1
|
Shrestha HK, Lee D, Wu Z, Wang Z, Fu Y, Wang X, Serrano GE, Beach TG, Peng J. Profiling Protein-Protein Interactions in the Human Brain by Refined Cofractionation Mass Spectrometry. J Proteome Res 2024; 23:1221-1231. [PMID: 38507900 PMCID: PMC11065482 DOI: 10.1021/acs.jproteome.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.
Collapse
Affiliation(s)
- Him K. Shrestha
- Departments of Structural Biology and Developmental Neurobiology
| | - DongGeun Lee
- Departments of Structural Biology and Developmental Neurobiology
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology
| | - Yingxue Fu
- Departments of Structural Biology and Developmental Neurobiology
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology
| |
Collapse
|
2
|
Bernardino PN, Luo AS, Andrew PM, Unkel CM, Gonzalez MI, Gelli A, Lein PJ. Evidence Implicating Blood-Brain Barrier Impairment in the Pathogenesis of Acquired Epilepsy following Acute Organophosphate Intoxication. J Pharmacol Exp Ther 2024; 388:301-312. [PMID: 37827702 PMCID: PMC10801776 DOI: 10.1124/jpet.123.001836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Audrey S Luo
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Peter M Andrew
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Chelsea M Unkel
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Marco I Gonzalez
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Angie Gelli
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, California (P.N.B., A.S.L., P.M.A., C.M.U., P.J.L.); Department of Neurology, University of California, Davis, School of Medicine, Sacramento, California (M.I.G.); and Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California (A.G.)
| |
Collapse
|
3
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
4
|
Metwally E, Al-Abbadi HA, Hussain T, Murtaza G, Abdellatif AM, Ahmed MF. Calpain signaling: from biology to therapeutic opportunities in neurodegenerative disorders. Front Vet Sci 2023; 10:1235163. [PMID: 37732142 PMCID: PMC10507866 DOI: 10.3389/fvets.2023.1235163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative disorders represent a major and growing healthcare challenge globally. Among the numerous molecular pathways implicated in their pathogenesis, calpain signaling has emerged as a crucial player in neuronal dysfunction and cell death. Calpain is a family of calcium-dependent cysteine proteases that is involved in many biological processes, such as signal transduction, cytoskeleton remodeling, and protein turnover. Dysregulation of calpain activation and activity has been associated with several neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Understanding the intricate structure of calpains is crucial for unraveling their roles in cellular physiology and their implications in pathology. In addition, the identification of diverse abnormalities in both humans and other animal models with deficiencies in calpain highlights the significant progress made in understanding calpain biology. In this comprehensive review, we delve into the recent roles attributed to calpains and provide an overview of the mechanisms that govern their activity during the progression of neurodegenerative diseases. The possibility of utilizing calpain inhibition as a potential therapeutic approach for treating neuronal dysfunctions in neurodegenerative disorders would be an area of interest in future calpain research.
Collapse
Affiliation(s)
- Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatim A. Al-Abbadi
- Faculty of Medicine, University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Ahmed M. Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud F. Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Overmeyer C, Jorgensen K, Vohra BPS. The Translocase of the Outer Mitochondrial Membrane (TOM40) is required for mitochondrial dynamics and neuronal integrity in Dorsal Root Ganglion Neurons. Mol Cell Neurosci 2023; 125:103853. [PMID: 37100265 DOI: 10.1016/j.mcn.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kylie Jorgensen
- Department of Biology, William Jewell College Liberty, MO 64068
| | | |
Collapse
|
6
|
Sharma J, Mulherkar S, Chen UI, Xiong Y, Bajaj L, Cho BK, Goo YA, Leung HCE, Tolias KF, Sardiello M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov 2023; 9:32. [PMID: 36964131 PMCID: PMC10038992 DOI: 10.1038/s41421-023-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Calpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3-KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| | - Shalaka Mulherkar
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Uan-I Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xiong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Zaman V, Drasites KP, Myatich A, Shams R, Shields DC, Matzelle D, Haque A, Banik NL. Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson's Disease. Int J Mol Sci 2022; 23:13849. [PMID: 36430329 PMCID: PMC9694996 DOI: 10.3390/ijms232213849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the central nervous system (CNS), calcium homeostasis is a critical determinant of neuronal survival. Calpain, a calcium-dependent neutral protease, is widely expressed in the brain, including substantia nigra (SN) dopaminergic (DA) neurons. Though calpain is implicated in human Parkinson's disease (PD) and corresponding animal models, the roles of specific ubiquitous calpain isoforms in PD, calpain-1 and calpain-2, remain poorly understood. In this study, we found that both isoforms are activated in a nigrostriatal pathway with increased phosphorylated synuclein following the administration of rotenone in Lewis rats, but calpain isoforms played different roles in neuronal survival. Although increased expression of calpain-1 and calpain-2 were detected in the SN of rotenone-administered rats, calpain-1 expression was not altered significantly after treatment with calpain inhibitor (calpeptin); this correlated with neuronal survival. By contrast, increased calpain-2 expression in the SN of rotenone rats correlated with neuronal death, and calpeptin treatment significantly attenuated calpain-2 and neuronal death. Calpain inhibition by calpeptin prevented glial (astroglia/microglia) activation in rotenone-treated rats in vivo, promoted M2-type microglia, and protected neurons. These data suggest that enhanced expression of calpain-1 and calpain-2 in PD models differentially affects glial activation and neuronal survival; thus, the attenuation of calpain-2 may be important in reducing SN neuronal loss in PD.
Collapse
Affiliation(s)
- Vandana Zaman
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | | | - Ali Myatich
- The Citadel, 171 Moultrie St., Charleston, SC 29409, USA
| | - Ramsha Shams
- The Citadel, 171 Moultrie St., Charleston, SC 29409, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Denise Matzelle
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Peng X, Yang R, Song J, Wang X, Dong W. Calpain2 Upregulation Regulates EMT-Mediated Pancreatic Cancer Metastasis via the Wnt/β-Catenin Signaling Pathway. Front Med (Lausanne) 2022; 9:783592. [PMID: 35707527 PMCID: PMC9189366 DOI: 10.3389/fmed.2022.783592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Calpains2 (CAPN2) is a calcium-dependent, non-lysosomal cysteine protease that plays critical roles in normal cellular functions and pathological processes, including tumorigenesis, cancer progression, and metastasis. However, the role and underlying regulatory mechanisms of CAPN2 in pancreatic cancer (PC) are still unknown. We found that CAPN2 is highly expressed in PC tissues and associated with poor PC prognosis by using The Cancer Genome Atlas (TCGA) datasets, Gene Expression Omnibus (GEO) datasets, and PC tissue arrays. CAPN2 downregulation significantly inhibited cell proliferation, migration, and invasion and regulated Wnt/β-catenin signaling pathway-mediated epithelial-mesenchymal transition (EMT) in PC cells. Our findings highlight the significance of CAPN2 in tumor regression and, thus, indicate that CAPN2 could be a promising target for PC treatment.
Collapse
Affiliation(s)
- Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, China
- *Correspondence: Xiulan Peng
| | - Rui Yang
- Department of Vascular Surgery, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jia Song
- Departments of Institute, The Third Affiliated Teaching Hospital of Xinjiang Medical University, Affiliated Cancer Hospital, Ürümqi, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Weiguo Dong
| |
Collapse
|
9
|
Antony A, Ng N, Lauto A, Coorssen JR, Myers SJ. Calcium-Mediated Calpain Activation and Microtubule Dissociation in Cell Model of Hereditary Sensory Neuropathy Type-1 Expressing V144D SPTLC1 Mutation. DNA Cell Biol 2022; 41:225-234. [PMID: 34986032 DOI: 10.1089/dna.2021.0816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hereditary sensory neuropathy type 1A (HSN1A) is an autosomal, dominantly inherited peripheral neuropathy caused by mutations in serine palmitoyl transferase long chain 1 (SPTLC1), involved in the de novo synthesis of sphingolipids. We have previously reported calcium imbalance, as well as mitochondrial and ER stress in both HSN1 patient lymphoblasts and a transiently transfected cell model. In this study, we investigated the role of the Ca2+-activated protease calpain in destabilizing the cell cytoskeleton, by examining calpain activity in SH-SY5Y cells overexpressing the V144D mutant and changes in microtubule-associated proteins (MAP). Intramitochondrial Ca2+ was found to be significantly depleted and cytoplasmic Ca2+ increased in the V144D mutant. Subsequently, calpain and proteasome activity were increased and calpain substrates, microtubule associated proteins MAP2, and tau were significantly reduced in the microtubule fraction of the mutant. Significant changes were also found in motor proteins dynein and KIF2A detected in the microtubule fraction of cells overexpressing the V144D mutation. There was also a reduction in anterograde and retrograde mitochondrial transport velocities in the V144D mutant. These findings strongly implicate cytoskeletal aberration caused by Ca2+ dysregulation and subsequent loss of microtubule transport functions as the cause of axonal dying back that is characteristic of HSN1.
