1
|
Liu T, Li J, Sun L, Zhu C, Wei J. The role of ACE2 in RAS axis on microglia activation in Parkinson's disease. Neuroscience 2024; 553:128-144. [PMID: 38986737 DOI: 10.1016/j.neuroscience.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. METHOD We used male C57BL/6J (WT) mice, ACE2 knockout (KO) mice, and MPTP-induced mice. Behavioral tests confirmed successful modeling. We assessed the impact of ACE2 KO on the RAS axis and PD index, including ACE, ACE2, AT1, AT2, MasR, TH, α-syn, and Iba1. We investigated ACE2 and MasR's involvement in microglial activation via western blot and immunofluorescence. GSE10867 and GSE26532 datasets were used to analyze the effects of AT1 antagonists and in vitro PD models on microglia. RESULT Behavioral tests revealed that MPTP mice displayed motor deficits, depression, anxiety, and increased inflammatory markers in the SN and CPU, with reduced antioxidant capacity. ACE2 KO worsened these symptoms and exacerbated inflammation and oxidative stress. LPS-induced ACE2/MasR activation in BV2 cells demonstrated anti-inflammatory and neuroprotective effects by modulating microglial polarization. Antagonists inhibited microglial activation via inflammation and ROS processes. CONCLUSION The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingwen Li
- Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475000, China.
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
2
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
3
|
Coşkunsever D, Olukman M, Jannini E, Sansone A, Varrassi G. Effect of Angiotensin 1-7 Peptide Agonist AVE 0991 on Diabetic Endothelial Dysfunction in an Experimental Animal Model: A Possible Tool to Treat Diabetic Erectile Dysfunction. Cureus 2023; 15:e48770. [PMID: 38098900 PMCID: PMC10719545 DOI: 10.7759/cureus.48770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background The renin-angiotensin system and its metabolites are crucial in the pathogenesis and progression of complications of diabetes. Aim In this study, we aimed to evaluate the effect of angiotensin 1-7 non-peptide agonist AVE 0991 (576 ug/kg/day i.p.) on diabetic endothelial dysfunction. Materials and methods In this experimental animal study, we investigated the effects of angiotensin 1-7 non-peptide agonist AVE 0991 (576 ug/kg/day i.p.) treatment in male Wistar rats. Diabetes was created via injecting streptozotocin (55 mg/kg/i.p., single dose). Following the cavernous tissue submaximal phenylephrine contraction, relaxation responses were obtained by applying electrical field stimulation (0.5 ms, 40 V) for 15 seconds at 2, 4, 8, 16, 32, and 64 Hz, with two-minute intervals, respectively. To evaluate the effect of nitric oxide, the responses were compared by incubating with 100 mM N(gamma)-nitro-L-arginine methyl ester (L-NAME) for 20 minutes. Additionally, Y-27632 and sodium nitroprusside responses were evaluated in tissues contracted with submaximal doses of phenylephrine. Results Following a submaximal contraction of phenylephrine in the aorta rings, relaxation responses obtained with acetylcholine, sodium nitroprusside, and Y-27632 were impaired in diabetic rats; however, significant results were obtained with treatment. Although there was no significance between the groups in the electrical field stimulation responses, there was a significant dose-dependent difference in the treatment group in this parameter after L-NAME, sodium nitroprusside, and Y-27632 relaxation. Conclusions We determined that treatment with a non-peptide receptor antagonist of angiotensin 1-7, an enzyme detected in the aortic and cavernosum endothelium, may be a promising alternative for treating the complications of diabetes.
