1
|
Dasse KA. Axial Rotor Displacement Impacts Blood Pump Flow Field, Hydraulic Performance, and Hemocompatibility in MagLev Centrifugal Pump Development. ASAIO J 2024; 70:876-878. [PMID: 39116302 DOI: 10.1097/mat.0000000000002293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Affiliation(s)
- Kurt A Dasse
- From the Inspired Therapeutics Limited Liability Company (LLC), Cocoa, Florida
| |
Collapse
|
2
|
Li Y, Xi Y, Wang H, Sun A, Deng X, Chen Z, Fan Y. The Impact of Rotor Axial Displacement Variation on Simulation Accuracy of Fully Magnetic Levitation Centrifugal Blood Pump. ASAIO J 2024; 70:868-875. [PMID: 38569187 DOI: 10.1097/mat.0000000000002204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The rotor axial displacement of the full magnetic levitation blood pump varies with the operating conditions. The effect of rotor axial displacement on simulation results is unclear. This study aimed to evaluate the effect of rotor axial displacement on the predicted blood pump flow field, hydraulic performance, and hemocompatibility through simulation. This study used the CentriMag blood pump as a model, and conducted computational fluid dynamics simulations to assess the impact of rotor displacement. Considering rotor axial displacement leads to opposite results regarding predicted residence time and thrombotic risk compared with not considering rotor axial displacement. Not considering rotor axial displacement leads to deviations in the predicted values, where the effects on the flow field within the blood pump, ratio of secondary flow, and amount of shear stress >150 Pa are significant. The variation in the back clearance of the blood pump caused by the ideal and actual rotor displacements is the main cause of the above phenomena. Given that the rotor axial displacement significantly impacts the simulation accuracy, the effect of rotor axial displacement must be considered in the simulation.
Collapse
Affiliation(s)
- Yuan Li
- From the Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Lv S, He ZP, Liu GM, Hu SS. Numerical investigation on the effect of impeller axial position on hemodynamics of an extracorporeal centrifugal blood pump. Comput Methods Biomech Biomed Engin 2024; 27:1744-1755. [PMID: 37724774 DOI: 10.1080/10255842.2023.2256946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Extracorporeal centrifugal blood pumps are used to treat cardiogenic shock. Owing to the imbalanced excitation or initial assembly configurations, the variation in the impeller axial position has the potential to affect the blood pump performance. This study compared the hydrodynamics and hemolysis outcomes at different impeller axial positions via numerical simulations. The result shows that pressure difference of the blood pump decreased with increasing impeller axial position, with decreasing by 4.5% at a flow rate of 2 L/min. Under axial impeller motion close to the top pump casing, average wall shear stress and scalar shear stress reached their maximum values (64.2 and 29.1 Pa, respectively). The residence time in the impeller center hole and bottom clearance were extended to 0.5 s by increasing impeller axial position. Compared to the baseline blood pump, hemolysis index increased by 12.3% and 24.3% when impeller axial position is 2.5 and 4.0 mm, respectively. As a novelty, the findings reveal that the impeller axial position adversely affects hemolysis performance when the impeller is close to the pump casing. Therefore, in the development process of centrifugal blood pumps, the optimal axial position of the impeller must be defined to ensure hemodynamic performance.
Collapse
Affiliation(s)
- Shen Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
| | - Zhi-Peng He
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
| | - Guang-Mao Liu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Shou Hu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Liu X, Li Y, Jia J, Wang H, Xi Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump. Med Biol Eng Comput 2024; 62:3209-3223. [PMID: 38802609 DOI: 10.1007/s11517-024-03121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Systematic research into device-induced red blood cell (RBC) damage beyond hemolysis, including correlations between hemolysis and RBC-derived extracellular vesicles, remains limited. This study investigated non-physiological shear stress-induced RBC damage and changes in related biochemical indicators under two blood pump clinical support conditions. Pressure heads of 100 and 350 mmHg, numerical simulation methods, and two in vitro loops were utilized to analyze the shear stress and changes in RBC morphology, hemolysis, biochemistry, metabolism, and oxidative stress. The blood pump created higher shear stress in the 350-mmHg condition than in the 100-mmHg condition. With prolonged blood pump operation, plasma-free hemoglobin and cholesterol increased, whereas plasma glucose and nitric oxide decreased in both loops. Notably, plasma iron and triglyceride concentrations increased only in the 350-mmHg condition. The RBC count and morphology, plasma lactic dehydrogenase, and oxidative stress across loops did not differ significantly. Plasma extracellular vesicles, including RBC-derived microparticles, increased significantly at 600 min in both loops. Hemolysis correlated with plasma triglyceride, cholesterol, glucose, and nitric oxide levels. Shear stress, but not oxidative stress, was the main cause of RBC damage. Hemolysis alone inadequately reflects overall blood pump-induced RBC damage, suggesting the need for additional biomarkers for comprehensive assessments.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jinze Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
5
|
Wang S, Sun W, Han D, Clark K, Griffith BP, Wu ZJ. In vitro study on device-induced damage to blood cellular components and degradation of von Willebrand factor in a CentriMag pump-assisted circulation. Artif Organs 2024; 48:988-996. [PMID: 38712632 PMCID: PMC11321940 DOI: 10.1111/aor.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND High mechanical shear stress (HMSS) generated by blood pumps during mechanical circulatory support induces blood damage (or function alteration) not only of blood cell components but also of plasma proteins. METHODS In the present study, fresh, healthy human blood was used to prime a blood circuit assisted by a CentriMag centrifugal pump at a flow rate of 4.5 L/min under three pump pressure heads (75, 150, and 350 mm Hg) for 4 h. Blood samples were collected for analyses of plasma-free hemoglobin (PFH), von Willebrand factor (VWF) degradation and platelet glycoprotein (GP) IIb/IIIa receptor shedding. RESULTS The extent of all investigated aspects of blood damage increased with increasing cross-pump pressure and duration. Loss of high-molecular-weight multimers (HMWM)-VWF in Loop 2 and Loop 3 significantly increased after 2 h. PFH, loss of HMWM-VWF, and platelet GPIIb/IIIa receptor shedding showed a good linear correlation with mean shear stress corresponding to the three pump pressure heads. CONCLUSIONS HMSS could damage red blood cells, cause pathological VWF degradation, and induce platelet activation and platelet receptor shedding. Different blood components can be damaged to different degrees by HMSS; VWF and VWF-enhanced platelet activation may be more susceptible to HMSS.
Collapse
Affiliation(s)
- Shigang Wang
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wenji Sun
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dong Han
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kiersten Clark
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P. Griffith
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J. Wu
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Lv S, He ZP, Liu GM, Hu SS. A multi-constituent model for assessing the effect of impeller shroud on the thrombosis potential of a centrifugal blood pump. Int J Artif Organs 2024; 47:269-279. [PMID: 38506302 DOI: 10.1177/03913988241239456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Centrifugal blood pumps can be used for treating heart failure patients. However, pump thrombosis has remained one of the complications that trouble clinical treatment. This study analyzed the effect of impeller shroud on the thrombosis risk of the blood pump, and predicted areas prone to thrombosis. Multi-constituent transport equations were presented, considering mechanical activation and biochemical activation. It was found that activated platelets concentration can increase with shear stress and adenosine diphosphate(ADP) concentration increasing, and the highest risk of thrombosis inside the blood pump was under extracorporeal membrane oxygenation (ECMO) mode. Under the same condition, ADP concentration and thrombosis index of semi-shroud impeller can increase by 7.3% and 7.2% compared to the closed-shroud impeller. The main reason for the increase in thrombosis risk was owing to elevated scalar shear stress and more coagulation promoting factor-ADP released. The regions with higher thrombosis potential were in the center hole, top and bottom clearance. As a novelty, the findings revealed that impeller shroud can influence mechanical and biochemical activation factors. It is useful for identifying potential risk regions of thrombus formation based on relative comparisons.
Collapse
Affiliation(s)
- Shen Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
| | - Zhi-Peng He
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
| | - Guang-Mao Liu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sheng-Shou Hu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, Guangdong Province, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Rydquist G, Esmaily M. Analysis of the Suitability of an Effective Viscosity to Represent Interactions Between Red Blood Cells in Shear Flow. J Biomech Eng 2024; 146:021007. [PMID: 38071488 PMCID: PMC10750787 DOI: 10.1115/1.4064213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Many methods to computationally predict red blood cell damage have been introduced, and among these are Lagrangian methods that track the cells along their pathlines. Such methods typically do not explicitly include cell-cell interactions. Due to the high volume fraction of red blood cells (RBCs) in blood, these interactions could impact cell mechanics and thus the amount of damage caused by the flow. To investigate this question, cell-resolved simulations of red blood cells in shear flow were performed for multiple interacting cells, as well as for single cells in unbounded flow at an effective viscosity. Simulations run without adjusting the bulk viscosity produced larger errors unilaterally and were not considered further for comparison. We show that a periodic box containing at least 8 cells and a spherical harmonic of degree larger than 10 are necessary to produce converged higher-order statistics. The maximum difference between the single-cell and multiple-cell cases in terms of peak strain was 3.7%. To achieve this, one must use the whole blood viscosity and average over multiple cell orientations when adopting a single-cell simulation approach. The differences between the models in terms of average strain were slightly larger (maximum difference of 6.9%). However, given the accuracy of the single-cell approach in predicting the maximum strain, which is useful in hemolysis prediction, and its computational cost that is orders of magnitude less than the multiple-cell approach, one may use it as an affordable cell-resolved approach for hemolysis prediction.