Collapse
Affiliation(s)
- Anu Antony
- Neuro-Cell Biology Laboratory and Western Sydney University, Penrith, Australia
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Neville Ng
- Faculty of Science, Medicine and Health, Illawarra Health and Medical Research Institute, Keiraville, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- School of Medicine, Western Sydney University, Penrith, Australia
- Department of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada
| | - Simon J Myers
- Neuro-Cell Biology Laboratory and Western Sydney University, Penrith, Australia
- School of Medicine, Western Sydney University, Penrith, Australia
- School of Science, Western Sydney University, Penrith, Australia
| |
Collapse
|
10
|
Gao A, McCoy HM, Zaman V, Shields DC, Banik NL, Haque A. Calpain activation and progression of inflammatory cycles in Parkinson's disease. FRONT BIOSCI-LANDMRK 2022; 27:20. [PMID: 35090325 PMCID: PMC9723550 DOI: 10.31083/j.fbl2701020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 07/27/2023]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative condition of the central nervous system (CNS) affecting 6.3 million people worldwide with no curative treatments. Current therapies aim to mitigate PD's effects and offer symptomatic relief for patients. Multiple pathways are involved in the pathogenesis of PD, leading to neuroinflammation and the destruction of dopaminergic neurons in the CNS. This review focuses on PD pathology and the role of calpain, a neutral protease, as a regulator of various immune cells such as T-cells, microglia and astrocytes which lead to persistent neuroinflammatory responses and neuronal loss in both the brain and spinal cord (SC). Calpain plays a significant role in the cleavage and aggregation of toxic α-synuclein (α-syn), a presynaptic neural protein, and other organelles, contributing to mitochondrial dysfunction and oxidative stress. α-Syn aggregation results in the formation of Lewy bodies (LB) that further contribute to neuronal damage through lipid bilayer penetration, calcium ion (Ca2+) influx, oxidative stress and damage to the blood brain barrier (BBB). Dysfunctional mitochondria destabilize cytosolic Ca2+ concentrations, raising intracellular Ca2+; this leads to excessive calpain activation and persistent inflammatory responses. α-Syn aggregation also results in the disruption of dopamine synthesis through phosphorylation of tyrosine hydroxylase (TH), a key enzyme involved in the conversion of tyrosine to levodopa (L-DOPA), the amino acid precursor to dopamine. Decreased dopamine levels result in altered dopamine receptor (DR) signaling, ultimately activating pro-inflammatory T-cells to further contribute to the inflammatory response. All of these processes, together, result in neuroinflammation, degeneration and ultimately neuronal death seen in PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-a prodrug to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+)), rotenone (an environmental neurotoxin), and 6-hydroxydopamine (6-OHDA - a neurotoxic synthetic organic compound) induce PD-like conditions when injected into rodents. All three agents work through similar mechanisms and lead to degeneration of dopaminergic neurons in the substantia nigra (SN) and more recently discovered in motor neurons of the spinal cord (SC). These neurotoxins also increase calpain activity, furthering the neuroinflammatory response. Hence, calpain inhibitors have been posited as potential therapeutics for PD to prevent calpain-related inflammation and neurodegenerative responses in not only the SN but the SC as well.
Collapse
Affiliation(s)
- Andrew Gao
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hannah M. McCoy
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
11
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
12
|
Gleitze S, Paula-Lima A, Núñez MT, Hidalgo C. The calcium-iron connection in ferroptosis-mediated neuronal death. Free Radic Biol Med 2021; 175:28-41. [PMID: 34461261 DOI: 10.1016/j.freeradbiomed.2021.08.231] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marco T Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Fross S, Mansel C, McCormick M, Vohra BPS. Tributyltin Alters Calcium Levels, Mitochondrial Dynamics, and Activates Calpains Within Dorsal Root Ganglion Neurons. Toxicol Sci 2021; 180:342-355. [PMID: 33481012 DOI: 10.1093/toxsci/kfaa193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tributyltin (TBT) remains a global health concern. The primary route of human exposure to TBT is either through ingestion or skin absorption, but TBT's effects on the peripheral nervous system have still not been investigated. Therefore, we exposed in vitro sensory dorsal root ganglion (DRG) neurons to TBT at a concentration of 50-200 nM, which is similar to the observed concentrations of TBT in human blood samples. We observed that TBT causes extensive axon degeneration and neuronal death in the DRG neurons. Furthermore, we discovered that TBT causes an increase in both cytosolic and mitochondrial calcium levels, disrupts mitochondrial dynamics, decreases neuronal ATP levels, and leads to the activation of calpains. Additional experiments demonstrated that inhibition of calpain activation prevented TBT-induced fragmentation of neuronal cytoskeletal proteins and neuronal cell death. Thus, we conclude that calpain activation is the key executioner of TBT-induced peripheral neurodegeneration.
Collapse
Affiliation(s)
- Shaneann Fross
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Clayton Mansel
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | - Madison McCormick
- Department of Biology, William Jewell College, Liberty, Missouri 64068, USA
| | | |
Collapse
|
14
|
Britti E, Delaspre F, Tamarit J, Ros J. Calpain-Inhibitors Protect Frataxin-Deficient Dorsal Root Ganglia Neurons from Loss of Mitochondrial Na +/Ca 2+ Exchanger, NCLX, and Apoptosis. Neurochem Res 2021; 46:108-119. [PMID: 32249386 DOI: 10.1007/s11064-020-03020-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
Calpains are calcium-dependent proteases activated in apoptotic cell death and neurodegeneration. Friedreich Ataxia is a neurodegenerative rare disease caused by frataxin deficiency, a mitochondrial protein. Dorsal root ganglion (DRG) sensory neurons are among the cellular types most affected in this disease. We have previously demonstrated that frataxin-deficient DRGs show calpain activation, alteration in calcium levels and decreased content of the Na+/Ca2+ exchanger (NCLX). This transporter is involved in mitochondrial calcium efflux. In this study, we have performed a time-course analysis of several parameters altered in a frataxin-deficient DRGs. These include decline of NCLX levels, calcium accumulation, mitochondrial depolarization, α-fodrin fragmentation and apoptotic cell death. Furthermore, we have analysed the effect of the calpain inhibitors MDL28170 and Calpeptin on these parameters. We have observed that these inhibitors increase NCLX levels, protect sensory neurons from neurite degeneration and calcium accumulation, and restore mitochondrial membrane potential. In addition, calpain 1 reduction alleviated neurodegeneration in frataxin-deficient DRG neurons. These results strengthen the hypothesis of a central role for calcium homeostasis and calpains in frataxin-deficient dorsal root ganglia neurons.
