1
|
Marzaban RN, AlMekhzangy HI, ElAkel W, ElBaz TM, ElShazly YM, ElSaeed K, Anees M, Said M, ElSerafy MA, Esmat GG, Doss WH. Diabetic patients with chronic hepatitis C virus response compared to non diabetics when treated with directly acting antiviral therapy. Arab J Gastroenterol 2024; 25:118-124. [PMID: 38378359 DOI: 10.1016/j.ajg.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND AND STUDY AIMS Hepatitis C virus (HCV) impairs glucose homoestasis, thus influences its clinical picture and prognosis. This study aimed at evaluating Diabetes mellitus (DM) on Egyptian patients with chronic hepatitis C (CHC), and its impact on their virologic response when treated with directly acting antiviral (DAA) medications. PATIENTS AND METHODS Adult patients with CHC were divided into 2 groups; Diabetic patients, and Non diabetic patients serving as control group. All patients were subjected to thorough clinical evaluation, basic biochemical laboratory tests including fasting blood glucose/glycosylated haemoglobin (HbA1C), and virologic assay. They were treated with various combined DAAs, and were monitored during, at and after end of treatment. RESULTS Diabetic patients constituted 9.85 % of CHC, and had generally worse laboratory tests (significantly higher transaminases, platelet count, Fib4 and hepatic steatosis) than non diabetic patients, and a less sustained virologic response (SVR) (significantly in Sofosbuvir (SOF) + pegylated interferon (PegIFN) + ribavirin (RBV), SOF + RBV, SOF + daclatasvir (DAC)). Although DM did not play a significant influence on SVR, yet Fib4 and SOF + RBV + PEG-IFN were significant factors affecting SVR among diabetics, while female gender and viraemia were significant factors affecting SVR among non diabetics. Hepatic fibrosis and SOF/RBV significantly influenced SVR in both groups. CONCLUSIONS Diabetic patients with CHC have worse liver biochemical profile, yet DM per se did not influence the virologic response to DAAs, however, some factors played roles in affecting SVR among them.
Collapse
Affiliation(s)
- Raghda N Marzaban
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt.
| | | | - Wafaa ElAkel
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt.
| | - Tamer M ElBaz
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Yehia M ElShazly
- Internal Medicine, Faculty of Medicine, Ain Shams University, Egypt
| | - Kadry ElSaeed
- Tropical Medicine, Faculty of Medicine, Ain Shams University, Egypt
| | - Mahmoud Anees
- Tropical Medicine, Faculty of Medicine, Tanta University, Egypt
| | - Mohamed Said
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Magdy A ElSerafy
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt
| | - Gamal G Esmat
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt.
| | - Wahid H Doss
- Endemic Medicine Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
2
|
Parlati L, Hollande C, Pol S. Treatment of hepatitis C virus infection. Clin Res Hepatol Gastroenterol 2021; 45:101578. [PMID: 33272891 DOI: 10.1016/j.clinre.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus infection affects 71 million people worldwide. It is at the origin of a multi-organ disease associating hepatic manifestations, cryoglobulinemic vasculitis and general manifestations linked to chronic inflammation (diabetes, cardio-, reno- or cerebrovascular manifestations, extra-hepatic cancers including non-Hodgkin's lymphoma). The significant morbidity and mortality linked to the hepatitis C virus therefore justify its screening and access to treatments which have increased considerably over the past two decades. Understanding the replicative cycle of the hepatitis C virus has enabled the development of direct HCV-specific antivirals targeting viral proteins (NS3/4A protease, NS5B polymerase and the multifunctional NS5A replication complex). The combination of two to three specific inhibitors often co-formulated in a capsule, without pegylated interferon and most often without ribavirin, allows high antiviral efficacy (more than 97% cure) for a treatment duration of 8-12 weeks with satisfactory tolerance. HCV infection is the only chronic viral infection that can be cured and the hepatic or extrahepatic manifestations are mainly reversible. This underlines the importance of strengthening screening and access to care policies in order to achieve the elimination of viral infection C in the short term, in 2030, as expected from the program of the World Health Organization. If this elimination is possible in some countries (Iceland, France, Germany …), it seems compromised in others where prevention (USA), screening and/or access to care are still insufficient (Sub-Saharan Africa, Russia…).
Collapse
Affiliation(s)
- Lucia Parlati
- Département d'Hépatologie, APHP, Hôpital Cochin, Paris, France
| | - Clémence Hollande
- Département d'Hépatologie, APHP, Hôpital Cochin, Paris, France; Université de Paris, Inserm U-1223 et Immunité des Cellules Dendritiques, Institut Pasteur, Paris, France
| | - Stanislas Pol
- Département d'Hépatologie, APHP, Hôpital Cochin, Paris, France; Université de Paris, Inserm U-1223 et Immunité des Cellules Dendritiques, Institut Pasteur, Paris, France.
| |
Collapse
|
3
|
He Y, Huang M, Tang C, Yue Y, Liu X, Zheng Z, Dong H, Liu D. Dietary daidzein inhibits hepatitis C virus replication by decreasing microRNA-122 levels. Virus Res 2021; 298:198404. [PMID: 33775754 DOI: 10.1016/j.virusres.2021.198404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
MicroRNAs are emerging as critical endogenous regulators of gene function. Aberrant regulation of microRNAs is associated with various human diseases, most importantly cancer. MicroRNA-122 (miR-122), a liver-specific microRNA, has been implicated in the control of hepatitis C virus (HCV) RNA replication and its response to interferon (IFN) in human hepatoma cells. Here, we report that daidzein, a naturally occurring plant isoflavone, inhibits HCV replication and enhances the antiviral effect of IFN-α on HCV therapy by decreasing microRNA-122 levels in vitro without significantly affecting cell growth. Moreover, daidzein was found to inhibit the expression of miR-122 and miR-21 by down-regulating the expression of TRBP, indicating that daidzein is possibly a general inhibitor of the miRNA pathway. Thus, daidzein provides new insights for drug discovery and HCV prevention.
Collapse
Affiliation(s)
- Yujiao He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Maolin Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Chunyan Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Yan Yue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Xiao Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Zhebin Zheng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China
| | - Hongbo Dong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, 610106, PR China.
| | - Deming Liu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China.
| |
Collapse
|
4
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the second leading cause of cancer-related death worldwide.