Collapse
Affiliation(s)
- Grant Rydquist
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
| | - Mahdi Esmaily
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850
| |
Collapse
|
8
|
Tsukiya T, Nishinaka T. Numerical simulation of the leakage flow of the hydrodynamically levitated centrifugal blood pump for extracorporeal mechanical circulatory support systems. J Artif Organs 2023; 26:176-183. [PMID: 35907152 DOI: 10.1007/s10047-022-01351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
Extracorporeal centrifugal pumps are widely used in various forms of mechanical circulatory support, including extracorporeal membrane oxygenation and ventricular assist device. A durable centrifugal pump was developed by implementing a new hydrodynamic bearing design that prevents the impeller from touching to the casing wall and provides sufficient washout through the pump to prevent thrombus formation in the pump. The hydrodynamic bearings of the pump are composed of dual annular paths located on both sides of the impeller. Computational fluid dynamics analyses were performed on the flow field inside the pump to estimate the leakage flow through the gap and its impact on the pump efficiency and biocompatibility. The calculations were performed for motor speeds from 3000 to 5000 rpm and flow rates from 1.0 to 9.0 L/min. The leakage flow increased linearly with increasing pressure head of the pump, and the total leakage flow ranged from 2.0 to 27.3% of the total flow. The average wall shear stresses in the casing bottom ranged from 10.6 to 40.9 Pa. The leakage flow of the centrifugal pump with the hydrodynamically levitated impeller had a measurable impact on hydraulic energy losses while enhancing the washout flow to achieve good anti-thrombogenicity.
Collapse
Affiliation(s)
- Tomonori Tsukiya
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 5648565, Japan.
| | - Tomohiro Nishinaka
- Department of Artificial Organs, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 5648565, Japan
| |
Collapse
|
9
|
Saleh-Abadi M, Rahmati A, Farajollahi A, Fatemi A, Salimi MR. Optimization of geometric indicators of a ventricular pump using computational fluid dynamics, surrogate model, response surface approximation, kriging and particle swarm optimization algorithm. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2023; 45:431. [DOI: 10.1007/s40430-023-04355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 08/28/2023]
|
10
|
Li P, Mei X, Ge W, Wu T, Zhong M, Huan N, Jiang Q, Hsu PL, Steinseifer U, Dong N, Zhang L. A comprehensive comparison of the in vitro hemocompatibility of extracorporeal centrifugal blood pumps. Front Physiol 2023; 14:1136545. [PMID: 37228828 PMCID: PMC10204736 DOI: 10.3389/fphys.2023.1136545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose: Blood damage has been associated with patients under temporary continuous-flow mechanical circulatory support. To evaluate the side effects caused by transit blood pumping, in vitro hemocompatibility testing for blood damage in pumps is considered a necessary reference before clinical trials. Methods: The hemocompatibility of five extracorporeal centrifugal blood pumps was investigated comprehensively, including four commercial pumps (the Abbott CentriMag, the Terumo Capiox, the Medos DP3, and the Medtronic BPX-80) and a pump in development (the magAssist MoyoAssist®). In vitro, hemolysis was tested with heparinized porcine blood at nominal operating conditions (5 L/min, 160 mmHg) and extreme operating conditions (1 L/min, 290 mmHg) using a circulation flow loop. Hematology analyses concerning the blood cell counts and the degradation of high-molecular-weight von Willebrand factor (VWF) during 6-h circulation were also evaluated. Results: Comparing the in vitro hemocompatibility of blood pumps at different operations, the blood damage was significantly more severe at extreme operating conditions than that at nominal operating conditions. The performance of the five blood pumps was arranged in different orders at these two operating conditions. The results also demonstrated superior hemocompatibility of CentriMag and MoyoAssist® at two operating conditions, with overall low blood damage at hemolysis level, blood cell counts, and degradation of high-molecular-weight VWF. It suggested that magnetic bearings have an advantage in hemocompatibility compared to the mechanical bearing of blood pumps. Conclusion: Involving multiple operating conditions of blood pumps in in vitro hemocompatibility evaluation will be helpful for clinical application. In addition, the magnetically levitated centrifugal blood pump MoyoAssist® shows great potential in the future as it demonstrated good in vitro hemocompatibility.
Collapse
Affiliation(s)
- Ping Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Mei
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Wanning Ge
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Tingting Wu
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Min Zhong
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Nana Huan
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Qiubo Jiang
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Po-Lin Hsu
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liudi Zhang
- Artificial Organ Technology Lab, Biomanufacturing Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Jing T, Sun H, Cheng J, Zhou L. Optimization of a Screw Centrifugal Blood Pump Based on Random Forest and Multi-Objective Gray Wolf Optimization Algorithm. MICROMACHINES 2023; 14:406. [PMID: 36838106 PMCID: PMC9962552 DOI: 10.3390/mi14020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The centrifugal blood pump is a commonly used ventricular assist device. It can replace part of the heart function, pumping blood throughout the body in order to maintain normal function. However, the high shear stress caused by the impeller rotating at high speeds can lead to hemolysis and, as a consequence, to stroke and other syndromes. Therefore, reducing the hemolysis level while ensuring adequate pressure generation is key to the optimization of centrifugal blood pumps. In this study, a screw centrifugal blood pump was used as the research object. In addition, pressure generation and the hemolysis level were optimized simultaneously using a coupled algorithm composed of random forest (RF) and multi-objective gray wolf optimization (MOGWO). After verifying the prediction accuracy of the algorithm, three optimized models were selected and compared with the baseline model in terms of pressure cloud, 2D streamline, SSS distribution, HI distribution, and vortex distribution. Finally, via a comprehensive evaluation, the optimized model was selected as the final optimization design, in which the pressure generation increased by 24% and the hemolysis value decreased by 48%.
Collapse
Affiliation(s)
| | | | | | - Ling Zhou
- Correspondence: ; Tel.: +86-138-1547-7737
| |
Collapse
|
12
|
Li Z, Hu J, Kamberi M, Rapoza RJ. Mechanical stress-induced hemolysis of bovine blood is donor-dependent. Artif Organs 2023; 47:342-351. [PMID: 36134430 DOI: 10.1111/aor.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION In vitro hemolysis testing is an essential method for assessing the hemolytic potential of blood pumps, but has poor reproducibility. Further investigations are needed to determine the sources and extent of variability and to find a practical way to reduce the variation. METHODS A small volume blood circulating loop driven by a Centrimag pump was established to provide relatively higher hemolysis readouts within a short run time and to be able to sequentially perform multiple repeated hemolysis tests in a working day. RESULTS The repeatability with this system was demonstrated as the %RSD at 4.3% for the NIH or MIH from three repeated tests using the same blood. The bovine blood from different randomly selected donors was tested and gave more than a two-fold difference in NIH results (0.077 vs. 0.032 g/100 L) under the same testing conditions and same pump. This wide variation in hemolysis using bovine blood from different donors happened repeatedly. More importantly, it was observed that the difference in hemolysis test results using the blood drawn from the same donor on multiple days was narrow although the native hematocrits varied. The %RSD of NIH values obtained on five different days were 6.8%, 8.4%, 11.5%, and 7.8% for donor-specific blood from donors 1 to 4, respectively. CONCLUSION The study results indicate that the mechanical stress-induced hemolysis behavior is donor-dependent. It has been also demonstrated that the reproducibility of in vitro hemolysis testing can be improved when the blood drawn from same donor is used.
Collapse
Affiliation(s)
- Zengji Li
- Research & Development, Abbott Vascular, Santa Clara, California, USA
| | - Jie Hu
- Research & Development, Abbott Vascular, Santa Clara, California, USA
| | - Marika Kamberi
- Research & Development, Abbott Vascular, Santa Clara, California, USA
| | - Richard J Rapoza
- Research & Development, Abbott Vascular, Santa Clara, California, USA
| |
Collapse
|
13
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Artif Organs 2023; 47:88-104. [PMID: 35962603 DOI: 10.1111/aor.14384] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The centrifugal blood pump volute has a significant impact on its hemodynamic performance hemocompatibility. Previous studies about the effect of volute design features on the performance of blood pumps are relatively few. METHODS In the present study, the computational fluid dynamics (CFD) method was utilized to evaluate the impact of volute design factors, including spiral start position, volute tongue radius, inlet height, size, shape and diffuser pipe angle on the hemolysis index and thrombogenic potential of the centrifugal blood pump. RESULTS Correlation analysis shows that flow losses affect the hemocompatibility of the blood pump by influencing shear stress and residence time. The closer the spiral start position of the volute, the better the hydraulic performance and hemocompatibility of the blood pump. Too large or too small volute inlet heights can worsen hydraulic performance and hemolysis, and higher volute inlet height can increase the thrombogenic potential. Small volute sizes exacerbate hemolysis and large volute sizes increase the thrombogenic risk, but volute size does not affect hydraulic performance. When the diffuser pipe is tangent to the base circle of the volute, the best hydraulic performance and hemolysis performance of the blood pump is achieved, but the thrombogenic potential is increased. The trapezoid volute has poor hydraulic performance and hemocompatibility. The round volute has the best hydraulic and hemolysis performance, but the thrombogenic potential is higher than that of the rectangle volute. CONCLUSION This study found that the hemolysis index shows a significant correlation with spiral start position, volute size, and diffuser pipe angle. Thrombogenic potential exhibits a good correlation with all the studied volute design features. The flow losses affect the hemocompatibility of the blood pump by influencing shear stress and residence time. The finding of this study can be used to guide the optimization of blood pump for improving the hemodynamic performance and hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Maul TM, Herrera G. Coagulation and hemolysis complications in neonatal ECLS: Role of devices. Semin Fetal Neonatal Med 2022; 27:101405. [PMID: 36437186 DOI: 10.1016/j.siny.2022.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neonatal extracorporeal life support (ECLS) has enjoyed a long history of successful patient support for both cardiac and respiratory failure. The small size of this patient population has provided many technical challenges from cannulation to pumps and oxygenators. This is further complicated by the relatively meager commercial options for equipment owing to the relatively low utilization of neonatal ECLS compared to adults, which has exploded following the H1N1 epidemic and the availability of the polymethylpentene oxygenator. This paper focuses on the impact of equipment choices on thrombosis and hemolysis in neonatal ECLS and the underlying mechanisms behind them. Based upon the available evidence, it is clear neonatal ECLS requires careful attention to the selection and operation of all parts of the ECLS system. Practitioners should also be aware of the factors that increase blood cell fragility, which can impact decisions around equipment and subsequent operation.
