1
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
2
|
Jiang L, Hu X, Feng Y, Wang Z, Tang H, Lin Q, Shen Y, Zhu Y, Xu Q, Li X. Reduction of renal interstitial fibrosis by targeting Tie2 in vascular endothelial cells. Pediatr Res 2024; 95:959-965. [PMID: 38012310 PMCID: PMC10920200 DOI: 10.1038/s41390-023-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Tie2, a functional angiopoietin receptor, is expressed in vascular endothelial cells and plays an important role in angiogenesis and vascular stability. This study aimed to evaluate the effects of an agonistic Tie2 signal on renal interstitial fibrosis (RIF) and elucidate the underlying mechanisms. METHODS We established an in vivo mouse model of folic acid-induced nephropathy (FAN) and an in vitro model of lipopolysaccharide-stimulated endothelial cell injury, then an agonistic Tie2 monoclonal antibody (Tie2 mAb) was used to intervent these processes. The degree of tubulointerstitial lesions and related molecular mechanisms were determined by histological assessment, immunohistochemistry, western blotting, and qPCR. RESULTS Tie2 mAb attenuated RIF and reduced the level of fibroblast-specific protein 1 (FSP1). Further, it suppressed vascular cell adhesion molecule-1 (VCAM-1) and increased CD31 density in FAN. In the in vitro model, Tie2 mAb was found to decrease the expression of VCAM-1, Bax, and α-smooth muscle actin (α-SMA). CONCLUSIONS The present findings indicate that the agonistic Tie2 mAb exerted vascular protective effects and ameliorated RIF via inhibition of vascular inflammation, apoptosis, and fibrosis. Therefore, Tie2 may be a potential target for the treatment of this disease. IMPACT This is the first report to confirm that an agonistic Tie2 monoclonal antibody can reduce renal interstitial fibrosis in folic acid-induced nephropathy in mice. This mechanism possibly involves vascular protective effects brought about by inhibition of vascular inflammation, apoptosis and fibrosis. Our data show that Tie2 signal may be a novel, endothelium-specific target for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yajun Feng
- Department of Pediatrics, Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Zhen Wang
- Department of Pediatrics, Zibo Maternal and Child Health Care Hospital, Zibo, 255000, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
3
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Li H, Zhu Y, Chen Z, Ma Q, Abd-Elhamid AI, Feng B, Sun B, Wu J. Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening. Tissue Eng Part C Methods 2023; 29:558-571. [PMID: 37658841 DOI: 10.1089/ten.tec.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an in vitro cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing in vitro fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Yifan Zhu
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhe Chen
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Qiaolin Ma
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Ahmed I Abd-Elhamid
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Binbin Sun
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Jinglei Wu
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| |
Collapse
|
5
|
Seo JH, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Cho AR, Koo J, Shim BS, Kim B, Kim SH. Honokiol inhibits epithelial-mesenchymal transition and hepatic fibrosis via activation of Ecadherin/GSK3β/JNK and inhibition of AKT/ERK/p38/β-catenin/TMPRSS4 signaling axis. Phytother Res 2023; 37:4092-4101. [PMID: 37253375 DOI: 10.1002/ptr.7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor β1 (TGF-β1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-β1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-β1-treated AML-12 cells. Additionally, Honokiol reduced the expression of β-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3β) and JNK in TGF-β1-treated AML-12 cells via TGF-β1/nonSmad pathway. Conversely, GSK3β inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, β-catenin and migration and activate E-cadherin in TGF-β1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-β1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3β/JNK and inhibition of AKT/ERK/p38/β-catenin/TMPRSS4 signaling axis.
Collapse
Affiliation(s)
- Jae Hwa Seo
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah-Reum Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinsuk Koo
- Division of Horticulture & Medicinal Plant, Andong National University, Andong, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Mao XD, Min SN, Zhu MQ, He L, Zhang Y, Li JW, Tian YX, Yu GY, Wu LL, Cong X. The Role of Endothelial Barrier Function in the Fibrosis of Salivary Gland. J Dent Res 2023; 102:82-92. [PMID: 36112881 DOI: 10.1177/00220345221118508] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the salivary glands, fibrosis occurs in many pathological conditions. Endothelial tight junction (TJ)-based barrier function plays a vital role in maintaining the homeostasis of the salivary glands. However, whether endothelial barrier function is changed and involved in the pathogenesis of glandular fibrosis is unknown. Here, by using a mouse model in which the main excretory duct of the submandibular gland (SMG) was ligated to induce inflammation and fibrosis, endothelial barrier function and TJ protein expression and distribution were examined. Both 4-kDa and 70-kDa fluorescence-labeled dextrans permeated more in the 1-, 3-, and 7-d ligated SMGs. Meanwhile, the mRNA level of claudin-5 was increased with an obvious redistribution from apicolateral membranes to lateral membranes and cytoplasm in the fibrotic glands. Notably, the TJ sealer AT1001 significantly attenuated the disrupted endothelial barrier function and thereby ameliorated the glandular fibrosis. Cytokine array detection showed that monocyte chemoattractant protein-1 (MCP-1) was highly enriched in the 3-d ligated SMGs, and MCP-1 directly impaired barrier function, increased claudin-5 expression, induced the relocalization of claudin-5, and activated p-ERK1/2 in cultured human endothelial cells. Furthermore, the upregulation and disorganization of claudin-5 as well as the elevation of MCP-1 and p-ERK1/2 signaling were also confirmed in fibrotic SMGs from patients with chronic sialadenitis and immunoglobulin G4-related sialadenitis. Altogether, our findings revealed that disrupted endothelial barrier function contributed to the progression of glandular fibrosis, and targeting endothelial TJs might be a promising approach to alleviate salivary gland fibrosis-related diseases.
Collapse
Affiliation(s)
- X D Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - S N Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - M Q Zhu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - L He
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - J W Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - Y X Tian
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| |
Collapse
|
8
|
Cai Y, Chen J, Liu J, Zhu K, Xu Z, Shen J, Wang D, Chu L. Identification of six hub genes and two key pathways in two rat renal fibrosis models based on bioinformatics and RNA-seq transcriptome analyses. Front Mol Biosci 2022; 9:1035772. [PMID: 36438657 PMCID: PMC9682235 DOI: 10.3389/fmolb.2022.1035772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Abstract
Renal fibrosis (RF) is the common pathological manifestation and central treatment target of multiple chronic kidney diseases with high morbidity and mortality. Currently, the molecular mechanisms underlying RF remain poorly understood, and exploration of RF-related hub targets and pathways is urgently needed. In this study, two classical RF rat models (adenine and UUO) were established and evaluated by HE, Masson and immunohistochemical staining. To clear molecular mechanisms of RF, differentially expressed genes (DEGs) were identified using RNA-Seq analysis, hub targets and pathways were screened by bioinformatics (functional enrichment analyses, PPI network, and co-expression analysis), the screening results were verified by qRT-PCR, and potential drugs of RF were predicted by network pharmacology and molecular docking. The results illustrated that renal structures were severely damaged and fibrotic in adenine- and UUO-induced models, as evidenced by collagen deposition, enhanced expressions of biomarkers (TGF-β1 and α-SMA), reduction of E-cadherin biomarker, and severe renal function changes (significantly decreased UTP, CREA, Ccr, and ALB levels and increased UUN and BUN levels), etc. 1189 and 1253 RF-related DEGs were screened in the adenine and UUO models, respectively. Two key pathways (AGE-RAGE and NOD-like receptor) and their hub targets (Tgfb1, Col1a1, Nlrc4, Casp4, Trpm2, and Il18) were identified by PPI networks, co-expressed relationships, and qRT-PCR verification. Furthermore, various reported herbal ingredients (curcumin, resveratrol, honokiol, etc.) were considered as important drug candidates due to the strong binding affinity with these hub targets. Overall, this study mainly identified two key RF-related pathways (AGE-RAGE and NOD-like receptor), screened hub targets (Tgfb1, Col1a1, Nlrc4, Casp4, Trpm2, and Il18) that involved inflammation, ECM formation, myofibroblasts generation, and pyroptosis, etc., and provided referable drug candidates (curcumin, resveratrol, honokiol, etc.) in basic research and clinical treatment of RF.