Collapse
|
5
|
Moradi M, Mozafari F, Hosseini S, Rafiee R, Ghasemi F. A concise review on impacts of microRNAs in biology and medicine of hepatitis C virus. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Microbes Infect 2019; 21:263-270. [PMID: 31295571 DOI: 10.1016/j.micinf.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France; Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France; INSERM UMS-20, Institut Pasteur, Paris, France; Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
Pol S, Lagaye S. The remarkable history of the hepatitis C virus. Genes Immun 2019; 20:436-446. [PMID: 31019253 DOI: 10.1038/s41435-019-0066-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
The infection with the hepatitis C virus (HCV) is an example of the translational research success. The reciprocal interactions between clinicians and scientists have allowed in 30 years the initiation of empirical treatments by interferon, the discovery of the virus, the development of serological and virological tools for diagnosis but also for prognosis (the non-invasive biochemical or morphological fibrosis tests, the predictors of the specific immune response including genetic IL28B polymorphisms). Finally, well-tolerated and effective treatments with oral antivirals inhibiting HCV non-structural viral proteins involved in viral replication have been marketed this last decade, allowing the cure of all infected subjects. HCV chronic infection, which is a public health issue, is a hepatic disease, which may lead to a cirrhosis and an hepatocellular carcinoma (HCC) but also a systemic disease with extra-hepatic manifestations either associated with a cryoglobulinemic vasculitis or chronic inflammation. The HCV infection is the only chronic viral infection, which may be cured: the so-called sustained virologic response, defined by undetectable HCV RNA 12 weeks after the end of the treatment, significantly reduces the risk of morbidity and mortality associated with hepatic and extra-hepatic manifestations, which are mainly reversible. The history of HCV ends with the pangenotypic efficacy of the multiple combinations, easy to use for 8-12 weeks with one to three pills per day and little problems of tolerance. This explains the short 30 years from the virus discovery to the viral hepatitis elimination policy proposed by the World Health Organization (WHO) in 2016.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, Paris, France. .,Département d'Hépatologie, Hôpital Cochin, APHP, Paris, France. .,INSERM UMS-20, Institut Pasteur, Paris, France. .,Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| | - Sylvie Lagaye
- Immunobiologie des Cellules Dendritiques, Institut Pasteur, Paris, France. .,INSERM U1223, Institut Pasteur, Paris, France.
| |
Collapse
|
8
|
|
9
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
10
|
Venkatesan A, Febin Prabhu Dass J. Deciphering molecular properties and docking studies of hepatitis C and non-hepatitis C antiviral inhibitors - A computational approach. Life Sci 2017; 174:8-14. [PMID: 28259653 DOI: 10.1016/j.lfs.2017.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatitis C is an infectious liver disease with high mortality rate which is caused by Hepatitis C virus. Several treatment methods have been applied to combat this deadly virus including interferons, vaccine and direct acting antivirals (DAAs). However, the later shows promising effects in HCV treatment with lower adverse effect. Specifically, the DAAs target the non-structural proteins (NS3 and NS5B). PURPOSE The objective of the present study is to hypothesize an alternative antiviral inhibitor for HCV from the available other antivirals. METHODS Computation of 2D molecular descriptors for the selected antiviral inhibitors followed by clustering the descriptor features. The closely clustered compounds were subjected to the interaction studies against the HCV target protein to validate the cluster result. RESULTS AND DISCUSSION The clustering result showed that indinavir (HIV inhibitor) and AT130 (HBV inhibitor) molecule are close to the HCV inhibitor. The indinavir complexed with NS3 protein shows -5.33kcal/mol and AT-130 complexed with NS5B protein possess the binding energy of -8.87kcal/mol. The docking interaction study indicated a better binding affinity than other viral inhibitors. CONCLUSION From the descriptor based feature similarity analysis and the interaction study, it can be concluded that indinavir and AT-130 could be a potential alternative agent for HCV treatment.
Collapse
Affiliation(s)
- Arthi Venkatesan
- Department of Integrative Biology, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - J Febin Prabhu Dass
- Department of Integrative Biology, School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Reale A, Messa L, Vitiello A, Loregian A, Palù G. 4th European Seminars in Virology on Oncogenic and Oncolytic Viruses, in Bertinoro (Bologna), Italy. J Cell Physiol 2016; 232:2641-2648. [PMID: 27859242 DOI: 10.1002/jcp.25692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/14/2016] [Indexed: 11/09/2022]
Abstract
The 4th European Seminars in Virology (EuSeV), which was focused on oncogenic and oncolytic viruses, was held in Bertinoro (Bologna), Italy, from June 10 to 12, 2016. This article summarizes the plenary lectures and aims to illustrate the main topics discussed at 4th EuSeV, which brought together knowledge and expertise in the field of oncogenic and oncolytic viruses from all over the world. The meeting was divided in two parts, "Mechanisms of Viral Oncogenesis" and "Viral Oncolysis and Immunotherapy," which were both focused on dissecting the complex and multi-factorial interplay between cancer and human viruses and on exploring new anti-cancer strategies. J. Cell. Physiol. 232: 2641-2648, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Lorenzo Messa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
12
|
Vandegrift KJ, Critchlow JT, Kapoor A, Friedman DA, Hudson PJ. Peromyscus as a model system for human hepatitis C: An opportunity to advance our understanding of a complex host parasite system. Semin Cell Dev Biol 2016; 61:123-130. [PMID: 27498234 DOI: 10.1016/j.semcdb.2016.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
Abstract
Worldwide, there are 185 million people infected with hepatitis C virus and approximately 350,000 people die each year from hepatitis C associated liver diseases. Human hepatitis C research has been hampered by the lack of an appropriate in vivo model system. Most of the in vivo research has been conducted on chimpanzees, which is complicated by ethical concerns, small sample sizes, high costs, and genetic heterogeneity. The house mouse system has led to greater understanding of a wide variety of human pathogens, but it is unreasonable to expect Mus musculus to be a good model system for every human pathogen. Alternative animal models can be developed in these cases. Ferrets (influenza), cotton rats (human respiratory virus), and woodchucks (hepatitis B) are all alternative models that have led to a greater understanding of human pathogens. Rodent models are tractable, genetically amenable and inbred and outbred strains can provide homogeneity in results. Recently, a rodent homolog of hepatitis C was discovered and isolated from the liver of a Peromyscus maniculatus. This represents the first small mammal (mouse) model system for human hepatitis C and it offers great potential to contribute to our understanding and ultimately aid in our efforts to combat this serious public health concern. Peromyscus are available commercially and can be used to inform questions about the origin, transmission, persistence, pathology, and rational treatment of hepatitis C. Here, we provide a disease ecologist's overview of this new virus and some suggestions for useful future experiments.
Collapse
Affiliation(s)
- Kurt J Vandegrift
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Justin T Critchlow
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Amit Kapoor
- Center for Vaccines and Immunity, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, United States
| | - David A Friedman
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| | - Peter J Hudson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
13
|
Maan R, van der Meer AJ. Recent advances in managing chronic HCV infection: focus on therapy in patients with severe liver disease. F1000Res 2016; 5:F1000 Faculty Rev-367. [PMID: 27006761 PMCID: PMC4798156 DOI: 10.12688/f1000research.7399.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection still represents a major public health problem, as it is thought to be responsible for more than 350,000 deaths around the globe on a yearly basis. Fortunately, successful eradication of the virus has been associated with improved clinical outcome and reduced mortality rates. In the past few years, treatment has improved considerably by the implementation of direct-acting antivirals (DAAs). From 2014 onwards, sofosbuvir, simeprevir, daclatasvir, ledipasvir, paritaprevir, ombitasvir, and dasabuvir have been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). Regimens with various combinations of these new drugs, without the use of interferon (IFN), proved to be very effective and well tolerated, even among patients with advanced liver disease. Moreover, treatment duration could be shortened to 12 weeks in the majority of patients. The high costs of these DAAs, however, limit the availability of IFN-free therapy worldwide. Even in wealthy countries, it is deemed necessary to prioritize DAA treatment in order to limit the immediate impact on the health budget. As patients with advanced liver disease are in most need of HCV clearance, many countries decided to treat those patients first. In the current review, we focus on the currently available IFN-free treatment options for patients with cirrhosis. We discuss the virological efficacy as well as the clinical relevance of these regimens among this specific patient population.