Collapse
Affiliation(s)
- Timothy M Maul
- Nemours Children's Health Florida, Cardiac Center, Orlando, FL, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Central Florida College of Medicine, Orlando, FL, USA.
| | - Guillermo Herrera
- Children's National Hospital, 111 Michigan Ave, NW, Washington, D.C., USA.
| |
Collapse
|
15
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices. Comput Biol Med 2022; 151:106271. [PMID: 36347061 DOI: 10.1016/j.compbiomed.2022.106271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Device-induced blood damage contributes the hemolysis, thrombosis and bleeding complications in patients supported with ventricular assist device (VAD). This study aims to use a multi-indicator method to understand how devices causes blood damage and identify the "hot spots" of blood trauma within VADs. METHODS Computational fluid dynamics (CFD) methods were chosen to investigate the hemodynamic features of five clinical VADs (Impella 5.0, UltraMag, CHVAD, HVAD, and HeartMate II) under the same clinical support condition (flow rate of 4.5L/min, pressure head around 75 mmHg). A comprehensive multi-indicator evaluation method including hemodynamic parameters, hemolysis model, thrombotic potential model and bleeding probability model was used to analyze blood damage and assess the hemodynamic performance and hemocompatibility of these VADs. RESULTS Simulation results show that shear stress from 50 Pa to 100 Pa plays a major role in blood damage in Impella 5.0, UltraMag and CHVAD, while blood damage in HVAD and HeartMate II is mainly caused by shear stress greater than 100 Pa. Residence time was not the main factor for blood damage in Impella 5.0, and also makes a limited contribution to blood trauma in UltraMag and CHVAD, while it takes a critical role in elevating thrombotic potential in HVAD and HeartMate II. The distribution of regions of high hemolysis risk and high bleeding probability was similar for all these VADs and partially overlapped for high thrombotic potential regions. For Impella 5.0, regions with high hemolysis and bleeding risk were found mainly in the blade tip clearance and diffuser domains, high thrombotic potential regions were almost absent. For UltraMag, regions with high hemolysis, bleeding and thrombosis potential were found in two corners of the inlet pipe, the secondary flow passage, and the impeller eye. For CHVAD, the high-risk regions for hemolysis, bleeding and thrombosis are mainly in the inner side of the secondary flow passage and the middle region of the impeller passage. The narrow hydrodynamic clearance and impeller passage had a high risk of hemolysis and bleeding, and the clearance between the rotor and guide cone and the hydrodynamic clearance had high thrombotic potential. For HeartMate II, regions of high hemolysis risk and bleeding probability were found in the near-wall region of the straightener, the blade tip clearance and the diffuser domain. The corners of the inlet and outlet pipe and the straightener and diffuser regions had high thrombotic potential. CONCLUSION The risk of hemolysis, bleeding and thrombosis for these five VADs, in increasing order, was Impella 5.0, UltraMag, CHVAD, HVAD, and HeartMate II. Flow losses caused by the rotor mechanical movement, chaotic flow and narrow clearances increase the blood damage for all these VADs. The multi-indicator analysis can comprehensively evaluate the VAD performance with improved assessment accuracy of CFD.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
16
|
Han D, Leibowitz JL, Han L, Wang S, He G, Griffith BP, Wu ZJ. Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 15. [PMID: 36157896 PMCID: PMC9497451 DOI: 10.1016/j.medntd.2022.100153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Centrifugal blood pumps have become popular for adult extracorporeal membrane oxygenation (ECMO) due to their superior blood handling and reduced thrombosis risk featured by their secondary flow paths that avoid stagnant areas. However, the high rotational speed within a centrifugal blood pump can introduce high shear stress, causing a significant shear-induced hemolysis rate. The Revolution pump, the Rotaflow pump, and the CentriMag pump are three of the leading centrifugal blood pumps on the market. Although many experimental and computational studies have focused on evaluating the hydraulic and hemolytic performances of the Rotaflow and CentriMag pumps, there are few on the Revolution pump. Furthermore, a thorough direct comparison of these three pumps' flow characteristics and hemolysis is not available. In this study, we conducted a computational and experimental analysis to compare the hemolytic performances of the Revolution, Rotaflow, and CentriMag pumps operating under a clinically relevant condition, i.e., the blood flow rate of 5 L/min and pump pressure head of 350 mmHg, for adult ECMO support. In silico simulations were used to characterize the shear stress distributions and predict the hemolysis index, while in vitro blood loop studies experimentally determined hemolysis performance. Comparative simulation results and experimental data demonstrated that the CentriMag pump caused the lowest hemolysis while the Revolution pump generated the highest hemolysis.
Collapse
Affiliation(s)
- Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua L. Leibowitz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lu Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shigang Wang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ge He
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
- Corresponding author. Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 436, Baltimore, MD, 21201, USA. (Z.J. Wu)
| |
Collapse
|
17
|
Li Y, Wang H, Xi Y, Sun A, Deng X, Chen Z, Fan Y. A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices. Bioengineering (Basel) 2022; 9:bioengineering9060235. [PMID: 35735478 PMCID: PMC9219778 DOI: 10.3390/bioengineering9060235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Thrombosis is the main complication in patients supported with ventricular assist devices (VAD). Models that accurately predict the risk of thrombus formation in VADs are still lacking. When VADs are clinically assisted, their complex geometric configuration and high rotating speed inevitably generate complex flow fields and high shear stress. These non-physiological factors can damage blood cells and proteins, release coagulant factors and trigger thrombosis. In this study, a more accurate model for thrombus assessment was constructed by integrating parameters such as shear stress, residence time and coagulant factors, so as to accurately assess the probability of thrombosis in three clinical VADs. (2) Methods: A mathematical model was constructed to assess platelet activation and thrombosis within VADs. By solving the transport equation, the influence of various factors such as shear stress, residence time and coagulation factors on platelet activation was considered. The diffusion equation was applied to determine the role of activated platelets and substance deposition on thrombus formation. The momentum equation was introduced to describe the obstruction to blood flow when thrombus is formed, and finally a more comprehensive and accurate model for thrombus assessment in patients with VAD was obtained. Numerical simulations of three clinically VADs (CH-VAD, HVAD and HMII) were performed using this model. The simulation results were compared with experimental data on platelet activation caused by the three VADs. The simulated thrombogenic potential in different regions of MHII was compared with the frequency of thrombosis occurring in the regions in clinic. The regions of high thrombotic risk for HVAD and HMII observed in experiments were compared with the regions predicted by simulation. (3) Results: It was found that the percentage of activated platelets within the VAD obtained by solving the thrombosis model developed in this study was in high agreement with the experimental data (r² = 0.984), the likelihood of thrombosis in the regions of the simulation showed excellent correlation with the clinical statistics (r² = 0.994), and the regions of high thrombotic risk predicted by the simulation were consistent with the experimental results. Further study revealed that the three clinical VADs (CH-VAD, HVAD and HMII) were prone to thrombus formation in the inner side of the secondary flow passage, the clearance between cone and impeller, and the corner region of the inlet pipe, respectively. The risk of platelet activation and thrombus formation for the three VADs was low to high for CH-VAD, HVAD, and HM II, respectively. (4) Conclusions: In this study, a more comprehensive and accurate thrombosis model was constructed by combining parameters such as shear stress, residence time, and coagulation factors. Simulation results of thrombotic risk received with this model showed excellent correlation with experimental and clinical data. It is important for determining the degree of platelet activation in VAD and identifying regions prone to thrombus formation, as well as guiding the optimal design of VAD and clinical treatment.