Collapse
Affiliation(s)
| | | | | | - Andrea Sansone
- Systems Medicine, University of Rome "Tor Vergata", Rome, ITA
| | | |
Collapse
|
4
|
Cohen-Segev R, Nativ O, Kinaneh S, Aronson D, Kabala A, Hamoud S, Karram T, Abassi Z. Effects of Angiotensin 1-7 and Mas Receptor Agonist on Renal System in a Rat Model of Heart Failure. Int J Mol Sci 2023; 24:11470. [PMID: 37511227 PMCID: PMC10380355 DOI: 10.3390/ijms241411470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Congestive heart failure (CHF) is often associated with impaired kidney function. Over- activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt/water retention and cardiac hypertrophy in CHF. While the deleterious effects of angiotensin II (Ang II) in CHF are well established, the biological actions of angiotensin 1-7 (Ang 1-7) are not fully characterized. In this study, we assessed the acute effects of Ang 1-7 (0.3, 3, 30 and 300 ng/kg/min, IV) on urinary flow (UF), urinary Na+ excretion (UNaV), glomerular filtration rate (GFR) and renal plasma flow )RPF) in rats with CHF induced by the placement of aortocaval fistula. Additionally, the chronic effects of Ang 1-7 (24 µg/kg/h, via intra-peritoneally implanted osmotic minipumps) on kidney function, cardiac hypertrophy and neurohormonal status were studied. Acute infusion of either Ang 1-7 or its agonist, AVE 0991, into sham controls, but not CHF rats, increased UF, UNaV, GFR, RPF and urinary cGMP. In the chronic protocols, untreated CHF rats displayed lower cumulative UF and UNaV than their sham controls. Chronic administration of Ang 1-7 and AVE 0991 exerted significant diuretic, natriuretic and kaliuretic effects in CHF rats, but not in sham controls. Serum creatinine and aldosterone levels were significantly higher in vehicle-treated CHF rats as compared with controls. Treatment with Ang 1-7 and AVE 0991 reduced these parameters to comparable levels observed in sham controls. Notably, chronic administration of Ang 1-7 to CHF rats reduced cardiac hypertrophy. In conclusion, Ang 1-7 exerts beneficial renal and cardiac effects in rats with CHF. Thus, we postulate that ACE2/Ang 1-7 axis represents a compensatory response to over-activity of ACE/AngII/AT1R system characterizing CHF and suggest that Ang 1-7 may be a potential therapeutic agent in this disease state.
Collapse
Affiliation(s)
- Ravit Cohen-Segev
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Omri Nativ
- Department of Urology, Rambam Health Center, Haifa 3109601, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Doron Aronson
- Cardiology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Tony Karram
- Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Laboratory Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
5
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
6
|
Silva MVBD, Sousa Júnior CPD, Silva HVCD, Santos VMD, Feijao FIM, Bernardino ADO, Melo JACRTD. Evaluation of the cardioprotective and antihypertensive effect of AVE 0991 in normotensive and hypertensive rats. Rev Assoc Med Bras (1992) 2022; 68:xxx. [PMID: 35830019 PMCID: PMC9574952 DOI: 10.1590/1806-9282.20220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Vanessa Maria Dos Santos
- Universidade Federal de Pernambuco, Departamento de Nutrição - Vitória de Santo Antão (PE), Brazil
| | | | | | | |
Collapse
|
7
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
8
|
Gomazkov OA. COVID-19: Cellular and Molecular Mechanisms of Brain Damage. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC8985060 DOI: 10.1134/s2079086422020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The most common clinical manifestation of COVID-19 is bilateral pneumonia, a diffuse, alveolar injury with severe microangiopathy. Systemic infection is accompanied by an increase in circulating chemokines and interleukins in the blood, which penetrate the blood–brain barrier (BBB) and enter the brain. Clinical materials indicate lesions of the brain and peripheral nervous system, as well as neurodegenerative and mental disorders. Due to violations of the cerebral endothelium system and changes in the balance of ACE2-coupled cytochemical processes, coagulopathy develops, leading to microthrombosis and vascular occlusion. The concept of SARS-CoV-2 “neurotropism” is discussed as a rationale for the penetration by the virus into the brain. Infection can occur as axonal transport through the bulbar zone and the olfactory area of the cerebral cortex. Even more common is the “hematogenous pathway” of viral transfection, which includes damage to the vascular endothelium and a violation of the protective role of the BBB. Another concept that explains the mechanism of brain damage relates to the phenomenon of neuroinflammation. Astrocytes and microglia are considered potential targets of the SARS-CoV-2 coronavirus. The dissonance of the biochemical processes of the axis ACE2/ACE and changes in the functions of angiotensin peptides leads to the activation of astroglia with the development of neurodestructive processes in COVID-19.