Collapse
Affiliation(s)
- Raoel Maan
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015, Netherlands
| | - Adriaan J. van der Meer
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015, Netherlands
| |
Collapse
|
14
|
Qian XJ, Zhu YZ, Zhao P, Qi ZT. Entry inhibitors: New advances in HCV treatment. Emerg Microbes Infect 2016; 5:e3. [PMID: 26733381 PMCID: PMC4735057 DOI: 10.1038/emi.2016.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects approximately 3% of the world's population and causes chronic liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration, combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry.
Collapse
Affiliation(s)
- Xi-Jing Qian
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yong-Zhe Zhu
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Ping Zhao
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Zhong-Tian Qi
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Alleviation of off-target effects from vector-encoded shRNAs via codelivered RNA decoys. Proc Natl Acad Sci U S A 2015; 112:E4007-16. [PMID: 26170322 DOI: 10.1073/pnas.1510476112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Exogenous RNAi triggers such as shRNAs ideally exert their activities exclusively via the antisense strand that binds and silences designated target mRNAs. However, in principle, the sense strand also possesses silencing capacity that may contribute to adverse RNAi side effects including off-target gene regulation. Here, we address this concern with a novel strategy that reduces sense strand activity of vector-encoded shRNAs via codelivery of inhibitory tough decoy (TuD) RNAs. Using various shRNAs for proof of concept, we validate that coexpression of TuDs can sequester and inactivate shRNA sense strands in human cells selectively without affecting desired antisense activities from the same shRNAs. Moreover, we show how coexpressed TuDs can alleviate shRNA-mediated perturbation of global gene expression by specifically de-repressing off-target transcripts carrying seed matches to the shRNA sense strand. Our combination of shRNA and TuD in a single bicistronic gene transfer vector derived from Adeno-associated virus (AAV) enables a wide range of applications, including gene therapies. To this end, we engineered our constructs in a modular fashion and identified simple hairpin design rules permitting adaptation to preexisting or new shRNAs. Finally, we demonstrate the power of our vectors for combinatorial RNAi strategies by showing robust suppression of hepatitis C virus (HCV) with an AAV expressing a bifunctional TuD against an anti-HCV shRNA sense strand and an HCV-related cellular miRNA. The data and tools reported here represent an important step toward the next generation of RNAi triggers with increased specificity and thus ultimately safety in humans.
Collapse
|
16
|
Daito T, Watashi K, Sluder A, Ohashi H, Nakajima S, Borroto-Esoda K, Fujita T, Wakita T. Cyclophilin inhibitors reduce phosphorylation of RNA-dependent protein kinase to restore expression of IFN-stimulated genes in HCV-infected cells. Gastroenterology 2014; 147:463-72. [PMID: 24786893 DOI: 10.1053/j.gastro.2014.04.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND & AIMS Cyclophilin inhibitors are being developed for treatment of hepatitis C virus (HCV) infection. They are believed to inhibit the HCV replication complex. We investigated whether cyclophilin inhibitors interact with interferon (IFN) signaling in cultured cells infected with HCV. METHODS We used immunoblot assays to compare expression of IFN-stimulated genes (ISGs) and of components of IFN signaling in HCV-infected and uninfected cells. RESULTS Incubation with IFN alfa induced expression of ISGs in noninfected cells and, to a lesser extent, in HCV-infected cells; addition of the cyclophilin inhibitor SCY-635 restored expression of ISG products in HCV-infected cells. SCY-635 reduced phosphorylation of double-strand RNA-dependent protein kinase (PKR) and its downstream factor eIF2α; the phosphorylated forms of these proteins are negative regulators of ISG translation. Cyclophilin A interacted physically with PKR; this interaction was disrupted by SCY-635. SCY-635 also suppressed PKR-mediated formation of stress granules. Cyclophilin inhibitors were found to inhibit PKR phosphorylation and stress granule formation in HCV-infected and uninfected cells. CONCLUSIONS In cultured cells, cyclophilin inhibitors reverse the attenuation of the IFN response by HCV, in addition to their effects on HCV replication complex. Cyclophilin A regulation of PKR has been proposed as a mechanism for observed effects of cyclophilin inhibitors on IFN signaling. We found that cyclophilin inhibitors reduce phosphorylation of PKR and eIF2α during HCV infection to allow for translation of ISG products. Proteins in this pathway might be developed as targets for treatment of HCV infection.
Collapse
Affiliation(s)
- Takuji Daito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; SCYNEXIS, Inc, Durham, North Carolina
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | - Hirofumi Ohashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Syo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
17
|
Gerold G, Pietschmann T. The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 2014; 32:525-37. [PMID: 25034285 DOI: 10.1159/000360830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatitis C virus (HCV) is a highly variable plus-strand RNA virus of the family Flaviviridae. Viral strains are grouped into six epidemiologically relevant genotypes that differ from each other by more than 30% at the nucleotide level. The variability of HCV allows immune evasion and facilitates persistence. It is also a substantial challenge for the development of specific antiviral therapies effective across all HCV genotypes and for prevention of drug resistance. Novel HCV cell culture models were instrumental for identification and profiling of therapeutic strategies. Concurrently, these models revealed numerous host factors critical for HCV propagation, some of which have emerged as targets for antiviral therapy. It is generally assumed that the use of host factors is conserved among HCV isolates and genotypes. Additionally, the barrier to viral resistance is thought to be high when interfering with host factors. Therefore, current drug development includes both targeting of viral factors but also of host factors essential for virus replication. In fact, some of these host-targeting agents, for instance inhibitors of cyclophilin A, have advanced to late stage clinical trials. Here, we highlight currently available cell culture systems for HCV, review the most prominent host-targeting strategies against hepatitis C and critically discuss opportunities and risks associated with host-targeting antiviral strategies.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE - Institute of Experimental Virology, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | | |
Collapse
|
18
|
Méndez-Sánchez N, Ridruejo E, Alves de Mattos A, Chávez-Tapia NC, Zapata R, Paraná R, Mastai R, Strauss E, Guevara-Casallas LG, Daruich J, Gadano A, Parise ER, Uribe M, Aguilar-Olivos NE, Dagher L, Ferraz-Neto BH, Valdés-Sánchez M, Sánchez-Avila JF. Latin American Association for the Study of the Liver (LAASL) clinical practice guidelines: management of hepatocellular carcinoma. Ann Hepatol 2014; 13 Suppl 1:S4-S40. [PMID: 24998696 DOI: 10.1016/s1665-2681(19)30920-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world and the third most common cause of cancer death, and accounts for 5.6% of all cancers. Nearly 82% of the approximately 550,000 liver cancer deaths each year occur in Asia. In some regions, cancer-related death from HCC is second only to lung cancer. The incidence and mortality of HCC are increasing in America countries as a result of an ageing cohort infected with chronic hepatitis C, and are expected to continue to rise as a consequence of the obesity epidemic. Clinical care and survival for patients with HCC has advanced considerably during the last two decades, thanks to improvements in patient stratification, an enhanced understanding of the pathophysiology of the disease, and because of developments in diagnostic procedures and the introduction of novel therapies and strategies in prevention. Nevertheless, HCC remains the third most common cause of cancer-related deaths worldwide. These LAASL recommendations on treatment of hepatocellular carcinoma are intended to assist physicians and other healthcare providers, as well as patients and other interested individuals, in the clinical decision-making process by describing the optimal management of patients with liver cancer.