Collapse
|
18
|
Li Y, Yu J, Wang H, Xi Y, Deng X, Chen Z, Fan Y. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Artif Organs 2022; 46:1817-1832. [PMID: 35436361 DOI: 10.1111/aor.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The design and optimization of centrifugal blood pumps is crucial for improved extracorporeal membrane oxygenation system performances. Secondary flow passages are common in centrifugal blood pumps, allowing for a high volume of unstable flow. Traditional design theory offers minimal guidance on the design and optimization of centrifugal blood pumps, so it's critical to understand how design parameter variables affect hydraulic performances and hemocompatibility. METHODS Computational fluid dynamics (CFD) was employed to investigate the effects of blade number, blade wrap angle, blade thickness, and splitters on pressure head, hemolysis, and platelet activation state. Eulerian and Lagrangian features were used to analyze the flow fields and hemocompatibility metrics such as scalar shear stress, velocity distribution, and their correlation. RESULTS The equalization of frictional and flow losses allow impellers with more blades and smaller wrap angles to have higher pressure heads, whereas the trade-off between the volume of high scalar shear stress and exposure time allows impellers with fewer blades and larger blade wrap angles to have a lower HI; there are configurations that increase the possibility of platelet activation for both number of blades and wrap angles. The hydraulic performance and hemocompatibility of centrifugal blood pumps are not affected by blade thickness. Compared to the main blades, a splitters can improve the blood compatibility of a centrifugal blood pump with a small reduction in pressure head, but there is a trade-off between the length and location of the splitter that suppresses flow losses while reducing the velocity gradient. According to correlation analysis, pressure head, HI, and the volume of high shear stress were all substantially connected, and exposure time had a significant impact on HI. The platelet activation state was influenced by the average scalar shear stress and the volume of low velocity. CONCLUSION The findings reveal the impact of design variables on the performance of centrifugal blood pumps with secondary flow passages, as well as the relationship between hemocompatibility, hydraulic performance, and flow characteristics, and are useful for the design and optimization of this type of blood pump, as well as the prediction of clinical complications.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jiachen Yu
- School of Sino-french Engineer, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
19
|
A new way to evaluate thrombotic risk in failure heart and ventricular assist devices. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Escher A, Gobel H, Nicolai M, Schloglhofer T, Hubmann EJ, Laufer G, Messner B, Kertzscher U, Zimpfer D, Granegger M. Hemolytic Footprint of Rotodynamic Blood Pumps. IEEE Trans Biomed Eng 2022; 69:2423-2432. [PMID: 35085069 DOI: 10.1109/tbme.2022.3146135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In preclinical examinations, rotodynamic blood pumps (RBPs) are predominantly evaluated at design-point conditions. In clinical practice, however, they run at diversified modes of operation. This study aimed at extending current preclinical evaluation of hemolytic profiles in RBPs toward broader, clinically relevant ranges of operation. METHODS Two implantable RBPs the HeartMate 3 (HM3) and the HeartWare Ventricular Assist Device (HVAD) were analyzed at three pump speeds (HM3: 4300, 5600, 7000rpm; HVAD: 1800, 2760, 3600rpm) with three flow rates (1-9L/min) per speed setting. Hemolysis measurements were performed in heparinized bovine blood. The delta free hemoglobin (dfHb) and the normalized index of hemolysis (NIH) served as hemolytic measures. Statistical analysis was performed by multiple comparison of the 9 operating conditions. Moreover, computational fluid dynamics (CFD) was applied to provide mechanistic insights into the interrelation between hydraulics and hemolysis by correlating numerically computed hydraulic losses with in-vitro hemolytic measures. RESULTS In both devices, dfHb increased toward increasing speeds, particularly during low but also during high flow condition. By contrast, in both RBPs magnitudes of NIH were significantly elevated during low flow operation compared to high flow conditions (p<0.0036). Maps of hemolytic metrics revealed morphologically similar trends to in-silico hydraulic losses (r>0.793). CONCLUSIONS While off-design operation is associated with increased hemolytic profiles, the setting of different operating conditions render a preclinical prediction of clinical impact with current hemolysis metrics difficult. SIGNIFICANCE The identified increase in hemolytic measures during episodes of off-design operation is highlighting the need to consider worst-case operation during preclinical examinations.
Collapse
|
21
|
Development of Inspired Therapeutics Pediatric VAD: Computational Analysis and Characterization of VAD V3. Cardiovasc Eng Technol 2022; 13:624-637. [PMID: 35013917 DOI: 10.1007/s13239-021-00602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Pediatric heart failure patients remain in critical need of a dedicated mechanical circulatory support (MCS) solution as development efforts for specific pediatric devices continue to fall behind those for the adult population. The Inspired Pediatric VAD is being developed as a pediatric specific MCS solution to provide up to 30-days of circulatory or respiratory support in a compact modular package that could allow for patient ambulation during treatment. METHODS Hydrodynamic performance (flows, pressures), impeller/rotor mechanical properties (torques, forces), and flow shear stress and residence time distributions of the latest design version, Inspired Pediatric VAD V3, were numerically predicted and investigated using computational fluid dynamics (CFD) software (SolidWorks Flow Simulator). RESULTS Hydrodynamic performance was numerically predicted, indicating no change in flow and pressure head compared to the previous device design (V2), while displaying increased impeller/rotor torques and translation forces enabled by improved geometry. Shear stress and flow residence time volumetric distributions are presented over a range of pump rotational speeds and flow rates. At the lowest pump operating point (3000 RPM, 0.50 L/min, 75 mmHg), 79% of the pump volume was in the shear stress range of 0-10 Pa with < 1% of the volume in the critical range of 150-1000 Pa for blood damage. At higher speed and flow (5000 RPM, 3.50 L/min, 176 mmHg), 65% of the volume resided in the 0-10 Pa range compared to 2.3% at 150-1000 Pa. CONCLUSIONS The initial computational characterization of the Inspired Pediatric VAD V3 is encouraging and future work will include device prototype testing in a mock circulatory loop and acute large animal model.
Collapse
|
22
|
Distribution and history of extensional stresses on vWF surrogate molecules in turbulent flow. Sci Rep 2022; 12:171. [PMID: 34997036 PMCID: PMC8742075 DOI: 10.1038/s41598-021-04034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
The configuration of proteins is critical for their biochemical behavior. Mechanical stresses that act on them can affect their behavior leading to the development of decease. The von Willebrand factor (vWF) protein circulating with the blood loses its efficacy when it undergoes non-physiological hemodynamic stresses. While often overlooked, extensional stresses can affect the structure of vWF at much lower stress levels than shear stresses. The statistical distribution of extensional stress as it applies on models of the vWF molecule within turbulent flow was examined here. The stress on the molecules of the protein was calculated with computations that utilized a Lagrangian approach for the determination of the molecule trajectories in the flow filed. The history of the stresses on the proteins was also calculated. Two different flow fields were considered as models of typical flows in cardiovascular mechanical devises, one was a Poiseuille flow and the other was a Poiseuille–Couette flow field. The data showed that the distribution of stresses is important for the design of blood flow devices because the average stress can be below the critical value for protein damage, but tails of the distribution can be outside the critical stress regime.
Collapse
|
23
|
He G, Zhang J, Shah A, Berk ZB, Han L, Dong H, Griffith BP, Wu ZJ. Flow characteristics and hemolytic performance of the new Breethe centrifugal blood pump in comparison with the CentriMag and Rotaflow pumps. Int J Artif Organs 2021; 44:829-837. [PMID: 34494469 PMCID: PMC11520447 DOI: 10.1177/03913988211041635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood pumps have been increasingly used in mechanically assisted circulation for ventricular assistance and extracorporeal membrane oxygenation support or during cardiopulmonary bypass for cardiac surgery. However, there have always been common complications such as thrombosis, hemolysis, bleeding, and infection associated with current blood pumps in patients. The development of more biocompatible blood pumps still prevails during the past decades. As one of those newly developed pumps, the Breethe pump is a novel extracorporeal centrifugal blood pump with a hybrid magnetic and mechanical bearing with attempt to reduce device-induced blood trauma. To characterize the hydrodynamic and hemolytic performances of this novel pump and demonstrate its superior biocompatibility, we use a combined computational and experimental approach to compare the Breethe pump with the CentriMag and Rotaflow pumps in terms of flow features and hemolysis under an operating condition relevant to ECMO support (flow: 5 L/min, pressure head: ~350 mmHg). The computational results showed that the Breethe pump has a smaller area-averaged wall shear stress (WSS), a smaller volume with a scalar shear stress (SSS) level greater than 100 Pa and a lower device-generated hemolysis index compared to the CentriMag and Rotaflow pumps. The comparison of the calculated residence times among the three pumps indicated that the Breethe pump might have better washout. The experimental data from the in vitro hemolysis testing demonstrated that the Breethe pump has the lowest normalized hemolysis index (NIH) than the CentriMag and Rotaflow pumps. It can be concluded based on both the computational and experimental data that the Breethe pump is a viable pump for clinical use and it has better biocompatibility compared to the clinically accepted pumps.
Collapse
Affiliation(s)
- Ge He
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aakash Shah
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachary B Berk
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lu Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Han Dong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
24
|
Huo JD, Wu P, Zhang L, Wu WT. Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps. Int J Artif Organs 2021; 44:887-899. [PMID: 34474617 DOI: 10.1177/03913988211041636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps. Nonetheless, LES has not been widely used to assist in the design and optimization of blood pumps to date due to its formidable computational cost. The purpose of this study is to explore the potential of the LES technique as a fast and accurate engineering approach for the simulation of rotary blood pumps. The performance of "Light LES" (using the same time and spatial resolutions as the URANS) and LES in two rotary blood pumps was evaluated by comparing the results with the URANS and extensive experimental results. This study showed that the results of both "Light LES" and LES are superior to URANS, in terms of both performance curves and key flow features. URANS could not predict the flow separation and recirculation in diffusers for both pumps. In contrast, LES is superior to URANS in capturing these flows, performing well for both design and off-design conditions. The differences between the "Light LES" and LES results were relatively small. This study shows that with less computational cost than URANS, "Light LES" can be considered as a cost-effective engineering approach to assist in the design and optimization of rotary blood pumps.
Collapse
Affiliation(s)
- Jia-Dong Huo
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Peng Wu
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Liudi Zhang
- Artificial Organ Technology Laboratory, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China
| | - Wei-Tao Wu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
25
|
Tompkins LH, Gellman BN, Morello GF, Prina SR, Roussel T, Kopechek JA, Petit PC, Slaughter MS, Koenig SC, Dasse KA. Design and Computational Evaluation of a Pediatric MagLev Rotary Blood Pump. ASAIO J 2021; 67:1026-1035. [PMID: 33315663 PMCID: PMC8187468 DOI: 10.1097/mat.0000000000001323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pediatric heart failure (HF) patients have been a historically underserved population for mechanical circulatory support (MCS) therapy. To address this clinical need, we are developing a low cost, universal magnetically levitated extracorporeal system with interchangeable pump heads for pediatric support. Two impeller and pump designs (pump V1 and V2) for the pediatric pump were developed using dimensional analysis techniques and classic pump theory based on defined performance criteria (generated flow, pressure, and impeller diameter). The designs were virtually constructed using computer-aided design (CAD) software and 3D flow and pressure features were analyzed using computational fluid dynamics (CFD) analysis. Simulated pump designs (V1, V2) were operated at higher rotational speeds (~5,000 revolutions per minute [RPM]) than initially estimated (4,255 RPM) to achieve the desired operational point (3.5 L/min flow at 150 mm Hg). Pump V2 outperformed V1 by generating approximately 30% higher pressures at all simulated rotational speeds and at 5% lower priming volume. Simulated hydrodynamic performance (achieved flow and pressure, hydraulic efficiency) of our pediatric pump design, featuring reduced impeller size and priming volume, compares favorably to current commercially available MCS devices.