Collapse
Affiliation(s)
- O. A. Gomazkov
- Orekhovich Scientific Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
9
|
Wamkpah N, Shrestha A, Salzman G, Simon S, Suman S, Poisner A, Molteni A. Renin-Angiotensin Blockade Reduces Readmission for Acute Chest Syndrome in Sickle Cell Disease. Cureus 2022; 14:e23567. [PMID: 35494947 PMCID: PMC9045847 DOI: 10.7759/cureus.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/30/2022] Open
Abstract
Rationale Acute chest syndrome (ACS) is a life-threatening complication of sickle cell disease (SCD). Current treatment is supportive-supplemental oxygen, transfusions, and antibiotics. Prevention of ACS may reduce morbidity and mortality in patients with SCD. Acute chest syndrome appears similar to pulmonary fat embolism (PFE), a complication of severe skeletal trauma or orthopedic procedures from pulmonary micro-vessel blockage by bone marrow fat. Vascular obstruction and bone marrow necrosis occur in PFE and ACS. Pulmonary fat embolism rat models have shown that angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) mitigate damage in PFE. These medications could work similarly in ACS. We hypothesize that time to readmission after one hospitalization for ACS will be reduced in patients taking ACEI or ARB compared to patients who are not. Methods This is a retrospective cohort study. Inclusion criteria are adults (18 to 100 years) with sickle cell anaemia (HbSS), hemoglobin SC (HbSC) disease, sickle cell thalassemia (HbSβThal), hospitalized with ACS over 16 years (January 1, 2000, to March 31, 2016); patients who take and don’t take ACEI or ARB. Children (<18 years old), elderly adults (>100 years old), pregnant patients, and patients with sickle cell trait were excluded. Data was collected from the Health Facts database, which contains de-identified information from the electronic medical records of hospitals in which Cerner© has a data use agreement. Kaplan-Meier estimates explored a time-to-event model of ACS readmission. Multivariable analysis (age, gender, smoking history) was conducted using Cox proportional hazards regression. Results were reported around a 95% confidence interval. Results There were 6972 patients in total. Of which, 9.6% (n = 667) reported taking ACEI or ARB. Results for the covariates were: average age of 38 years old; 63% female (n = 4366/6969); 16% smokers (n = 1132). Readmission rates were higher for patients not taking ACEI/ARB than those who did: 0.44 (95% CI 0.43, 0.46) versus 0.28 (95% CI 0.24, 0.31) at one year, and 0.56 (95% CI 0.55, 0.58) versus 0.33 (95% CI 0.29, 0.37) at two years. Age had the strongest effect on readmission rates for patients taking ACEI/ARB (adjusted hazards ratio 0.78 [95% CI 0.68, 0.91]). Conclusion Patients with SCD who reported taking ACEI or ARB had lower readmission rates for ACS; age was the strongest covariate. Our results may have a significant impact on the prevention of ACS. Prospective studies comparing ACEI or ARB therapy versus placebo are needed to confirm this preventative effect.
Collapse
|
10
|
Countering the classical renin-angiotensin system. Clin Sci (Lond) 2021; 135:2619-2623. [PMID: 34878506 DOI: 10.1042/cs20211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
It is well-established that Ang-(1-7) counteracts the effects of Ang II in the periphery, while stimulating vasopressin release and mimicking the activity of Ang II in the brain, through interactions with various receptors. The rapid metabolic inactivation of Ang-(1-7) has proven to be a limitation to therapeutic administration of the peptide. To circumvent this problem, Alves et al. (Clinical Science (2021) 135(18), https://doi.org/10.1042/CS20210599) developed a new transgenic rat model that overexpresses an Ang-(1-7)-producing fusion protein. In this commentary, we discuss potential concerns with this model while also highlighting advances that can ensue from this significant technical feat.