Collapse
Affiliation(s)
| | - Ezequiel Ridruejo
- Hepatology Section, Department of Medicine. Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC". Ciudad Autónoma de Buenos Aires, Argentina; Hepatology and Liver Transplant Unit. Hospital Universitario Austral, Pilar, Argentina
| | | | | | - Rodrigo Zapata
- Hepatology and Liver Transplantation Unit. University of Chile School of Medicine, German Clinic. Santiago, Chile
| | - Raymundo Paraná
- Associate Professor of School of Medicine - Federal University of Bahia Head of the Gastro-Hepatologist Unit of the University Bahia University Hospital
| | - Ricardo Mastai
- Transplantation Unit. German Hospital.Buenos Aires, Argentina
| | - Edna Strauss
- Clinical hepatologist of Hospital do Coraçao - São Paulo - Brazil. Professor of the Post Graduate Course in the Department of Pathology at the School of Medicine, University of São Paulo
| | | | - Jorge Daruich
- Hepatology Department, Clinical Hospital San Martín. University of Buenos Aires Buenos Aires, Argentina
| | - Adrian Gadano
- Section of Hepatology, Italian Hospital of Buenos Aires. Buenos Aires, Argentina
| | - Edison Roberto Parise
- Professor Associado da Disciplina de Gastroenterologia da Universidade Federal de São Paulo, Presidente Eleito da Sociedade Brasileira de Hepatologia
| | - Misael Uribe
- Digestive Diseases and Obesity Clinic, Medica Sur Clinic Foundation. México City, Mexico
| | - Nancy E Aguilar-Olivos
- Digestive Diseases and Obesity Clinic, Medica Sur Clinic Foundation. México City, Mexico
| | - Lucy Dagher
- Consultant Hepatologist. Metropolitan Policlinic- Caracas- Venezuela
| | - Ben-Hur Ferraz-Neto
- Director of Liver Institute - Beneficencia Portuguesa de São Paulo. Chief of Liver Transplantation Team
| | - Martha Valdés-Sánchez
- Department of Pediatric Oncology National Medical Center "Siglo XXI". Mexico City, Mexico
| | - Juan F Sánchez-Avila
- Hepatology and Liver Transplantation Department National Institute of Nutrition and Medical Sciences "Salvador Zubirán" Mexico City, Mexico
| |
Collapse
|
19
|
Lambert SM, Langley DR, Garnett JA, Angell R, Hedgethorne K, Meanwell NA, Matthews SJ. The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. Protein Sci 2014; 23:723-34. [PMID: 24639329 PMCID: PMC4093949 DOI: 10.1002/pro.2456] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
New direct acting antivirals (DAAs) such as daclatasvir (DCV; BMS-790052), which target NS5A function with picomolar potency, are showing promise in clinical trials. The exact nature of how these compounds have an inhibitory effect on HCV is unknown; however, major resistance mutations appear in the N-terminal region of NS5A that include the amphipathic helix and domain 1. The dimeric symmetry of these compounds suggests that they act on a dimer of NS5A, which is also consistent with the presence of dimers in crystals of NS5A domain 1 from genotype 1b. Genotype 1a HCV is less potently affected by these compounds and resistance mutations have a greater effect than in the 1b genotypes. We have obtained crystals of domain 1 of the important 1a NS5A homologue and intriguingly, our X-ray crystal structure reveals two new dimeric forms of this domain. Furthermore, the high solvent content (75%) makes it ideal for ligand-soaking. Daclatasvir (DCV) shows twofold symmetry suggesting NS5A dimers may be of physiological importance and serve as potential binding sites for DCV. These dimers also allow for new conformations of a NS5A expansive network which could explain its operation on the membranous web. Additionally, sulfates bound in the crystal structure may provide evidence for the previously proposed RNA binding groove, or explain regulation of NS5A domain 2 and 3 function and phosphorylation, by domain 1.
Collapse
Affiliation(s)
- Sebastian M Lambert
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Bocchetta S, Maillard P, Yamamoto M, Gondeau C, Douam F, Lebreton S, Lagaye S, Pol S, Helle F, Plengpanich W, Guérin M, Bourgine M, Michel ML, Lavillette D, Roingeard P, le Goff W, Budkowska A. Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection. PLoS One 2014; 9:e92140. [PMID: 24646941 PMCID: PMC3960176 DOI: 10.1371/journal.pone.0092140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/18/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1) mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL) particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR) agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts). The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis, leading to the inhibition of virus–cell fusion and thus HCV cell entry. Therefore besides other beneficial roles, ABCA1 might represent a potential target for HCV therapy.
Collapse
Affiliation(s)
- Simone Bocchetta
- Unité Hépacivirus et Immunité Innée, CNRS, UMR3569, Paris, France
- Dipartimento di Medicina Translazionale, Università del Piemonte Orientale, “Amedeo Avogadro”, Novara, Italy
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, CNRS, UMR3569, Paris, France
| | - Mami Yamamoto
- Unité Hépacivirus et Immunité Innée, CNRS, UMR3569, Paris, France
- Department of Biochemistry, Nihon University School of Medicine, Tokyo, Japan
| | - Claire Gondeau
- INSERM U1040, Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, Montpellier, France
| | - Florian Douam
- Groupe de Recherche Dynamique Microbienne et Transmission virale, UMR CNRS 5557, Ecologie Microbienne, Villeurbanne, France
| | - Stéphanie Lebreton
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, Paris, France
| | - Sylvie Lagaye
- Unité d’Hépatologie, AP-HP, Groupe Hospitalier Cochin-Hôtel Dieu, Paris, France
| | - Stanislas Pol
- Unité d’Hépatologie, AP-HP, Groupe Hospitalier Cochin-Hôtel Dieu, Paris, France
- Equipe Cycle Cellulaire, Régénération et Hépatopathies, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - François Helle
- Laboratoire de Virologie, CHU Sud Amiens, Centre de Biologie Humaine, Amiens, France
| | - Wanee Plengpanich
- Dyslipidemia, Inflammation and Atherosclerosis in Metabolic Diseases, INSERM UMRS939, Paris, France
- Endocrinology and Metabolism Unit, Department of Medecine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Maryse Guérin
- Dyslipidemia, Inflammation and Atherosclerosis in Metabolic Diseases, INSERM UMRS939, Paris, France
| | - Maryline Bourgine
- Pathogénèse des Virus de l′Hépatite B, INSERM U845, Institut Pasteur, Paris, France
| | - Marie Louise Michel
- Pathogénèse des Virus de l′Hépatite B, INSERM U845, Institut Pasteur, Paris, France
| | - Dimitri Lavillette
- Groupe de Recherche Dynamique Microbienne et Transmission virale, UMR CNRS 5557, Ecologie Microbienne, Villeurbanne, France
| | - Philippe Roingeard
- INSERM U966, Université François-Rabelais and CHRU de Tours, Tours, France
| | - Wilfried le Goff
- Dyslipidemia, Inflammation and Atherosclerosis in Metabolic Diseases, INSERM UMRS939, Paris, France
| | - Agata Budkowska
