 DOI: 10.3390/s23198336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Optimal heart function depends on perfect synchronization between electrical and mechanical activity. In this pilot study, we aimed to investigate the electromechanical activity of the heart in healthy cats and cats with cardiomyopathy with phonocardiography (PCG) synchronized to an electrocardiography (ECG) pilot device. We included 29 cats (12 healthy cats and 17 cats diagnosed with cardiomyopathy) and performed a clinical examination, PCG synchronized with ECG and echocardiography. We measured the following durations with the pilot PCG device synchronized with ECG: QRS (ventricular depolarization), QT interval (electrical systole), QS1 interval (electromechanical activation time (EMAT)), S1S2 (mechanical systole), QS2 interval (electrical and mechanical systole) and electromechanical window (end of T wave to the beginning of S2). The measured parameters did not differ between healthy cats and cats with cardiomyopathy; however, in cats with cardiomyopathy, EMAT/RR, QS2/RR and S1S2/RR were significantly longer than in healthy cats. This suggests that the hypertrophied myocardium takes longer to generate sufficient pressure to close the mitral valve and that electrical systole, i.e., depolarization and repolarization, and mechanical systoles are longer in cats with cardiomyopathy. The PCG synchronized with the ECG pilot device proved to be a valuable tool for evaluating the electromechanical activity of the feline heart.
Collapse
Affiliation(s)
- Maja Brložnik
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Ema Lunka
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Viktor Avbelj
- Department of Communication Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Aleksandra Domanjko Petrič
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| |
Collapse
|
4
|
Rhee TM, Ahn HJ, Kim S, Lee SR, Choi EK, Oh S. Predictive Value of Electromechanical Window for Risk of Fatal Ventricular Arrhythmia. J Korean Med Sci 2023; 38:e186. [PMID: 37337809 DOI: 10.3346/jkms.2023.38.e186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/27/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND As an indicator of electro-mechanical coupling, electromechanical window (EMW) can be used to predict fatal ventricular arrhythmias. We investigated the additive effect of EMW on the prediction of fatal ventricular arrhythmias in high-risk patients. METHODS We included patients who had implantable cardioverter-defibrillator (ICD) implanted for primary or secondary prevention. The event group was defined as those who received an appropriate ICD therapy. We acquired echocardiograms at ICD implantation and follow-up. The EMW was calculated as the difference between the interval from QRS onset to aortic valve closure and QT interval from the electrocardiogram embedded in the continuous wave doppler image. We evaluated the predictive value of EMW for predicting fatal ventricular arrhythmia. RESULTS Of 245 patients (67.2 ± 12.8 years, 63.7% men), the event group was 20.0%. EMW at baseline (EMW-Baseline) and follow-up (EMW-FU) was significantly different between event and control groups. After adjustment, both EMW-Baseline (odds ratio [OR]adjust 1.02 [1.01-1.03], P = 0.004) and EMW-FU (ORadjust 1.06 [1.04-1.07], P < 0.001) remained as significant predictors for fatal arrhythmic events. Adding EMW-Baseline significantly improved the discriminating ability of the multivariable model including clinical variables (area under the curve [AUC] 0.77 [0.70-0.84] vs. AUC 0.72 [0.64-0.80], P = 0.004), while a univariable model using EMW-FU alone showed the best performance among models (AUC 0.87 [0.81-0.94], P = 0.060 against model with clinical variables; P = 0.030 against model with clinical variables and EMW-Baseline). CONCLUSION The EMW could effectively predict severe ventricular arrhythmia in ICD implanted patients. This finding supports the importance of incorporating the electro-mechanical coupling index into the clinical practice for predicting future fatal arrhythmia events.
Collapse
Affiliation(s)
- Tae-Min Rhee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyo-Jeong Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunhwa Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - So-Ryoung Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
5
|
Liu W, Han JL, Tomek J, Bub G, Entcheva E. Simultaneous Widefield Voltage and Dye-Free Optical Mapping Quantifies Electromechanical Waves in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS PHOTONICS 2023; 10:1070-1083. [PMID: 37096210 PMCID: PMC10119986 DOI: 10.1021/acsphotonics.2c01644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 05/03/2023]
Abstract
Coupled electromechanical waves define a heart's function in health and diseases. Optical mapping of electrical waves using fluorescent labels offers mechanistic insights into cardiac conduction abnormalities. Dye-free/label-free mapping of mechanical waves presents an attractive non-invasive alternative. In this study, we developed a simultaneous widefield voltage and interferometric dye-free optical imaging methodology that was used as follows: (1) to validate dye-free optical mapping for quantification of cardiac wave properties in human iPSC-cardiomyocytes (CMs); (2) to demonstrate low-cost optical mapping of electromechanical waves in hiPSC-CMs using recent near-infrared (NIR) voltage sensors and orders of magnitude cheaper miniature industrial CMOS cameras; (3) to uncover previously underexplored frequency- and space-varying parameters of cardiac electromechanical waves in hiPSC-CMs. We find similarity in the frequency-dependent responses of electrical (NIR fluorescence-imaged) and mechanical (dye-free-imaged) waves, with the latter being more sensitive to faster rates and showing steeper restitution and earlier appearance of wavefront tortuosity. During regular pacing, the dye-free-imaged conduction velocity and electrical wave velocity are correlated; both modalities are sensitive to pharmacological uncoupling and dependent on gap-junctional protein (connexins) determinants of wave propagation. We uncover the strong frequency dependence of the electromechanical delay (EMD) locally and globally in hiPSC-CMs on a rigid substrate. The presented framework and results offer new means to track the functional responses of hiPSC-CMs inexpensively and non-invasively for counteracting heart disease and aiding cardiotoxicity testing and drug development.
Collapse
Affiliation(s)
- Wei Liu
- Department
of Biomedical Engineering, George Washington
University, Washington, D.C. 20052, United States
| | - Julie L. Han
- Department
of Biomedical Engineering, George Washington
University, Washington, D.C. 20052, United States
| | - Jakub Tomek
- Department
of Pharmacology, University of California−Davis, Davis, California 95616, United States
| | - Gil Bub
- Department
of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Emilia Entcheva
- Department
of Biomedical Engineering, George Washington
University, Washington, D.C. 20052, United States
| |
Collapse
|
6
|
van Bavel JJA, Beekman HDM, van Weperen VYH, van der Linde HJ, van der Heyden MAG, Vos MA. I Ks inhibitor JNJ303 prolongs the QT interval and perpetuates arrhythmia when combined with enhanced inotropy in the CAVB dog. Eur J Pharmacol 2022; 932:175218. [PMID: 36007604 DOI: 10.1016/j.ejphar.2022.175218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Impaired IKs induced by drugs or due to a KCNQ1 mutation, diagnosed as long QT syndrome type 1 (LQT1) prolongs the QT interval and predisposes the heart to Torsade de Pointes (TdP) arrhythmias. The anesthetized chronic AV block (CAVB) dog is inducible for TdP after remodeling and IKr inhibitor dofetilide. We tested the proarrhythmic effect of IKs inhibition in the CAVB dog, and the proarrhythmic role of increased contractility herein. METHODS Dofetilide-inducible animals were included to test the proarrhythmic effect of 1) IKs inhibition by JNJ303 (0.63 mg/kg/10min i.v.; n = 4), 2) IKs inhibition combined with enhanced inotropy (ouabain, 0.045 mg/kg/1min i.v.; n = 6), and 3) the washout period of the anesthetic regime (n = 10). RESULTS JNJ303 prolonged the QTc interval (from 477 ± 53 ms to 565 ± 14 ms, P < 0.02) resembling standardized dofetilide-induced QTc prolongation. Single ectopic beats (n = 4) and ventricular tachycardia (VT) (n = 3) were present, increasing the arrhythmia score (AS) from 1.0 ± 0 to 7.1 ± 6.5. JNJ303 combined with ouabain increased contractile parameters (LVdP/dtmax from 1725 ± 273 to 4147 ± 611 mmHg/s, P < 0.01). Moreover, TdP arrhythmias were induced in 4/6 dogs and AS increased from 1.0 ± 0 to 20.2 ± 19.0 after JNJ303 and ouabain (P < 0.05). Finally, TdP arrhythmias were induced in 4/10 dogs during the anesthesia washout period and the AS increased from 1.1 ± 0.3 to 9.2 ± 11.2. CONCLUSION Mimicking LQT1 using IKs inhibitor JNJ303 prolongs the QTc interval and triggers ectopic beats and non-sustained VT in the CAVB dog. Induction of the more severe arrhythmic events (TdP) demands a combination of IKs inhibition with enhanced inotropy or ending the anesthetic regime.