Collapse
Affiliation(s)
- Yueqin Cai
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingan Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Liu
- Laboratory Animal Resources Center, Westlake University, Hangzhou, China
| | - Keyan Zhu
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhixing Xu
- The First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianan Shen
- The First Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dejun Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Liu X, Gao L, Huang X, Deng R, Wei X, Lu J, Li S. Lipidomics reveals the potential mechanism of honokiol against adenine-induced chronic kidney disease. Front Pharmacol 2022; 13:1019629. [DOI: 10.3389/fphar.2022.1019629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Honokiol (HKL), a biphenolic compound, is derived from the bark of Magnolia officinalis, which is used in traditional Chinese medicine for gastrointestinal complaints. HKL has diverse pharmacological activities and has protective effects in various disease models. However, the role and mechanism of HKL in treating chronic kidney disease (CKD) remain unclear. This study was designed to investigate whether HKL can alleviate CKD and the potential mechanism by which it acts. Male Sprague-Dawley rats were fed 0.75% w/w adenine feed for 3 weeks to induce CKD. HKL was administered by gavage at a dose of 5 mg/kg/day for 4 weeks. Using a special kit, serum creatinine (Scr) and blood urea nitrogen (BUN) were measured. To assess renal pathology, periodic acid-Schiff and Masson’s trichrome staining were conducted. Renal lipid profiles were analyzed by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). The results showed that the administration of HKL reduced Scr and BUN and alleviated renal tubular atrophy and tubulointerstitial fibrosis in an adenine-induced CKD rat model. By using lipidomics, we identified 113 lipids (47 lipids in negative ion mode, 66 lipids in positive ion mode) that could be significantly reversed by HKL treatment in CKD rat kidneys. Most of these lipids belonged to the phosphatidylcholine (PC), ceramide (Cer), phosphatidylethanolamine (PE), and triacylglycerol (TAG) classes. Moreover, HKL improved fatty acid oxidation in the kidneys of CKD rats. In conclusion, this study found that HKL can protect against adenine-induced CKD, possibly through the regulation of lipid metabolism.
Collapse
|
10
|
Potential Therapeutic Targets and Promising Agents for Combating NAFLD. Biomedicines 2022; 10:biomedicines10040901. [PMID: 35453652 PMCID: PMC9032837 DOI: 10.3390/biomedicines10040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), is a growing cause of liver cirrhosis and liver cancer worldwide because of the global increases in obesity, dyslipidemia, hypertension, and type 2 diabetes mellitus. Contrary to the advancements in therapies for viral hepatitis, effective treatments remain unestablished for patients with NAFLD. NAFLD, including NASH, is characterized by steatosis, inflammation, hepatic necrosis, and fibrosis. Despite our understanding of its pathophysiology, there are currently no effective treatments for NAFLD. In this review, we provide an update on the known pathophysiological mechanisms involved in the development of NAFLD and the role of hepatic stellate cells, and summarize the potential therapeutic agents, including natural products, for NAFLD.
Collapse
|
11
|
Kataoka S, Umemura A, Okuda K, Taketani H, Seko Y, Nishikawa T, Yamaguchi K, Moriguchi M, Kanbara Y, Arbiser JL, Shima T, Okanoue T, Itoh Y. Honokiol Acts as a Potent Anti-Fibrotic Agent in the Liver through Inhibition of TGF-β1/SMAD Signaling and Autophagy in Hepatic Stellate Cells. Int J Mol Sci 2021; 22:ijms222413354. [PMID: 34948151 PMCID: PMC8705910 DOI: 10.3390/ijms222413354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.
Collapse
Affiliation(s)
- Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Atsushi Umemura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
- Correspondence: ; Tel.: +81-75-251-5332; Fax: +81-75-251-5348
| | - Keiichiro Okuda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Hiroyoshi Taketani
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Taichiro Nishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| | - Yoshihiro Kanbara
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Jack L. Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Veterans Affairs Medical Center, Decatur, GA 30322, USA
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita 564-0013, Japan; (Y.K.); (T.S.); (T.O.)
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (S.K.); (K.O.); (H.T.); (Y.S.); (T.N.); (K.Y.); (M.M.); (Y.I.)
| |
Collapse
|
12
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
13
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
14
|
Urolithin A attenuates renal fibrosis by inhibiting TGF-β1/Smad and MAPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Rauf A, Olatunde A, Imran M, Alhumaydhi FA, Aljohani ASM, Khan SA, Uddin MS, Mitra S, Emran TB, Khayrullin M, Rebezov M, Kamal MA, Shariati MA. Honokiol: A review of its pharmacological potential and therapeutic insights. PHYTOMEDICINE 2021; 90:153647. [PMID: 34362632 DOI: 10.1016/j.phymed.2021.153647] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Honokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases. PURPOSE The objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol. STUDY DESIGN Honokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords 'Honokiol', 'Health Benefits' and 'Therapeutic Insights' as the keywords for primary searches and secondary search terms were used as follows: 'Anticancer', 'Oxidative Stress', 'Neuroprotective', 'Antimicrobial', 'Cardioprotection', 'Hepatoprotective', 'Anti-inflammatory', 'Arthritis', 'Reproductive Disorders'. RESULTS This promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others. CONCLUSION All these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4381, Bangladesh
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| | - Maksim Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation; V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109029, Moscow, Russian Federation.; Ural State Agrarian University, 620075 Yekaterinburg, Russian Federation
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| |
Collapse
|
16
|
Chen C, Zhang QW, Ye Y, Lin LG. Honokiol: A naturally occurring lignan with pleiotropic bioactivities. Chin J Nat Med 2021; 19:481-490. [PMID: 34247771 DOI: 10.1016/s1875-5364(21)60047-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Honokiol is the dominant biphenolic compound isolated from the Magnolia tree, and has long been considered as the active constituent of the traditional Chinese herb, 'Houpo', which is widely used to treat symptoms due to 'stagnation of qi'. Pharmacological studies have shown that honokiol possesses a wide range of bioactivities without obvious toxicity. Honokiol protects the liver, kidneys, nervous system, and cardiovascular system through reducing oxidative stress and relieving inflammation. Moreover, honokiol shows anti-diabetic property through enhancing insulin sensitivity, and anti-obese property through promoting browning of adipocytes. In vivo and in vitro studies indicated that honokiol functions as an anti-cancer agent through multiple mechanisms: inhibiting angiogenesis, promoting cell apoptosis, and regulating cell cycle. A variety of therapeutic effects of honokiol may be associated with its physiochemical properties, which make honokiol readily cross the blood brain barrier and the blood-cerebrospinal fluid barrier, with high bioavailability. In the future, more clinical researches on honokiol are needed to fully authenticate its therapeutic values.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
17
|
Chen PY, Ho DCY, Liao YW, Hsieh PL, Lu KH, Tsai LL, Su SH, Yu CC. Honokiol inhibits arecoline-induced oral fibrogenesis through transforming growth factor-β/Smad2/3 signaling inhibition. J Formos Med Assoc 2021; 120:1988-1993. [PMID: 33980461 DOI: 10.1016/j.jfma.2021.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/PURPOSE The habit of areca nut chewing has been regarded as an etiological factor of precancerous oral submucous fibrosis (OSF). In the present study, we aimed to evaluate the anti-fibrosis effect of honokiol, a polyphenolic component derived from Magnolia officinalis. METHODS The cytotoxicity of honokiol was tested using normal and fibrotic buccal mucosal fibroblasts (fBMFs) derived from OSF tissues. Collagen gel contraction, Transwell migration, invasion, and wound healing capacities were examined. Besides, the expression of TGF-β/Smad2 signaling as well as α-SMA and type I collagen were measured as well. RESULTS Honokiol exerted higher cytotoxicity of fBMFs compared to normal cells. The arecoline-induced myofibroblast activities, including collagen gel contractility, cell motility and wound healing capacities were all suppressed by honokiol treatment. In addition, the expression of the TGF-β/Smad2 pathway was downregulated along with a lower expression of α-SMA and type I collagen in honokiol-receiving cells. CONCLUSION Our data suggest that honokiol may be a promising compound to alleviate the progression of oral fibrogenesis and prevent the transformation of OSF oral epithelium into cancer.