Collapse
|
11
|
Xue X, Duan R, Zhang QQ, Wang SY, Gong PY, Yan E, Zhang YD, Jiang T. A non-peptidic MAS1 agonist AVE0991 alleviates hippocampal synaptic degeneration in rats with chronic cerebral hypoperfusion. Curr Neurovasc Res 2021; 18:343-350. [PMID: 34636310 DOI: 10.2174/1567202618666211012095210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a contributing factor for neurodegenerative diseases. As a recently identified heptapeptide of the brain renin-angiotensin system, angiotensin-(1-7) was revealed to activate its receptor MAS1 and thus ameliorated cognitive impairments in rats with CCH. Since hippocampal synaptic degeneration represents an important pathological basis of cognitive deficits, we hypothesize that activation of MAS1-mediated signaling may alleviate CCH-induced synaptic degeneration in the hippocampus. METHODS In this study, we tested this hypothesis and uncovered the underlying mechanisms in a rat model of CCH induced by bilateral common carotid artery ligation surgery. At 1 week after the surgery, rats received a daily intraperitoneal injection of vehicle or a non-peptidic MAS1 agonist AVE0991 for 8 weeks. During this procedure, cerebral blood flow (CBF) was recorded. The levels of MAS1, amyloid-β (Aβ), neuroinflammatory cytokines, glial cell markers and synaptophysin in the hippocampus were assessed at the end of the treatment period. RESULTS We showed that AVE0991 significantly alleviated hippocampal synaptic degeneration in rats with CCH. This protection might be achieved by facilitating CBF recovery, reducing hippocampal Aβ levels and suppressing neuroinflammatory responses. CONCLUSIONS These findings indicate that MAS1-mediated signaling may represent a novel therapeutic target for CCH-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao Xue
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Qiao-Quan Zhang
- Department of Pathology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029. China
| | - Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006. China
| |
Collapse
|
12
|
Mi X, Cao Y, Li Y, Li Y, Hong J, He J, Liang Y, Yang N, Liu T, Han D, Kuang C, Han Y, Zhou Y, Liu Y, Shi C, Guo X, Li Z. The Non-peptide Angiotensin-(1-7) Mimic AVE 0991 Attenuates Delayed Neurocognitive Recovery After Laparotomy by Reducing Neuroinflammation and Restoring Blood-Brain Barrier Integrity in Aged Rats. Front Aging Neurosci 2021; 13:624387. [PMID: 33658918 PMCID: PMC7917118 DOI: 10.3389/fnagi.2021.624387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Delayed neurocognitive recovery (dNCR) after surgery is a common postoperative complication in older adult patients. Our previous studies have demonstrated that cognitive impairment after surgery involves an increase in the brain renin-angiotensin system (RAS) activity, including overactivation of the angiotensin 2/angiotensin receptor-1 (Ang II/AT1) axis, which provokes the disruption of the hippocampal blood-brain barrier (BBB). Nevertheless, the potential role of the counter-regulatory RAS axis, the Ang-(1–7)/Mas pathway, in dNCR remains unknown. Using an aged rat model of dNCR, we dynamically investigated the activity of both axes of the RAS following laparotomy. AVE 0991, a nonpeptide analog of Ang-(1–7), was administered intranasally immediately after laparotomy. We found that the elevation of Ang II, induced by surgery was accompanied by a decrease of Ang-(1–7) in the hippocampus, but not in the circulation. Surgery also significantly downregulated hippocampal Mas receptor expression at 24 h postsurgery. Mas activation with intranasal AVE 0991 treatment significantly improved hippocampus-dependent learning and memory deficits induced by surgery. Furthermore, it attenuated hippocampal neuroinflammation, as shown by the decreased level of the microglial activation marker cluster of differentiation 11b (CD11b) and the decreased production of several inflammatory molecules. Along with these beneficial effects, the AVE 0991 treatment also alleviated the imbalance between matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-3 (TIMP-3), modulated the expression of occludin, and alleviated the IgG extravasation, thereby restoring the integrity of the BBB. In conclusion, these data indicate that activation of Mas by AVE 0991 attenuates dNCR after surgery by reducing neuroinflammation and restoring BBB integrity. Our findings suggest that the Ang-(1–7)/Mas pathway may be a novel therapeutic target for treating dNCR after surgery in older adult patients.