Collapse
Affiliation(s)
- Elena Britti
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Fabien Delaspre
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
15
|
Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020; 9:E2698. [PMID: 33339205 PMCID: PMC7765587 DOI: 10.3390/cells9122698] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Calpains are a family of soluble calcium-dependent proteases that are involved in multiple regulatory pathways. Our laboratory has focused on the understanding of the functions of two ubiquitous calpain isoforms, calpain-1 and calpain-2, in the brain. Results obtained over the last 30 years led to the remarkable conclusion that these two calpain isoforms exhibit opposite functions in the brain. Calpain-1 activation is required for certain forms of synaptic plasticity and corresponding types of learning and memory, while calpain-2 activation limits the extent of plasticity and learning. Calpain-1 is neuroprotective both during postnatal development and in adulthood, while calpain-2 is neurodegenerative. Several key protein targets participating in these opposite functions have been identified and linked to known pathways involved in synaptic plasticity and neuroprotection/neurodegeneration. We have proposed the hypothesis that the existence of different PDZ (PSD-95, DLG and ZO-1) binding domains in the C-terminal of calpain-1 and calpain-2 is responsible for their association with different signaling pathways and thereby their different functions. Results with calpain-2 knock-out mice or with mice treated with a selective calpain-2 inhibitor indicate that calpain-2 is a potential therapeutic target in various forms of neurodegeneration, including traumatic brain injury and repeated concussions.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| |
Collapse
|
16
|
Jastaniah A, Gaisina IN, Knopp RC, Thatcher GRJ. Synthesis of α-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents. ChemMedChem 2020; 15:2280-2285. [PMID: 32840034 DOI: 10.1002/cmdc.202000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/23/2020] [Indexed: 01/05/2023]
Abstract
Calpain inhibitors have been proposed as drug candidates for neurodegenerative disorders, with ABT-957 entering clinical trials for Alzheimer's disease and mild cognitive impairment. The structure of ABT-957 was very recently disclosed, and trials were terminated owing to inadequate CNS concentrations to obtain a pharmacodynamic effect. The multistep synthesis of an α-ketoamide peptidomimetic inhibitor series potentially including ABT-957 was optimized to yield diastereomerically pure compounds that are potent and selective for calpain-1 over papain and cathepsins B and K. As the final oxidation step, with its optimized synthesis protocol, does not alter the configuration of the substrate, the synthesis of the diastereomeric pair (R)-1-benzyl-N-((S)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 c) and (R)-1-benzyl-N-((R)-4-((4-fluorobenzyl)amino)-3,4-dioxo-1-phenylbutan-2-yl)-5-oxopyrrolidine-2-carboxamide (1 g) was feasible. This allowed the exploration of stereoselective inhibition of calpain-1, with 1 c (IC50 =78 nM) being significantly more potent than 1 g. Moreover, inhibitor 1 c restored cognitive function in amnestic mice.
Collapse
Affiliation(s)
- Ammar Jastaniah
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Rachel C Knopp
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL., 60612, USA
| |
Collapse
|
17
|
Song Z, Shen F, Zhang Z, Wu S, Zhu G. Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus. Neuropharmacology 2020; 174:108175. [DOI: 10.1016/j.neuropharm.2020.108175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
|
18
|
Cai Z, Zhu X, Zhang G, Wu F, Lin H, Tan M. Ammonia induces calpain-dependent cleavage of CRMP-2 during neurite degeneration in primary cultured neurons. Aging (Albany NY) 2020; 11:4354-4366. [PMID: 31278888 PMCID: PMC6660054 DOI: 10.18632/aging.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Hyperammonemia in the CNS induces irreversible damages to neurons due to ultimate cell loss. Neurite degeneration, a primary event that leads to neuronal cell death, remains less elucidated especially in hyperammonemia circumstances. Here, we found that the administration of ammonia induced neurite degeneration in cultured cerebellar granule neurons. The resulting altered neuronal morphology, rupture of neurites, and disassembly of the cytoskeleton led to cell death. Calcein and Fluo-4 staining revealed that ammonia induced intracellular calcium dysregulation. Subsequently activated calpain cleaved CRMP-2, a microtubule assembly protein. Pharmacologically inhibition of calpain, but not caspases or GSK-3, suppressed the cleavage of CRMP-2 and reversed neurite degeneration under ammonia treatment. Exposure to ammonia decreased whereas inhibition of calpain restored the amplitude and frequency of miniature excitatory postsynaptic currents. These data suggest a mechanism by which elevated ammonia level may induce neuronal dysfunction via abnormal calcium influx and calpain-dependent CRMP-2 cleavage, leading to abnormal synaptic transmission, cytoskeletal collapse, and neurite degeneration.
Collapse
Affiliation(s)
- Zhenbin Cai
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaonan Zhu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengming Wu
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghui Tan
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Binyamin O, Nitzan K, Frid K, Ungar Y, Rosenmann H, Gabizon R. Brain targeting of 9c,11t-Conjugated Linoleic Acid, a natural calpain inhibitor, preserves memory and reduces Aβ and P25 accumulation in 5XFAD mice. Sci Rep 2019; 9:18437. [PMID: 31804596 PMCID: PMC6895090 DOI: 10.1038/s41598-019-54971-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023] Open
Abstract
Deregulation of Cyclin-dependent kinase 5 (CDK5) by binding to the activated calpain product p25, is associated with the onset of neurodegenerative diseases, such as Alzheimer's disease (AD). Conjugated Linoleic Acid (CLA), a calpain inhibitor, is a metabolite of Punicic Acid (PA), the main component of Pomegranate seed oil (PSO). We have shown recently that long-term administration of Nano-PSO, a nanodroplet formulation of PSO, delays mitochondrial damage and disease advance in a mouse model of genetic Creutzfeldt Jacob disease (CJD). In this project, we first demonstrated that treatment of mice with Nano-PSO, but not with natural PSO, results in the accumulation of CLA in their brains. Next, we tested the cognitive, biochemical and pathological effects of long-term administration of Nano-PSO to 5XFAD mice, modeling for Alzheimer's disease. We show that Nano-PSO treatment prevented age-related cognitive deterioration and mitochondrial oxidative damage in 5XFAD mice. Also, brains of the Nano-PSO treated mice presented reduced accumulation of Aβ and of p25, a calpain product, and increased expression of COX IV-1, a key mitochondrial enzyme. We conclude that administration of Nano-PSO results in the brain targeting of CLA, and suggest that this treatment may prevent/delay the onset of neurodegenerative diseases, such as AD and CJD.
Collapse
Affiliation(s)
- Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Keren Nitzan
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yael Ungar
- Chemistry laboratory, Milouda & Migal Laboratories, Merieux Nutrisciences, Milu'ot South Industrial Zone, Akko, Israel
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
20
|
Latour A, Gu Y, Kassis N, Daubigney F, Colin C, Gausserès B, Middendorp S, Paul JL, Hindié V, Rain JC, Delabar JM, Yu E, Arbones M, Mallat M, Janel N. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Mol Neurobiol 2019; 56:963-975. [PMID: 29850989 DOI: 10.1007/s12035-018-1113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.
Collapse
Affiliation(s)
- Alizée Latour
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Yuchen Gu
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Nadim Kassis
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Fabrice Daubigney
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Catherine Colin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Blandine Gausserès
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Sandrine Middendorp
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France
| | | | | | - Jean-Maurice Delabar
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB), 08028, Barcelona, Spain
| | - Michel Mallat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France.
- Laboratoire BFA, Université Paris Diderot - Paris 7, Case 7104, 3 rue Marie-Andrée Lagroua Weill Hallé, 75205, Paris Cedex 13, France.
| |
Collapse
|
21
|
Abstract
The calpain activity in cells can be experimentally manipulated in vitro by calpain inhibitors, and various types of calpain inhibitors such as peptide aldehydes and α-mercapto-acrylic acid derivatives are widely used as a valuable tool to elucidate the physiological and pathological roles of calpain. Here I describe the experimental procedures with calpain inhibitors, with human neutrophils being primarily used in this experiment. It should be noted that potent calpain inhibitors not only inhibit the calpain activity but also stimulate cell functions via direct activation of human formyl peptide receptors and/or other G protein-coupled receptors depending on the inhibitors used.