Collapse
Affiliation(s)
- Pei-Yin Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Lo-Lin Tsai
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Hua Su
- Division of Thoracic Medicine, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Tan X, Zhou Y, Agarwal A, Lim M, Xu Y, Zhu Y, O’Brien J, Tran E, Zheng J, Gius D, Richter CP. Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect. Am J Cancer Res 2020; 10:4416-4434. [PMID: 33415008 PMCID: PMC7783741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Cisplatin is a potent drug used in about 40% of cancer treatment but also leads to severe deafness in 60-80% of the cases. Although the mechanism is known to be related to the accumulation of reactive oxygen species (ROS), no drug or FDA approved treatment is currently available to prevent cisplatin ototoxicity. With this study, we show for the first time that honokiol (HNK), a pleiotropic poly-phenol prevents cisplatin-induced hearing loss. HNK also improves the wellbeing of the mice during the treatment, determined by the increase in the number of surviving animals. In a transgenic tumor mouse model, HNK does not hinder cisplatin's antitumor effect. The mechanism is related to the activation of sirtuin 3, a deacetylase in mitochondria essential for ROS detoxification. We expect a paradigm shift in cisplatin chemotherapy based on the current study and future clinical trials, where honokiol is applied to reduce side effects including hearing loss.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - Aditi Agarwal
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Michelle Lim
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingyue Xu
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yueming Zhu
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Joseph O’Brien
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Elizabeth Tran
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Jing Zheng
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine7979 Wurzbach Road, San Antonio, TX 78229, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University633 Clark St, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Xu D, Zeng W, Han X, Qian T, Sun J, Qi F, Liu C, Wang Q, Jin H. Honokiol protects against epidural fibrosis by inhibiting fibroblast proliferation and extracellular matrix overproduction in rats post‑laminectomy. Int J Mol Med 2020; 46:2057-2068. [PMID: 33125121 PMCID: PMC7595651 DOI: 10.3892/ijmm.2020.4765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Epidural fibrosis (EF)‑induced failed back surgery syndrome (FBSS) in patients post‑laminectomy remains a medical challenge. Although the scarring mechanisms remain unclear, the majority of aetiological studies have reported fibroblast dysfunction. Honokiol, the major bioactive constituent of the magnolia tree, exerts a variety of pharmacological effects, including anti‑proliferative and anti‑fibrotic effects, on various cell types. The present study investigated whether honokiol attenuates EF progression. In vitro, it was found that honokiol inhibited excessive fibroblast proliferation induced by transforming growth factor‑β1 (TGF‑β1) and the synthesis of extracellular matrix (ECM) components, including fibronectin and type I collagen, in a dose‑dependent manner. These effects were attributed to the ability of honokiol to suppress the activity of connective tissue growth factor (CTGF), which is indispensable for the progression of fibrosis. Mechanistically, honokiol attenuated the TGF‑β1‑induced activation of the Smad2/3 and mitogen‑activated protein kinase (MAPK) signalling pathways in fibroblasts. In vivo, honokiol reduced the proliferation of fibroblasts and the synthesis of ECM components, thus ameliorating EF in a rat model post‑laminectomy. Taken together, these preclinical findings suggest that honokiol deserves further consideration as a candidate therapeutic agent for EF.
Collapse
Affiliation(s)
- Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Weimin Zeng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuyao Han
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Tianchen Qian
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jingyu Sun
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Fangzhou Qi
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Chen Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Quan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
20
|
Leung ELH, Pan HD, Huang YF, Fan XX, Wang WY, He F, Cai J, Zhou H, Liu L. The Scientific Foundation of Chinese Herbal Medicine against COVID-19. ENGINEERING (BEIJING, CHINA) 2020; 6:1099-1107. [PMID: 33520331 PMCID: PMC7833648 DOI: 10.1016/j.eng.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 05/04/2023]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today's antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.
Collapse
Affiliation(s)
- Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Yu-Feng Huang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Fang He
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Jun Cai
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine & Macau Institute for Applied Research in Medicine and Health & Faculty of Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
21
|
Lee IH, Im E, Lee H, Sim DY, Lee JH, Jung JH, Park JE, Shim BS, Kim S. Apoptotic and antihepatofibrotic effect of honokiol via activation ofGSK3βand suppression of Wnt/β‐catenin pathway in hepatic stellate cells. Phytother Res 2020; 35:452-462. [DOI: 10.1002/ptr.6824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Il Ho Lee
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Eunji Im
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Hyo‐Jung Lee
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Jae Hee Lee
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| | - Sung‐Hoon Kim
- College of Korean Medicine Kyung Hee University Seoul Republic of Korea
| |
Collapse
|
22
|
Jiang JX, Shen HJ, Guan Y, Jia YL, Shen J, Liu Q, Xie QM, Yan XF. ZDHXB-101 (3',5-Diallyl-2, 4'-dihydroxy-[1,1'-biphen-yl]-3,5'-dicarbaldehyde) protects against airway remodeling and hyperresponsiveness via inhibiting both the activation of the mitogen-activated protein kinase and the signal transducer and activator of transcription-3 signaling pathways. Respir Res 2020; 21:22. [PMID: 31931796 PMCID: PMC6958776 DOI: 10.1186/s12931-020-1281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/05/2020] [Indexed: 02/12/2023] Open
Abstract
Airway remodeling consists of the structural changes of airway walls, which is often considered the result of longstanding airway inflammation, but it may be present to an equivalent degree in the airways of children with asthma, raising the need for early and specific therapeutic interventions. The arachidonic acid cytochrome P-450 (CYP) pathway has thus far received relatively little attention in its relation to asthma. In this study, we studied the inhibition of soluble epoxide hydrolase (sEH) on airway remodeling and hyperresponsiveness (AHR) in a chronic asthmatic model which long-term exposure to antigen over a period of 12 weeks. The expression of sEH and CYP2J2, the level of 14, 15-epoxyeicosatrienoic acids (EETs), airway remodeling, hyperresponsiveness and inflammation were analyzed to determine the inhibition of sEH. The intragastric administration of 3 or 10 mg/kg ZDHXB-101, which is a structural derivative of natural product honokiol and a novel soluble epoxide hydrolase (sEH) inhibitor, daily for 9 weeks significantly increased the level of 14, 15-EETs by inhibiting the expression of sEH and increasing the expression of CYP2J2 in lung tissues. ZDHXB-101 reduced the expression of remodeling-related markers such as interleukin (IL)-13, IL-17, MMP-9 N-cadherin, α-smooth muscle actin, S100A4, Twist, goblet cell metaplasia, and collagen deposition in the lung tissue or in bronchoalveolar lavage fluid. Moreover, ZDHXB-101 alleviated AHR, which is an indicator that is used to evaluate the airway remodeling function. The inhibitory effects of ZDHXB-101 were demonstrated to be related to its direct inhibition of the extracellular signal-regulated kinase (Erk1/2) phosphorylation, as well as inhibition of c-Jun N-terminal kinases (JNK) and the signal transducer and activator of transcription-3 (STAT3) signal transduction. These findings first revealed the anti-remodeling potential of ZDHXB-101 lead in chronic airway disease.