Collapse
Affiliation(s)
- Landon H. Tompkins
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
| | | | | | | | - Thomas Roussel
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
| | | | | | - Mark S. Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Steven C. Koenig
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Kurt A. Dasse
- Department of Bioengineering, University of Louisville, Louisville, KY 40202
- Inspired Therapeutics LLC, Merritt Island, FL 32925
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY 40202
| |
Collapse
|
26
|
Geometric Optimization of an Extracorporeal Centrifugal Blood Pump with an Unshrouded Impeller Concerning Both Hydraulic Performance and Shear Stress. Processes (Basel) 2021. [DOI: 10.3390/pr9071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Centrifugal blood pumps have provided a powerful artificial support system for patients with vascular diseases. In the design process, geometrical optimization is usually needed to acquire a more biocompatible model for clinical uses. In the current paper, we propose a method for multi-objective optimization concerning both the hydraulic and the hemolytic performances of the pump based on the near-orthogonal array in which the traditional hemolysis index (HI) is replaced with the maximum scalar shear stress criteria to reduce the computation load. The method is demonstrated with the optimization of an extracorporeal centrifugal blood pump with an unshrouded impeller. CFD studies on the original and nine modified pump models are carried out. The calculated hydraulic performances of the optimized model are also compared against the experiments for validation of the numeric method, with an error of 3.6% at the original design point. The resulting blood pump with low maximum scalar shear stress (132.2 Pa) shows a low degree of calculated HI (1.69 × 10−3).
Collapse
|
27
|
Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump. Biomech Model Mechanobiol 2021; 20:1709-1722. [PMID: 34106362 DOI: 10.1007/s10237-021-01471-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 05/28/2021] [Indexed: 02/08/2023]
Abstract
Hemolysis in medical devices and implants has been a primary concern over the past fifty years. Turbulent flow in particular can cause cell trauma and hemolysis in such devices. In this work, the effects of turbulence on red blood cell (RBC) damage are examined by simulating the flow field through a centrifugal blood pump that has been identified as a case study through the critical path initiative of the US Food and Drug Administration (FDA). In this study, a new model was employed to predict hemolysis in the turbulent flow environment in the pump selected for the FDA critical path initiative. The operating conditions for a centrifugal blood pump were specified by the FDA for rotational speeds of 2500 and 3500 rpm. The model is based on the analysis of the smaller eddies within the turbulent flow field, since it is assumed that turbulent flow eddies with sizes comparable to the dimensions of the RBCs lead to cell trauma. The Kolmogorov length scale of the velocity field is used to identify such small eddies. Using model parameters obtained in prior work through comparisons to capillary and jet flow, it is found that hemolysis for the 2500-rpm pump was predicted well, while hemolysis for the 3500-rpm pump was overpredicted. Results indicate refinement of the model and empirical constants with better experimental data is needed.
Collapse
|
28
|
Fu M, Liu G, Wang W, Gao B, Ji B, Chang Y, Liu Y. Hemodynamic evaluation and in vitro hemolysis evaluation of a novel centrifugal pump for extracorporeal membrane oxygenation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:679. [PMID: 33987377 PMCID: PMC8106046 DOI: 10.21037/atm-21-1135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background The STM CP-24 I centrifugal pump is a newly developed centrifugal pump for extracorporeal membrane oxygenation equipment. This study aimed to combine hydraulic experiments, hemodynamic numerical simulations, and standard in vitro hemolysis experiments to investigate the comprehensive performance of this centrifugal pump. Methods In vitro experiments were first done to obtain the pressure-flow data of the centrifugal pump in its working range to evaluate its hydraulic performance. Next, the commonly used clinical working points were selected as boundary conditions, and a computational fluid dynamics method was applied to evaluate its hemodynamic performance. The blood pressure distribution, blood flow fields, and high-wall-shear-stress zones in the centrifugal pump were determined as indicators for hemodynamic evaluation. Finally, standard in vitro hemolysis experiments were performed to test the blood compatibility of this centrifugal pump (n=3 blood samples). In addition, its blood compatibility was evaluated in the form of the normalized index of hemolysis (NIH). Results The pressure-flow curve of the centrifugal pump showed that the head pressure and flow of the centrifugal pump showed a mostly linear relationship within the whole working range. When the rotation speed of the centrifugal pump was 5,500 rpm, it achieved a hydraulic performance of 550 mmHg head pressure and 8 L/min output flow, which could meet the clinical needs of extracorporeal membrane oxygenation. Analysis of computational fluid dynamics data indicated that the centrifugal pump had excellent hemodynamic performance: even distribution of blood pressure in the pump, no blood flow stagnation zone or dead zone in the overall flow field, and secondary flows in the gap between the rotor and the volute that significantly reduced the volume of the low-blood-flow zone close to the impeller. There was no obvious high-shear-stress zone on the surface of the volute or the impeller, which will effectively reduce the risk of thrombosis. In vitro hemolysis experiments indicated that the centrifugal pump had excellent blood biocompatibility, with a NIH =0.0125±0.0022 g/100 L. Conclusions The STM CP-24 I centrifugal pump has excellent hydraulic performance, a reasonable design of the hemodynamic structure of the blood pump, and excellent blood compatibility. Therefore, it can meet clinical needs.
Collapse
Affiliation(s)
- Minrui Fu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Gang Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weining Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Jiangsu STMed Technology Co. Ltd., Suzhou, China
| | - Bin Gao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bingyang Ji
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Chang
- National Clinical Research Center for Child Health, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Youjun Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
29
|
Roka-Moiia Y, Li M, Ivich A, Muslmani S, Kern KB, Slepian MJ. Impella 5.5 Versus Centrimag: A Head-to-Head Comparison of Device Hemocompatibility. ASAIO J 2021; 66:1142-1151. [PMID: 33136602 PMCID: PMC7594535 DOI: 10.1097/mat.0000000000001283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite growing use of mechanical circulatory support, limitations remain related to hemocompatibility. Here, we performed a head-to-head comparison of the hemocompatibility of a centrifugal cardiac assist system-the Centrimag, with that of the latest generation of an intravascular microaxial system-the Impella 5.5. Specifically, hemolysis, platelet activation, microparticle (MP) generation, and von Willebrand factor (vWF) degradation were evaluated for both devices. Freshly obtained porcine blood was recirculated within device propelled mock loops for 4 hours, and alteration of the hemocompatibility parameters was monitored over time. We found that the Impella 5.5 and Centrimag exhibited low levels of hemolysis, as indicated by minor increase in plasma free hemoglobin. Both devices did not induce platelet degranulation, as no alteration of β-thromboglobulin and P-selectin in plasma occurred, rather minor downregulation of platelet surface P-selectin was detected. Furthermore, blood exposure to shear stress via both Centrimag and Impella 5.5 resulted in a minor decrease of platelet count with associated ejection of procoagulant MPs, and a decrease of vWF functional activity (but not plasma level of vWF-antigen). Greater MP generation was observed with the Centrimag relative to the Impella 5.5. Thus, the Impella 5.5 despite having a lower profile and higher impeller rotational speed demonstrated good and equivalent hemocompatibility, in comparison with the predicate Centrimag, with the advantage of lower generation of MPs.
Collapse
Affiliation(s)
- Yana Roka-Moiia
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Mengtang Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Adriana Ivich
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Sami Muslmani
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Karl B. Kern
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
| | - Marvin J. Slepian
- From the Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, Arizona
- Department of Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
30
|
Li M, Chen Y, Slepian MJ, Howard J, Thomas S, Barth EJ. Design, Modeling, and Experimental Characterization of A Valveless Pulsatile Flow Mechanical Circulatory Support Device. J Med Device 2021. [DOI: 10.1115/1.4049560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Mechanical circulatory support (MCS) devices, i.e., ventricular assist devices (VADs) and total artificial hearts (TAHs), while effective and vital in restoring hemodynamics in patients with circulatory compromise in advanced heart failure, remain limited by significant adverse thrombotic, embolic and bleeding events. Many of these complications relate to chronic exposure, via these devices, to nonpulsatile flow and the high shear stress created by current methods of blood propulsion or use of prosthetic valves. Here we propose a novel noncompressing single sliding vane MCS device to: 1) dramatically reduce pump operating speed thus potentially lowering the shear stress imparted to blood; 2) eliminate utilization of prosthetic valves thus diminishing potential shear stress generations; 3) allow direct flow rate control to generate physically desired blood flow rate include pulsatile flow; and 4) achieve compactness to fit into the majority of patients. The fundamental working principle and governing design equations are introduced first with multiple design and performance objectives presented. A first prototype was fabricated and experimental tests were conducted to validate the model with a 93.10% match between theoretical and experimental flow rate results. After model validation, the proposed MCS was tested to illustrate the ability of pulsatile flow generation. Finally, it was compared with some representative MCS pumps to discuss its potential of improving current MCS design. The presented work offers a novel MCS design and paves the way for next steps in device hemocompatibility testing.