Collapse
|
22
|
Ahmad F, Das D, Kommaddi RP, Diwakar L, Gowaikar R, Rupanagudi KV, Bennett DA, Ravindranath V. Isoform-specific hyperactivation of calpain-2 occurs presymptomatically at the synapse in Alzheimer's disease mice and correlates with memory deficits in human subjects. Sci Rep 2018; 8:13119. [PMID: 30177812 PMCID: PMC6120938 DOI: 10.1038/s41598-018-31073-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Calpain hyperactivation is implicated in late-stages of neurodegenerative diseases including Alzheimer's disease (AD). However, calpains are also critical for synaptic function and plasticity, and hence memory formation and learning. Since synaptic deficits appear early in AD pathogenesis prior to appearance of overt disease symptoms, we examined if localized dysregulation of calpain-1 and/or 2 contributes to early synaptic dysfunction in AD. Increased activity of synaptosomal calpain-2, but not calpain-1 was observed in presymptomatic 1 month old APPswe/PS1ΔE9 mice (a mouse model of AD) which have no evident pathological or behavioural hallmarks of AD and persisted up to 10 months of age. However, total cellular levels of calpain-2 remained unaffected. Moreover, synaptosomal calpain-2 was hyperactivated in frontal neocortical tissue samples of post-mortem brains of AD-dementia subjects and correlated significantly with decline in tests for cognitive and memory functions, and increase in levels of β-amyloid deposits in brain. We conclude that isoform-specific hyperactivation of calpain-2, but not calpain-1 occurs at the synapse early in the pathogenesis of AD potentially contributing to the deregulation of synaptic signaling in AD. Our findings would be important in paving the way for potential therapeutic strategies for amelioration of cognitive deficits observed in ageing-related dementia disorders like AD.
Collapse
Affiliation(s)
- Faraz Ahmad
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Debajyoti Das
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Reddy Peera Kommaddi
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Latha Diwakar
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Ruturaj Gowaikar
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Khader Valli Rupanagudi
- 0000 0001 0482 5067grid.34980.36Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - David A. Bennett
- 0000 0001 0705 3621grid.240684.cRush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India. .,Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
23
|
Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 2018; 14:1090-1098. [PMID: 29989056 PMCID: PMC6036726 DOI: 10.7150/ijbs.25996] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cells (RGCs) are one of the important cell types affected in many ocular neurodegenerative diseases. Oxidative stress is considered to be involved in retinal RGCs death in ocular neurodegenerative diseases. More and more attention has been focused on studying the agents that may have neuroprotective effects. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key nuclear transcription factor for the systemic antioxidant defense system. This review elucidates the underlying mechanism of the Nrf2-mediated neuroprotective effects on RGCs in ocular neurodegenerative diseases, such as diabetic retinopathy and retinal ischemia-reperfusion injury. Several Nrf2 inducers that shield RGCs from oxidative stress-induced neurodegeneration via regulating Nrf2 signaling are discussed.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of . Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Jing Qi
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
24
|
Broadgate S, Kiire C, Halford S, Chong V. Diabetic macular oedema: under-represented in the genetic analysis of diabetic retinopathy. Acta Ophthalmol 2018; 96 Suppl A111:1-51. [PMID: 29682912 DOI: 10.1111/aos.13678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy, a complication of both type 1 and type 2 diabetes, is a complex disease and is one of the leading causes of blindness in adults worldwide. It can be divided into distinct subclasses, one of which is diabetic macular oedema. Diabetic macular oedema can occur at any time in diabetic retinopathy and is the most common cause of vision loss in patients with type 2 diabetes. The purpose of this review is to summarize the large number of genetic association studies that have been performed in cohorts of patients with type 2 diabetes and published in English-language journals up to February 2017. Many of these studies have produced positive associations with gene polymorphisms and diabetic retinopathy. However, this review highlights that within this large body of work, studies specifically addressing a genetic association with diabetic macular oedema, although present, are vastly under-represented. We also highlight that many of the studies have small patient numbers and that meta-analyses often inappropriately combine patient data sets. We conclude that there will continue to be conflicting results and no meaningful findings will be achieved if the historical approach of combining all diabetic retinopathy disease states within patient cohorts continues in future studies. This review also identifies several genes that would be interesting to analyse in large, well-defined cohorts of patients with diabetic macular oedema in future candidate gene association studies.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Christine Kiire
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
- Oxford Eye Hospital; John Radcliffe Hospital; Oxford University NHS Foundation Trust; Oxford UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| | - Victor Chong
- Nuffield Laboratory of Ophthalmology; Nuffield Department of Clinical Neurosciences; University of Oxford; Oxford UK
| |
Collapse
|
25
|
Zhang Q, Zhang P, Qi GJ, Zhang Z, He F, Lv ZX, Peng X, Cai HW, Li TX, Wang XM, Tian B. Cdk5 suppression blocks SIRT1 degradation via the ubiquitin-proteasome pathway in Parkinson's disease models. Biochim Biophys Acta Gen Subj 2018; 1862:1443-1451. [PMID: 29571747 DOI: 10.1016/j.bbagen.2018.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
Abstract
The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family, may have a neuroprotective effect in multiple neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). Many studies have suggested that overexpression-induced or resveratrol-treated activation of SIRT1 could significantly ameliorate several neurodegenerative diseases in mouse models. However, the type of SIRT1, protein expression levels and underlying mechanisms remain unclear, especially in PD. In this study, the results demonstrated that SIRT1 knockout markedly worsened the movement function in MPTP-lesioned animal model of PD. SIRT1 expression was found to be markedly decreased not only in environmental factor PD models, neurotoxin MPP+-treated primary culture neurons and MPTP-induced mice but also in genetic factor PD models, overexpressed α-synuclein-A30PA53T SH-SY5Y stable cell line and hm2α-SYN-39 transgenic mouse strain. Importantly, the degradation of SIRT1 during MPP+ treatment was mediated by the ubiquitin-proteasome pathway. Furthermore, the results indicated that cyclin-dependent kinase 5 (Cdk5) was also involved in the decrease of SIRT1 expression, which could be efficiently blocked by the inhibition of Cdk5. In conclusion, our findings revealed that the Cdk5-dependent ubiquitin-proteasome pathway mediated degradation of SIRT1 plays a vital role in the progression of PD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Guang-Jian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Zheng Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Feng He
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Ze-Xi Lv
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xiang Peng
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Hong-Wei Cai
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Tong-Xia Li
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Xue-Min Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, Guangdong Province 510515, PR China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China; Key Laboratory of Neurological Diseases, Ministry of Education, 13 Hangkong Road, Wuhan, Hubei Province 430030, PR China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China.
| |
Collapse
|
26
|
Abstract
INTRODUCTION Calpains represent a family of neutral, calcium-dependent proteases, which modify the function of their target proteins by partial truncation. These proteases have been implicated in numerous cell functions, including cell division, proliferation, migration, and death. In the CNS, where calpain-1 and calpain-2 are the main calpain isoforms, their activation has been linked to synaptic plasticity as well as to neurodegeneration. This review will focus on the role of calpain-2 in acute neuronal injury and discuss the possibility of developing selective calpain-2 inhibitors for therapeutic purposes. Areas covered: This review covers the literature showing how calpain-2 is implicated in neuronal death in a number of pathological conditions. The possibility of developing new selective calpain-2 inhibitors for treating these conditions is discussed. Expert opinion: As evidence accumulates that calpain-2 activation participates in acute neuronal injury, there is interest in developing therapeutic approaches using selective calpain-2 inhibitors. Recent data indicate the potential use of such inhibitors in various pathologies associated with acute neuronal death. The possibility of extending the use of such inhibitors to more chronic forms of neurodegeneration is discussed.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Xiaoning Bi
- Department of Basic Science, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Michel Baudry
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| |
Collapse
|
27
|
Nam HY, Na EJ, Lee E, Kwon Y, Kim HJ. Antiepileptic and Neuroprotective Effects of Oleamide in Rat Striatum on Kainate-Induced Behavioral Seizure and Excitotoxic Damage via Calpain Inhibition. Front Pharmacol 2017; 8:817. [PMID: 29209207 PMCID: PMC5702338 DOI: 10.3389/fphar.2017.00817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
Oleamide was first known as a sleep-inducing fatty acid amide, and later shown to have wide range of neuropharmacological effects upon different neurochemical systems. However, the effects of oleamide on brain damage have scarcely been studied, and the molecular mechanisms and sites of its action remain elusive. Kainic acid (KA) has been used to produce an epileptic animal model that mimics human temporal lobe epilepsy and to induce calpain-activated excitotoxicity, which occurs in numerous neurodegenerative disorders. In this study, we examined whether oleamide protects against the KA-induced excitotoxic brain damage accompanied by behavioral seizure activity and neuronal cell death. Moreover, whether these effects of oleamide were mediated by calpain activity-related cellular mechanisms was investigated. KA-induced epileptic rats were produced by an intrastriatal injection of KA (5 nmole). Oral administration of oleamide (0.5, 2, and 10 mg/kg) 30 min prior to the KA injection showed dose-dependent inhibition of the KA-induced behavioral seizure activities that were monitored starting from 60 to 180 min post-surgery. Further repetitive oral administration of oleamide (once per day) for the next 4 consecutive days post-KA injection produced significant neuroprotection against the disrupted neuronal integrity that resulted from KA-induced excitotoxic damage that was also demonstrated by staining of striatal tissue sections with cresyl violet, hematoxylin/eosin, and fluoro-Jade B. In addition, oleamide blocked the KA-induced cleavage of cyclin-dependent kinase-5 coactivator (Cdk5-p35) and collapsin response mediator protein-2, which are believed to be mediated by calpain activation in striatal tissues dissected from KA-induced epileptic rats. Oleamide also reversed the KA-induced reduction in expression of an endogenous calpain inhibitory protein, calpastatin, and a marker of synaptic activity, synapsin-II. The hypothesis that oleamide could induce direct calpain inhibition was further investigated using in vitro calpain assays in both brain tissue and a cell-free and calpain-overexpressed neuronal cell system. These findings together suggest that oleamide has protective effects against excitotoxicity-induced neuronal death and behavioral seizure, partly via its direct calpain inhibitory activity.