Collapse
Affiliation(s)
- Jun-Xia Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.,Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Hui-Juan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.,Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Yan Guan
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Qi Liu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China
| | - Qiang-Min Xie
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, # 866 Yuhangtang Rd, Hangzhou, 310058, Zhejiang Province, China.
| | - Xiao-Feng Yan
- The Second Affiliated Hospital, Zhejiang University School of Medicine, # 88 Jiefang Rd, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
23
|
Quan Y, Park W, Jin J, Kim W, Park SK, Kang KP. Sirtuin 3 Activation by Honokiol Decreases Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis via Regulation of Mitochondrial Dynamics and the Renal NF-κBTGF-β1/Smad Signaling Pathway. Int J Mol Sci 2020; 21:ijms21020402. [PMID: 31936371 PMCID: PMC7014106 DOI: 10.3390/ijms21020402] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is a common feature of all progressive chronic kidney diseases. Sirtuin 3 (SIRT3) is one of the mitochondrial sirtuins, and plays a role in the regulation of mitochondrial biogenesis, oxidative stress, fatty acid metabolism, and aging. Recently, honokiol (HKL), as a pharmaceutical SIRT3 activator, has been observed to have a protective effect against pressure overload-induced cardiac hypertrophy by increasing SIRT3 activity. In this study, we investigated whether HKL, as a SIRT3 activator, also has protective effects against unilateral ureteral obstruction (UUO)-induced renal tubulointerstitial fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the nuclear factor-κB (NF-κB)/transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. We found that HKL decreased the UUO-induced increase in tubular injury and extracellular matrix (ECM) deposition in mice. HKL also decreased myofibroblast activation and proliferation in UUO kidneys and NRK-49F cells. Finally, we showed that HKL treatment decreased UUO-induced mitochondrial fission and promoted mitochondrial fusion through SIRT3-dependent effects. In conclusion, activation of SIRT3 via HKL treatment might have beneficial effects on UUO-induced renal fibrosis through SIRT3-dependent regulation of mitochondrial dynamics and the NF-κB/TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yi Quan
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Woong Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Jixiu Jin
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
| | - Won Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Sung Kwang Park
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| | - Kyung Pyo Kang
- Department of Internal Medicine, Research Institute of Clinical Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea; (Y.Q.); (W.P.); (J.J.); (W.K.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: (S.K.P.); (K.P.K.); Tel.: +82-63-250-1683 (S.K.P.); +82-63-250-2361 (K.P.K.)
| |
Collapse
|
24
|
Elfeky MG, Mantawy EM, Gad AM, Fawzy HM, El-Demerdash E. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways. Life Sci 2019; 240:117096. [PMID: 31760097 DOI: 10.1016/j.lfs.2019.117096] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
Abstract
Aim Liver fibrosis represents a massive global health burden with limited therapeutic options. Thus, the need for curative options is evident. Thus, this study aimed to assess the potential antifibrotic effect of honokiol in Concanavalin A (Con A) induced immunological model of liver fibrosis as well the possible underlying molecular mechanisms. METHODS Male Sprague-Dawley rats were treated with either Con A (20 mg/kg, IV) and/or honokiol (10 mg/kg, orally) for 4 weeks. Hepatotoxicity indices were as well as histopathological evaluation was done. Hepatic fibrosis was assessed by measuring alpha smooth muscle actin (α-SMA) expression and collagen fibers deposition by Masson's trichrome stain and hydroxyproline content. To elucidate the underlying molecular mechanisms, the effect of honokiol on oxidative stress, inflammatory markers as well as transforming growth factor beta (TGF-β)/SMAD and mitogen-activated protein kinase (MAPK) pathways was assessed. KEY FINDINGS Honokiol effectively reversed the hepatotoxicity indices elevations and abnormal histopathological changes induced by Con A. Besides, honokiol attenuated Con A-induced liver fibrosis by down-regulation of hydroxyproline levels, α-SMA expression together with a marked decrease in collagen fibers deposition. Mechanistically Con A induced oxidative stress, provocation of inflammatory responses and activation of TGF-β/SMAD/MAPK pathways. Contrariwise, honokiol co-treatment significantly restored antioxidant defence mechanisms, down-regulated inflammatory cascades and inhibited TGF-β/SMAD/MAPK signaling pathways. CONCLUSION The results provide an evidence for the promising antifibrotic effect of honokiol that could be partially due to suppressing oxidative stress and inflammatory processes as well as inhibition of TGF-β/SMAD/MAPK signaling pathways.
Collapse
Affiliation(s)
- Maha G Elfeky
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
25
|
Liu HT, Wang TE, Hsu YT, Chou CC, Huang KH, Hsu CC, Liang HJ, Chang HW, Lee TH, Tsai PS. Nanoparticulated Honokiol Mitigates Cisplatin-Induced Chronic Kidney Injury by Maintaining Mitochondria Antioxidant Capacity and Reducing Caspase 3-Associated Cellular Apoptosis. Antioxidants (Basel) 2019; 8:antiox8100466. [PMID: 31600935 PMCID: PMC6826708 DOI: 10.3390/antiox8100466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is a potent anti-cancer drug, however, its accompanied organ-toxicity hampers its clinical applications. Cisplatin-associated kidney injury is known to result from its accumulation in the renal tubule with excessive generation of reactive oxygen species. In this study, we encapsulated honokiol, a natural lipophilic polyphenol constituent extracted from Magnolia officinalis into nano-sized liposomes (nanosome honokiol) and examined the in vivo countering effects on cisplatin-induced renal injury. We observed that 5 mg/kg body weight. nanosome honokiol was the lowest effective dosage to efficiently restore renal functions of cisplatin-treated animals. The improvement is likely due the maintenance of cellular localization of cytochrome c and thus preserves mitochondria integrity and their redox activity, which as a consequence, reduced cellular oxidative stress and caspase 3-associated apoptosis. These improvements at the cellular level are later reflected on the observed reduction of kidney inflammation and fibrosis. In agreement with our earlier in vitro study showing protective effects of honokiol on kidney cell lines, we demonstrated further in the current study, that nanosuspension-formulated honokiol provides protective effects against cisplatin-induced chronic kidney damages in vivo. Our findings not only benefit cisplatin-receiving patients with reduced renal side effects, but also provide potential alternative and synergic solutions to improve clinical safety and efficacy of cisplatin treatment on cancer patients.
Collapse
Affiliation(s)
- Hung-Ting Liu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Tse-En Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Ting Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, 402 Taichung, Taiwan.
| | - Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Hong-Jen Liang
- Department of Food Science, Yuanpei University, 30015 Hsinchu, Taiwan.
| | - Hui-Wen Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
26
|
Liang D, Song Z, Liang W, Li Y, Liu S. Metformin inhibits TGF-beta 1-induced MCP-1 expression through BAMBI-mediated suppression of MEK/ERK1/2 signalling. Nephrology (Carlton) 2019; 24:481-488. [PMID: 29934960 DOI: 10.1111/nep.13430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
AIMS Metformin is a biguanide derivative widely used for the treatment of type 2 diabetes mellitus. Recent evidence demonstrates that this anti-hyperglycaemic drug exerts renal protective effects, yet the mechanisms remain poorly understood. monocyte chemoattractant protein 1 (MCP-1) has been recognized as a key mediator of renal fibrosis in chronic kidney diseases, including diabetic nephropathy. This study aimed to investigate the effects of metformin on transforming growth factor beta 1 (TGF-β1)-induced MCP-1 expression and the underlying mechanisms in rat renal tubular epithelial cells. METHODS Rat renal tubular epithelial cell line NRK-52E cells were stimulated with TGF-β1 and/or metformin. The messenger RNA (mRNA) of MCP-1 and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) was evaluated by real-time quantitative polymerase chain reaction. MCP-1 protein was measured by enzyme linked immunosorbent assay (ELISA). Total and phosphorylated extracellular signal-regulated kinases 1/2 (ERK1/2) was evaluated by western blot. Down- and upregulation of BAMBI were achieved by RNA interference targeting BAMBI and lentiviral vector-mediated overexpression of the BAMBI gene, respectively. Cell viability was analysed using Cell Counting Kit 8 (CCK-8) reagents. RESULTS Stimulation with TGF-β1 resulted in the increased expression of MCP-1 and decreased expression of BAMBI in NRK-52E cells. Metformin inhibited the expression of MCP-1 in NRK-52E cells. Pretreatment with metformin suppressed upregulation of MCP-1 and downregulation of BAMBI, as well as phosphorylation of ERK1/2 induced by TGF-β1. U0126, a specific inhibitor for mitogen-activated and extracellular signal-regulated kinase kinases 1/2 (MEK-1/2), completely blocked TGF-β1-induced MCP-1 expression. Knockdown of the BAMBI gene promoted phosphorylation of ERK1/2 and TGF-β1-induced expression of MCP-1. Overexpression of BAMBI inhibited phosphorylation of ERK1/2 and TGF-β1-induced upregulation of MCP-1. CONCLUSION In rat renal tubular epithelial cells, metformin prevents TGF-β1-induced MCP-1 expression, in which BAMBI-mediated inhibition of MEK/ERK1/2 might be involved.