Collapse
Affiliation(s)
- Joanne J A van Bavel
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henriëtte D M Beekman
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Valerie Y H van Weperen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk J van der Linde
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
van Bavel JJA, Pham C, Beekman HDM, Houtman MJC, Bossu A, Sparidans RW, van der Heyden MAG, Vos MA. PI3K/mTOR inhibitor omipalisib prolongs cardiac repolarization along with a mild proarrhythmic outcome in the AV block dog model. Front Cardiovasc Med 2022; 9:956538. [PMID: 35990966 PMCID: PMC9381882 DOI: 10.3389/fcvm.2022.956538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The phosphoinositide 3-kinase (PI3K) signaling pathway is an interesting target in cancer treatment. The awareness of the proarrhythmic risk of PI3K inhibitors was raised because PI3K is also involved in regulating signaling toward cardiac ion channels. Canine cardiomyocytes treated with PI3K inhibitors show an increased action potential duration and reduced cardiac repolarizing currents. Now, the potential proarrhythmic effect of chronic treatment of PI3K/mTOR inhibitor GSK2126458 (omipalisib) was investigated in the atrioventricular (AV) block dog model. Methods Purpose-bred Mongrel dogs received complete AV block by ablation of the bundle of His and their hearts were paced in the right ventricular apex at VDD-mode (RVA-VDD). In this way, sinus rhythm was maintained for 15 ± 1 days and thereby bradycardia-induced cardiac remodeling was prevented. Dogs received 1 mg/kg omipalisib once (n = 3) or twice (n = 10) a day via oral administration for 7 days. Under standardized conditions (anesthesia, bradycardia at 60 beats/min, and a dofetilide challenge), potential proarrhythmic effects of omipalisib were investigated. Results Twice daily dosing of omipalisib increased accumulative plasma levels compared to once daily dosing accompanied with adverse events. Omipalisib prolonged the QT interval at baseline and more strongly after the dofetilide challenge (490 ± 37 to 607 ± 48 ms). The arrhythmic outcome after omipalisib resulted in single ectopic beats in 30% of dogs perpetuating in multiple ectopic beats and TdP arrhythmia in 20% of dogs. Isolated ventricular cardiomyocytes from omipalisib-treated dogs showed a diminished IKs current density. Conclusion Chronic treatment of PI3K/mTOR inhibitor omipalisib prolonged the QT interval in a preclinical model under standardized proarrhythmic conditions. Furthermore, this study showed that electrical remodeling induced by omipalisib had a mild proarrhythmic outcome.
Collapse
Affiliation(s)
- J. J. A. van Bavel
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - C. Pham
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - H. D. M. Beekman
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. J. C. Houtman
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - A. Bossu
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - R. W. Sparidans
- Division Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - M. A. G. van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: M. A. G. van der Heyden
| | - M. A. Vos
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
8
|
Yanagida S, Satsuka A, Hayashi S, Ono A, Kanda Y. Proarrhythmia Risk Assessment Using Electro-Mechanical Window in Human iPS Cell-Derived Cardiomyocytes. Biol Pharm Bull 2022; 45:940-947. [PMID: 35786601 DOI: 10.1248/bpb.b22-00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evaluation of drug-induced cardiotoxicity is still challenging to avoid adverse effects, such as torsade de pointes (TdP), in non-clinical and clinical studies. Numerous studies have suggested that human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a useful platform for detecting drug-induced TdP risks. Comprehensive in vitro Proarrhythmia Assay (CiPA) validation study suggested that hiPSC-CMs can assess clinical TdP risk more accurately than the human ether-a-go-go-related assay and QT interval prolongation. However, there were still some outliers, such as bepridil, mexiletine, and ranolazine, among the CiPA 28 compounds in the CiPA international multi-site study using hiPSC-CMs. In this study, we assessed the effects of the positive compound dofetilide, the negative compound aspirin, and several CiPA compounds (bepridil, mexiletine, and ranolazine) on the electromechanical window (E-M window), which were evaluated using multi-electrode array assay and motion analysis, in hiPSC-CMs. Similar to previous in vivo studies, dofetilide, which has a high TdP risk, decreased the E-M window in hiPSC-CMs, whereas aspirin, which has a low TdP risk, had little effect. Bepridil, classified in the high TdP-risk group in CiPA, decreased the E-M window in hiPSC-CMs, whereas ranolazine and mexiletine, which are classified in the low TdP-risk group in CiPA, slightly decreased or had little effect on the E-M window of hiPSC-CMs. Thus, the E-M window in hiPSC-CMs can be used to classify drugs into high and low TdP risk.
Collapse
Affiliation(s)
- Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
9
|
Sur Mukherjee S, Aditya Chowdhury, Sharmistha Ghoshal, Bithika Pramanik. The effect of mild dynamic exercise on the electromechanical systole of heart in non-athlete, healthy first year medical students of Bengal as a predictive biomarker of arrhythmia. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Measurement of Systolic Time Intervals (STIs) is a non-invasive and convenient way of assessing left ventricular electro-mechanical activity. In this study, we assessed effect of mild dynamic exercise on QT, QS2, QT/QS2 ratio, QS2-Index among healthy young first year students at a government medical college of West Bengal, India and compared the same among girls and boys.
Materials and Methods: IX-TA-220 multichannel recorder was used to record Electrocardiogram, Phonocardiogram and Carotid pulse tracing among 180 subjects before and after 1 minute of mild exercise with Harvard's Step of 30 cm height with metronome rhythm of 120 beats per minute. Results were analyzed by Microsoft Excel and comparison of each parameter between boys and girls were done using SPSS software in two hemodynamic states. P-value <0.05 was taken as statistically significant.
Results: Post exercise mean QT and QS2 shortened and their ratio QT/QS2 increased. There was a statistically significant difference between pre-exercise and post-exercise mean QT, QT/QS2 ratio, QS2 index and significant differences were observed between mean values of the boys and girls.
Conclusion: With hemodynamic changes as in exercise, due to sympathetic stimulation & catecholamine release, both QT andQS2 should reduce as all the phases of systole shorten but if QT does not reduce in comparison to QS2 it may lead to arrhythmia in future. Hence QT/QS2 can be a useful pro-arrhythmic biomarker and may complement ECG and Echocardiography in borderline cases.
Collapse
|
10
|
Wisløff‐Aase K, Skulstad H, Haugaa K, Lingaas PS, Beitnes JO, Halvorsen PS, Espinoza A. Myocardial electrophysiological and mechanical changes caused by moderate hypothermia-A clinical study. Physiol Rep 2022; 10:e15259. [PMID: 35439365 PMCID: PMC9017970 DOI: 10.14814/phy2.15259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023] Open
Abstract
Moderate hypothermia has been used to improve outcomes in comatose out-of-hospital cardiac arrest survivors during the past two decades, although the effects remain controversial. We have recently shown in an experimental study that myocardial electrophysiological and mechanical relationships were altered during moderate hypothermia. Electromechanical window positivity increased, and electrical dispersion of repolarization decreased, both of which are changes associated with decreased arrhythmogenicity in clinical conditions. Mechanical dispersion, a parameter also linked to arrhythmic risk, remained unaltered. Whether corresponding electrophysiological and mechanical changes occur in humans during moderate hypothermia, has not been previously explored. Twenty patients with normal left ventricular function were included. Measurements were obtained at 36 and 32°C prior to ascending aortic repair while on partial cardiopulmonary bypass and at 36°C after repair. Registrations were performed in the presence of both spontaneous and comparable paced heart rate during standardized loading conditions. The following electrical and mechanical parameters were explored: (1) Electromechanical window, measured as time difference between mechanical and electrical systole, (2) dispersion of repolarization from ECG T-wave, and (3) mechanical dispersion, measured as segmental variation in time to peak echocardiographic strain. At moderate hypothermia, mechanical systolic prolongation (425 ± 43-588 ± 67 ms, p < 0.001) exceeded electrical systolic prolongation (397 ± 49-497 ± 79 ms, p < 0.001), whereby, electromechanical window positivity increased (29 ± 30-86 ± 50 ms, p < 0.001). Dispersion of repolarization and mechanical dispersion remained unchanged. Corresponding electrophysiological and mechanical relationships were present at comparable paced heart rates. After rewarming, the increased electromechanical window was reversed in the presence of both spontaneous and paced heart rates. Moderate hypothermia increased electromechanical window positivity, while dispersion of repolarization and mechanical dispersion remained unchanged. This impact of hypothermia may be clinically relevant for selected groups of patients after cardiac arrest.
Collapse
Affiliation(s)
- Kristin Wisløff‐Aase
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
- Departments of Research and DevelopmentDivision of Emergencies and Critical CareOslo University HospitalOsloNorway
| | - Helge Skulstad
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
- ProCardio Centre for InnovationDepartment of CardiologyOslo University HospitalOsloNorway
- The Intervention CentreOslo University HospitalOsloNorway
| | - Kristina Haugaa
- ProCardio Centre for InnovationDepartment of CardiologyOslo University HospitalOsloNorway
- Karolinska Institute and Cardiovascular DivisionFaculty of MedicineKarolinska University HospitalStockholmSweden
| | | | - Jan Otto Beitnes
- ProCardio Centre for InnovationDepartment of CardiologyOslo University HospitalOsloNorway
| | - Per Steinar Halvorsen
- Institute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
- The Intervention CentreOslo University HospitalOsloNorway
| | | |
Collapse
|
11
|
Ishizaka T, Yoshimatsu Y, Maeda Y, Chiba K, Mori K. Trastuzumab-Induced Negative Chronotropic and Lusitropic Effects in Cynomolgus Monkeys. J Cardiovasc Pharmacol 2022; 79:e41-e49. [PMID: 34654786 DOI: 10.1097/fjc.0000000000001157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Treatment with trastuzumab, an antihuman epidermal growth factor receptor type 2 humanized monoclonal antibody, has been associated with heart failure in certain patients with cancer; however, the mechanism underlying trastuzumab-induced cardiac dysfunction remains unclear. This study was conducted to clarify the cardiac effects of trastuzumab in cynomolgus monkeys, which are commonly used as cross-reactive species in preclinical safety evaluation. Monkeys were treated with trastuzumab weekly for 1 month (5 doses in total). At first and fifth doses for pressure-volume loop analysis, trastuzumab at 20 mg·kg-1·10 min-1, equivalent to the human therapeutic dose, was administered intravenously to isoflurane-anesthetized animals, followed by 60 mg·kg-1·10 min-1 at a 30-minute interval. The other doses were fixed at 80 mg·kg-1·10 min-1 under unanesthetized conditions. After the first dose, reduced heart rate, decreases in maximal rate of fall of left ventricular pressure, and prolonged time constant for isovolumic relaxation, which are predictors of drug-induced changes in lusitropy, were observed at 20 and 60 mg·kg-1. The changes after the fifth dose were comparable with those after the first dose, indicating trastuzumab did not show exacerbation of cardiac function during the 1-month trial. No significant changes in slope of preload recruitable stroke work, which is a load-independent inotropic parameter, were observed at either dose. In conclusion, trastuzumab-induced little inotropic effect but induced negative chronotropic or lusitropic effects in monkeys, which might be associated with impaired left ventricular diastolic function.