Collapse
Affiliation(s)
- Hye Yeon Nam
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Eun Jung Na
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Eunyoung Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Hwa-Jung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
28
|
Wang Y, Zhang X, Song Z, Gu F. An anti-CAPN5 intracellular antibody acts as an inhibitor of CAPN5-mediated neuronal degeneration. Oncotarget 2017; 8:100312-100325. [PMID: 29245980 PMCID: PMC5725022 DOI: 10.18632/oncotarget.22221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
CAPN5 has been linked to autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). Activation of CAPN5 may increase proteolysis and degradation of a wide range of substrates to induce degeneration in the retina and the nerve system. Thus, we developed an inhibitory intracellular single chain variable fragment (scFv) against CAPN5 as a potential way to rescue degeneration in ADNIV disease or in neuronal degeneration. We report that overexpression CAPN5 increases the levels of the auto-inflammatory factors toll like receptor 4 (TLR4), interleukin 1 alpha (IL1alpha), tumor necrosis factor alpha (TNFalpha) and activated caspase 3 in 661W photoreceptor-like cells and SHSY5Y neuronal-like cells. Both C4 and C8 scFvs specifically recognize human/mouse CAPN5 in 661W cells and SHSY5Y cells, moreover, both the C4 and C8 scFvs protected cells from CAPN5-induced apoptosis by reducing the levels of activated caspase 3 and caspase 9. The cellular expression C4 scFv reduced levels of the pro-inflammatory factor IL1-alpha activated caspase 3 in cells after CAPN5 overexpression. We suggest that CAPN5 expression has important functional consequences in auto-inflammatory processes, and apoptosis in photoreceptor like cells and neural-like cells. Importantly, the specific intracellular targeting of antibody fragments blocking activation of CAPN5 act as inhibitors of CAPN5 functions in neural like cells, thus, our data provides a novel potential tool for therapy in CAPN5-mediated ADNIV or neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Zhang
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zongming Song
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Feng Gu
- State Key Laboratory, Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
29
|
Kling A, Jantos K, Mack H, Hornberger W, Drescher K, Nimmrich V, Relo A, Wicke K, Hutchins CW, Lao Y, Marsh K, Moeller A. Discovery of Novel and Highly Selective Inhibitors of Calpain for the Treatment of Alzheimer's Disease: 2-(3-Phenyl-1H-pyrazol-1-yl)-nicotinamides. J Med Chem 2017; 60:7123-7138. [PMID: 28759231 DOI: 10.1021/acs.jmedchem.7b00731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calpain overactivation has been implicated in a variety of pathological disorders including ischemia/reperfusion injury, cataract formation, and neurodegenerative diseases such as Alzheimer's disease (AD). Herein we describe our efforts leading to the identification of ketoamide-based 2-(3-phenyl-1H-pyrazol-1-yl)nicotinamides as potent and reversible inhibitors of calpain with high selectivity versus related cysteine protease cathepsins, other proteases, and receptors. Broad efficacy in a set of preclinical models relevant to AD suggests that inhibition of calpain represents an attractive approach with potential benefit for the treatment of AD.
Collapse
Affiliation(s)
- Andreas Kling
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Katja Jantos
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Helmut Mack
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Wilfried Hornberger
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karla Drescher
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Volker Nimmrich
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Ana Relo
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Karsten Wicke
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| | - Charles W Hutchins
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Yanbin Lao
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Kennan Marsh
- AbbVie Inc. , 1 North Waukegan Road, North Chicago, Illinois 60064-6125, United States
| | - Achim Moeller
- Neuroscience Research, AbbVie Deutschland GmbH & Co. KG , Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
30
|
Diling C, Tianqiao Y, Jian Y, Chaoqun Z, Ou S, Yizhen X. Docking Studies and Biological Evaluation of a Potential β-Secretase Inhibitor of 3-Hydroxyhericenone F from Hericium erinaceus. Front Pharmacol 2017; 8:219. [PMID: 28553224 PMCID: PMC5427148 DOI: 10.3389/fphar.2017.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting approximately more than 5% of the population worldwide over the age 65, annually. The incidence of AD is expected to be higher in the next 10 years. AD patients experience poor prognosis and as a consequence new drugs and therapeutic strategies are required in order to improve the clinical responses and outcomes of AD. The purpose of the present study was to screen a certain number of potential compounds from herbal sources and investigate their corresponding mode of action. In the present study, the learning and memory effects of ethanol:water (8:2) extracts from Hericium erinaceus were evaluated on a dementia rat model. The model was established by intraperitoneal injection of 100 mg/kg/d D-galactose in rats. The results indicated that the extracts can significantly ameliorate the learning and memory abilities. Specific active ingredients were screened in vivo assays and the results were combined with molecular docking studies. Potential receptor–ligand interactions on the BACE1-inhibitor namely, 3-Hydroxyhericenone F (3HF) were investigated. The isolation of a limited amount of 3HF from the fruit body of H. erinaceus by chemical separation was conducted, and the mode of action of this compound was verified in NaN3-induced PC12 cells. The cell-based assays demonstrated that 3HF can significantly down-regulate the expression of BACE1 (p < 0.01), while additional AD intracellular markers namely, p-Tau and Aβ1-42 were further down-regulated (p < 0.05). The data further indicate that 3HF can ameliorate certain mitochondrial dysfunction conditions by the reversal of the decreasing level of mitochondrial respiratory chain complexes, the calcium ion levels ([Ca2+]), the inhibiton in the production of ROS, the increase in the mitochondrial membrane potential and ATP levels, and the regulation of the expression levels of the genes encoding for the p21, COX I, COX II, PARP1, and NF-κB proteins. The observations suggest the use of H. erinaceus in traditional medicine for the treatment of various neurological diseases and render 3HF as a promising naturally occurring chemical constituent for the treatment of AD via the inhibition of the β-secretase enzyme.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yong Tianqiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China.,College of Chinese Material Medical, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| |
Collapse
|
31
|
Calpain-1 resident in lipid raft/caveolin-1 membrane microdomains plays a protective role in endothelial cells. Biochimie 2017; 133:20-27. [DOI: 10.1016/j.biochi.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
|
32
|
Kim C, Oh YJ. A Novel 2-DE-Based Proteomic Analysis to Identify Multiple Substrates for Specific Protease in Neuronal Cells. Methods Mol Biol 2017; 1598:229-245. [PMID: 28508364 DOI: 10.1007/978-1-4939-6952-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteolysis is a process where proteins are broken down into smaller polypeptides or amino acids, comprising one of the important posttranslational modifications of proteins. Since this process is exquisitely achieved by specialized enzymes called proteases under physiological conditions, abnormal protease activity and dysregulation of their substrate proteins are closely associated with a progression of several neurodegenerative diseases including Alzheimer disease, Parkinson disease, stroke, and spinal cord injury. Thus, it is important to identify the specific substrates of proteases with nonbiased high-throughput screenings to understand how proteolysis contributes to neurodegeneration. Here, we described a so-called gel-based protease proteomic approach. Critical steps of our novel strategy consist of two-dimensional polyacrylamide gel electrophoresis (2-DE)-based protein separation and in vitro incubation with the specific protease of interest. As a prototypic example, cellular lysates obtained from neuronal cells are separated by an isoelectric focusing, and the resulting immobilized proteins on a gel strip are incubated with a predetermined amount of a recombinant or a purified protease. By densitometric analysis of the Coomassie Brilliant Blue-stained gel images following separation by 2-DE, significantly altered protein spots are subjected to a mass spectral analysis for protein identification. Interestingly, the concepts of our strategy can be applied to any proteases, and to any neural cells or neural tissues of one's interest. Since the immobilized protein spots are exposed to the purified protease, this protocol ensures the identification of only substrates that are directly cleaved by specific protease. This protocol ensures to avoid the possibility of identifying substrates that may be cleaved by combinatorial or sequential activation of proteolytic enzymes present in a liquid state of the lysates. We propose that our strategy can be effectively utilized to provide meaningful insights into newly identified protease substrates and to decipher molecular mechanisms critically involved in neurodegenerative processes.