Collapse
Affiliation(s)
- Diefei Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijiao Song
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weiwen Liang
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shanying Liu
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Zhang T, Xiang L. Honokiol alleviates sepsis-induced acute kidney injury in mice by targeting the miR-218-5p/heme oxygenase-1 signaling pathway. Cell Mol Biol Lett 2019; 24:15. [PMID: 30833971 PMCID: PMC6387556 DOI: 10.1186/s11658-019-0142-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background Honokiol is a low-molecular-weight natural product and has been reported to exhibit anti-inflammatory activity. Objectives Our study aimed to investigate the influence of honokiol on sepsis-induced acute kidney injury (AKI) in a mouse model. Material and methods A cecal ligation and puncture (CLP) surgical operation was performed to establish a sepsis-induced acute kidney injury model in mice. Renal histomorphological analysis was performed with periodic acid-Schiff (PAS) staining. The levels of inflammatory markers in serum were measured by ELISA assay. The mRNA and protein levels were assayed by RT-qPCR and western blotting, respectively. Annexin V-FITC/PI staining was used to evaluate glomerular mesangial cell (GMC) apoptosis. Results The results revealed that honokiol significantly increased the survival rate in mice undergoing a CLP operation. Inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, were significantly inhibited in honokiol-treated septic mice compared with the CLP group. In addition, honokiol showed the ability to reverse CLP-induced AKI in septic mice. Furthermore, heme oxygenase-1 (HO-1) expression levels were significantly up-regulated and miR-218-5p was markedly down-regulated in honokiol-treated septic mice as compared to CLP-operated mice. Bioinformatics and experimental measurements showed that HO-1 was a direct target of miR-218-5p. In vitro experiments showed that both honokiol and miR-218-5p inhibitors blocked lipopolysaccharide (LPS)-induced cell growth inhibition and GMC apoptosis by increasing the expression of HO-1. Conclusions Honokiol ameliorated AKI in septic mice and LPS-induced GMC dysfunction, and the underlying mechanism was mediated, at least partially, through the regulation of miR-218-5p/HO-1 signaling. Electronic supplementary material The online version of this article (10.1186/s11658-019-0142-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Zhang
- 1Department of of Intensive Care Unit, Tianjin Huanhu Hospital, No. 6 Jizhao Road, Tianjin, 300060 People's Republic of China
| | - Lei Xiang
- 2Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300060 People's Republic of China
| |
Collapse
|
28
|
Zhao J, Meng M, Zhang J, Li L, Zhu X, Zhang L, Wang C, Gao M. Astaxanthin ameliorates renal interstitial fibrosis and peritubular capillary rarefaction in unilateral ureteral obstruction. Mol Med Rep 2019; 19:3168-3178. [PMID: 30816496 PMCID: PMC6423568 DOI: 10.3892/mmr.2019.9970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Loss of peritubular capillaries is a notable feature of progressive renal interstitial fibrosis. Astaxanthin (ASX) is a natural carotenoid with various biological activities. The present study aimed to evaluate the effect of ASX on unilateral ureteral obstruction (UUO)‑induced renal fibrosis in mice. For that purpose, mice were randomly divided into five treatment groups: Sham, ASX 100 mg/kg, UUO, UUO + ASX 50 mg/kg and UUO + ASX 100 mg/kg. ASX was administered to the mice for 7 or 14 days following UUO. The results demonstrated that UUO‑induced histopathological changes in the kidney tissue were prevented by ASX. Renal function was improved by ASX treatment, as evidenced by decreased blood urea nitrogen and serum creatinine levels. Furthermore, the extent of renal fibrosis and collagen deposition induced by UUO was suppressed by ASX. The levels of collagen I, fibronectin and α‑smooth muscle actin were increased by UUO in mice or by transforming growth factor (TGF)‑β1 treatment in NRK‑52E cells, and were reduced by ASX administration. In addition, ASX inhibited the UUO‑induced decrease in peritubular capillary density by upregulating vascular endothelial growth factor and downregulating thrombospondin 1 levels. Inactivation of the TGF‑β1/Smad signaling pathway was involved in the anti‑fibrotic mechanism of ASX in UUO mice and TGF‑β1‑treated NRK‑52E cells. In conclusion, ASX attenuated renal interstitial fibrosis and peritubular capillary rarefaction via inactivation of the TGF‑β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Meixia Meng
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Jinhua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Lili Li
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaojing Zhu
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Chang Wang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
29
|
Chiu CS, Tsai CH, Hsieh MS, Tsai SC, Jan YJ, Lin WY, Lai DW, Wu SM, Hsing HY, Arbiser JL, Sheu ML. Exploiting Honokiol-induced ER stress CHOP activation inhibits the growth and metastasis of melanoma by suppressing the MITF and β-catenin pathways. Cancer Lett 2019; 442:113-125. [DOI: 10.1016/j.canlet.2018.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
|
30
|
Li N, Zhang J, Yan X, Zhang C, Liu H, Shan X, Li J, Yang Y, Huang C, Zhang P, Zhang Y, Bu P. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget 2018; 8:39592-39604. [PMID: 28465484 PMCID: PMC5503635 DOI: 10.18632/oncotarget.17165] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Renal fibrosis participates in the progression of hypertension-induced kidney injury. The effect of SIRT3, a member of the NAD+-dependent deacetylase family, in hypertensive nephropathy remains unclear. In this study, we found that SIRT3 was reduced after angiotensin II (AngII) treatment both in vivo and in vitro. Furthermore, SIRT3-knockout mice aggravated hypertension-induced renal dysfunction and renal fibrosis via chronic AngII infusion (2000 ng/kg per minute for 42 days). On the contrary, SIRT3-overexpression mice attenuated AngII-induced kidney injury compared with wild-type mice. Remarkably, a co-localization of SIRT3 and KLF15, a kidney-enriched nuclear transcription factor, led to SIRT3 directly deacetylating KLF15, followed by decreased expression of fibronectin and collagen type IV in cultured MPC-5 podocytes. In addition, honokiol (HKL), a major bioactive compound isolated from Magnolia officinalis (Houpo), suppressed AngII-induced renal fibrosis through activating SIRT3-KLF15 signaling. Taken together, our findings implicate that a novel SIRT3-KLF15 signaling may prevent kidney injury from hypertension and HKL can act as a SIRT3-KLF15 signaling activator to protect against hypertensive nephropathy.
Collapse
Affiliation(s)
- Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuefang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolan Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengmin Huang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
31
|
Liu SH, Wu CT, Huang KH, Wang CC, Guan SS, Chen LP, Chiang CK. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget 2017; 7:21900-12. [PMID: 26942460 PMCID: PMC5008332 DOI: 10.18632/oncotarget.7870] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Renal tubulointerstitial fibrosis is an important pathogenic feature in chronic kidney disease and end-stage renal disease, regardless of the initiating insults. A recent study has shown that CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) is involved in acute ischemia/reperfusion-related acute kidney injury through oxidative stress induction. However, the influence of CHOP on chronic kidney disease-correlated renal fibrosis remains unclear. Here, we investigated the role of CHOP in unilateral ureteral obstruction (UUO)-induced experimental chronic tubulointerstital fibrosis. The CHOP knockout and wild type mice with or without UUO were used. The results showed that the increased expressions of renal fibrosis markers collagen I, fibronectin, α-smooth muscle actin, and plasminogen activator inhibitor-1 in the kidneys of UUO-treated wild type mice were dramatically attenuated in the kidneys of UUO-treated CHOP knockout mice. CHOP deficiency could also ameliorate lipid peroxidation and endogenous antioxidant enzymes depletion, tubular apoptosis, and inflammatory cells infiltration in the UUO kidneys. These results suggest that CHOP deficiency not only attenuates apoptotic death and oxidative stress in experimental renal fibrosis, but also reduces local inflammation, leading to diminish UUO-induced renal fibrosis. Our findings support that CHOP may be an important signaling molecule in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Li-Ping Chen
- Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro. Oncotarget 2017; 7:22116-27. [PMID: 26959118 PMCID: PMC5008348 DOI: 10.18632/oncotarget.7904] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/21/2016] [Indexed: 12/16/2022] Open
Abstract
Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.