Collapse
Affiliation(s)
- Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yiyun Cao
- Department of Anesthesiology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jingshu Hong
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jindan He
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yaoxian Liang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chongshen Kuang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yajie Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chengmei Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
13
|
Khajehpour S, Aghazadeh-Habashi A. Targeting the Protective Arm of the Renin-Angiotensin System: Focused on Angiotensin-(1-7). J Pharmacol Exp Ther 2021; 377:64-74. [PMID: 33495248 DOI: 10.1124/jpet.120.000397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
The in vivo application and efficacy of many therapeutic peptides is limited because of their instability and proteolytic degradation. Novel strategies for developing therapeutic peptides with higher stability toward proteolytic degradation would be extremely valuable. Such approaches could improve systemic bioavailability and enhance therapeutic effects. The renin-angiotensin system (RAS) is a hormonal system within the body essential for the regulation of blood pressure and fluid balance. The RAS is composed of two opposing classic and protective arms. The balance between these two arms is critical for the homeostasis of the body's physiologic function. Activation of the RAS results in the suppression of its protective arm, which has been reported in inflammatory and pathologic conditions such as arthritis, cardiovascular diseases, diabetes, and cancer. Clinical application of angiotensin-(1-7) [Ang-(1-7)], a RAS critical regulatory peptide, augments the protective arm and restores balance hampered by its enzymatic and chemical instability. Several attempts to increase the half-life and efficacy of this heptapeptide using more stable analogs and different drug delivery approaches have been made. This review article provides an overview of efforts targeting the RAS protective arm. It provides a critical analysis of Ang-(1-7) or its homologs' novel drug delivery systems using different administration routes, their pharmacological characterization, and therapeutic potential in various clinical settings. SIGNIFICANCE STATEMENT: Ang-(1-7) is a unique peptide component of the renin-angiotensin system with vast potential for clinical applications that modulate various inflammatory diseases. Novel Ang-(1-7) peptide drug delivery could compensate its lack of stability for effective clinical application.
Collapse
Affiliation(s)
- Sana Khajehpour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID
| |
Collapse
|
14
|
Labò N, Ohnuki H, Tosato G. Vasculopathy and Coagulopathy Associated with SARS-CoV-2 Infection. Cells 2020; 9:E1583. [PMID: 32629875 PMCID: PMC7408139 DOI: 10.3390/cells9071583] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in > 500,000 deaths worldwide, including > 125,000 deaths in the U.S. since its emergence in late December 2019 and June 2020. Neither curative anti-viral drugs nor a protective vaccine is currently available for the treatment and prevention of COVID-19. Recently, new clinical syndromes associated with coagulopathy and vasculopathy have emerged as a cause of sudden death and other serious clinical manifestations in younger patients infected with SARS-CoV-2 infection. Angiotensin converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 and other coronaviruses, is a transmembrane protein expressed by lung alveolar epithelial cells, enterocytes, and vascular endothelial cells, whose physiologic role is to induce the maturation of angiotensin I to generate angiotensin 1-7, a peptide hormone that controls vasoconstriction and blood pressure. In this review, we provide the general context of the molecular and cellular mechanisms of SARS-CoV-2 infection with a focus on endothelial cells, describe the vasculopathy and coagulopathy syndromes in patients with SARS-CoV-2, and outline current understanding of the underlying mechanistic aspects.