Collapse
Affiliation(s)
- Chiho Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 134 Shinchon-dong Seodaemoon-gu, Seoul, 120-749, South Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 134 Shinchon-dong Seodaemoon-gu, Seoul, 120-749, South Korea.
| |
Collapse
|
33
|
Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JBT, Aschner M. Methylmercury and brain development: A review of recent literature. J Trace Elem Med Biol 2016; 38:99-107. [PMID: 26987277 PMCID: PMC5011031 DOI: 10.1016/j.jtemb.2016.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.
Collapse
Affiliation(s)
| | - Mariana Appel Hort
- Institute of Biological Sciences, Federal University of Rio Grande, Campus Carreiros, Rio Grande do Sul, Brazil
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Caridad López-Granero
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Joao B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
34
|
Freitas ACS, Figueiredo MJ, Campos EC, Soave DF, Ramos SG, Tanowitz HB, Celes MRN. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition. PLoS One 2016; 11:e0166839. [PMID: 27880847 PMCID: PMC5120800 DOI: 10.1371/journal.pone.0166839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/05/2016] [Indexed: 11/18/2022] Open
Abstract
Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis.
Collapse
Affiliation(s)
- Ana Caroline Silva Freitas
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Jose Figueiredo
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Erica Carolina Campos
- Department of Physiotherapy, Faculty of Physical Education, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Danilo Figueiredo Soave
- Department of Histology, Embryology and Cellular Biology, Federal University of Goias, Goias, Brazil
| | - Simone Gusmao Ramos
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Herbert B. Tanowitz
- Departments of Pathology and medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, United States of America
| | - Mara Rúbia N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goias, Brazil
- * E-mail: ,
| |
Collapse
|
35
|
Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci 2016; 17:ijms17091558. [PMID: 27649160 PMCID: PMC5037829 DOI: 10.3390/ijms17091558] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Hyongsuk Kim
- Department of Electronics Engineering, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
36
|
Tangmansakulchai K, Abubakar Z, Kitiyanant N, Suwanjang W, Leepiyasakulchai C, Govitrapong P, Chetsawang B. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion. Mitochondrion 2016; 30:151-61. [DOI: 10.1016/j.mito.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
37
|
Suwanjang W, Prachayasittikul S, Prachayasittikul V. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose. PeerJ 2016; 4:e2389. [PMID: 27635352 PMCID: PMC5012261 DOI: 10.7717/peerj.2389] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development.
Collapse
Affiliation(s)
- Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University , Bangkok , Thailand
| |
Collapse
|
38
|
Zhang P, Shao XY, Qi GJ, Chen Q, Bu LL, Chen LJ, Shi J, Ming J, Tian B. Cdk5-Dependent Activation of Neuronal Inflammasomes in Parkinson's Disease. Mov Disord 2016; 31:366-76. [PMID: 26853432 DOI: 10.1002/mds.26488] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Inflammasomes, which mediate the activation of caspase-1 and maturation of IL-1β and IL-18, have been unambiguously verified to participate in many diseases, such as lung diseases, infectious diseases and Alzheimer's disease, but the relation between Parkinson's disease and inflammasomes is poorly understood. METHODS The expression, maturation, and secretion of inflammasomes in neurons were measured. The activation of inflammasomes in the substantia nigra of the brain was tested in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and an α-synuclein transgenic mouse model. The levels of IL-1β and IL-18 in cerebrospinal fluid and serum samples of Parkinson's disease (PD) patients and control subjects were measured. The role of cyclin-dependent kinase 5 (Cdk5) in neuronal inflammasome activation was evaluated using the pharmacological Cdk5 inhibitor roscovitine or Cdk5-targeted deletion. RESULTS Here, we observed the expression of core molecules of inflammasomes, including NALP3, ASC, caspase-1, and IL-1β, in neuronal cells. The PD inducer rotenone could activate neuronal inflammasomes and promote the maturation and secretion of the cleaved IL-1β and IL-18 in a dose- and time-dependent manner. We also detected the activation of inflammasomes in the substantia nigra of a PD mouse model and in cerebrospinal fluid of PD patients. Furthermore, Cdk5 is required for the activation of inflammasomes, and both inhibition and deletion of Cdk5 could efficiently block inflammasome activation in PD models. CONCLUSIONS Together, our results indicated that Cdk5-dependent activation of neuronal inflammasomes was involved in the progression of PD.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiao-Yun Shao
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Guang-Jian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiang Chen
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Lu-Lu Bu
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Li-Jun Chen
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jie Ming
- Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
39
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
40
|
Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS One 2015; 10:e0139750. [PMID: 26431040 PMCID: PMC4592069 DOI: 10.1371/journal.pone.0139750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
We have recently demonstrated that in resting conditions calpain 1, but not calpain 2, is specifically associated to the N-Methyl-D-Aspartate receptor (NMDAR) multiprotein complex. We are here reporting that in SKNBE neuroblastoma cells or in freshly isolated nerve terminals from adult rat hippocampus, the proteolytic activity of calpain 1 resident at the NMDAR is very low under basal conditions and greatly increases following NMDAR stimulation. Since the protease resides at the NMDAR in saturating amounts, variations in Ca2+ influx promote an increase in calpain 1 activity without affecting the amount of the protease originally associated to NMDAR. In all the conditions examined, resident calpain 1 specifically cleaves NR2B at the C-terminal region, leading to its internalization together with NR1 subunit. While in basal conditions intracellular membranes include small amounts of NMDAR containing the calpain-digested NR2B, upon NMDAR stimulation nearly all the receptor molecules are internalized. We here propose that resident calpain 1 is involved in NMDAR turnover, and following an increase in Ca2+ influx, the activated protease, by promoting the removal of NMDAR from the plasma membranes, can decrease Ca2+ entrance through this channel. Due to the absence of calpastatin in such cluster, the activity of resident calpain 1 may be under the control of HSP90, whose levels are directly related to the activation of this protease. Observations of different HSP90/calpain 1 ratios in different ultrasynaptic compartments support this conclusion.