Collapse
Affiliation(s)
- Tomomichi Ishizaka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | | | | | | | | |
Collapse
|
12
|
Odening KE, van der Linde HJ, Ackerman MJ, Volders PGA, ter Bekke RMA. OUP accepted manuscript. Eur Heart J 2022; 43:3018-3028. [PMID: 35445703 PMCID: PMC9443984 DOI: 10.1093/eurheartj/ehac135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
An abundance of literature describes physiological and pathological determinants of cardiac performance, building on the principles of excitation–contraction coupling. However, the mutual influencing of excitation–contraction and mechano-electrical feedback in the beating heart, here designated ‘electromechanical reciprocity’, remains poorly recognized clinically, despite the awareness that external and cardiac-internal mechanical stimuli can trigger electrical responses and arrhythmia. This review focuses on electromechanical reciprocity in the long-QT syndrome (LQTS), historically considered a purely electrical disease, but now appreciated as paradigmatic for the understanding of mechano-electrical contributions to arrhythmogenesis in this and other cardiac conditions. Electromechanical dispersion in LQTS is characterized by heterogeneously prolonged ventricular repolarization, besides altered contraction duration and relaxation. Mechanical alterations may deviate from what would be expected from global and regional repolarization abnormalities. Pathological repolarization prolongation outlasts mechanical systole in patients with LQTS, yielding a negative electromechanical window (EMW), which is most pronounced in symptomatic patients. The electromechanical window is a superior and independent arrhythmia-risk predictor compared with the heart rate-corrected QT. A negative EMW implies that the ventricle is deformed—by volume loading during the rapid filling phase—when repolarization is still ongoing. This creates a ‘sensitized’ electromechanical substrate, in which inadvertent electrical or mechanical stimuli such as local after-depolarizations, after-contractions, or dyssynchrony can trigger abnormal impulses. Increased sympathetic-nerve activity and pause-dependent potentiation further exaggerate electromechanical heterogeneities, promoting arrhythmogenesis. Unraveling electromechanical reciprocity advances the understanding of arrhythmia formation in various conditions. Real-time image integration of cardiac electrophysiology and mechanics offers new opportunities to address challenges in arrhythmia management.
Collapse
Affiliation(s)
| | - Henk J van der Linde
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | | |
Collapse
|
13
|
Relationship between life threatening events and electromechanical window in patients with hypertrophic cardiomyopathy: a novel parameter for risk stratification of sudden cardiac death Electromechanical window in patients with hypertrophic cardiomyopathy. Heart Rhythm 2021; 19:588-594. [PMID: 34933113 DOI: 10.1016/j.hrthm.2021.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death (SCD) in young individuals, largely due to ventricular arrhythmias, which may be associated with electrical disturbances from pathologic myocardial changes. OBJECTIVES We investigated electromechanical mismatches in patients with HCM and the relationship between electromechanical mismatches and life-threatening events (LTEs). METHODS We performed a retrospective review of patients diagnosed with HCM, aged 1-80 years old. Electromechanical mismatch was evaluated using the electromechanical window (EMW), defined as the interval between the Q wave and aortic valve closure minus the QT interval. RESULTS We enrolled 458 patients with a mean age of 52.4±18.8 years. When the EMW of patients with HCM was compared to that of age/sex-matched normal controls, the EMW was more negative in patients with HCM than in normal controls (-51±35 vs. 7±19 ms, p<0.001). LTEs occurred in 25 patients (5.5%). The EMW was more negative in patients with LTEs than in those without (-77±33 vs. -42±31 ms, p<0.001). The cut-off value of EMW to identify patients with LTEs was -54 ms and the c-index of EMW was 0.726. EMW<-54 ms, unexplained syncope, pediatric-onset, and extreme left ventricular hypertrophy were significant risk factors for LTEs on multivariate analysis. CONCLUSIONS EMW was more negative in patients with HCM than in healthy individuals, and profound EMW negativity was an independent risk factor for LTEs. EMW can be useful for the risk stratification of SCD in patients with HCM.
Collapse
|
14
|
Ohya T, Ohtomo H, Kikuchi T, Sasaki D, Kawamura Y, Matsuura K, Shimizu T, Fukuda K, Someya T, Umezu S. Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. LAB ON A CHIP 2021; 21:3899-3909. [PMID: 34636821 DOI: 10.1039/d1lc00411e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human induced pluripotent stem (iPS) cell-derived cardiomyocytes are used for in vitro pharmacological and pathological studies worldwide. In particular, the functional assessment of cardiac tissues created from iPS cell-derived cardiomyocytes is expected to provide precise prediction of drug effects and thus streamline the process of drug development. However, the current format of electrophysiological and contractile assessment of cardiomyocytes on a rigid substrate is not appropriate for cardiac tissues that beat dynamically. Here, we show a novel simultaneous measurement system for contractile force and extracellular field potential of iPS cell-derived cardiac cell sheet-tissues using 500 nm-thick flexible electronic sheets. It was confirmed that the developed system is applicable for pharmacological studies and assessments of excitation-contraction coupling-related parameters, such as the electro-mechanical window. Our results indicate that flexible electronics with cardiac tissue engineering provide an advanced platform for drug development. This system will contribute to gaining new insight in pharmacological study of human cardiac function.
Collapse
Affiliation(s)
- Takashi Ohya
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Haruki Ohtomo
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Tetsutaro Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Yohei Kawamura
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Department of Integrative Bioscience and Biomedical Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
15
|
Skinner M, Hale E, Ceuppens P, Pollard C. Differentiating multichannel block on the guinea pig ECG: Use of T peak-T end and J-T peak. J Pharmacol Toxicol Methods 2021; 111:107085. [PMID: 34182121 DOI: 10.1016/j.vascn.2021.107085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The anaesthetised guinea pig is a well characterised assay for early assessment of drug effects on ventricular repolarisation and risk of Torsade de Pointes (TdP). We assessed whether a selective hERG blocker with known TdP risk could be differentiated from lower risk, balanced ion channel blockers in the guinea pig, using corrected QT (QTc) interval alongside novel electrocardiogram (ECG) biomarkers J-Tpeakc and Tpeak-Tend. Effects were compared with previous clinical investigations at similar plasma concentrations and with another index of TdP risk, the electromechanical window (EMW). METHODS Twenty-two Dunkin Hartley guinea pigs anaesthetised with sodium pentobarbitone were instrumented for haemodynamic measurement and ECG recording. Three ascending doses of vehicle (n = 6), dofetilide (2, 6 or 20 μg/kg; n = 7), ranolazine (2, 6 or 20 mg/kg; n = 5) or verapamil (0.1, 0.3 or 1.0 mg/kg; n = 4) were administered intravenously. RESULTS As reported in previous clinical studies, dofetilide induced dose-dependent increases in QTc interval, with increases in both J-TpeakC or Tpeak-Tend, while verapamil caused no significant increase in QTc interval, J-TpeakC or Tpeak-Tend. Ranolazine caused dose-dependent increases in QTc interval and corrected J-Tpeakc, but had no effect on Tpeak-Tend, which is in contrast to the effects reported in humans at similar concentrations. Only dofetilide caused a clear, dose-related decrease in the EMW. DISCUSSION These findings suggest that measurements of J-Tpeakc and Tpeak-Tend in addition to QT interval, may help differentiate pure hERG channel blockers with high risk of TdP from lower risk, multichannel blockers.