- Unité Hépacivirus et Immunité Innée, CNRS, UMR3569, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Kovalchuk O, Walz P, Kovalchuk I. Does bacterial infection cause genome instability and cancer in the host cell? Mutat Res 2014; 761:1-14. [PMID: 24472301 DOI: 10.1016/j.mrfmmm.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/08/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Research of the past several decades suggests that bacterial infection can lead to genome instability of the host cell often resulting in cancer development. However, there is still a substantial lack of knowledge regarding possible mechanisms involved in the development of genomic instability. Several questions remain unanswered, namely: Why has the causative relationship between the bacterial infection and cancer been established only for a small number of cancers? What is the mechanism responsible for the induction of genome instability and cancer? Is the infection process required to cause genome instability and cancer? In this review, we present a hypothesis that the bacterial infection, exposure to heat-killed bacteria or even some bacterial determinants may trigger genome instability of exposed and distal cells, and thus may cause cancer. We will discuss the mechanisms of host responses to the bacterial infection and present the possible pathways leading to genome instability and cancer through exposure to bacteria.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Paul Walz
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| |
Collapse
|
22
|
Abstract
The treatment of hepatitis C virus (HCV) infection with pegylated interferon (PEG-IFN) alfa and ribavirin (800 mg daily) (RBV) is the standard of care (SOC) for hepatitis C virus genotype 3-infection leading to a sustained virological response (SVR) in around 65% of patients. A better understanding of the HCV life-cycle has recently resulted in the development of several potential direct-acting antiviral drugs (DAAs) targeting viral proteins (NS3/4A protease, NS5B nucleos(t)idic and non-nucleos(t)idic polymerase, NS5A viral replication complex). First generation protease inhibitors in combination with PEG-IFN/RBV are not efficient in genotype 3-infected patients. The combination of PEG-IFN/RBV with Daclatasvir, a NS5A inhibitor for 12-24 weeks results in a SVR in around 75% while the triple combination of PEG-IFN/RBV with the oral nucleotidic polymerase inhibitor Sofosbuvir (GS-7977) for 12 weeks in naïve patients results in a SVR in more than 95%. The results of the first oral combination of Sofosbuvir and RBV for 12 weeks in genotype 3-infected patients have been rather disappointing with a slightly lower SVR than after 24 weeks of PEG-IFN: around 60%, and only 30% in patients with cirrhosis. Extending treatment from 12 to 16 weeks in treatment experienced patients doubled the SVR rate and an 80% SVR rate is expected by extending treatment to 24 weeks. The best oral combination of new DAAs is probably the combination of Sofosbuvir and a NS5A inhibitor (Daclatasvir, Ledipasvir…) for 24 weeks, which resulted in a 100% SVR rate in a limited series. The use of cyclophilin inhibitors, a host-targeted antiviral, in association with DAAs and/or RBV may also be of interest. The oral combination of new DAAs (dual or triple combination of different antivirals) or of DAAs and host targets such as cyclophilin will probably become the SOC for genotype 3-infected treatment-naïve or -experienced patients.
Collapse
Affiliation(s)
- Stanislas Pol
- Université Paris Descartes, APHP, Unité d'Hépatologie, Hôpital Cochin, INSERM U-1016, Institut Cochin, Paris, France
| | | | | |
Collapse
|
23
|
Gelley F, Zadori G, Nemes B, Fassan M, Lendvai G, Sarvary E, Doros A, Gerlei Z, Nagy P, Schaff Z, Kiss A. MicroRNA profile before and after antiviral therapy in liver transplant recipients for hepatitis C virus cirrhosis. J Gastroenterol Hepatol 2014; 29:121-127. [PMID: 24033414 DOI: 10.1111/jgh.12362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Management of hepatitis C virus (HCV) recurrence is a major challenge after liver transplantation. Significant dysregulated expression of HCV receptors (i.e. claudin-1, occludin, tetraspanin CD81, scavenger receptor type B1) has been shown recently during HCV infection. This might facilitate hepatocytic entry and reinfection of HCV. MicroRNAs (miRs) play role in the regulation of gene expression. We aimed to characterize miR expression profiles related to HCV infection and antiviral therapy in adult liver transplant recipients, with special emphasis on miRs predicted to target HCV receptors. METHODS Twenty-eight adult liver transplant recipients were enrolled in the study. Paired biopsies were obtained at the time of HCV recurrence and at the end of antiviral treatment. MiRs for HCV receptors were selected using target prediction software. Expression levels of miR-21, miR-23a miR-34a, miR-96, miR-99a*, miR-122, miR-125b, miR-181a-2*, miR-194, miR-195, miR-217, miR-221, and miR-224 were determined by reverse transcription-quantitative polymerase chain reaction. RESULTS miR-99a* and miR-224 expressions were increased in HCV recurrence samples, while miR-21 and miR-194 were decreased in comparison to normal liver tissue. Increased expressions of miR-221, miR-224, and miR-217 were observed in samples taken after antiviral therapy when compared with HCV recurrence samples. High HCV titer at recurrence was associated with higher level of miR-122. CONCLUSIONS Samples at recurrence of HCV and after antiviral therapy revealed distinct HCV-related miR expression profiles, with significant dysregulation of those miRNAs potentially targeting mRNAs of HCV receptors. In particular, miR-194 and miR-21 might be involved in the regulation of HCV receptor proteins' expression during HCV infection and antiviral therapy.
Collapse
Affiliation(s)
- Fanni Gelley
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer and the third leading cause of cancer-related death, and its incidence is increasing. The majority of HCC cases are associated with chronic viral hepatitis. With over 170 million individuals chronically infected with hepatitis C virus (HCV) worldwide, HCV is currently a serious global health concern, leading to chronic hepatitis, cirrhosis and HCC, thereby causing significant morbidity and mortality. With the incidence of HCV infection increasing, the problem of HCV-associated HCC is expected to worsen as well, with the majority of HCCs developing in the setting of cirrhosis. Thus, it is imperative to provide antiviral therapy to infected individuals prior to the development of established cirrhosis in order to reduce the risk of subsequent HCC. Indeed, the successful eradication of HCV is associated with clinical and histological improvement as well as a greatly reduced risk of subsequent HCC development. Even after the development of cirrhosis, successful viral clearance is still associated with reduced HCC risk. Current standard of care antiviral treatment consists of pegylated interferon-α and ribavirin, but viral clearance rates are suboptimal with this regimen, especially in difficult to treat cohorts. However, there is a myriad of different classes of HCV-specific direct-acting antiviral agents currently in development, which can be used in combination with one another or with standard of care treatment to improve HCV cure rates. Preventative and therapeutic vaccines against HCV remain an area of ongoing research with good progress towards developing an effective vaccine in the future.