Collapse
|
41
|
Chen LN, Shi Q, Zhang BY, Zhang XM, Wang J, Xiao K, Lv Y, Sun J, Yang XD, Chen C, Zhou W, Han J, Dong XP. Proteomic Analyses for the Global S-Nitrosylated Proteins in the Brain Tissues of Different Human Prion Diseases. Mol Neurobiol 2015; 53:5079-96. [PMID: 26392294 DOI: 10.1007/s12035-015-9440-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023]
Abstract
Human prion diseases are fatal neurodegenerative disorders characterized by neuronal damage in brain. Protein S-nitrosylation, the covalent adduction of a NO to cysteine, plays a role in human brain biology, and brain dysfunction is a prominent feature of prion disease, yet the direct brain targets of S-nitrosylation are largely unknown. We described the first proteomic analysis of global S-nitrosylation in brain tissues of sporadic Creutzfeldt-Jakob disease (sCJD), fatal familial insomnia (FFI), and genetic CJD with a substitution of valine for glycine at codon 114 of the prion protein gene (G114V gCJD) accompanying with normal control with isobaric tags for relative and absolute quantitation (iTRAQ) combined with a nano-HPLC/Q-Exactive mass spectrometry platform. In parallel, we used several approaches to provide quality control for the experimentally defined S-nitrosylated proteins. A total of 1509 S-nitrosylated proteins (SNO-proteins) were identified, and data are available via ProteomeXchange with identifier PXD002813. The cerebellum tissues appeared to contain more commonly differentially expressed SNO-proteins (DESPs) than cortex of sCJD, FFI, and gCJD. Three selected SNO-proteins were verified by Western blots, consistent with proteomics assays. Gene ontology analysis showed that more up-regulated DESPs were involved in metabolism, cell cytoskeleton/structure, and immune system both in the cortex and cerebellum, while more down-regulated ones in both regions were involved in cell cytoskeleton/structure, cell-cell communication, and miscellaneous function protein. Pathway analysis suggested that systemic lupus erythematosus, pathogenic Escherichia coli infection, and extracellular matrix-receptor interaction were the most commonly affected pathways, which were identified from at least two different diseases. Using STRING database, the network of immune system and cell cytoskeleton and structure were commonly identified in the context of the up-regulated and down-regulated DESPs, respectively, both in the cortex and cerebellum. Our study thus have implications for understanding the molecular mechanisms of human prion diseases related to abnormal protein S-nitrosylation and pave the way for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases.
Collapse
Affiliation(s)
- Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Xiao-Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Jing Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Yan Lv
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Jing Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Xiao-Dong Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Jun Han
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China. .,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, People's Republic of China. .,Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Ferlemi AV, Mermigki PG, Makri OE, Anagnostopoulos D, Koulakiotis NS, Margarity M, Tsarbopoulos A, Georgakopoulos CD, Lamari FN. Cerebral Area Differential Redox Response of Neonatal Rats to Selenite-Induced Oxidative Stress and to Concurrent Administration of Highbush Blueberry Leaf Polyphenols. Neurochem Res 2015; 40:2280-92. [DOI: 10.1007/s11064-015-1718-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/28/2015] [Accepted: 09/04/2015] [Indexed: 12/30/2022]
|
43
|
Hayashi A, Le Gal K, Södersten K, Vizlin-Hodzic D, Ågren H, Funa K. Calcium-dependent intracellular signal pathways in primary cultured adipocytes and ANK3 gene variation in patients with bipolar disorder and healthy controls. Mol Psychiatry 2015; 20:931-40. [PMID: 25311363 PMCID: PMC4759096 DOI: 10.1038/mp.2014.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/11/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
Bipolar disorder (BD) is a chronic psychiatric disorder of public health importance affecting >1% of the Swedish population. Despite progress, patients still suffer from chronic mood switches with potential severe consequences. Thus, early detection, diagnosis and initiation of correct treatment are critical. Cultured adipocytes from 35 patients with BD and 38 healthy controls were analysed using signal pathway reporter assays, that is, protein kinase C (PKC), protein kinase A (PKA), mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)), Myc, Wnt and p53. The levels of activated target transcriptional factors were measured in adipocytes before and after stimulation with lithium and escitalopram. Variations were analysed in the loci of 25 different single-nucleotide polymorphisms (SNPs). Activation of intracellular signals in several pathways analysed were significantly higher in patients than in healthy controls upon drug stimulation, especially with escitalopram stimulation of PKC, JNK and Myc, as well as lithium-stimulated PKC, whereas no meaningful difference was observed before stimulation. Univariate analyses of contingency tables for 80 categorical SNP results versus diagnoses showed a significant link with the ANK3 gene (rs10761482; likelihood ratio χ(2)=4.63; P=0.031). In a multivariate ordinal logistic fit for diagnosis, a backward stepwise procedure selected ANK3 as the remaining significant predictor. Comparison of the escitalopram-stimulated PKC activity and the ANK3 genotype showed them to add their share of the diagnostic variance, with no interaction (15% of variance explained, P<0.002). The study is cross-sectional with no longitudinal follow-up. Cohorts are relatively small with no medication-free patients, and there are no 'ill patient' controls. It takes 3 to 4 weeks of culture to expand adipocytes that may change epigenetic profiles but remove the possibility of medication effects. Abnormalities in the reactivity of intracellular signal pathways to stimulation and the ANK3 genotype may be associated with pathogenesis of BD. Algorithms using biological patterns such as pathway reactivity together with structural genetic SNP data may provide opportunities for earlier detection and effective treatment of BD.
Collapse
Affiliation(s)
- A Hayashi
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - K Le Gal
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - K Södersten
- Sahlgrenska Academy, Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - D Vizlin-Hodzic
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - H Ågren
- Sahlgrenska Academy, Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska University Hospital, Gothenburg, Sweden,Sahlgrenska Academy, Institute of Neuroscience and Physiology, Section of Psychiatry and Neurochemistry, Sahlgrenska University Hospital, SE 41685 Gothenburg, Sweden. E-mail:
| | - K Funa
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden,Sahlgrenska Cancer Center, University of Gothenburg, Medicinaregatan 1G, SE 40530 Gothenburg, Sweden. E-mail:
| |
Collapse
|
44
|
Kim C, Yun N, Lee J, Youdim MBH, Ju C, Kim WK, Han PL, Oh YJ. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death. Cell Death Differ 2015. [PMID: 26206088 DOI: 10.1038/cdd.2015.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIP(S20A), but not CHIP(WT), attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli.
Collapse
Affiliation(s)
- C Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - N Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - M B H Youdim
- Technion Rapport Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel
| | - C Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - W-K Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - P-L Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
45
|
Jurado-Arjona J, Goñi-Oliver P, Rodríguez-Prada L, Engel T, Henshall DC, Ávila J, Hernández F. Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. Brain Res 2015; 1611:84-92. [PMID: 25779040 DOI: 10.1016/j.brainres.2015.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
Abstract
In neuronal cultures, glycogen synthase kinase 3(GSK3) is truncated at the N-terminal end by calpain downstream of activated glutamate receptors. However, the in vivo biological significance of that truncation has not been explored. In an attempt to elucidate if GSK3 truncation has a pathophysiological relevance, we have used intraperitoneal injections of kainic acid (KA) in rats and intra-amygdala KA microinjections in mice as in vivo models of excitotoxicity. Spectrin cleavage analyzed by immunohistochemistry was observed in the CA1 hippocampal field in KA-intraperitoneal treated rats while the CA3 region was the hippocampal area affected after intra-amygdala KA microinjections. GSK3β immunofluorescence did not colocalize with truncated spectrin in both treatments using an antibody that recognize the N-terminal end of GSK3β. Thus, those neurons which are spectrin-positive do not show GSK3β immunolabelling. To study GSK3β truncation in vitro, we exposed organotypic hippocampal slices and cultured cortical neurons to KA leading to the truncation of GSK3 and we found that truncation was blocked by the calpain inhibitor calpeptin. These data suggest a relationship between N-terminal GSK3β truncation and excitotoxicity. Overall, our data reinforces the important relationship between glutamate receptors and GSK3 and their role in neurodegenerative processes in which excitotoxicity is involved.