Collapse
Affiliation(s)
- Matt Skinner
- Vivonics Preclinical Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | - Ed Hale
- Vivonics Preclinical Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK.
| | - Peter Ceuppens
- Inferstats Consulting Ltd, Biohub at Alderley Park, Cheshire SK10 4TG, UK.
| | - Chris Pollard
- Vivonics Preclinical Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK.
| |
Collapse
|
16
|
Yanagida S, Satsuka A, Hayashi S, Ono A, Kanda Y. Comprehensive Cardiotoxicity Assessment of COVID-19 Treatments Using Human Induced Pluripotent Stem Cell-derived Cardiomyocytes. Toxicol Sci 2021; 183:227-239. [PMID: 34142159 DOI: 10.1093/toxsci/kfab079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to spread across the globe, with numerous clinical trials underway seeking to develop and test effective COVID-19 therapies, including remdesivir. Several ongoing studies have reported hydroxychloroquine-induced cardiotoxicity, including development of torsade de pointes (TdP). Meanwhile, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to serve as a tool for assessing drug-induced cardiotoxicity, such as TdP and contraction impairment. However, the cardiotoxicity of COVID-19 treatments has not been fully assessed using hiPSC-CMs. In the present study, we focused on drug repurposing with various modes of actions and examined the TdP risk associated with COVID-19 treatments using field potential using multi-electrode array (MEA) system and motion analysis with hiPSC-CMs. Hydroxychloroquine induced early after depolarization, while remdesivir, favipiravir, camostat and ivermectin had little effect on field potentials. We then analyzed electromechanical window (EMw), which is defined as the difference between field potential and contraction-relaxation durations. Hydroxychloroquine decreased EMw of hiPSC-CMs in a concentration-dependent manner. In contrast, other drugs have little effect. Our data suggest that hydroxychloroquine has proarrhythmic risk and other drugs have low proarrhythmic risk. Thus, hiPSC-CMs represent a useful tool for assessing the comprehensive cardiotoxicity caused by COVID-19 treatments in non-clinical settings.
Collapse
Affiliation(s)
- Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, Japan.,Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, Japan
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, Japan
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, Japan
| |
Collapse
|
17
|
Linz B, Sattler SM, Flethøj M, Høtbjerg Hansen ME, Hesselkilde EM, Saljic A, Wirth K, Linz D, Tfelt-Hansen J, Jespersen T. Arrhythmogenic mechanisms of acute obstructive respiratory events in a porcine model of drug-induced long QT. Heart Rhythm 2021; 18:1384-1391. [PMID: 33722764 DOI: 10.1016/j.hrthm.2021.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obstructive sleep apnea is associated with increased risk of sudden cardiac death. OBJECTIVE The purpose of this study was to elucidate changes in ventricular repolarization and electromechanical interaction during obstructive respiratory events simulated by intermittent negative upper airway pressure (INAP) in pigs. We also investigated the effect of a reduced repolarization reserve in drug-induced long QT (LQT) following INAP-induced changes in ventricular repolarization. METHODS In sedated spontaneously breathing pigs, 75 seconds of INAP was applied by a negative pressure device connected to the endotracheal tube. Ventricular electromechanical coupling was determined by the electromechanical window (EMW) before (pre-INAP), during (INAP), and after INAP (post-INAP). Incidence rates of premature ventricular contractions (PVCs) were measured respectively. A drug-induced LQT was modeled by treating the pigs with the hERG1 blocker dofetilide (DOF). RESULTS Whereas QT interval increased during and decreased after INAP (pre-INAP: 273 ± 5 ms; INAP 281 ± 6 ms; post-INAP 254 ± 9 ms), EMW shortened progressively throughout INAP and post-INAP periods (pre-INAP 81 ± 4 ms; post-INAP 44 ± 7 ms). DOF shortened EMW at baseline. Throughout INAP, EMW decreased in a comparable fashion as before DOF (pre-INAP/+DOF 61 ± 7 ms; post-INAP/+DOF 14 ± 9 ms) but resulted in shorter absolute EMW levels. Short EMW levels were associated with increased occurrence of PVCs (pre-INAP 7 ± 2 ms vs post-INAP 26 ± 6 ms; P = .02), which were potentiated in DOF pigs (pre-INAP/+DOF 5 ± 2 ms vs post-INAP/+DOF 40 ± 8 ms; P = .006). Administration of atenolol prevented post-INAP EMW shortening and decreased occurrence of PVCs. CONCLUSION Transient dissociation of ventricular electromechanical coupling during simulated obstructive respiratory events creates a dynamic ventricular arrhythmogenic substrate, which is sympathetically mediated and aggravated by drug-induced LQT.
Collapse
Affiliation(s)
- Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Stefan Michael Sattler
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Emil Høtbjerg Hansen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Melis Hesselkilde
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arnela Saljic
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dominik Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia; Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Jespersen
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Kanda Y, Satsuka A, Hayashi S, Hagiwara-Nagasawa M, Sugiyama A. Assessment of Contractility in Human iPS Cell-Derived Cardiomyocytes Using Motion Vector Analysis. Methods Mol Biol 2021; 2320:151-160. [PMID: 34302656 DOI: 10.1007/978-1-0716-1484-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human-induced pluripotent stem cell (iPSC) technology paves the way for next-generation drug-safety assessment. In particular, human iPSC-derived cardiomyocytes, which exhibit electrical activity, are useful as a human cell model for assessing QT-interval prolongation and the risk of the lethal arrhythmia Torsade de Pointes (TdP). In addition to proarrhythmia assay, contractile behavior has received increased attention in drug development. In this study, we developed a novel high-throughput in vitro assay system using motion vectors to evaluate the contractile activity of iPSC-derived cardiomyocytes as a physiologically relevant human platform. The methods presented here highlight the use of commercially available iPSC-derived cardiomyocytes, iCell cardiomyocytes, for contractility evaluation recorded by the motion vector system.
Collapse
Affiliation(s)
- Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Japan.
| | - Ayano Satsuka
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Japan
| | - Sayo Hayashi
- Division of Pharmacology, National Institute of Health Sciences (NIHS), Kawasaki, Japan
| | | | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
19
|
Marwick TH. Echocardiography in Long QT Syndrome: The Mechanical Face of an Electrical Disease. J Am Coll Cardiol 2020; 76:2844-2846. [PMID: 33303073 DOI: 10.1016/j.jacc.2020.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
|
20
|
Wisløff-Aase K, Kerans V, Haugaa K, Halvorsen PS, Skulstad H, Espinoza A. Changes in left ventricular electromechanical relations during targeted hypothermia. Intensive Care Med Exp 2020; 8:76. [PMID: 33315166 PMCID: PMC7736464 DOI: 10.1186/s40635-020-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/02/2020] [Indexed: 12/04/2022] Open
Abstract
Background Targeted hypothermia, as used after cardiac arrest, increases electrical and mechanical systolic duration. Differences in duration of electrical and mechanical systole are correlated to ventricular arrhythmias. The electromechanical window (EMW) becomes negative when the electrical systole outlasts the mechanical systole. Prolonged electrical systole corresponds to prolonged QT interval, and is associated with increased dispersion of repolarization and mechanical dispersion. These three factors predispose for arrhythmias. The electromechanical relations during targeted hypothermia are unknown. We wanted to explore the electromechanical relations during hypothermia at 33 °C. We hypothesized that targeted hypothermia would increase electrical and mechanical systolic duration without more profound EMW negativity, nor an increase in dispersion of repolarization and mechanical dispersion. Methods In a porcine model (n = 14), we registered electrocardiogram (ECG) and echocardiographic recordings during 38 °C and 33 °C, at spontaneous and atrial paced heart rate 100 beats/min. EMW was calculated by subtracting electrical systole; QT interval, from the corresponding mechanical systole; QRS onset to aortic valve closure. Dispersion of repolarization was measured as time from peak to end of the ECG T wave. Mechanical dispersion was calculated by strain echocardiography as standard deviation of time to peak strain. Results Electrical systole increased during hypothermia at spontaneous heart rate (p < 0.001) and heart rate 100 beats/min (p = 0.005). Mechanical systolic duration was prolonged and outlasted electrical systole independently of heart rate (p < 0.001). EMW changed from negative to positive value (− 20 ± 19 to 27 ± 34 ms, p = 0.001). The positivity was even more pronounced at heart rate 100 beats/min (− 25 ± 26 to 41 ± 18 ms, p < 0.001). Dispersion of repolarization decreased (p = 0.027 and p = 0.003), while mechanical dispersion did not differ (p = 0.078 and p = 0.297). Conclusion Targeted hypothermia increased electrical and mechanical systolic duration, the electromechanical window became positive, dispersion of repolarization was slightly reduced and mechanical dispersion was unchanged. These alterations may have clinical importance. Further clinical studies are required to clarify whether corresponding electromechanical alterations are accommodating in humans.