Collapse
Affiliation(s)
- Mengtang Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ye Chen
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724; Department of Medicine, University of Arizona, Tucson, AZ 85724; Sarver Heart Center, University of Arizona, Tucson, AZ 85724
| | - Joseph Howard
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Seth Thomas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Eric J. Barth
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
31
|
Berdajs D, von Segesser LK, Maisano F, Milano G, Ferrari E. Performance characteristics of the new Eurosets magnetically suspended centrifugal pump. Perfusion 2020; 36:183-189. [PMID: 32567504 DOI: 10.1177/0267659120931990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim was to evaluate the performance of a newly developed magnetically suspended centrifugal pump head intended for use as a ventricular assistance device with a newly developed extracorporeal membrane oxygenator setup. METHODS In an experimental setup, an extracorporeal membrane oxygenator circuit was established in three calves with a mean weight of 68.2 ± 2.0 kg. A magnetically levitated centrifugal pump was tested, along with a newly designed extracorporeal membrane oxygenator console, at three different flow ranges: (a) 0.0 to 5.2 L/min, (b) 0.0 to 7.1 L/min, and (c) 0.0 to 6.0 L/min. For each setup, the animals were supported by a circuit for 6 h. Blood samples were collected just before caridiopulmonary bypass (CPB) after 10 min on bypass and after 1, 2, 5, and 6 h of perfusion for hemolysis determination and biochemical tests. Values were recorded for blood pressure, mean flow, and pump rotational speed. Analysis of variance was used for repeated measurements. RESULTS Mean pump flows achieved during the three 6 h pump runs for the three pump heads studied were as follows: (a) flow range 0.0 to 5.2 L/min, 3.6 ± 1.5 L/min, (b) flow range 0.0 to 7.1 L/min, 4.9 ± 1.3 L/min, and (c) flow range 0.0 to 6.0 L/min, 3.8 ± 1.5 L/min. Blood trauma, evaluated by plasma hemoglobin and lactate dehydrogenase levels, did not help in detecting any significant hemolysis. Thrombocytes and white blood cell count profiles showed no significant differences between the groups at the end of the 6 h perfusion. At the end of testing, no clot deposition was found in the oxygenator, and there was no evidence of peripheral emboli. CONCLUSION The results suggest that the newly developed magnetically suspended centrifugal pump head provides satisfactory hydrodynamic performance in an acute perfusion scenario without increasing hemolysis.
Collapse
Affiliation(s)
- Denis Berdajs
- Department of Cardiac Surgery, University Hospital of Basel, Basel, Switzerland
| | - Ludwig K von Segesser
- Department of Surgery and Anesthesiology, Cardio-Vascular Research, Lausanne, Switzerland
| | - Francesco Maisano
- Department of Cardiac Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Guiseppina Milano
- Department of Surgery and Anesthesiology, Cardio-Vascular Research, Lausanne, Switzerland
| | - Enrico Ferrari
- Department of Surgery and Anesthesiology, Cardio-Vascular Research, Lausanne, Switzerland
| |
Collapse
|
32
|
Fang P, Du J, Yu S. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Int J Artif Organs 2020; 43:782-795. [PMID: 32312159 DOI: 10.1177/0391398820913559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The miniaturization of blood pumps has become a trend due to the advantage of easier transplantation, especially for pediatric patients. In small-scale pumps, it is much easier and more cost-efficient to manufacture the impeller with straight blades compared to spiral-profile blades. METHODS Straight-blade impeller designs with different blade angles, blade numbers, and impeller flow passage positions are evaluated using the computational fluid dynamics method. Blade angles (θ = 0°, 20°, 30°, and 40°), blade numbers (N = 5, 6, 7, and 8), and three positions of impeller flow passage (referred to as top, middle, and bottom) are selected as the studied parametric values. RESULTS The numerical results reveal that with increasing blade angle, the pressure head and the hydraulic efficiency increase, and the average scalar shear stress and the normalized index of hemolysis decrease. The minimum radial force and axial thrust are obtained when θ equals 20°. In addition, the minimum average scalar shear stress and normalized index of hemolysis values are obtained when N = 6, and the maximum values are obtained when N = 5. Regarding the impeller flow passage position, the axial thrust and the stagnation area forming in the impeller eye are reduced as the flow passage height declines. CONCLUSION The consideration of a blade angle can greatly improve the performance of blood pumps, although the influence of the blade number is not very easily determined. The bottom position of the impeller flow passage is the best design.
Collapse
Affiliation(s)
- Peng Fang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Jianjun Du
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, China
| | - Shunzhou Yu
- Shenzhen Core Medical Technology Co., Ltd, Shenzhen, China
| |
Collapse
|
33
|
Nikfar M, Razizadeh M, Zhang J, Paul R, Wu ZJ, Liu Y. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model. Artif Organs 2020; 44:E348-E368. [PMID: 32017130 DOI: 10.1111/aor.13663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/22/2019] [Accepted: 01/31/2020] [Indexed: 01/25/2023]
Abstract
This work introduces a new Lagrangian strain-based model to predict the shear-induced hemolysis in biomedical devices. Current computational models for device-induced hemolysis usually utilize empirical fitting of the released free hemoglobin (Hb) in plasma from damaged red blood cells (RBCs). These empirical correlations contain parameters that depend on specific device and operating conditions, thus cannot be used to predict hemolysis in a general device. The proposed algorithm does not have any empirical parameters, thus can presumably be used for hemolysis prediction in various blood-wetting medical devices. In contrast to empirical correlations in which the Hb release is related to the shear stress and exposure time without considering the physical processes, the proposed model links flow-induced deformation of the RBC membrane to membrane permeabilization and Hb release. In this approach, once the steady-state numerical solution of blood flow in the device is obtained under a prescribed operating condition, sample path lines are traced from the inlet of the device to the outlet to calculate the history of the shear stress tensor. In solving the fluid flow, it is assumed that RBCs do not have any influence on the flow pattern. Along each path line, shear stress tensor will be input into a coarse-grained (CG) RBC model to calculate the RBC deformation. Then the correlations obtained from molecular dynamics (MD) simulations are applied to relate the local areal RBC deformation to the perforated area on the RBC membrane. Finally, Hb released out of transient pores is calculated over each path line via a diffusion equation considering the effects of the steric hindrance and increased hydrodynamic drag due to the size of the Hb molecule. The total index of hemolysis (IH) is calculated by integration of released Hb over all the path lines in the computational domain. Hemolysis generated in the Food and Drug Administration (FDA) nozzle and two blood pumps, that is, a CentriMag blood pump (a centrifugal pump) and HeartMate II (an axial pump), for different flow regimes including the laminar and turbulent flows are calculated via the proposed algorithm. In all the simulations, the numerical predicted IH is close to the range of experimental data. The results promisingly indicate that this multiscale approach can be used as a tool for predicting hemolysis and optimizing the hematologic design of other types of blood-wetting devices.
Collapse
Affiliation(s)
- Mehdi Nikfar
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Meghdad Razizadeh
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Jiafeng Zhang
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Ratul Paul
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Yaling Liu
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA.,Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
34
|
Good BC, Manning KB. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Artif Organs 2020; 44:E263-E276. [PMID: 31971269 DOI: 10.1111/aor.13643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
In order to simulate hemodynamics within centrifugal blood pumps and to predict pump hemolysis, CFD simulations must be thoroughly validated against experimental data. They must also account for and accurately model the specific working fluid in the pump, whether that is a blood-analog solution to match an experimental PIV study or animal blood in a hemolysis experiment. Therefore, the Food and Drug Administration (FDA) benchmark centrifugal blood pump and its database of experimental PIV and hemolysis data were used to thoroughly validate CFD simulations of the same blood pump. A Newtonian blood model was first used to compare to the PIV data with a blood analog fluid while hemolysis data were compared using a power-law hemolysis model fit to porcine blood data. A viscoelastic blood model was then incorporated into the CFD solver to investigate the importance of modeling blood's viscoelasticity in centrifugal pumps. The established computational framework, including a dynamic rotating mesh, animal blood-specific fluid properties and hemolysis modeling, and a k-ω SST turbulence model, was shown to more accurately predict pump pressure heads, velocity fields, and hemolysis compared to previously published CFD studies of the FDA centrifugal pump. The CFD simulations were able to match the FDA pressure and hemolysis data for multiple pump operating conditions, with the CFD results being within the standard deviations of the experimental results. While CFD radial velocity profiles between the impeller blades also compared well to the PIV velocity results, more work is still needed to address the large variability among both experimental and computational predictions of velocity in the diffuser outlet jet. Small differences were observed between the Newtonian and viscoelastic blood models in pressure head and hemolysis at the higher flow rate cases (FDA Conditions 4 and 5) but were more significant at lower flow rate and pump impeller speeds (FDA Condition 1). These results suggest that the importance of accounting for blood's viscoelasticity may be dependent on the specific blood pump operating conditions. This detailed computational framework with improved modeling techniques and an extensive validation procedure will be used in future CFD studies of centrifugal blood pumps to aid in device design and predictions of their biological responses.
Collapse
Affiliation(s)
- Bryan C Good
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Keefe B Manning
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.,Department of Surgery, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
35
|
Gross-Hardt S, Hesselmann F, Arens J, Steinseifer U, Vercaemst L, Windisch W, Brodie D, Karagiannidis C. Low-flow assessment of current ECMO/ECCO 2R rotary blood pumps and the potential effect on hemocompatibility. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:348. [PMID: 31694688 PMCID: PMC6836552 DOI: 10.1186/s13054-019-2622-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
Background Extracorporeal carbon dioxide removal (ECCO2R) uses an extracorporeal circuit to directly remove carbon dioxide from the blood either in lieu of mechanical ventilation or in combination with it. While the potential benefits of the technology are leading to increasing use, there are very real risks associated with it. Several studies demonstrated major bleeding and clotting complications, often associated with hemolysis and poorer outcomes in patients receiving ECCO2R. A better understanding of the risks originating specifically from the rotary blood pump component of the circuit is urgently needed. Methods High-resolution computational fluid dynamics was used to calculate the hemodynamics and hemocompatibility of three current rotary blood pumps for various pump flow rates. Results The hydraulic efficiency dramatically decreases to 5–10% if operating at blood flow rates below 1 L/min, the pump internal flow recirculation rate increases 6–12-fold in these flow ranges, and adverse effects are increased due to multiple exposures to high shear stress. The deleterious consequences include a steep increase in hemolysis and destruction of platelets. Conclusions The role of blood pumps in contributing to adverse effects at the lower blood flow rates used during ECCO2R is shown here to be significant. Current rotary blood pumps should be used with caution if operated at blood flow rates below 2 L/min, because of significant and high recirculation, shear stress, and hemolysis. There is a clear and urgent need to design dedicated blood pumps which are optimized for blood flow rates in the range of 0.5–1.5 L/min.