Collapse
|
33
|
Wang Y, Zhao D, Sheng J, Lu P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol Med Rep 2017; 17:1683-1689. [PMID: 29257208 PMCID: PMC5780111 DOI: 10.3892/mmr.2017.8076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 07/24/2017] [Indexed: 01/10/2023] Open
Abstract
Honokiol is a natural bioactive product with anti-tumor, anti-inflammatory, anti-oxidative, anti-angiogenic and neuroprotective properties. The present study aimed to investigate the effects of honokiol treatment on intimal thickening following vascular balloon injury. The current study determined that perivascular honokiol application reduced intimal thickening in rabbits 14 days after carotid artery injury, it may inhibit vascular smooth muscle cell (VSMCs) proliferation and reduce collagen deposition in local arteries. The findings of the presents study also suggested that honikiol may increase the mRNA expression levels of matrix metalloproteinase‑1 (MMP‑1), MMP‑2 and MMP‑9 and decrease tissue inhibitor of metalloproteinase‑1 (TIMP‑1) mRNA expression in the rabbit arteries. Additionally, perivascular honokiol application inhibited intimal thickening, possibly via inhibition of the phosphorylation of SMAD family member 2/3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Lu
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
34
|
Zhao D, Wang Y, Du C, Shan S, Zhang Y, Du Z, Han D. Honokiol Alleviates Hypertrophic Scar by Targeting Transforming Growth Factor-β/Smad2/3 Signaling Pathway. Front Pharmacol 2017; 8:206. [PMID: 28469575 PMCID: PMC5395562 DOI: 10.3389/fphar.2017.00206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/03/2017] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic scar (HPS) presents as excessive extracellular matrix deposition and abnormal function of fibroblasts. However, there is no single satisfactory method to prevent HPS formation so far. Here, we found that honokiol (HKL), a natural compound isolated from Magnolia tree, had an inhibitory effect on HPS both in vitro and in vivo. Firstly, HKL could dose-dependently down-regulate the mRNA and protein levels of type I collagen, type III collagen, and α-smooth muscle actin (α-SMA) in hypertrophic scar-derived fibroblasts (HSFs). Secondly, HKL suppressed the proliferation, migration abilities of HSFs and inhibited HSFs activation to myofibroblasts, but had no effect on cell apoptosis. Besides, the in vivo rabbit ear scar model further affirmed the inhibitory effects of HKL on collagen deposition, proliferating cell nuclear antigen and α-SMA. Finally, Western blot results showed that HKL reduced the phosphorylation status of Smad2/3, as well as affected the protein levels of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase1. Taken together, this study demonstrated that HKL alleviated HPS by suppressing fibrosis-related molecules and inhibiting HSFs proliferation, migration as well as activation to myofibroblasts via Smad-dependent pathway. Therefore, HKL could be used as a potential agent for treating HPS and other fibrotic diseases.
Collapse
Affiliation(s)
- Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Chao Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zijing Du
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
35
|
Ji N, Jiang L, Deng P, Xu H, Chen F, Liu J, Li J, Liao G, Zeng X, Lin Y, Feng M, Li L, Chen Q. Synergistic effect of honokiol and 5-fluorouracil on apoptosis of oral squamous cell carcinoma cells. J Oral Pathol Med 2016; 46:201-207. [PMID: 27465776 DOI: 10.1111/jop.12481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Ning Ji
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Peng Deng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Hao Xu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Jinli Liu
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Jing Li
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Ga Liao
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Yuchun Lin
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Mingye Feng
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu Sichuan China
| |
Collapse
|
36
|
Chen BL, Sheu ML, Tsai KS, Lan KC, Guan SS, Wu CT, Chen LP, Hung KY, Huang JW, Chiang CK, Liu SH. CCAAT-Enhancer-Binding Protein Homologous Protein Deficiency Attenuates Oxidative Stress and Renal Ischemia-Reperfusion Injury. Antioxid Redox Signal 2015; 23:1233-45. [PMID: 25178318 DOI: 10.1089/ars.2013.5768] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Renal ischemia-reperfusion (I/R) is a major cause of acute renal failure. The mechanisms of I/R injury include endoplasmic reticulum (ER) stress, inflammatory responses, hypoxia, and generation of reactive oxygen species (ROS). CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is involved in the ER stress signaling pathways. CHOP is a transcription factor and a major mediator of ER stress-induced apoptosis. However, the role of CHOP in renal I/R injury is still undefined. Here, we investigated whether CHOP could regulate I/R-induced renal injury using CHOP-knockout mice and cultured renal tubular cells as models. RESULTS In CHOP-knockout mice, loss of renal function induced by I/R was prevented. Renal proximal tubule damage was induced by I/R in wild-type mice; however, the degree of alteration was significantly less in CHOP-knockout mice. CHOP deficiency also decreased the I/R-induced activation of caspase-3 and -8, apoptosis, and lipid peroxidation, whereas the activity of endogenous antioxidants increased. In an in vitro I/R model, small interfering RNA targeting CHOP significantly reversed increases in H2O2 formation, inflammatory signals, and apoptotic signals, while enhancing the activity of endogenous antioxidants in renal tubular cells. INNOVATION To the best of our knowledge, this is the first study which demonstrates that CHOP deficiency attenuates oxidative stress and I/R-induced acute renal injury both in vitro and in vivo. CONCLUSION These findings suggest that CHOP regulates not only apoptosis-related signaling but also ROS formation and inflammation in renal tubular cells during I/R. CHOP may play an important role in the pathophysiology of I/R-induced renal injury.
Collapse
Affiliation(s)
- Bo Lin Chen
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Meei Ling Sheu
- 2 Institute of Biomedical Sciences, National Chung Hsing University , Taichung, Taiwan
| | - Keh Sung Tsai
- 3 Department of Laboratory Medicine, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Kuo Cheng Lan
- 4 Department of Emergency Medicine, National Defense Medical Center, Tri-Service General Hospital , Taipei, Taiwan
| | - Siao Syun Guan
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Cheng Tien Wu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Li Ping Chen
- 5 Department of Dentistry, Taipei Chang Gang Memorial Hospital, Chang Gang University , Taipei, Taiwan
| | - Kuan Yu Hung
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Jenq Wen Huang
- 6 Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine , Taipei, Taiwan
| | - Chih Kang Chiang
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,7 Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University , Taipei, Taiwan
| | - Shing Hwa Liu
- 1 Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan .,8 Department of Medical Research, China Medical University Hospital, China Medical University , Taichung, Taiwan .,9 Department of Pediatrics, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
37
|
The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 2015; 39:347-356. [DOI: 10.1007/s10753-015-0255-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Effects of honokiol on sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Inflammation 2015; 37:1191-9. [PMID: 24531855 DOI: 10.1007/s10753-014-9845-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is a severe complication of sepsis, which largely contributes to the high mortality rate of sepsis. Honokiol, a natural product isolated from Magnolia officinalis (Houpo), has been shown to exhibit anti-inflammatory and antioxidant properties. Here, we investigated the effects of honokiol on sepsis-associated AKI in rats subjected to cecal ligation and puncture (CLP). We found that the administration of honokiol improved the survival of septic rats. Periodic acid-Schiff stain revealed that the morphological changes of kidney tissues in CLP rats were restored after honokiol treatment. Furthermore, honokiol reduced CLP-induced oxidative stress and inflammatory cytokine production. The levels of nitric oxide (NO) and inducible NO synthetase (iNOS) were attenuated by honokiol in septic rats. Finally, honokiol inhibited CLP-induced activation of NF-κB signaling in CLP rats. Our findings suggest that honokiol might be used as a potential therapeutic agent for complications of sepsis, especially for sepsis-induced AKI.