Collapse
Affiliation(s)
- Kristin Wisløff-Aase
- Department of Anaesthesiology, Oslo University Hospital - Rikshospitalet, Nydalen, PO Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Viesturs Kerans
- Department of Anaesthesiology, Oslo University Hospital - Rikshospitalet, Nydalen, PO Box 4950, 0424, Oslo, Norway
| | - Kristina Haugaa
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Per Steinar Halvorsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Helge Skulstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
21
|
Echocardiography-Guided Risk Stratification for Long QT Syndrome. J Am Coll Cardiol 2020; 76:2834-2843. [DOI: 10.1016/j.jacc.2020.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 10/12/2020] [Indexed: 11/21/2022]
|
22
|
Koshman YE, Wilsey AS, Bird BM, Endemann AL, Sadilek S, Treadway J, Martin RL, Polakowski JS, Gintant GA, Mittelstadt SW. Drug-induced QT prolongation: Concordance of preclinical anesthetized canine model in relation to published clinical observations for ten CiPA drugs. J Pharmacol Toxicol Methods 2020; 103:106871. [PMID: 32360993 DOI: 10.1016/j.vascn.2020.106871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative differentiates torsadogenic risk of 28 drugs affecting ventricular repolarization based on multiple in vitro human derived ionic currents. However, a standardized prospective assessment of the electrophysiologic effects of these drugs in an integrated in vivo preclinical cardiovascular model is lacking. This study questioned whether QTc interval prolongation in a preclinical in vivo model could detect clinically reported QTc prolongation and assign torsadogenic risk for ten CiPA drugs. METHODS An acute intravenous administered ascending dose anesthetized dog cardiovascular model was used to assess QTc prolongation along with other electrocardiographic (PR, QRS intervals) and hemodynamic (heart rate, blood pressures, left ventricular contractility) parameters at plasma concentrations spanning and exceeding clinical exposures. hERG current block potency was characterized using IC50 values from automated patch clamp. RESULTS All eight drugs eliciting clinical QTc prolongation also delayed repolarization in anesthetized dogs at plasma concentrations within four-fold clinical exposures. In vitro QTc safety margins (defined based on clinical Cmax values/plasma concentrations eliciting statistically significant QTc prolongation in dogs) were lower for high vs intermediate torsadogenic risk drugs. In comparison, hERG IC10 values represented as total drug concentrations were better predictors of preclinical QTc prolongation than hERG IC50 values. CONCLUSION There was good concordance for QTc prolongation in the anesthetized dog model and clinical torsadogenic risk assignment. QTc assessment in the anesthetized dog remains a valuable part of a more comprehensive preclinical integrated risk assessment for delayed repolarization and torsadogenic risk as part of a global cardiovascular evaluation.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Aimee L Endemann
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Sabine Sadilek
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jessica Treadway
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ruth L Martin
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - James S Polakowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Gary A Gintant
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Scott W Mittelstadt
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
23
|
Morissette P, Polak S, Chain A, Zhai J, Imredy JP, Wildey MJ, Travis J, Fitzgerald K, Fanelli P, Passini E, Rodriguez B, Sannajust F, Regan C. Combining an in silico proarrhythmic risk assay with a tPKPD model to predict QTc interval prolongation in the anesthetized guinea pig assay. Toxicol Appl Pharmacol 2020; 390:114883. [PMID: 31981640 PMCID: PMC7322544 DOI: 10.1016/j.taap.2020.114883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Human-based in silico models are emerging as important tools to study the effects of integrating inward and outward ion channel currents to predict clinical proarrhythmic risk. The aims of this study were 2-fold: 1) Evaluate the capacity of an in silico model to predict QTc interval prolongation in the in vivo anesthetized cardiovascular guinea pig (CVGP) assay for new chemical entities (NCEs) and; 2) Determine if a translational pharmacokinetic/pharmacodynamic (tPKPD) model can improve the predictive capacity. In silico simulations for NCEs were performed using a population of human ventricular action potential (AP) models. PatchXpress® (PX) or high throughput screening (HTS) ion channel data from respectively n = 73 and n = 51 NCEs were used as inputs for the in silico population. These NCEs were also tested in the CVGP (n = 73). An M5 pruned decision tree-based regression tPKPD model was used to evaluate the concentration at which an NCE is liable to prolong the QTc interval in the CVGP. In silico results successfully predicted the QTc interval prolongation outcome observed in the CVGP with an accuracy/specificity of 85%/73% and 75%/77%, when using PX and HTS ion channel data, respectively. Considering the tPKPD predicted concentration resulting in QTc prolongation (EC5%) increased accuracy/specificity to 97%/95% using PX and 88%/97% when using HTS. Our results support that human-based in silico simulations in combination with tPKPD modeling can provide correlative results with a commonly used early in vivo safety assay, suggesting a path toward more rapid NCE assessment with reduced resources, cycle time, and animal use. Cardiac electrophysiological in silico model predicts QTc interval prolongation in the guinea pig. PKPD model predicts relevant QTc interval prolongation concentration in guinea pig. Combining the models improves the accuracy of predicting guinea pig QTc effects. Combining models accelerates assessment of QTc with lower resources and animal use.
Collapse
Affiliation(s)
- Pierre Morissette
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA.
| | - Sebastian Polak
- Certara UK Limited, Simcyp Division, Sheffield, UK; Jagiellonian University Medical College, Faculty of Pharmacy, Krakow, Poland
| | - Anne Chain
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism (PPDM), Merck & Co., Inc., Rahway, NJ, USA
| | - Jin Zhai
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - John P Imredy
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - Mary Jo Wildey
- Pharmacology, Screening and Informatics, Merck & Co., Kenilworth, NJ, USA
| | - Jeffrey Travis
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - Kevin Fitzgerald
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - Patrick Fanelli
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - Elisa Passini
- Computational Cardiovascular Science Group, Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Blanca Rodriguez
- Computational Cardiovascular Science Group, Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Frederick Sannajust
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| | - Christopher Regan
- Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
24
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
25
|
Passini E, Trovato C, Morissette P, Sannajust F, Bueno‐Orovio A, Rodriguez B. Drug-induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. Br J Pharmacol 2019; 176:3819-3833. [PMID: 31271649 PMCID: PMC6780030 DOI: 10.1111/bph.14786] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Early identification of drug-induced cardiac adverse events is key in drug development. Human-based computer models are emerging as an effective approach, complementary to in vitro and animal models. Drug-induced shortening of the electromechanical window has been associated with increased risk of arrhythmias. This study investigates the potential of a cellular surrogate for the electromechanical window (EMw) for prediction of pro-arrhythmic cardiotoxicity, and its underlying ionic mechanisms, using human-based computer models. EXPERIMENTAL APPROACH In silico drug trials for 40 reference compounds were performed, testing up to 100-fold the therapeutic concentrations (EFTPCmax ) and using a control population of human ventricular action potential (AP) models, optimised to capture pro-arrhythmic ionic profiles. EMw was calculated for each model in the population as the difference between AP and Ca2+ transient durations at 90%. Drug-induced changes in the EMw and occurrence of repolarisation abnormalities (RA) were quantified. KEY RESULTS Drugs with clinical risk of Torsade de Pointes arrhythmias induced a concentration-dependent EMw shortening, while safe drugs lead to increase or small change in EMw. Risk predictions based on EMw shortening achieved 90% accuracy at 10× EFTPCmax , whereas RA-based predictions required 100× EFTPCmax to reach the same accuracy. As it is dependent on Ca2+ transient, the EMw was also more sensitive than AP prolongation in distinguishing between pure hERG blockers and multichannel compounds also blocking the calcium current. CONCLUSION AND IMPLICATIONS The EMw is an effective biomarker for in silico predictions of drug-induced clinical pro-arrhythmic risk, particularly for compounds with multichannel blocking action.
Collapse
Affiliation(s)
- Elisa Passini
- Department of Computer ScienceUniversity of OxfordOxfordUK
| | | | - Pierre Morissette
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research LaboratoriesMerck & Co., Inc.West PointPAUSA
| | - Frederick Sannajust
- SALAR, Safety and Exploratory Pharmacology Department, Merck Research LaboratoriesMerck & Co., Inc.West PointPAUSA
| | | | | |
Collapse
|
26
|
Verrier RL. Altered mechano-electrical coupling: An underappreciated factor in sympathetically mediated torsades de pointes in the long QT1 syndrome. Int J Cardiol 2019; 286:81-82. [DOI: 10.1016/j.ijcard.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/27/2022]
|
27
|
Ishizaka T, Yoshimatsu Y, Maeda Y, Chiba K, Mori K. Negative lusitropic property of nifekalant identified using ventricular pressure-volume loop analyses in anesthetized monkeys. Exp Anim 2019; 68:91-102. [PMID: 30333366 PMCID: PMC6389513 DOI: 10.1538/expanim.18-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study was conducted to clarify multiple cardiohemodynamic and
electrophysiological properties including inotropic/lusitropic effects of nifekalant, a
class III antiarrhythmic drug, in an isoflurane-anesthetized monkey. Nifekalant was
administered intravenously at the therapeutic dose of 0.3 mg/kg over 10 min to male
cynomolgus monkeys (n=4), followed by higher dose of 1 (n=3) or 3 mg/kg (n=1) that was
limited due to arrythmogenicity. Left ventricular (LV) pressure-volume (PV) analysis
revealed that the 0.3 mg/kg dose of nifekalant induced a negative lusitropic effect,
recognized as a decrease in maximal rate of reduction in LV pressure and a prolonged
isovolumic relaxation time. Nifekalant also decreased heart rate and increased LV
end-diastolic pressure, but had no effects on the other cardiohemodynamic parameters
examined. Electrophysiological analysis showed nifekalant at 0.3 mg/kg prolonged QT/QTc
intervals with no evidence of arrhythmia. Higher doses of nifekalant induced ventricular
arrhythmia in 3 out of 4 animals, in which both the short-term and long-term variability
of the QT interval increased just before the occurrence of arrhythmia. In conclusion, a
therapeutic dose of nifekalant had no effect on inotropic activity or cardiac compliance,
whereas it showed negative lusitropic properties and QT/QTc prolongation in
isoflurane-anesthetized monkeys. In addition, higher doses of nifekalant showed remarkable
QT/QTc prolongation leading to arrhythmogenicity, which showed good accordance with
clinical findings. Caution should be paid to negative lusitropic properties as well as
arrhythmogenisity for the safe use of nifekalant.