Collapse
Affiliation(s)
- Jerónimo Jurado-Arjona
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, 28031 Madrid, Spain
| | - Paloma Goñi-Oliver
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Lucía Rodríguez-Prada
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen׳s Green, Dublin 2, Ireland
| | - D C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen׳s Green, Dublin 2, Ireland
| | - Jesús Ávila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, 28031 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, 28031 Madrid, Spain.
| |
Collapse
|
46
|
Jerónimo-Santos A, Fonseca-Gomes J, Guimarães DA, Tanqueiro SR, Ramalho RM, Ribeiro JA, Sebastião AM, Diógenes MJ. Brain-derived neurotrophic factor mediates neuroprotection against Aβ-induced toxicity through a mechanism independent on adenosine 2A receptor activation. Growth Factors 2015; 33:298-308. [PMID: 26365294 DOI: 10.3109/08977194.2015.1080696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aβ25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-β (Aβ) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aβ-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aβ. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aβ insult do not require the activation of A2AR.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - João Fonseca-Gomes
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Diogo Andrade Guimarães
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Sara Ramalho Tanqueiro
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Rita Mira Ramalho
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Joaquim Alexandre Ribeiro
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Ana Maria Sebastião
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| | - Maria José Diógenes
- a Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon , Lisbon , Portugal and
- b Instituto de Medicina Molecular, University of Lisbon , Lisbon , Portugal
| |
Collapse
|
47
|
Garwood C, Faizullabhoy A, Wharton SB, Ince PG, Heath PR, Shaw PJ, Baxter L, Gelsthorpe C, Forster G, Matthews FE, Brayne C, Simpson JE. Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 2014; 39:788-99. [PMID: 23421725 DOI: 10.1111/nan.12033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/23/2013] [Indexed: 01/14/2023]
Abstract
AIMS Calcium dyshomeostasis is implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease. However, much of the previous research has focused on changes in neuronal calcium signalling. In a recent microarray study we identified dysregulation of several key signalling pathways including the Ca(2+) signalling pathway in astrocytes as Alzheimer-type pathology developed. In this study we sought to determine the expression of calpain-10 and calcium/calmodulin-dependent kinase alpha (CamKIIα) in relation to Alzheimer-type pathology in a population-based study. METHODS Using post mortem temporal cortex samples derived from the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) ageing brain cohort we examined calpain-10 and CamKIIα gene and protein expression using quantitative polymerase chain reaction and immunohistochemistry. RESULTS We demonstrate that astrocytic expression of calpain-10 is up-regulated, and CamKIIα down-regulated with increasing Braak stage. Using immunohistochemistry we confirm protein expression of calpain-10 in astrocytes throughout the temporal cortex and demonstrate that calpain-10 immunoreactivity is correlated with both local and global measures of Alzheimer-type pathology. In addition, we identify a subpopulation of calpain-10 immunoreactive interlaminar astrocytes that extend processes deep into the cortex. CamKIIα is predominantly neuronal in localization and is associated with the presence of diffuse plaques in the ageing brain. DISCUSSION Dysregulated expression of key calcium signalling molecules occurs with progression of Alzheimer-type pathology in the ageing brain, highlighting the need for further functional studies of astrocytic calcium signalling with respect to disease progression.
Collapse
Affiliation(s)
- C Garwood
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Biamonte F, Latini L, Giorgi FS, Zingariello M, Marino R, De Luca R, D'Ilio S, Majorani C, Petrucci F, Violante N, Senofonte O, Molinari M, Keller F. Associations among exposure to methylmercury, reduced Reelin expression, and gender in the cerebellum of developing mice. Neurotoxicology 2014; 45:67-80. [PMID: 25305366 DOI: 10.1016/j.neuro.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/30/2022]
Abstract
Genetic risk factors acting during pregnancy or early after birth have been proposed to account for the exponential increase of autism diagnoses in the past 20 years. In particular, a potential link with exposure to environmental mercury has been suggested. Male sex constitutes a second risk factor for autism. A third potential genetic risk factor is decreased Reelin expression. Male heterozygous reeler (rl(+/-)) mice show an autism-like phenotype, including Purkinje cells (PCs) loss and behavioral rigidity. We evaluated the complex interactions between 3 risk factors, i.e. genetic status, sex, and exposure to methylmercury (MeHg), in rl(+/-) mice. Mice were exposed to MeHg during the prenatal and early postnatal period, either at a subtoxic dose (2 ppm in Dams' drinking water), or at a toxic dose (6 ppm Dams' drinking water), based on observations in other rodent species and mice strains. We show that: (a) 2 ppm MeHg does not cause PCs loss in the different animal groups, and does not enhance PCs loss in rl(+/-) males; consistent with a lack of overt neurotoxicity, 2 ppm MeHg per se does not cause behavioral alterations (separation-induced ultrasonic calls in newborns, or sociability and social preference in adults); (b) in stark contrast, 6 ppm MeHg causes a dramatic reduction of PCs number in all groups, irrespective of genotype and sex. Cytochrome C release from mitochondria of PCs is enhanced in 6 ppm MeHg-exposed groups, with a concomitant increase of μ-calpain active subunit. At the behavioral level, 6 ppm MeHg exposure strongly increases ultrasonic vocalizations in all animal groups. Notably, 6 ppm MeHg significantly decreases sociability in rl(+/-) male mice, while the 2 ppm group does not show such as decrease. At a subtoxic dose, MeHg does not enhance the autism-like phenotype of male rl(+/-) mice. At the higher MeHg dose, the scenario is more complex, with some "autism-like" features (loss of sociability, preference for sameness) being evidently affected only in rl(+/-) males, while other neuropathological and behavioral parameters being altered in all groups, independently from genotype and sex. Mitochondrial abnormalities appear to play a crucial role in the observed effects.
Collapse
Affiliation(s)
- Filippo Biamonte
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Laura Latini
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Filippo Sean Giorgi
- Section of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | - Ramona Marino
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Roberto De Luca
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy
| | - Sonia D'Ilio
- Istituto Superiore di Sanità, Centro Nazionale Sostanze Chimiche, Viale Regina Elena 299, Rome, Italy
| | - Costanza Majorani
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Francesco Petrucci
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Nicola Violante
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Oreste Senofonte
- Istituto Superiore di Sanità, Dipartimento di Ambiente e Prevenzione Primaria, Viale Regina Elena 299, Rome, Italy
| | - Marco Molinari
- Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano 64, 00143 Rome, Italy.
| | - Flavio Keller
- Laboratory of Developmental Neuroscience and Neural Plasticity, University Campus Biomedico, Via A. del Portillo 21, 00198 Rome, Italy.
| |
Collapse
|
49
|
Yokoyama Y, Maruyama K, Yamamoto K, Omodaka K, Yasuda M, Himori N, Ryu M, Nishiguchi KM, Nakazawa T. The role of calpain in an in vivo model of oxidative stress-induced retinal ganglion cell damage. Biochem Biophys Res Commun 2014; 451:510-5. [PMID: 25111816 DOI: 10.1016/j.bbrc.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE In this study, we set out to establish an in vivo animal model of oxidative stress in the retinal ganglion cells (RGCs) and determine whether there is a link between oxidative stress in the RGCs and the activation of calpain, a major part of the apoptotic pathway. MATERIALS AND METHODS Oxidative stress was induced in the RGCs of C57BL/6 mice by the intravitreal administration of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH, 30mM, 2μl). Control eyes were injected with 2μl of vehicle. Surviving Fluorogold (FG)-labeled RGCs were then counted in retinal flat mounts. Double staining with CellROX and Annexin V was performed to investigate the co-localization of free radical generation and apoptosis. An immunoblot assay was used both to indirectly evaluate calpain activation in the AAPH-treated eyes by confirming α-fodrin cleavage, and also to evaluate the effect of SNJ-1945 (a specific calpain inhibitor: 4% w/v, 100mg/kg, intraperitoneal administration) in these eyes. RESULTS Intravitreal administration of AAPH led to a significant decrease in FG-labeled RGCs 7days after treatment (control: 3806.7±575.2RGCs/mm(2), AAPH: 3156.1±371.2RGCs/mm(2), P<0.01). CellROX and Annexin V signals were co-localized in the FG-labeled RGCs 24h after AAPH injection. An immunoblot assay revealed a cleaved α-fodrin band that increased significantly 24h after AAPH administration. Intraperitoneally administered SNJ-1945 prevented the cleavage of α-fodrin and had a neuroprotective effect against AAPH-induced RGC death (AAPH: 3354.0±226.9RGCs/mm(2), AAPH+SNJ-1945: 3717.1±614.6RGCs/mm(2), P<0.01). CONCLUSION AAPH administration was an effective model of oxidative stress in the RGCs, showing that oxidative stress directly activated the calpain pathway and induced RGC death. Furthermore, inhibition of the calpain pathway protected the RGCs after AAPH administration.
Collapse
Affiliation(s)
- Yu Yokoyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kotaro Yamamoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kazuko Omodaka
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masayuki Yasuda
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Morin Ryu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Miyagi, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
50
|
Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes. BMC Neurosci 2014; 15:47. [PMID: 24708580 PMCID: PMC3984638 DOI: 10.1186/1471-2202-15-47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Results Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2 × LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Conclusion Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents.
Collapse
|