Collapse
|
39
|
Hamzeh MT, Sridhara R, Alexander LD. Cyclic stretch-induced TGF-β1 and fibronectin expression is mediated by β1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol 2014; 308:F425-36. [PMID: 25477471 DOI: 10.1152/ajprenal.00589.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Extracellular matrix (ECM) proteins, including fibronectin, may contribute to the early development and progression of renal interstitial fibrosis associated with chronic renal disease. Recent studies showed that β1-integrin is associated with the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO). However, the molecular events responsible for β1-integrin-mediated signaling, following UUO, have yet to be determined. In this study, we investigated the mechanism by which mechanical stretch, an in vitro model for chronic obstructive nephropathy, regulates fibronectin and transforming growth factor-β1 (TGF-β1) expression in cultured human proximal tubular epithelium (HK-2) cells. Mechanical stretch upregulated fibronectin and TGF-β1 expression and activated signal transducer and transcription factor 3 (STAT3) in a time-dependent manner. Stretch-induced fibronectin and TGF-β1 were suppressed by a STAT3 inhibitor, S3I-201, and by small interfering RNA (siRNA) targeting human STAT3 (STAT3 siRNA). Similarly, fibronectin and TGF-β1 expression and STAT3 activation induced by mechanical stretch were suppressed by the Src family kinase inhibitor PP2 and by transfection of HK-2 cells with a dominant-negative mutant of c-Src (DN-Src), whereas PP3, an inactive analog of PP2, had no significant effect. Furthermore, mechanical stretch resulted in increased β1-integrin mRNA and protein levels in HK-2 cells. Furthermore, neutralizing antibody against β1-integrin and silencing of β1-integrin expression with siRNAs resulted in decreased c-Src and STAT3 activation and TGF-β1 and fibronectin expression evoked by mechanical stretch. This work demonstrates, for the first time, a role for β1-integrin in stretch-induced renal fibrosis through the activation of c-Src and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Mona T Hamzeh
- Department of Biology, Division of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - Rashmi Sridhara
- Midwestern University, Arizona College of Osteopathic Medicine, Department of Physiology, Glendale, Arizona; and
| | - Larry D Alexander
- Midwestern University, Arizona College of Osteopathic Medicine, Department of Physiology, Glendale, Arizona; and
| |
Collapse
|
40
|
Sulakhiya K, Kumar P, Jangra A, Dwivedi S, Hazarika NK, Baruah CC, Lahkar M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 2014; 744:124-31. [PMID: 25446914 DOI: 10.1016/j.ejphar.2014.09.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 02/01/2023]
Abstract
Depression is an inflammatory, commonly occurring and lethal psychiatric disorder having high lifetime prevalence. Preclinical and clinical studies suggest that activation of immuno-inflammatory and oxido-nitrosative stress pathways play major role in the pathophysiology of depression. Honokiol (HNK) is a biphenolic neolignan possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and neuroprotective. The present study investigated the effect of HNK (2.5 and 5 mg/kg, i.p.) pretreatment (30 min prior to LPS) on lipopolysaccharide (LPS) (0.83 mg/kg, i.p.) induced depressive like behavior, neuroinflammation, and oxido-nitrosative stress in mice. HNK pretreatment at both the doses significantly attenuated LPS induced depressive-like behavior by reducing the immobility time in forced swim and tail suspension test, and by improving the anhedonic behavior observed in sucrose preference test. HNK pretreatment ameliorated LPS induced neuroinflammation by reducing IL-1β, IL-6 and TNF-α level in hippocampus (HC) and prefrontal cortex (PFC). HNK pretreatment prevented LPS evoked oxidative/nitrosative stress via improving reduced glutathione level along with reduction in the lipid peroxidation and nitrite level in HC and PFC. Pretreatment with HNK also prevented the increase in plasma corticosterone (CORT) and decrease in hippocampal BDNF level in LPS challenged mice. In conclusion, current investigation suggested that HNK pretreatment provided protection against LPS-induced depressive like behavior which may be mediated by repression of pro-inflammatory cytokines as well as oxido-nitrosative stress in HC and PFC. Our results strongly speculated that HNK could be a therapeutic approach for the treatment of depression and other pathophysiological conditions which are closely associated with neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Kunjbihari Sulakhiya
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Ashok Jangra
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Shubham Dwivedi
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Naba K Hazarika
- Department of Microbiology, Guwahati Medical College, Guwahati, Assam 781032, India
| | - Chandana C Baruah
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India
| | - Mangala Lahkar
- Department of Pharmacology, Guwahati Medical College, Guwahati, Assam 781032, India
| |
Collapse
|
41
|
Lee JH, Jung JY, Jang EJ, Jegal KH, Moon SY, Ku SK, Kang SH, Cho IJ, Park SJ, Lee JR, Zhao RJ, Kim SC, Kim YW. Combination of honokiol and magnolol inhibits hepatic steatosis through AMPK-SREBP-1 c pathway. Exp Biol Med (Maywood) 2014; 240:508-18. [PMID: 25125496 DOI: 10.1177/1535370214547123] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/03/2014] [Indexed: 12/14/2022] Open
Abstract
Honokiol and magnolol, as pharmacological biphenolic compounds of Magnolia officinalis, have been reported to have antioxidant and anti-inflammatory properties. Sterol regulatory element binding protein-1 c (SREBP-1 c) plays an important role in the development and processing of steatosis in the liver. In the present study, we investigated the effects of a combination of honokiol and magnolol on SREBP-1 c-dependent lipogenesis in hepatocytes as well as in mice with fatty liver due to consumption of high-fat diet (HFD). Liver X receptor α (LXRα) agonists induced activation of SREBP-1 c and expression of lipogenic genes, which were blocked by co-treatment of honokiol and magnolol (HM). Moreover, a combination of HM potently increased mRNA of fatty acid oxidation genes. HM induced AMP-activated protein kinase (AMPK), an inhibitory kinase of the LXRα-SREBP-1 c pathway. The role of AMPK activation induced by HM was confirmed using an inhibitor of AMPK, Compound C, which reversed the ability of HM to both inhibit SREBP-1 c induction as well as induce genes for fatty acid oxidation. In mice, HM administration for four weeks ameliorated HFD-induced hepatic steatosis and liver dysfunction, as indicated by plasma parameters and Oil Red O staining. Taken together, our results demonstrated that a combination of HM has beneficial effects on inhibition of fatty liver and SREBP-1 c-mediated hepatic lipogenesis, and these events may be mediated by AMPK activation.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Ji Yun Jung
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Eun Jeong Jang
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Kyung Hwan Jegal
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Soo Young Moon
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Sae Kwang Ku
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Seung Ho Kang
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Il Je Cho
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Sook Jahr Park
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Jong Rok Lee
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Rong Jie Zhao
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Sang Chan Kim
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| | - Young Woo Kim
- Medical Research Center for Globalization of Herbal Formulation, College of Oriental Medicine, Daegu Haany University, Daegu 706-828, Korea
| |
Collapse
|
42
|
Chuang ST, Kuo YH, Su MJ. Antifibrotic effects of KS370G, a caffeamide derivative, in renal ischemia-reperfusion injured mice and renal tubular epithelial cells. Sci Rep 2014; 4:5814. [PMID: 25056456 PMCID: PMC4108915 DOI: 10.1038/srep05814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that renal tubulointerstitial fibrosis is a main cause of end-stage renal disease. Clinically, there are no beneficial treatments that can effectively reverse the progressive loss of renal functions. Caffeic acid phenethyl ester is a natural phenolic antifibrotic agent, but rapid decomposition by an esterase leads to its low bioavailability. In this study, we evaluated the effects of KS370G, a caffeic acid phenylethyl amide, on murine renal fibrosis induced by unilateral renal ischemia-reperfusion injury (IRI) and in TGF-β1 stimulated renal tubular epithelial cells (NRK52E and HK-2). In the animal model, renal fibrosis was evaluated at 14 days post-operation. Immediately following the operation, KS370G (10 mg/kg) was administered by oral gavage once a day. Our results show that KS370G markedly attenuates collagen deposition and inhibits an IRI-induced increase of fibronectin, vimentin, α-SMA and TGF-β1 expression and plasma TGF-β1 levels in the mouse kidney. Furthermore, KS370G reverses TGF-β1-induced downregulation of E-cadherin and upregulation of α-SMA and also decreases the expression of fibronectin, collagen I and PAI-1 and inhibits TGF-β1-induced phosphorylation of Smad2/3. These findings show the beneficial effects of KS370G on renal fibrosis in vivo and in vitro with the possible mechanism being the inhibition of the Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Sung-Ting Chuang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yueh-Hsiung Kuo
- 1] Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan [2] Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Ming-Jai Su
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
43
|
Chen BL, Wang LT, Huang KH, Wang CC, Chiang CK, Liu SH. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway. J Nutr Biochem 2014; 25:1226-1234. [PMID: 25087994 DOI: 10.1016/j.jnutbio.2014.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury.