Collapse
Affiliation(s)
- Tomomichi Ishizaka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Yoshimatsu
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yu Maeda
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Katsuyoshi Chiba
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
28
|
Proarrhythmic proclivity of left-stellate ganglion stimulation in a canine model of drug-induced long-QT syndrome type 1. Int J Cardiol 2019; 286:66-72. [PMID: 30777408 DOI: 10.1016/j.ijcard.2019.01.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Left-stellate ganglion stimulation (LSGS) can modify regional dispersion of ventricular refractoriness, promote triggered activity, and reduce the threshold for ventricular fibrillation (VF). Sympathetic hyperactivity precipitates torsades de pointes (TdP) and VF in susceptible patients with long-QT syndrome type 1 (LQT1). We investigated the electromechanical effects of LSGS in a canine model of drug-induced LQT1, gaining novel arrhythmogenic insights. METHODS In nine mongrel dogs, the left and right stellate ganglia were exposed for electrical stimulation. ECG, left- and right-ventricular endocardial monophasic action potentials (MAPs) and pressures (LVP, RVP) were recorded. The electromechanical window (EMW; Q to LVP at 90% relaxation minus QT interval) was calculated. LQT1 was mimicked by infusion of the KCNQ1/IKs blocker HMR1556. RESULTS At baseline, LSGS and right-stellate ganglion stimulation (RSGS) caused similar heart-rate acceleration and QT shortening. Positive inotropic and lusitropic effects were more pronounced under LSGS than RSGS. IKs blockade prolonged QTc, triggered MAP-early afterdepolarizations (EADs) and rendered the EMW negative, but no ventricular tachyarrhythmias occurred. Superimposed LSGS exaggerated EMW negativity and evoked TdP in 5/9 dogs within 30 s. Preceding extrasystoles originated mostly from the outflow-tracts region. TdP deteriorated into therapy-refractory VF in 4/5 animals. RSGS did not provoke TdP/VF. CONCLUSIONS In this model of drug-induced LQT1, LSGS readily induced TdP and VF during repolarization prolongation and MAP-EAD generation, but only if EMW turned from positive to very negative. We postulate that altered mechano-electric coupling can exaggerate regional dispersion of refractoriness and facilitates ventricular ectopy.
Collapse
|
29
|
Charisopoulou D, Koulaouzidis G, Rydberg A, Michael HY. Exercise worsening of electromechanical disturbances: A predictor of arrhythmia in long QT syndrome. Clin Cardiol 2018; 42:235-240. [PMID: 30537240 PMCID: PMC6712344 DOI: 10.1002/clc.23132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/29/2018] [Accepted: 12/06/2018] [Indexed: 01/06/2023] Open
Abstract
Background Electromechanical (EM) coupling heterogeneity is significant in long QT syndrome (LQTS), particularly in symptomatic patients; EM window (EMW) has been proposed as an indicator of interaction and a better predictor of arrhythmia than QTc. Hypothesis To investigate the dynamic response of EMW to exercise in LQTS and its predictive value of arrhythmia. Methods Forty‐seven LQTS carriers (45 ± 15 years, 20 with arrhythmic events), and 35 controls underwent exercise echocardiogram. EMW was measured as the time difference between aortic valve closure on Doppler and the end of QT interval on the superimposed electrocardiogram (ECG). Measurements were obtained at rest, peak exercise (PE) and 4 minutes into recovery. Results Patients did not differ in age, gender, heart rate, or left ventricular ejection fraction but had a negative resting EMW compared with controls (−42 ± 22 vs 17 ± 5 ms, P < 0.0001). EMW became more negative at PE (−89 ± 43 vs 16 ± 7 ms, P = 0.0001) and recovery (−65 ± 39 vs 16 ± 6 ms, P = 0.001) in patients, particularly the symptomatic, but remained unchanged in controls. PE EMW was a stronger predictor of arrhythmic events than QTc (AUC:0.765 vs 0.569, P < 0.001). B‐blockers did not affect EMW at rest but was less negative at PE (BB: −66 ± 21 vs no‐BB: −113 ± 25 ms, P < 0.001). LQT1 patients had worse PE EMW negativity than LQT2. Conclusion LQTS patients have significantly negative EMW, which worsens with exercise. These changes are more pronounced in patients with documented arrhythmic events and decrease with B‐blocker therapy. Thus, EMW assessment during exercise may help improve risk stratification and management of LQTS patients.
Collapse
Affiliation(s)
- Dafni Charisopoulou
- Institute of Public Health and Clinical Medicine, Umea University, Umea, Sweden.,Department of Paediatric Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - George Koulaouzidis
- Institute of Public Health and Clinical Medicine, Umea University, Umea, Sweden.,Department of Cardiology, Mid Yorkshire Hospitals NHS Trust, Wakefield, UK
| | - Annika Rydberg
- Department of Clinical Sciences, Paediatrics, Umea University, Umea, Sweden
| | - Henein Y Michael
- Institute of Public Health and Clinical Medicine, Umea University, Umea, Sweden.,Molecular and Clinical Sciences Research Institute, St George University London, London, UK.,Brunel University, Middlesex, UK
| |
Collapse
|
30
|
Brüler B, Jojima F, Dittrich G, Giannico A, Sousa M. QT instability, an indicator of augmented arrhythmogenesis, increases with the progression of myxomatous mitral valve disease in dogs. J Vet Cardiol 2018; 20:254-266. [DOI: 10.1016/j.jvc.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/12/2023]
|
31
|
Inotropic Effects of Nicorandil on Cardiac Contractility Assessed by Left Ventricular Pressure-Volume Relationship Analyses in Anesthetized Monkeys. J Cardiovasc Pharmacol 2018; 71:76-81. [PMID: 29420355 DOI: 10.1097/fjc.0000000000000548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicorandil is a representative antianginal drug that has dual properties of a nitrate and adenosine triphosphate-sensitive potassium (KATP) channel agonist; however, its effects on integrated cardiac function have not been fully understood. This study was conducted to clarify the functional, hemodynamic, and electrophysiological effects of nicorandil using ventricular pressure-volume loop analysis in isoflurane-anesthetized monkeys. Nicorandil was given intravenously at therapeutic doses of 0.2 and 2 mg/kg over 10 minutes to cynomolgus monkeys (n = 5) with a pause of 10 minutes between the 2 doses. Nicorandil at 0.2 mg/kg caused decreases in systemic blood pressure and left ventricular end-diastolic pressure by its vasodilating action. Nicorandil at 2 mg/kg also exhibited positive inotropic action demonstrated by increased slopes of preload recruitable stroke work relationship, which is a load-independent inotropic parameter. In load-dependent inotropic parameters, positive inotropy of nicorandil was also indicated by the shortened QA interval and increased contractility index; however, significant changes were not observed in the maximal upstroke velocity of left ventricular pressure. Moreover, reflex tachycardia accompanied by shortening of QT/QTc intervals was observed. Overall, the isoflurane-anesthetized monkey model with pressure-volume loop analysis revealed cardiac variables of nicorandil, including a positive inotropy contributable to cardiac performance in addition to its vasodilatory effect. These findings provide useful information when considering the prescription of nicorandil in patients.
Collapse
|
32
|
Limprasutr V, Saengklub N, Meedech P, Kijtawornrat A, Hamlin RL. Characteristics of electromechanical window in anesthetized rabbit models of short QT and long QT syndromes. J Toxicol Sci 2018; 42:579-587. [PMID: 28904293 DOI: 10.2131/jts.42.579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The current regulatory guidelines recommend the use of QT interval to assess the risk of arrhythmogenic potential of new chemical entities. Recently, the electromechanical window (EMW), the difference in duration between electrical and mechanical systole, has been proposed as markers for drug-induced torsades de pointes (TdP); however, data of EMW in short QT model are not available. This study aimed to characterize the EMW as a marker for drug-induced ventricular arrhythmias in anesthetized rabbit model of long QT syndrome type 2 (LQT2) and short QT syndrome (SQTS) infused with reference compounds known to lengthen or shorten QT intervals. After rabbits were anesthetized with isoflurane, body surface electrocardiograms and left ventricular pressure were recorded. The LQT2 was produced by intravenous infusion with dofetilide (n = 6), quinidine (n = 6) and sotalol (n = 6) whereas the SQTS was induced by intravenous escalating concentrations of nicorandil (n = 7), pinacidil (n = 5) and cromakalim (n = 5). The EMW in anesthetized rabbits ranged from 1.3 to 53.3 msec. All three drugs known to lengthen QT intervals prolonged QT and QTcF interval while the EMW was markedly decreased to negative values. Pinacidil significantly produced QT and QTcF shortening and significantly abbreviated the EMW (p < 0.05). This study demonstrated that the EMW is associated with QT intervals (p < 0.001). It is negative in the presence of QT-prolonging drugs while it is more positive in the presence of QT-shortening drugs. The results suggest that the EMW in anesthetized rabbits can be used in drug safety evaluation in addition to the QT interval.