Collapse
Affiliation(s)
- Nazzarena Labò
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biochemical Research Inc., Frederick, MD 21702, USA;
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
15
|
Tao K, Bai X, Zhang D, Liu M, Zhang Y, Han F, Yang X, Han J, Hu D. Encapsulation of troglitazone and AVE0991 by gelation microspheres promotes epithelial transformation of adipose-derived stem cells. Mol Cell Probes 2020; 51:101543. [PMID: 32105703 DOI: 10.1016/j.mcp.2020.101543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/23/2020] [Indexed: 11/26/2022]
Abstract
Deformities in human soft tissue caused by trauma or burn present a difficult problem in plastic surgery. In this study, we encapsulated troglitazone and angiotensin 1-7 mimetic AVE0991 in gelation microspheres with the goal of inducing epithelial transformation for potential applications in tissue reconstruction. After troglitazone or AVE0991 were encapsulated to gelation microspheres, their release kinetics and bioactivity were examined. Surface morphology and diameter of the gelation microspheres were evaluated using light microscopy. The release of the drugs was assessed in the presence of human adipose-derived stem cells (ADSCs). Treatment with troglitazone microspheres increased cell viability and activated the β-catenin in ADSCs. Moreover, the AVE0991 microspheres also increased cell viability and C-myc expression of ADSCs. These results showed that troglitazone and AVE0991 microspheres promoted the activity of ADSCs. Furthermore, ADSCs were co-treated with troglitazone and AVE0991 microspheres. Western blot and immunofluorescent staining showed that co-treatment with troglitazone and AVE0991 microspheres elevated the expression of epithelialization associated protein CK14 in ADSCs. In conclusion, our findings indicate that microspheres with troglitazone and AVE0991 can significantly improve the viability and epithelialization of ADSCs, which provides a new approach for the construction of tissue-engineered skin.
Collapse
Affiliation(s)
- Ke Tao
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Xiaozhi Bai
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Dongliang Zhang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Mengdong Liu
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Yue Zhang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Fu Han
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Xuekang Yang
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Juntao Han
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China
| | - Dahai Hu
- Department of Burn Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaan'xi, China.
| |
Collapse
|
16
|
AVE0991, a Nonpeptide Angiotensin 1-7 Receptor Agonist, Improves Glucose Metabolism in the Skeletal Muscle of Obese Zucker Rats: Possible Involvement of Prooxidant/Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6372935. [PMID: 32089774 PMCID: PMC7008284 DOI: 10.1155/2020/6372935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin 1-7 (Ang 1-7) enhances insulin signaling and glucose transport activity in the skeletal muscle. The aim of our study was to evaluate the effect of AVE0991, a nonpeptide Mas receptor agonist, on the metabolic parameters, expression of RAS components and markers of oxidative stress, and insulin signaling in the skeletal morbidly obese rats. 33-week-old male obese Zucker rats were treated with vehicle and AVE0991 (0.5 mg/kg BW/day) via osmotic minipumps for two weeks. Gene expressions were determined by qPCR and/or Western blot analysis in musculus quadriceps. The enzymatic activities were detected flourometrically (aminopeptidase A) or by colorimetric assay kit (protein tyrosine phosphatase 1B). Administration of AVE0991 enhanced insulin signaling cascade in the skeletal muscle, reflected by improved whole-body glucose tolerance. It has been shown that reactive oxygen species (ROS) have insulin-mimetic action in muscle. The expression of renin receptor, transcription factor PLZF, and prooxidant genes was upregulated by AVE0991 accompanied by elevated expression of genes coding enzymes with antioxidant action. Our results show that AVE0991 administration activates genes involved in both ROS generation and clearance establishing a new prooxidant/antioxidant balance on a higher level, which might contribute to the improved insulin signaling pathway and glucose tolerance of obese Zucker rats.