Collapse
Affiliation(s)
- Sascha Gross-Hardt
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Felix Hesselmann
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Jutta Arens
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Medical Faculty, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Leen Vercaemst
- Department of Perfusion, University Hospital Gasthuisberg, Leuven, Belgium
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Center, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, 51109, Cologne, Germany
| | - Daniel Brodie
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, NY, USA
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Center, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, 51109, Cologne, Germany.
| |
Collapse
|
36
|
Gross-Hardt SH, Sonntag SJ, Boehning F, Steinseifer U, Schmitz-Rode T, Kaufmann TA. Crucial Aspects for Using Computational Fluid Dynamics as a Predictive Evaluation Tool for Blood Pumps. ASAIO J 2019; 65:864-873. [DOI: 10.1097/mat.0000000000001023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Benim AC, Frank T, Assmann A, Lichtenberg A, Akhyari P. Computational investigation of hemodynamics in hardshell venous reservoirs: A comparative study. Artif Organs 2019; 44:411-418. [PMID: 31660617 DOI: 10.1111/aor.13593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
Abstract
Extracorporeal circulation using heart-lung-machines is associated with a profound activation of corpuscular and plasmatic components of circulating blood, which can also lead to deleterious events such as systemic inflammatory response and hemolysis. Individual components used to install the extracorporeal circulation have an impact on the level of activation, most predominantly membrane oxygenators and hardshell venous reservoirs as used in extracorporeal systems. The blood flows in two different hardshell reservoirs are computationally investigated. A special emphasis is placed on the prediction of an onset of transition and turbulence generation. Reynolds-averaged numerical simulations (RANS) based on a transitional turbulence model, as well as large eddy simulations (LES) are applied to achieve an accurate prediction. In the LES analysis, the non-Newtonian behavior of the blood is considered via the Carreau model. Blood damage potential is quantified applying the Modified Index of Hemolysis (MIH) based on the predicted flow fields. The results indicate that the flows in both reservoirs remain predominantly laminar. For one of the reservoirs, considerable turbulence generation is observed near the exit site, caused by the specific design for the connection with the drainage tube. This difference causes the MIH of this reservoir to be nearly twice as large as compared to the alternative design. However, a substantial improvement of these performance criteria can be expected by a local geometry modification.
Collapse
Affiliation(s)
- Ali Cemal Benim
- Department of Mechanical and Process Engineering, Duesseldorf University of Applied Sciences-Center of Flow Simulation (CFS), Duesseldorf, Germany
| | - Thiemo Frank
- Department of Cardiovascular Surgery, Heinrich Heine University, Duesseldorf, Germany
| | - Alexander Assmann
- Department of Cardiovascular Surgery, Heinrich Heine University, Duesseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiovascular Surgery, Heinrich Heine University, Duesseldorf, Germany
| | - Payam Akhyari
- Department of Cardiovascular Surgery, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
38
|
Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol 2019; 18:845-881. [DOI: 10.1007/s10237-019-01137-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
|
39
|
Radley G, Laura Pieper I, Thomas BR, Hawkins K, Thornton CA. Artificial shear stress effects on leukocytes at a biomaterial interface. Artif Organs 2019; 43:E139-E151. [PMID: 30537257 DOI: 10.1111/aor.13409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Medical devices, such as ventricular assist devices (VADs), introduce both foreign materials and artificial shear stress to the circulatory system. The effects these have on leukocytes and the immune response are not well understood. Understanding how these two elements combine to affect leukocytes may reveal why some patients are susceptible to recurrent device-related infections and provide insight into the development of pump thrombosis. Biomaterials-DLC: diamond-like carbon-coated stainless steel; Sap: single-crystal sapphire; and Ti: titanium alloy (Ti6 Al4 V) were attached to the parallel plates of a rheometer. Whole human blood was left between the two discs for 5 minutes at +37°C with or without the application of shear stress (0 s-1 or 1000 s-1 ). Blood was removed and used for complete blood cell counts, flow cytometry (leukocyte activation, cell death, microparticle generation, phagocytic ability, and reactive oxygen species [ROS] production), and the production of pro-inflammatory cytokines. L-selectin expression on monocytes was decreased when blood was exposed to the biomaterials both with and without shear. Applying shear stress to blood on a Sap and Ti surface led to activation of neutrophils shown as decreased L-selectin expression. Sap and Ti blunted the LPS-stimulated macrophage migration inhibitory factor (MIF) production, most notably when sheared on Ti. The biomaterials used here have been shown to activate leukocytes in a static environment. The introduction of shear appears to exacerbate this activation. Interestingly, a widely accepted biocompatible material (Ti) utilized in many different types of devices has the capacity for immune cell activation and inhibition of MIF secretion when combined with shear stress. These findings contribute to our understanding of the contribution of biomaterials and shear stress to recurrent infections and vulnerability to sepsis in some VAD patients as well as pump thrombosis.
Collapse
Affiliation(s)
- Gemma Radley
- Swansea University Medical School, Swansea, UK.,Calon Cardio-Technology Ltd, Institute of Life Science, Swansea, UK
| | | | | | | | | |
Collapse
|
40
|
Chen Z, Jena SK, Giridharan GA, Sobieski MA, Koenig SC, Slaughter MS, Griffith BP, Wu ZJ. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput 2018; 57:807-818. [PMID: 30406881 DOI: 10.1007/s11517-018-1922-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
Modulation of pump speed has been proposed and implemented clinically to improve vascular pulsatility in continuous flow ventricular assist device patient. The flow dynamics of the HVAD with a promising asynchronous pump speed modulation and its potential risk for device-induced blood trauma was investigated numerically. The boundary conditions at the pump inlet and outlet were defined using the pressure waveforms adapted from the experimentally recorded ventricular and arterial pressure waveforms in a large animal ischemic heart failure (IHF) model supported by the HVAD operated at constant and modulated pump speeds. Shear stress fields and hemolysis indices were derived from the simulated flow fields. The overall features of the computationally generated flow waveforms at simulated constant and pulse-modulated speed operations matched with those of the experimentally recorded flow waveforms. The simulations showed that the shear stress field and hemolysis index vary throughout the cardiac cycle under the constant speed operation, and also as a function of modulation profile under modulated speed operation. The computational model did not demonstrate any differences in the time average hemolysis index between constant and modulated pump speed operations, thereby predicting pulse-modulated speed operation may help to restore vascular pulsatility without any further increased risk of blood trauma. Graphical abstract The streamline inside the HVAD pump and the wall shear stress distribution on the impeller surface at six discrete time instants over one cardiac cycle under constant speed operation (3000 rpm) (a) and under pulse-modulated speed operation (b). c Computationally predicted flow rate waveform under pulse-modulated speed operation. d Computationally predicted time-varying HI generated by the HVAD pump under the two operation modes constant speed (dash line) and pulse-modulated speed (solid line). These figures indicate that the pulse-modulated speed operation may help to restore vascular pulsatility without any further increased risk of blood trauma.
Collapse
Affiliation(s)
- Zengsheng Chen
- Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 434A, Baltimore, MD, 21201, USA
| | - Sofen K Jena
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Guruprasad A Giridharan
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Michael A Sobieski
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Steven C Koenig
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.,Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Bartley P Griffith
- Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 434A, Baltimore, MD, 21201, USA
| | - Zhongjun J Wu
- Artificial Organs Laboratory, Department of Surgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF 434A, Baltimore, MD, 21201, USA. .,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
41
|
Rosenberg G, Siedlecki CA, Jhun CS, Weiss WJ, Manning K, Deutsch S, Pierce W. Acquired Von Willebrand Syndrome and Blood Pump Design. Artif Organs 2018; 42:1119-1124. [DOI: 10.1111/aor.13291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Gerson Rosenberg
- Department of Surgery; The Pennsylvania State University; College of Medicine; Hershey
| | | | - Choon-Sik Jhun
- Department of Surgery; The Pennsylvania State University; College of Medicine; Hershey
| | - William J. Weiss
- Department of Surgery; The Pennsylvania State University; College of Medicine; Hershey
| | - Keefe Manning
- Biomedical Engineering; The Pennsylvania State University; University Park
| | - Steven Deutsch
- Applied Research Laboratory; The Pennsylvania State University; University Park PA, USA
| | - William Pierce
- Department of Surgery; The Pennsylvania State University; College of Medicine; Hershey
| |
Collapse
|
42
|
Zhu L, Han W, Song B, Wang Z. Characterizing the fluid dynamics in the flow fields of cylindrical orbitally shaken bioreactors with different geometry sizes. Eng Life Sci 2018; 18:570-578. [PMID: 32624937 DOI: 10.1002/elsc.201700170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/17/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
Orbitally shaken bioreactors (OSRs) are commonly used for the cultivation of mammalian cells in suspension. To aid the geometry designing and optimizing of OSRs, we conducted a three-dimensional computational fluid dynamics (CFD) simulation to characterize the flow fields in a 10 L cylindrical OSR with different vessel diameters. The liquid wave shape captured by a camera experimentally validated the CFD models established for the cylindrical OSR. The geometry size effect on volumetric mass transfer coefficient (kLa) and hydromechanical stress was analyzed by varying the ratio of vessel diameter (d) to liquid height at static (h L), d/h L. The highest value of kLa about 30 h-1 was observed in the cylindrical vessel with the d/h L of 6.35. Moreover, the magnitudes of shear stress and energy dissipation rate in all the vessels tested were below their minimum values causing cells damage separately, which indicated that the hydromechanical-stress environment in OSRs is suitable for cells cultivation in suspension. Finally, the CFD results suggested that the d/h L higher than 8.80 should not be adopted for the 10 L cylindrical OSR at the shaking speed of 180 rpm because the "out of phase" state probably will happen there.