Collapse
Affiliation(s)
- Vudhiporn Limprasutr
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Thailand
| | - Pradtana Meedech
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand
| | - Anusak Kijtawornrat
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Thailand.,Research clusters: Research Study and Testing of Drug's Effect Related to Cardiovascular System in Laboratory Animals, Chulalongkorn University, Thailand
| | | |
Collapse
|
33
|
Limprasutr V, Pirintr P, Kijtawornrat A, Hamlin RL. An increasing electromechanical window is a predictive marker of ventricular fibrillation in anesthetized rabbit with ischemic heart. Exp Anim 2017; 67:175-183. [PMID: 29162767 PMCID: PMC5955749 DOI: 10.1538/expanim.17-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The QTc interval is widely used in Safety Pharmacological studies to predict arrhythmia
risk, and the electromechanical window (EMW) and short-term variability of QT intervals
(STVQT) have been studied as new biomarkers for drug-induced Torsades de
Pointes (TdP). However, the use of EMW and STVQT to predict ventricular
fibrillation (VF) has not been elucidated. This study aimed to evaluate EMW and
STVQT to predict VF in anesthetized rabbit model of VF. VF was induced by
ligation of the left anterior descending and a descending branch of the left circumflex
coronary arteries in a sample population of rabbits (n=18). VF was developed 55.6%
(10/18). In rabbit with VF, the EMW was significantly higher than in rabbits without VF
(96.3 ± 15.6 ms and 49.5 ± 5.6 ms, respectively, P<0.05).
STVQT had significantly increased before the onset of VF in rabbits that
experienced VF, but not in rabbits that did not experience VF (11.7 ± 1.8 ms and 3.7 ± 0.4
ms, respectively, P<0.05). The EMW and STVQT had better
predictive power for VF with higher sensitivity and specificity than the QTc measure. The
result suggested that the increasing of EMW, as well as the elevation of STVQT,
can potentially be used as biomarkers for predicting of VF.
Collapse
Affiliation(s)
- Vudhiporn Limprasutr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Wang Mai, Pathumwan, Bangkok 10330, Thailand
| | - Prapawadee Pirintr
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Wang Mai, Pathumwan, Bangkok 10330, Thailand.,Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, 155 Tumbon Mae Hiae, Muang, Chiang Mai 50100, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, 39 Henri Dunant Road, Wang Mai, Pathumwan, Bangkok 10330, Thailand.,Research clusters: research study and testing of drug's effect related to cardiovascular system in laboratory animals, Chulalongkorn University, 39 Henri Dunant Road, Wang Mai, Pathumwan, Bangkok 10330, Thailand
| | - Robert L Hamlin
- QTest Labs, LLC. 6456 Fiesta Drive, Columbus, Ohio 43235, USA
| |
Collapse
|
34
|
Bhuiyan TA, Graff C, Kanters JK, Melgaard J, Toft E, Kääb S, Struijk JJ. A History of Drug‐Induced Torsades de Pointes Is Associated With T‐wave Morphological Abnormalities. Clin Pharmacol Ther 2017; 103:1100-1106. [DOI: 10.1002/cpt.886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Tanveer A. Bhuiyan
- Department of Health Science and TechnologyAalborg UniversityAalborg Denmark
| | - Claus Graff
- Department of Health Science and TechnologyAalborg UniversityAalborg Denmark
| | - Jørgen K. Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical SciencesUniversity of CopenhagenCopenhagen Denmark
| | - Jacob Melgaard
- Department of Health Science and TechnologyAalborg UniversityAalborg Denmark
| | - Egon Toft
- College of Medicine, Qatar UniversityDoha Qatar
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, University Hospital Munich, Ludvig Maximilians University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site: Munich Heart AllianceMunich Germany
| | - Johannes J. Struijk
- Department of Health Science and TechnologyAalborg UniversityAalborg Denmark
| |
Collapse
|
35
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
36
|
Takasuna K, Asakura K, Araki S, Ando H, Kazusa K, Kitaguchi T, Kunimatsu T, Suzuki S, Miyamoto N. Comprehensive in vitro cardiac safety assessment using human stem cell technology: Overview of CSAHi HEART initiative. J Pharmacol Toxicol Methods 2016; 83:42-54. [PMID: 27646297 DOI: 10.1016/j.vascn.2016.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
Abstract
Recent increasing evidence suggests that the currently-used platforms in vitro IKr and APD, and/or in vivo QT assays are not fully predictive for TdP, and do not address potential arrhythmia (VT and/or VF) induced by diverse mechanisms of action. In addition, other cardiac safety liabilities such as functional dysfunction of excitation-contraction coupling (contractility) and structural damage (morphological damage to cardiomyocytes) are also major causes of drug attrition, but current in vitro assays do not cover all these liabilities. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/), based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes in drug safety evaluation. The main goal of the CSAHi HEART team has been to propose comprehensive screening strategies to predict a diverse range of cardiotoxicities by using recently introduced platforms (multi-electrode array (MEA), patch clamp, cellular impedance, motion field imaging [MFI], and Ca transient systems) while identifying the strengths and weaknesses of each. Our study shows that hiPS-CMs used in these platforms have pharmacological responses more relevant to humans in comparison with existent hERG, APD or Langendorff (MAPD/contraction) assays, and not only MEA but also other methods such as impedance, MFI, and Ca transient systems would offer paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. Furthermore, we propose a potential multi-parametric platform in which field potential (MEA)-Ca transient-contraction (MFI) could be evaluated simultaneously as an ideal novel platform for predicting a diversity of cardiac toxicities, namely whole effects on the excitation-contraction cascade.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan; Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan.
| | - Keiichi Asakura
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Discovery Research Labs., Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Seiichi Araki
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Safety Research Department, ASKA Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hiroyuki Ando
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Safety Research Laboratories, Ono Pharmaceutical Co., Ltd., Fukui, Japan
| | - Katsuyuki Kazusa
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan
| | - Takashi Kitaguchi
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Discovery Research, Mochida Pharmaceutical Co., Ltd., Shizuoka, Japan
| | - Takeshi Kunimatsu
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Shinobu Suzuki
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Pharmacokinetics and Non-Clinical Safety Dept., Nippon Boehringer Ingelheim Co., Ltd., Hyogo, Japan
| | - Norimasa Miyamoto
- Japan Pharmaceutical Manufacturers Association Drug Evaluation Committee, Non-Clinical Evaluation Expert Committee, TF2, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi): HEART team, Japan; Biopharmaceutical Assessments Core Function Unit Medicine Development Center Eisai Co., Ltd., Eisai Co., Ltd., Ibaraki, Japan
| |
Collapse
|
37
|
Morissette P, Regan C, Fitzgerald K, Gerenser P, Travis J, Wang S, Fanelli P, Sannajust F. Shortening of the electromechanical window in the ketamine/xylazine-anesthetized guinea pig model to assess pro-arrhythmic risk in early drug development. J Pharmacol Toxicol Methods 2016; 81:171-82. [DOI: 10.1016/j.vascn.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/23/2016] [Accepted: 06/04/2016] [Indexed: 11/26/2022]
|
38
|
Stams TR, Oosterhoff P, Heijdel A, Dunnink A, Beekman JD, van der Nagel R, van Rijen HV, van der Heyden MA, Vos MA. Beat-to-Beat Variability in Preload Unmasks Latent Risk of Torsade de Pointes in Anesthetized Chronic Atrioventricular Block Dogs. Circ J 2016; 80:1336-45. [PMID: 27151565 DOI: 10.1253/circj.cj-15-1335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Beat-to-beat variability in ventricular repolarization (BVR) associates with increased arrhythmic risk. Proarrhythmic remodeling in the dog with chronic AV-block (CAVB) compromises repolarization reserve and associates with increased BVR, which further increases upon dofetilide infusion and correlates with Torsade de Pointes (TdP) arrhythmias. It was hypothesized that these pro-arrhythmia-associated increases in BVR are induced by beat-to-beat variability in preload. METHODS AND RESULTS Left ventricular monophasic action potential duration (LVMAPD) was recorded in acute (AAVB) and CAVB dogs, before and after dofetilide infusion. BVR was quantified as short-term variability of LVMAPD. The PQ-interval was controlled by pacing: either a constant or an alternating preload pattern was established, verified by PV-loop. The effect of the stretch-activated channel blocker, streptomycin, on BVR was evaluated in a second CAVB group. At alternating preload only, BVR was increased after proarrhythmic remodeling (0.45±0.14 ms AAVB vs. 2.2±1.1 ms CAVB, P<0.01). At CAVB, but not at AAVB, dofetilide induced significant proarrhythmia. Preload variability augmented the dofetilide-induced BVR increase at CAVB (+1.5±0.8 ms vs. +0.9±0.9 ms, P=0.058). In the second group, the increase in baseline BVR by alternating preload (0.3±0.03 ms to 1.0±0.8 ms, P<0.01) was abolished by streptomycin (0.5±0.2 ms, P<0.05). CONCLUSIONS In CAVB dogs, the inverse relation between BVR and repolarization reserve originates from an augmented sensitivity of ventricular repolarization to beat-to-beat preload changes. Stretch-activated channels appear to be involved in the mechanism of BVR. (Circ J 2016; 80: 1336-1345).