Collapse
Affiliation(s)
- Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
44
|
BL153 partially prevents high-fat diet induced liver damage probably via inhibition of lipid accumulation, inflammation, and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:674690. [PMID: 24803983 PMCID: PMC3997087 DOI: 10.1155/2014/674690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/20/2014] [Indexed: 02/08/2023]
Abstract
The present study was to investigate whether a magnolia extract, named BL153, can prevent obesity-induced liver damage and identify the possible protective mechanism. To this end, obese mice were induced by feeding with high fat diet (HFD, 60% kcal as fat) and the age-matched control mice were fed with control diet (10% kcal as fat) for 6 months. Simultaneously these mice were treated with or without BL153 daily at 3 dose levels (2.5, 5, and 10 mg/kg) by gavage. HFD feeding significantly increased the body weight and the liver weight. Administration of BL153 significantly reduced the liver weight but without effects on body weight. As a critical step of the development of NAFLD, hepatic fibrosis was induced in the mice fed with HFD, shown by upregulating the expression of connective tissue growth factor and transforming growth factor beta 1, which were significantly attenuated by BL153 in a dose-dependent manner. Mechanism study revealed that BL153 significantly suppressed HFD induced hepatic lipid accumulation and oxidative stress and slightly prevented liver inflammation. These results suggest that HFD induced fibrosis in the liver can be prevented partially by BL153, probably due to reduction of hepatic lipid accumulation, inflammation and oxidative stress.
Collapse
|
45
|
Zhu R, Zheng R, Deng Y, Chen Y, Zhang S. Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-β1-induced activation of kidney fibroblasts. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:372-378. [PMID: 24095053 DOI: 10.1016/j.phymed.2013.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/22/2013] [Indexed: 06/02/2023]
Abstract
Chronic kidney disease is a growing public health problem with an urgent need for new pharmacological agents. Ergosterol peroxide (EP) is the major sterol produced by Cordyceps cicadae Shing (C. cicadae), a widely used traditional Chinese medicine. C. cicadae has been used to treat many kinds of diseases and has a potential benefit on renoprotection. This study aimed to investigate the anti-fibrotic effects of EP as well as the underlying mechanisms. A normal rat kidney fibroblast cell line (NRK-49F) was stimulated to undergo fibroblast activation by transforming growth factor-β1 (TGF-β1) and EP treatment was applied to explore its potential anti-fibrotic effects. Cell proliferation was investigated using MTT analysis. Fibrosis-associated protein expression was analyzed using immunohistochemistry and/or Western blotting. EP treatment attenuated TGF-β1-induced renal fibroblast proliferation, expression of cytoskeleton protein and CTGF, as well as ECM production. Additionally, EP blocked TGF-β1-stimulated phosphorylation of ERK1/2, p38 and JNK pathway. Moreover, the TGF-β1-induced expression of fibronectin was attenuated by either inhibition of MAPKs or by EP treatment. In conclusion, our findings demonstrate that EP is able to suppress TGF-β1-induced fibroblasts activation in NRK-49F. This new information provides a line of theoretical evidence supporting the use of C. cicadae in the intervention of kidney disease and suggests that EP has the potential to be developed as a therapeutic agent to prevent renal fibrosis.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shuwei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
46
|
Effect of KIOM-79 on Diabetes-Induced Myocardial Fibrosis in Zucker Diabetic Fatty Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:547653. [PMID: 24324515 PMCID: PMC3845371 DOI: 10.1155/2013/547653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 02/07/2023]
Abstract
KIOM-79, a herbal mixture of parched Puerariae radix, gingered Magnoliae cortex, Glycyrrhizae radix, and Euphorbiae radix, has a strong inhibitory effect on advanced glycation end products (AGEs) formation. We investigated the beneficial effects of KIOM-79 on cardiac fibrosis in Zucker diabetic fatty (ZDF) rats. KIOM-79 (50 or 500 mg/kg/day) was orally administered for 13 weeks. AGEs formation and collagen expression in the myocardium were assessed by immunohistochemistry. The expression levels of the receptor for AGEs (RAGE), transforming growth factor- β 1 (TGF- β 1), collagen IV, fibronectin, urotensin II, and urotensin II receptor were examined in the myocardial tissue of ZDF rats. KIOM-79 treatment at 500 mg/kg inhibited the accumulation of AGEs, reduced RAGE mRNA and protein expression, and reduced the upregulation of cardiac fibrogenic factors, such as fibronectin and collagen IV, in heart of ZDF rats. Additionally, KIOM-79 ameliorated urotensin II/receptor gene expression in the cardiac tissue of ZDF rats. Our findings indicate that KIOM-79 diminishes cardiac fibrosis in ZDF rats by preventing AGEs accumulation and RAGE overexpression and by modulating the cardiac urotensin II/receptor pathway, which decreases the amount of profibrotic factors, such as TGF- β 1, fibronectin, and collagen in cardiac tissue.
Collapse
|
47
|
Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One 2013; 8:e79814. [PMID: 24223196 PMCID: PMC3819246 DOI: 10.1371/journal.pone.0079814] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/04/2013] [Indexed: 02/04/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.
Collapse
Affiliation(s)
- Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (SHL); (CKC)
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail: (SHL); (CKC)
| |
Collapse
|
48
|
Yang CC, Wu CT, Chen LP, Hung KY, Liu SH, Chiang CK. Autophagy induction promotes aristolochic acid-I-induced renal injury in vivo and in vitro. Toxicology 2013; 312:63-73. [DOI: 10.1016/j.tox.2013.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/15/2022]
|
49
|
Pan HC, Lai DW, Lan KH, Shen CC, Wu SM, Chiu CS, Wang KB, Sheu ML. Honokiol thwarts gastric tumor growth and peritoneal dissemination by inhibiting Tpl2 in an orthotopic model. Carcinogenesis 2013; 34:2568-79. [PMID: 23828905 DOI: 10.1093/carcin/bgt243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Honokiol is known to suppress the growth of cancer cells; however, to date, its antiperitoneal dissemination effects have not been studied in an orthotopic mouse model. In the present study, we evaluated the antiperitoneal dissemination potential of Honokiol in an orthotopic mouse model and assessed associations with tumor growth factor-β1 (TGFβ1) and cells stimulated by a carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Our results demonstrate that tumor growth, peritoneal dissemination and peritoneum or organ metastasis of orthotopically implanted MKN45 cells were significantly decreased in Honokiol-treated mice and that endoplasmic reticulum (ER) stress was induced. Honokiol-treated tumors showed increased epithelial signatures such as E-cadherin, cytokeratin-18 and ER stress marker. In contrast, decreased expression of vimentin, Snail and tumor progression locus 2 (Tpl2) was also noted. TGFβ1 and MNNG-induced downregulation of E-cadherin and upregulation of Tpl2 were abrogated by Honokiol treatment. The effect of Tpl2 inhibition in cancer cells or endothelial cells was associated with inactivation of CCAAT/enhancer binding protein B, nuclear factor kappa-light-chain-enhancer of activated B cell and activator protein-1 and suppression of vascular endothelial growth factor. Inhibition of Tpl2 in gastric cancer cells by small interfering RNA or pharmacological inhibitor was found to effectively reduce growth ability and vessel density in vivo. Honokiol-induced reversal of epithelial-to-mesenchymal transition (EMT) and ER stress-induced apoptosis via Tp12 may involve the paralleling processes. Taken together, our results suggest that the therapeutic inhibition of Tpl2 by Honokiol thwarts both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT.
Collapse
Affiliation(s)
- Hung-Chuan Pan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|