Collapse
Affiliation(s)
- E J Lim
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, 3084, Australia,
| | | |
Collapse
|
25
|
Potisopon S, Priet S, Selisko B, Canard B. Comparison of dengue virus and HCV: from impact on global health to their RNA-dependent RNA polymerases. Future Virol 2014. [DOI: 10.2217/fvl.13.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT: Upon the discovery of HCV, dengue virus (DENV) and other flaviviruses have served as models to unravel the biology and mechanisms at play during HCV replication. HCV research has rapidly become a well-established field. Recently, several specific anti-HCV antiviral drugs have been discovered and approved for use in the clinic. Now, the strong emergence of DENV in the world and the associated increasing burden is casting light back to dengue virology and anti-dengue drug discovery. HCV polymerase (NS5B) is a prime target in antiviral therapies, and the analogous DENV polymerase (NS5) is also becoming one. Although both enzymes share common fold and function to some extent, a significant amount of unique structural and functional features have to be clearly delineated to efficiently translate drug design potential between these two essential enzymes.
Collapse
Affiliation(s)
- Supanee Potisopon
- AFMB Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université & CNRS, UMR 7257, Parc Scientifique et Technologique de Luminy, Case 932, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Stéphane Priet
- AFMB Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université & CNRS, UMR 7257, Parc Scientifique et Technologique de Luminy, Case 932, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université & CNRS, UMR 7257, Parc Scientifique et Technologique de Luminy, Case 932, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Bruno Canard
- AFMB Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université & CNRS, UMR 7257, Parc Scientifique et Technologique de Luminy, Case 932, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
26
|
Duan XQ, Li SL, Li YJ, Liu B, Zeng PB, Yang CH, Chen LM. The Role of MicroRNA in Hepatitis C Virus Replication. J Clin Transl Hepatol 2013; 1:125-30. [PMID: 26355873 PMCID: PMC4521283 DOI: 10.14218/jcth.2013.00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/04/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major global health problem. There is no effective vaccine and the current treatment regimen with pegylated interferon α and ribavirin is associated with significant adverse events. Therefore, there is an urgent need to identify new antiviral targets for HCV therapy. In recent years, a growing number of microRNAs (miRNAs) have been reported to be able to regulate HCV replication and infection by interacting with the HCV genome directly or by regulating host innate immunity to build a nonspecific antiviral state within cells. In this review, we discuss HCV virology and standard of care followed by miRNA in general, and then give a brief overview of miRNAs involved in HCV infection and discuss their potential application as a therapeutic option for the treatment of HCV infection.
Collapse
Affiliation(s)
- Xiao-Qiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Shi-Lin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Yu-Jia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Bing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Pei-Bing Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Chun-Hui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Li-Min Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China ; Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
|
28
|
Gerold G, Pietschmann T. Opportunities and Risks of Host-targeting Antiviral Strategies for Hepatitis C. CURRENT HEPATITIS REPORTS 2013; 12:200-213. [PMID: 32214912 PMCID: PMC7089091 DOI: 10.1007/s11901-013-0187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infects more than 2 % of the world population with highest prevalence in parts of Africa and Asia. Past standard of care using interferon α and ribavirin had adverse effects and showed modest efficacy for some HCV genotypes spurring the development of direct acting antivirals (DAAs). Such DAAs target viral proteins and are thus better tolerated but they suffer from emergence of vial resistance. Furthermore, DAAs are often HCV genotype specific. Novel drug candidates targeting host factors required for HCV propagation, so called host-targeting antivirals (HTAs), promise to overcome both caveats. The genetic barrier to resistance is usually considered to be high for HTAs and all HCV genotypes presumably use the same host factors. Recent data, however, challenge these assumptions, at least for some HTAs. Here, we highlight the most important host-targeting strategies against hepatitis C and critically discuss their opportunities and risks.
Collapse
Affiliation(s)
- Gisa Gerold
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Thomas Pietschmann
- TWINCORE – Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| |
Collapse
|
29
|
Lupberger J, Duong FHT, Fofana I, Zona L, Xiao F, Thumann C, Durand SC, Pessaux P, Zeisel MB, Heim MH, Baumert TF. Epidermal growth factor receptor signaling impairs the antiviral activity of interferon-alpha. Hepatology 2013; 58:1225-35. [PMID: 23519785 DOI: 10.1002/hep.26404] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Interferon-alpha (IFN-α) exhibits its antiviral activity through signal transducer and activator of transcription protein (STAT) signaling and the expression of IFN response genes (IRGs). Viral infection has been shown to result in activation of epidermal growth factor receptor (EGFR)-a host cell entry factor used by several viruses, including hepatitis C virus. However, the effect of EGFR activation for cellular antiviral responses is unknown. Here, we uncover cross-talk between EGFR and IFN-α signaling that has a therapeutic effect on IFN-α-based therapies and functional relevance for viral evasion and IFN resistance. We show that combining IFN-α with the EGFR inhibitor, erlotinib, potentiates the antiviral effect of each compound in a highly synergistic manner. The extent of the synergy correlated with reduced STAT3 phosphorylation in the presence of erlotinib, whereas STAT1 phosphorylation was not affected. Furthermore, reduced STAT3 phosphorylation correlated with enhanced expression of suppressors of cytokine signaling 3 (SOCS3) in the presence of erlotinib and enhanced expression of the IRGs, radical S-adenosyl methionine domain containing 2 and myxovirus resistance protein 1. Moreover, EGFR stimulation reduced STAT1 dimerization, but not phosphorylation, indicating that EGFR cross-talk with IFN signaling acts on the STATs at the level of binding DNA. CONCLUSIONS Our results support a model where inhibition of EGFR signaling impairs STAT3 phosphorylation, leading to enhanced IRG expression and antiviral activity. These data uncover a novel role of EGFR signaling in the antiviral activity of IFN-α and open new avenues of improving the efficacy of IFN-α-based antiviral therapies.
Collapse
Affiliation(s)
- Joachim Lupberger
- Inserm, U1110, Institut de Virologie, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Baugh JM, Garcia-Rivera JA, Gallay PA. Host-targeting agents in the treatment of hepatitis C: a beginning and an end? Antiviral Res 2013; 100:555-61. [PMID: 24091203 DOI: 10.1016/j.antiviral.2013.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/08/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Abstract
The development of two distinct classes of hepatitis C antiviral agents, direct-acting antivirals (DAAs) and host-targeting antivirals (HTAs), have distinctly impacted the hepatitis C virus (HCV) field by generating higher sustained virological response (SVR) rates within infected patients, via reductions in both adverse side effects and duration of treatment when compared to the old standard of care. Today DAAs are actively incorporated into the standard of care and continue to receive the most advanced clinical trial analysis. With a multitude of innovative and potent second-generation DAA compounds currently being tested in clinical trials, it is clear that the future of DAAs looks very bright. In comparison to the other class of compounds, HTAs have been slightly less impactful, despite the fact that primary treatment regimens for HCV began with the use of an HTA - interferon alpha (IFNα). The compound was advantageous in that it provided a broad-reaching antiviral response; however deleterious side effects and viral/patient resistance has since made the compound outdated. HTA research has since moved onward to target a number of cellular host factors that are required for HCV viral entry and replication such as scavenger receptor-BI (SR-BI), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoA reductase), cyclophilin A (CypA), fatty acid synthase (FASN) and miRNA-122. The rationale behind pursuing these HTAs is based upon the extremely low mutational rate that occurs within eukaryotic cells, thereby creating a high genetic barrier to drug resistance for anti-HCV compounds, as well as pan-genotypic coverage to all HCV genotypes and serotypes. As the end appears near for HCV, it becomes important to ask if the development of novel HTAs should also be analyzed in combination with other DAAs, in order to address potential hard-to-treat HCV patient populations. Since the treatment regimens for HCV began with the use of a global HTA, could one end the field as well?