Collapse
|
17
|
Potential of Renin-Angiotensin-Aldosterone System Modulations in Diabetic Kidney Disease: Old Players to New Hope! Rev Physiol Biochem Pharmacol 2020; 179:31-71. [PMID: 32979084 DOI: 10.1007/112_2020_50] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to a tragic increase in the incidences of diabetes globally, diabetic kidney disease (DKD) has emerged as one of the leading causes of end-stage renal diseases (ESRD). Hyperglycaemia-mediated overactivation of the renin-angiotensin-aldosterone system (RAAS) is key to the development and progression of DKD. Consequently, RAAS inhibition by angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs) is the first-line therapy for the clinical management of DKD. However, numerous clinical and preclinical evidences suggested that RAAS inhibition can only halt the progression of the DKD to a certain extent, and they are inadequate to cure DKD completely. Recent studies have improved understanding of the complexity of the RAAS. It consists of two counter-regulatory arms, the deleterious pressor arm (ACE/angiotensin II/AT1 receptor axis) and the beneficial depressor arm (ACE2/angiotensin-(1-7)/Mas receptor axis). These advances have paved the way for the development of new therapies targeting the RAAS for better treatment of DKD. In this review, we aimed to summarise the involvement of the depressor arm of the RAAS in DKD. Moreover, in modern drug discovery and development, an advance approach is the bispecific therapeutics, targeting two independent signalling pathways. Here, we discuss available reports of these bispecific drugs involving the RAAS as well as propose potential treatments based on neurohormonal balance as credible therapeutic strategies for DKD.
Collapse
|
18
|
Medina D, Arnold AC. Angiotensin-(1-7): Translational Avenues in Cardiovascular Control. Am J Hypertens 2019; 32:1133-1142. [PMID: 31602467 DOI: 10.1093/ajh/hpz146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/06/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research and numerous treatment approaches, hypertension and cardiovascular disease remain leading global public health problems. A major contributor to regulation of blood pressure, and the development of hypertension, is the renin-angiotensin system. Of particular concern, uncontrolled activation of angiotensin II contributes to hypertension and associated cardiovascular risk, with antihypertensive therapies currently available to block the formation and deleterious actions of this hormone. More recently, angiotensin-(1-7) has emerged as a biologically active intermediate of the vasodilatory arm of the renin-angiotensin system. This hormone antagonizes angiotensin II actions as well as offers antihypertensive, antihypertrophic, antiatherogenic, antiarrhythmogenic, antifibrotic and antithrombotic properties. Angiotensin-(1-7) elicits beneficial cardiovascular actions through mas G protein-coupled receptors, which are found in numerous tissues pivotal to control of blood pressure including the brain, heart, kidneys, and vasculature. Despite accumulating evidence for favorable effects of angiotensin-(1-7) in animal models, there is a paucity of clinical studies and pharmacokinetic limitations, thus limiting the development of therapeutic agents to better understand cardiovascular actions of this vasodilatory peptide hormone in humans. This review highlights current knowledge on the role of angiotensin-(1-7) in cardiovascular control, with an emphasis on significant animal, human, and therapeutic research efforts.
Collapse
Affiliation(s)
- Daniela Medina
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
19
|
AVE 0991 Attenuates Pyroptosis and Liver Damage after Heatstroke by Inhibiting the ROS-NLRP3 Inflammatory Signalling Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1806234. [PMID: 31531346 PMCID: PMC6720052 DOI: 10.1155/2019/1806234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that angiotensin-(1-7) (Ang-(1-7)), an essential endocrine factor, inhibits the NLRP3 inflammasome by regulating reactive oxygen species (ROS) in fibrotic livers. We also demonstrated that the NLRP3 inflammasome contributes to the liver damage induced by pyroptosis after heatstroke. However, the role of Ang-(1-7) in the hepatocytes under heat stress remains uncertain. We aimed to examine the change in angiotensin peptides in the livers affected by heatstroke and the effect on the ROS-NLRP3 inflammatory signalling pathway. In vivo, increased angiotensin II (Ang II) and decreased Ang-(1-7) in the serum of heatstroke patients suffering from hepatic dysfunction were observed. The change in angiotensin peptides was considered a potential biomarker that could be used to predict hepatic dysfunction. Enhanced Ang II and attenuated Ang-(1-7) levels were also observed in the liver tissue of heatstroke rats, which were consistent with their receptors and converting enzymes. Hepatic damage associated with increased ROS and protein expression levels of NOX4, NLRP3, caspase-1, and IL-1β was attenuated by AVE 0991, an analogue of Ang-(1-7). In vitro, pyroptosis, characterized by activated caspase-1 and IL-1β, was observed in hepatocytes under heat stress, which was enhanced by Ang II and attenuated by antioxidants, NOX4 siRNA, and AVE 0991. In summary, AVE 0991 attenuates pyroptosis and liver damage induced by heat stress by inhibiting the ROS-NLRP3 inflammatory signalling pathway.