Collapse
Affiliation(s)
- Likuan Zhu
- School of Mechatronics Engineering Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Wang Han
- School of Mechatronics Engineering Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Boyan Song
- School of Mechatronics Engineering Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Zhenlong Wang
- School of Mechatronics Engineering Harbin Institute of Technology Harbin Heilongjiang P. R. China
| |
Collapse
|
43
|
Molteni A, Masri ZPH, Low KWQ, Yousef HN, Sienz J, Fraser KH. Experimental measurement and numerical modelling of dye washout for investigation of blood residence time in ventricular assist devices. Int J Artif Organs 2018; 41:201-212. [DOI: 10.1177/0391398817752877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ventricular assist devices have become the standard therapy for end-stage heart failure. However, their use is still associated with severe adverse events related to the damage done to the blood by fluid dynamic stresses. This damage relates to both the stress magnitude and the length of time the blood is exposed to that stress. We created a dye washout technique which combines experimental and numerical approaches to measure the washout times of ventricular assist devices. The technique was used to investigate washout characteristics of three commercially available and clinically used ventricular assist devices: the CentriMag, HVAD and HeartMate II. The time taken to reach 5% dye concentration at the outlet (T05) was used as an indicator of the total residence time. At a typical level of cardiac support, 5 L/min and 100 mmHg, T05 was 0.93, 0.28 and 0.16 s for CentriMag, HVAD and HeartMate II, respectively, and increased to 5.06, 1.64 and 0.96 s for reduced cardiac support of 1 L/min. Regional variations in washout characteristics are described in this article. While the volume of the flow domain plays a large role in the differences in T05 between the ventricular assist devices, after standardising for ventricular assist device volume, the secondary flow path was found to increase T05 by 35%. The results explain quantitatively, for the first time, why the CentriMag, which exerts low shear stress magnitude, has still been found to cause acquired von Willebrand Syndrome in patients.
Collapse
Affiliation(s)
| | - Zubair PH Masri
- Department of Mechanical Engineering, University of Bath, Bath, UK
| | - Kenny WQ Low
- Advanced Sustainable Manufacturing Technologies (ASTUTE) 2020 Operation, College of Engineering, Swansea University, Swansea, UK
| | - Haitham N Yousef
- Advanced Sustainable Manufacturing Technologies (ASTUTE) 2020 Operation, College of Engineering, Swansea University, Swansea, UK
| | - Johann Sienz
- Advanced Sustainable Manufacturing Technologies (ASTUTE) 2020 Operation, College of Engineering, Swansea University, Swansea, UK
| | | |
Collapse
|
44
|
Chen Z, Jena SK, Giridharan GA, Koenig SC, Slaughter MS, Griffith BP, Wu ZJ. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:10.1002/cnm.2924. [PMID: 28859253 PMCID: PMC5803368 DOI: 10.1002/cnm.2924] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 05/11/2023]
Abstract
In this study, the flow features and device-associated blood trauma in 4 clinical ventricular assist devices (VADs; 2 implantable axial VADs, 1 implantable centrifugal VAD, and 1 extracorporeal VAD) were computationally analyzed under clinically relevant pulsatile flow conditions. The 4 VADs were operated at fixed pump speed at a mean rate of 4.5 L/min. Mean pressure difference, wall shear stress, volume distribution of scalar shear stress (SSS), and shear-induced hemolysis index (HI) were derived from the flow field of each VAD and were compared. The computationally predicted mean pressure difference across the 3 implantable VADs was ~70 mmHg, and the extracorporeal VAD was ~345 mmHg, which matched well with their reported pressure-flow curves. The axial VADs had higher mean wall shear stress and SSS compared with the centrifugal VADs. However, the residence time of the centrifugal VADs was much longer compared with the axial VADs because of the large volume of the centrifugal VADs. The highest SSS was observed in one axial VAD, and the longest exposure time was observed in 1 centrifugal VAD. These 2 VADs generated the highest HI. The shear-induced HI varied as a function of flow rate within each cardiac cycle. At fixed pump speed, the HI was greatest at low flow rate due to longer exposure time to shear stress compared with at high flow rate. Subsequently, we hypothesize that to reduce the risk of blood trauma during VAD support, shear stress magnitude and exposure time need to be minimized.
Collapse
Affiliation(s)
- Zengsheng Chen
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sofen K Jena
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Guruprasad A Giridharan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Steven C Koenig
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Mark S Slaughter
- Department of Cardiovascular and Thoracic Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, 40292, USA
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhongjun J Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Fischell Department of Bioengineering, A James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
45
|
Zhu L, Monteil DT, Wang Y, Song B, Hacker DL, Wurm MJ, Li X, Wang Z, Wurm FM. Fluid dynamics of flow fields in a disposable 600-mL orbitally shaken bioreactor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Fitzgerald DC, Darling EM, Cardona MF. Staffing, Equipment, Monitoring Considerations for Extracorporeal Membrane Oxygenation. Crit Care Clin 2017; 33:863-881. [PMID: 28887933 DOI: 10.1016/j.ccc.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the reasons for the recent growth in adult extracorporeal membrane oxygenation (ECMO) are multifactorial, much of the success may be attributed to the development of well-trained staff and the technological innovations in equipment and monitoring devices used during extracorporeal support. In this article, the authors discuss general educational formats for the ECMO bedside provider, staffing support models, and devices designed to best meet the needs of the patient while simultaneously ensuring the proper delivery of ECMO-related care.
Collapse
Affiliation(s)
- David C Fitzgerald
- Division of Cardiovascular Perfusion, MUSC College of Health Professions, Medical University of South Carolina, 151B Rutledge Avenue MSC962, Charleston, SC 29425, USA.
| | - Edward M Darling
- Department of Cardiovascular Perfusion, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Monika F Cardona
- Medical University of South Carolina, 165 Ashley Avenue, CH 846, Charleston, SC 29425, USA
| |
Collapse
|
47
|
Wu Y, Zhu L, Luo Y. Design and Hemocompatibility Analysis of a Double-Suction Injection Suspension Blood Pump Using Computational Fluid Dynamics Methods. Artif Organs 2017; 41:979-987. [DOI: 10.1111/aor.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Yue Wu
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering Shanghai Jiao Tong University; Shanghai China
| | - Liangfan Zhu
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering Shanghai Jiao Tong University; Shanghai China
| | - Yun Luo
- Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
48
|
Faghih MM, Keith Sharp M. Extending the Power-Law Hemolysis Model to Complex Flows. J Biomech Eng 2016; 138:2556264. [DOI: 10.1115/1.4034786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Indexed: 11/08/2022]
Abstract
Hemolysis (damage to red blood cells) is a long-standing problem in blood contacting devices, and its prediction has been the goal of considerable research. The most popular model relating hemolysis to fluid stresses is the power-law model, which was developed from experiments in pure shear only. In the absence of better data, this model has been extended to more complex flows by replacing the shear stress in the power-law equation with a von Mises-like scalar stress. While the validity of the scalar stress also remains to be confirmed, inconsistencies exist in its application, in particular, two forms that vary by a factor of 2 have been used. This article will clarify the proper extension of the power law to complex flows in a way that maintains correct results in the limit of pure shear.
Collapse
Affiliation(s)
- Mohammad M. Faghih
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292
| | - M. Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292
| |
Collapse
|
49
|
Li P, Zheng L, Zhang D, Xie Y, Feng Y, Xie G. Investigation of High-Speed Erythrocyte Flow and Erythrocyte-Wall Impact in a Lab-on-a-Chip. Artif Organs 2016; 40:E203-E218. [DOI: 10.1111/aor.12727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Ping Li
- Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering
| | - Lu Zheng
- Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering
| | - Di Zhang
- Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering
| | | | - Yi Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology, Xi'an Jiaotong University
| | - Gongnan Xie
- Department of Mechanical and Power Engineering, School of Marine Science and Technology; Northwestern Polytechnical University; Xi'an Shaanxi P. R. China
| |
Collapse
|
50
|
Olia SE, Herbertson LH, Malinauskas RA, Kameneva MV. A Reusable, Compliant, Small Volume Blood Reservoir for In Vitro Hemolysis Testing. Artif Organs 2016; 41:175-178. [PMID: 27087363 DOI: 10.1111/aor.12724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/20/2015] [Accepted: 01/13/2016] [Indexed: 11/28/2022]
Abstract
Bench-top in vitro hemolysis testing is a fundamental tool during the design and regulatory safety evaluation of blood-contacting medical devices. While multiple published experimental protocols exist, descriptions of the test loop reservoir remain ambiguous. A critical fixture within the circuit, there is no readily available blood reservoir that ensures thorough mixing and complete air evacuation: two major factors which can affect results. As part of the Food and Drug Administration (FDA) Critical Path Initiative, we developed a three-piece reservoir consisting of a 3D-printed base, a plastic clamp set, and a medical-grade blood bag. This simple, reusable, and cost-effective design was used successfully in the hemolysis assessment of FDA benchmark nozzles and prototype rotary blood pumps, and may be useful as an integral component to any in vitro blood circulation loop.
Collapse
Affiliation(s)
- Salim E Olia
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Artificial Heart Program, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Luke H Herbertson
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Richard A Malinauskas
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Marina V Kameneva
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|