Collapse
Affiliation(s)
- James M Baugh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
31
|
Shrivastava S, Mukherjee A, Ray RB. Hepatitis C virus infection, microRNA and liver disease progression. World J Hepatol 2013; 5:479-486. [PMID: 24073299 PMCID: PMC3782685 DOI: 10.4254/wjh.v5.i9.479] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a global health problem with an estimated 170-200 million peoples (approximately 3% of world population) are chronically infected worldwide and new infections are predicted to be on rise in coming years. HCV infection remains categorized as a major risk factor for chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. There has been considerable improvement in our understanding of virus life cycle since, the discovery of HCV two-decades ago. MicroRNAs (miRNAs) are important players in establishment of HCV infection and their propagation in infected hepatocytes. They target crucial host cellular factors needed for productive HCV replication and augmented cell growth. Very first anti-miRNA oligonucleotides, miravirsen has been tested in clinical trial and shown promising results as therapeutic agent in treatment against chronic HCV infection. Deregulated expression of miRNAs has been linked to the pathogenesis associated with HCV infection by controlling signaling pathways such as, proliferation, apoptosis and migration. Circulating miRNAs emerging as growing field in identification of biomarkers in disease progression and their potential as a means of communication between cells inside the liver is an exciting area of research in future. This review focuses on recent studies enforcing the contribution of miRNAs in HCV life cycle and coordinated regulation in HCV mediated liver disease progression.
Collapse
|
32
|
Pol S, Corouge M, Sogni P. Oral antiviral therapies for chronic hepatitis C infection. Ther Adv Infect Dis 2013; 1:107-16. [PMID: 25165547 PMCID: PMC4040722 DOI: 10.1177/2049936113488359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The treatment of hepatitis C virus (HCV) infection with pegylated interferon alpha and ribavirin leads to a sustained virologic response in around 50% of patients with HCV genotype 1, 65% with HCV genotype 4, 75% with HCV genotype 3 and around 80% with HCV genotype 2. A better understanding of the HCV lifecycle has resulted in the development of several potential direct-acting antiviral drugs (DAAs) targeting viral proteins [NS3/4A protease inhibitors, NS5B nucleos(t)idic and non-nucleos(t)idic polymerase inhibitors, NS5A replication complex inhibitors]. This review summarizes the main clinical data for the combinations of oral DAAs. DAAs, either in combination with pegylated interferon alpha or in interferon-free regimens, have demonstrated a high level of antiviral efficacy and a generally well-tolerated safety profile in treatment-naïve patients and in prior nonresponders to pegylated interferon alpha/ribavirin. Oral combination of new DAAs is likely to become the standard of care for chronic HCV in treatment-naïve or treatment-experienced patients. However, most studies so far have included small numbers of 'easy-to-treat' patients with short post-treatment periods for defining the sustained virologic response. Extension of the number of treated patients (including 'difficult-to-treat' patients, i.e. patients infected with genotype 3, who failed to respond to first-generation protease inhibitors or with cirrhosis as well as immunocompromised patients) and of the post-treatment follow up in a real-life setting could significantly worsen the rate of recovery. In these 'difficult-to-treat' patients, the rate of virologic cure with new DAAs could be lower than expected and consequently interferons may be still necessary in combination with the new drugs.
Collapse
|
33
|
Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. J Proteome Res 2013; 12:2537-51. [DOI: 10.1021/pr3011217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lokesh P. Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Hiroto Kambara
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Yorihiro Nishimura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Morita
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Abe
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshio Mori
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka, 565-0871,
Japan
| |
Collapse
|
34
|
|
35
|
Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog 2013; 9:e1003302. [PMID: 23593007 PMCID: PMC3623766 DOI: 10.1371/journal.ppat.1003302] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/27/2013] [Indexed: 12/16/2022] Open
Abstract
The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV) infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web) and assists viral assembly in the close vicinity of lipid droplets (LDs). To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1–31), a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47) as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon), indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A) in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47—via its interaction with NS5A—serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web. Hepatitis C Virus (HCV) belongs to the Flaviviridae family, and is an enveloped, positive, single-stranded RNA virus containing a 9.6 kb genome. Plus-strand RNA viruses induce a highly regulated process of membrane rearrangements and novel vesicle formation in infected cells (the “membranous web” for HCV) to create a suitable environment for RNA replication as well as for the assembly and release of new virions. HCV assembly occurs close to lipid droplets (LDs), cell organelles involved in fat storage and utilization. The viral non-structural protein NS5A plays a critical role in both viral RNA replication that occurs within the membranous web and viral assembly at LDs. We identified the host protein TIP47 as a novel host interaction partner for NS5A. TIP47 is a LD-binding protein also known to function as cargo in late-endosome-to-Golgi vesicular transport. Our data support a model where the recruitment of TIP47 by NS5A is required for viral RNA replication, indicating that LDs play a previously unrecognized role not only in viral assembly but also in RNA replication.
Collapse
|
36
|
St. Laurent DR, Serrano-Wu MH, Belema M, Ding M, Fang H, Gao M, Goodrich JT, Krause RG, Lemm JA, Liu M, Lopez OD, Nguyen VN, Nower PT, O’Boyle DR, Pearce BC, Romine JL, Valera L, Sun JH, Wang YK, Yang F, Yang X, Meanwell NA, Snyder LB. HCV NS5A Replication Complex Inhibitors. Part 4.1 Optimization for Genotype 1a Replicon Inhibitory Activity. J Med Chem 2013; 57:1976-94. [DOI: 10.1021/jm301796k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Denis R. St. Laurent
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Michael H. Serrano-Wu
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Makonen Belema
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Min Ding
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Hua Fang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Min Gao
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jason T. Goodrich
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Rudolph G. Krause
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Julie A. Lemm
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Mengping Liu
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Omar D. Lopez
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Van N. Nguyen
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Peter T. Nower
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Donald R. O’Boyle
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Bradley C. Pearce
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey L. Romine
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Lourdes Valera
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jin-Hua Sun
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Ying-Kai Wang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Fukang Yang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Xuejie Yang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence B. Snyder
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
37
|
Wang Z, Wu L, Cheng X, Liu S, Li B, Li H, Kang F, Wang J, Xia H, Ping C, Nassal M, Sun D. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation. PLoS One 2013; 8:e60306. [PMID: 23589756 PMCID: PMC3615001 DOI: 10.1371/journal.pone.0060306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV), a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg) RNA which is also required as bicistronic mRNA for the capsid (core) protein and the reverse transcriptase (Pol); their open reading frames (ORFs) overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES). We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR) and humanized Renilla green fluorescent protein (hrGFP) produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to better understand, and combat, this important pathogen.