Collapse
Affiliation(s)
- Thom Rg Stams
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schneider AE, Bos JM, Ackerman MJ. Effect of Left Cardiac Sympathetic Denervation on the Electromechanical Window in Patients with either Type 1 or Type 2 Long QT Syndrome: A Pilot Study. CONGENIT HEART DIS 2016; 11:437-443. [DOI: 10.1111/chd.12332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Andrew E. Schneider
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine; Mayo Clinic; Rochester Minn USA
| | - J. Martijn Bos
- Division of Cardiovascular Diseases, Department of Medicine; Mayo Clinic; Rochester Minn USA
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics; Mayo Clinic; Rochester Minn USA
| | - Michael J. Ackerman
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine; Mayo Clinic; Rochester Minn USA
- Division of Cardiovascular Diseases, Department of Medicine; Mayo Clinic; Rochester Minn USA
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics; Mayo Clinic; Rochester Minn USA
| |
Collapse
|
40
|
Morissette P, Regan HK, Fitzgerald K, Bernasconi S, Gerenser P, Travis J, Fanelli P, Sannajust F, Regan CP. QT interval correction assessment in the anesthetized guinea pig. J Pharmacol Toxicol Methods 2015; 75:52-61. [DOI: 10.1016/j.vascn.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/10/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
|
41
|
Nomura H, Nakamura Y, Cao X, Honda A, Katagi J, Ohara H, Izumi-Nakaseko H, Satoh Y, Ando K, Sugiyama A. Cardiohemodynamic and electrophysiological effects of a selective EP4 receptor agonist ONO--AE1--329 in the halothane-anesthetized dogs. Eur J Pharmacol 2015; 761:217-25. [PMID: 26073024 DOI: 10.1016/j.ejphar.2015.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 11/26/2022]
Abstract
Cardiovascular effects of a highly selective prostaglandin E2 type 4 (EP4) receptor agonist ONO-AE1-329 were assessed with the halothane-anesthetized dogs (n=6). ONO-AE1-329 was intravenously infused in three escalating doses of 0.3, 1 and 3ng/kg/min for 10min with a pause of 20min between the doses. The low dose of 0.3ng/kg/min significantly increased maximum upstroke velocity of left ventricular pressure by 18% at 20min, indicating increase of ventricular contractility. The middle dose of 1ng/kg/min significantly decreased total peripheral resistance by 24% and left ventricular end-diastolic pressure by 32% at 10min, indicating dilation of arteriolar resistance vessels and venous capacitance ones, respectively; and increased cardiac output by 25% at 10min in addition to the change induced by the low dose. The high dose of 3ng/kg/min increased heart rate by 34% at 10min; decreased mean blood pressure by 14% at 10min and atrioventricular nodal conduction time by 13% at 5min; and shortened left ventricular systolic period by 8% at 10min and electromechanical coupling defined as an interval from completion of repolarization to the start of ventricular diastole by 39% at 10min in addition to the changes induced by the middle dose. No significant change was detected in a ventricular repolarization period. These results indicate that ONO-AE1-329 may possess a similar cardiovascular profile to typical phosphodiesterase 3 inhibitors as an inodilator, and suggest that EP4 receptor stimulation can become an alternative strategy for the treatment of congestive heart failure.
Collapse
Affiliation(s)
- Hiroaki Nomura
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yuji Nakamura
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Xin Cao
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Atsushi Honda
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Jun Katagi
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Hiroshi Ohara
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143-8541, Japan
| | - Hiroko Izumi-Nakaseko
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshioki Satoh
- Yamanashi Research Center of Clinical Pharmacology, 73-5 Hatta, Isawa-cho, Fuefuki-city, Yamanashi 406-0023, Japan
| | - Kentaro Ando
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16, Omori-nishi, Ota-ku, Tokyo 143-8540, Japan; Yamanashi Research Center of Clinical Pharmacology, 73-5 Hatta, Isawa-cho, Fuefuki-city, Yamanashi 406-0023, Japan.
| |
Collapse
|
42
|
Wiśniowska B, Mendyk A, Fijorek K, Polak S. Computer-based prediction of the drug proarrhythmic effect: problems, issues, known and suspected challenges. Europace 2015; 16:724-35. [PMID: 24798962 DOI: 10.1093/europace/euu009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It is likely that computer modelling and simulations will become an element of comprehensive cardiac safety testing. Their role would be primarily the integration and the interpretation of previously gathered data. There are still unanswered questions and issues which we list and describe below. They include sources of data used for the development of the models as well as data utilized as input information, which can come from the in vitro studies and the quantitative structure-activity relationship models. The pharmacokinetics of the drugs in question play a crucial role as their active concentration should be considered, yet the question remains where is the right place to assess it. The pharmacodynamic angle includes complications coming from multiple drugs (i.e. active metabolites) acting in parallel as well as the type of interaction with (potentially) multiple affected channels. Once established, the model and the methodology of its use should be further validated, optimistically against individual data reported at the clinical level as the physiological, anatomical, and genetic parameters play a crucial role in the drug-triggered arrhythmia induction. All the abovementioned issues should be at least considered and-hopefully-resolved, to properly utilize the mathematical models for a cardiac safety assessment.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688 Kraków, Poland
| | | | | | | |
Collapse
|
43
|
Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology. J Mol Cell Cardiol 2014; 77:178-91. [DOI: 10.1016/j.yjmcc.2014.09.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
|
44
|
De Ferrari GM, Schwartz PJ. Vox clamantis in deserto. We spoke but nobody was listening: echocardiography can help risk stratification of the long-QT syndrome. Eur Heart J 2014; 36:148-50. [PMID: 25336216 DOI: 10.1093/eurheartj/ehu406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gaetano M De Ferrari
- Department of Cardiology and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
45
|
Stams TRG, Bourgonje VJA, Beekman HDM, Schoenmakers M, van der Nagel R, Oosterhoff P, van Opstal JM, Vos MA. The electromechanical window is no better than QT prolongation to assess risk of Torsade de Pointes in the complete atrioventricular block model in dogs. Br J Pharmacol 2014; 171:714-22. [PMID: 24490860 DOI: 10.1111/bph.12483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 10/20/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The electromechanical window (EMW), the interval between the end of the T-wave and the end of the left ventricular pressure (LVP) curve, has recently been proposed as a predictor of risk of Torsade de Pointes (TdP) in healthy animals, whereby a negative EMW (mechanical relaxation earlier than repolarization) after drug administration indicates an increased TdP risk. The aims of this study were to assess (i) the effect of the ventricular remodelling in the canine chronic, complete atrioventricular block (CAVB) model on EMW; (ii) the effect of the I(Kr) -blocker dofetilide on EMW; and (iii) the correlation of EMW with TdP inducibility. EXPERIMENTAL APPROACH Our 11 year database of experiments of CAVB in dogs under general anaesthesia was reviewed and experiments included if ECG and LVP were recorded simultaneously at spontaneous rhythm. In total, 89 experiments in 44 dogs were appropriate and were analysed. KEY RESULTS During normally conducted sinus rhythm or acute atrioventricular block, EMW was positive. During CAVB, EMW was decreased to negative values. Dofetilide further reduced EMW before inducing repetitive TdP in 82% of the experiments. However, subclassification into inducible and non-inducible dogs revealed no difference in EMW. Analysis of the components of EMW revealed that the observed changes in EMW were solely caused by QT prolongation. CONCLUSIONS AND IMPLICATIONS In the canine CAVB model, ventricular remodelling and I(Kr) block by dofetilide are associated with negative EMW values, but this reflects QT prolongation, and implies that the EMW lacks specificity to predict dofetilide-induced TdP.
Collapse
Affiliation(s)
- T R G Stams
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Effects of selective IKr channel blockade by E-4031 on ventricular electro-mechanical relationship in the halothane-anesthetized dogs. Eur J Pharmacol 2014; 740:263-70. [DOI: 10.1016/j.ejphar.2014.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
|
47
|
ter Bekke RM, Haugaa KH, van den Wijngaard A, Bos JM, Ackerman MJ, Edvardsen T, Volders PG. Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk. Eur Heart J 2014; 36:179-86. [DOI: 10.1093/eurheartj/ehu370] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
48
|
Osadchii OE. Impact of hypokalemia on electromechanical window, excitation wavelength and repolarization gradients in guinea-pig and rabbit hearts. PLoS One 2014; 9:e105599. [PMID: 25141124 PMCID: PMC4139393 DOI: 10.1371/journal.pone.0105599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K(+)) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients.
Collapse
Affiliation(s)
- Oleg E. Osadchii
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Health Science and Technology, University of Aalborg, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
49
|
Townsend C, Brown BS. Predicting drug-induced QT prolongation and torsades de pointes: a review of preclinical endpoint measures. ACTA ACUST UNITED AC 2013; Chapter 10:Unit 10.16. [PMID: 23744708 DOI: 10.1002/0471141755.ph1016s61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compound-induced prolongation of the cardiac QT interval is a major concern in drug development and this unit discusses approaches that can predict QT effects prior to undertaking clinical trials. The majority of compounds that prolong the QT interval block the cardiac rapid delayed rectifier potassium current, IKr (hERG). Described in this overview are different ways to measure hERG, from recent advances in automated electrophysiology to the quantification of channel protein trafficking and binding. The contribution of other cardiac ion channels to hERG data interpretation is also discussed. In addition, endpoint measures of the integrated activity of cardiac ion channels at the single-cell, tissue, and whole-animal level, including for example the well-established action potential to the more recent beat-to-beat variability, transmural dispersion of repolarization, and field potential duration, are described in the context of their ability to predict QT prolongation and torsadogenicity in humans.
Collapse
Affiliation(s)
- Claire Townsend
- GlaxoSmithKline Biological Reagents and Assay Development, Research Triangle Park, NC, USA
| | | |
Collapse
|
50
|
The Lambeth Conventions (II): Guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 2013; 139:213-48. [DOI: 10.1016/j.pharmthera.2013.04.008] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022]
|