Collapse
Affiliation(s)
- Zihua Wang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- The Third Military Medical University, Chongqing, PR China
| | - Li Wu
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Shizhu Liu
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Baosheng Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Junping Wang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Huan Xia
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Caiyan Ping
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, Freiburg, Germany
- * E-mail: (DS); (MN)
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- * E-mail: (DS); (MN)
| |
Collapse
|
38
|
Interplay between Hepatitis C Virus and Redox Cell Signaling. Int J Mol Sci 2013; 14:4705-21. [PMID: 23443167 PMCID: PMC3634496 DOI: 10.3390/ijms14034705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects approximately 3% of the world’s population. Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and ribavirin, is not fully effective against all HCV genotypes and is associated to severe side effects. Thus, development of novel therapeutics and identification of new targets for treatment of HCV infection is necessary. Current opinion is orienting to target antiviral drug discovery to the host cell pathways on which the virus relies, instead of against viral structures. Many intracellular signaling pathways manipulated by HCV for its own replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the same time, HCV induces oxidative stress that has been found to affect both virus replication as well as progression and severity of HCV infection. A dual role, positive or negative, for the host cell oxidized conditions on HCV replication has been reported so far. This review examines current information about the effect of oxidative stress on HCV life cycle and the main redox-regulated intracellular pathways activated during HCV infection and involved in its replication.
Collapse
|
39
|
Daclatasvir, an efficient inhibitor of the hepatitis C virus replication complex protein NS5A: review of virologic data, treatment rationale and clinical trials. ACTA ACUST UNITED AC 2013. [DOI: 10.4155/cli.12.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
All for one, one for all: new combinatorial RNAi therapies combat hepatitis C virus evolution. Mol Ther 2013; 20:1661-3. [PMID: 22945230 DOI: 10.1038/mt.2012.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
41
|
Rosnoblet C, Fritzinger B, Legrand D, Launay H, Wieruszeski JM, Lippens G, Hanoulle X. Hepatitis C virus NS5B and host cyclophilin A share a common binding site on NS5A. J Biol Chem 2012; 287:44249-60. [PMID: 23152499 DOI: 10.1074/jbc.m112.392209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonstructural protein 5B (NS5B) is essential for hepatitis C virus (HCV) replication as it carries the viral RNA-dependent RNA polymerase enzymatic activity. HCV replication occurs in a membrane-associated multiprotein complex in which HCV NS5A and host cyclophilin A (CypA) have been shown to be present together with the viral polymerase. We used NMR spectroscopy to perform a per residue level characterization of the molecular interactions between the unfolded domains 2 and 3 of NS5A (NS5A-D2 and NS5A-D3), CypA, and NS5B(Δ21). We show that three regions of NS5A-D2 (residues 250-262 (region A), 274-287 (region B), and 306-333 (region C)) interact with NS5B(Δ21), whereas NS5A-D3 does not. We show that both NS5B(Δ21) and CypA share a common binding site on NS5A that contains residues Pro-306 to Glu-323. No direct molecular interaction has been detected by NMR spectroscopy between HCV NS5B(Δ21) and host CypA. We show that cyclosporine A added to a sample containing NS5B(Δ21), NS5A-D2, and CypA specifically inhibits the interaction between CypA and NS5A-D2 without altering the one between NS5A-D2 and NS5B(Δ21). A high quality heteronuclear NMR spectrum of HCV NS5B(Δ21) has been obtained and was used to characterize the binding site on the polymerase of NS5A-D2. Moreover these data highlight the potential of using NMR of NS5B(Δ21) as a powerful tool to characterize in solution the interactions of the HCV polymerase with all kinds of molecules (proteins, inhibitors, RNA). This work brings new insights into the comprehension of the molecular interplay between NS5B, NS5A, and CypA, three essentials proteins for HCV replication.
Collapse
|
42
|
Alexopoulou A, Papatheodoridis GV. Current progress in the treatment of chronic hepatitis C. World J Gastroenterol 2012; 18:6060-9. [PMID: 23155334 PMCID: PMC3496882 DOI: 10.3748/wjg.v18.i42.6060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/12/2012] [Accepted: 08/14/2012] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, the standard of care for the treatment of chronic hepatitis C has been the combination of pegylated-interferon-alfa (PEG-IFN) and ribavirin (RBV) which results in sustained virological response (SVR) rates of 75%-85% in patients with genotypes 2 or 3 but only of 40%-50% in patients with genotype 1. Currently, there are rapid and continuous developments of numerous new agents against hepatitis C virus (HCV), which are the focus of this review. Boceprevir and telaprevir, two first-generation NS3/4A HCV protease inhibitors, have been recently licensed in several countries around the world to be used in combination with PEG-IFN and RBV for the treatment of genotype 1 patients. Boceprevir or telaprevir based triple regimens, compared with the PEG-IFN/RBV combination, improve the SVR rates by 25%-31% in treatment-naïve genotype 1 patients, by 40%-64% in prior relapsers, by 33%-45% in prior partial responders and by 24%-28% in prior null responders. At the same time, the application of response-guided treatment algorithms according to the on-treatment virological response results in shortening of the total therapy duration to only 24 wk in 45%-55% of treatment-naïve patients. There are, however, several challenges with the use of the new triple combinations in genotype 1 patients, such as the need for immediate results of HCV RNA testing using sensitive quantitative assays, new and more frequent adverse events (anemia and dysgeusia for boceprevir; pruritus, rash and anemia for telaprevir), new drug interactions and increasing difficulties in compliance. Moreover, the SVR rates are still poor in very difficult to treat subgroups of genotype 1 patients, such as null responders with cirrhosis, while there is no benefit for patients who cannot tolerate PEG-IFN/RBV or who are infected with non-1 HCV genotype. Many newer anti-HCV agents of different classes and numerous combinations are currently under evaluation with encouraging results. Preliminary data suggest that the treatment of chronic HCV patients with well tolerated combinations of oral agents without PEG-IFN is feasible and may lead to a universal HCV cure over the next 5-10 years.
Collapse
|
43
|
Goyal S, Gupta G, Qin H, Upadya MH, Tan YJ, Chow VTK, Song J. VAPC, an human endogenous inhibitor for hepatitis C virus (HCV) infection, is intrinsically unstructured but forms a "fuzzy complex" with HCV NS5B. PLoS One 2012; 7:e40341. [PMID: 22815741 PMCID: PMC3398895 DOI: 10.1371/journal.pone.0040341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/11/2023] Open
Abstract
Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic β-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a “fuzzy complex”. 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.
Collapse
Affiliation(s)
- Shaveta Goyal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
44
|
Shiryaev SA, Cheltsov AV, Strongin AY. Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 2012; 7:e40029. [PMID: 22768327 PMCID: PMC3388044 DOI: 10.1371/journal.pone.0040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors. METHODOLOGY/PRINCIPAL FINDINGS To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified. CONCLUSIONS/SIGNIFICANCE Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals.
Collapse
Affiliation(s)
- Sergey A. Shiryaev
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Anton V. Cheltsov
- R&D Department, Q-MOL L.L.C., San Diego, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| | - Alex Y. Strongin
- Inflammatory and Infectious Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (AVC) (AC); (AYS) (AS)
| |
Collapse
|
45
|
Gupta G, Qin H, Song J. Intrinsically unstructured domain 3 of hepatitis C Virus NS5A forms a "fuzzy complex" with VAPB-MSP domain which carries ALS-causing mutations. PLoS One 2012; 7:e39261. [PMID: 22720086 PMCID: PMC3374797 DOI: 10.1371/journal.pone.0039261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|