Collapse
|
20
|
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 2019; 10:31. [PMID: 31262355 PMCID: PMC6604144 DOI: 10.1186/s13293-019-0247-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity is a global epidemic that greatly increases risk for developing cardiovascular disease and type II diabetes. Sex differences in the obese phenotype are well established in experimental animal models and clinical populations. While having higher adiposity and obesity prevalence, females are generally protected from obesity-related metabolic and cardiovascular complications. This protection is, at least in part, attributed to sex differences in metabolic effects of hormonal mediators such as the renin-angiotensin system (RAS). Previous literature has predominantly focused on the vasoconstrictor arm of the RAS and shown that, in contrast to male rodent models of obesity and diabetes, females are protected from metabolic and cardiovascular derangements produced by angiotensinogen, renin, and angiotensin II. A vasodilator arm of the RAS has more recently emerged which includes angiotensin-(1-7), angiotensin-converting enzyme 2 (ACE2), mas receptors, and alamandine. While accumulating evidence suggests that activation of components of this counter-regulatory axis produces positive effects on glucose homeostasis, lipid metabolism, and energy balance in male animal models, female comparison studies and clinical data related to metabolic outcomes are lacking. This review will summarize current knowledge of sex differences in metabolic effects of the RAS, focusing on interactions with gonadal hormones and potential clinical implications.
Collapse
Affiliation(s)
- Melissa C White
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Rebecca Fleeman
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H109, Hershey, PA, 17033, USA.
| |
Collapse
|
21
|
Mo J, Enkhjargal B, Travis ZD, Zhou K, Wu P, Zhang G, Zhu Q, Zhang T, Peng J, Xu W, Ocak U, Chen Y, Tang J, Zhang J, Zhang JH. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 20:75-86. [PMID: 30296700 PMCID: PMC6174866 DOI: 10.1016/j.redox.2018.09.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate oxidative stress and neuronal apoptosis after SAH remains unknown. To investigate the beneficial effect of Mas on oxidative stress injury and neuronal apoptosis induced by SAH, a total of 196 rats were subjected to an endovascular perforation model of SAH. AVE 0991 (AVE), a selective agonist of Mas, was administered intranasally 1 h after SAH induction. A779, a selective inhibitor of Mas, and small interfering ribonucleic acid (siRNA) for UCP-2 were administered by intracerebroventricular (i.c.v) injection at 1 h and 48 h before SAH induction respectively. Neurological tests, immunofluorescence, TUNEL, Fluoro-Jade C, DHE staining, and Western blot experiments were performed. We found that Mas activation with AVE significantly improved neurobehavioral scores and reduced oxidative stress and neuronal apoptosis in SAH+AVE group compared with SAH+vehicle group. Moreover, AVE treatment significantly promoted phosphorylation of CREB and the expression UCP-2, as well as upregulated expression of Bcl-2 and downregulation of Romo-1 and Bax. The protective effects of AVE were reversed by i.c.v injection of A779 and UCP-2 siRNA in SAH+AVE+A779 and SAH+AVE+UCP-2 siRNA groups, respectively. In conclusion, our data provides evidence that Mas activation with AVE reduces oxidative stress injury and neuronal apoptosis through Mas/PKA/p-CREB/UCP-2 pathway after SAH. Furthermore, our study indicates that Mas may be a novel therapeutic treatment target in early brain injury of SAH.
Collapse
Affiliation(s)
- Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Zachary D Travis
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jianhua Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yili Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
22
|
Murphy KT, Hossain MI, Swiderski K, Chee A, Naim T, Trieu J, Haynes V, Read SJ, Stapleton DI, Judge SM, Trevino JG, Judge AR, Lynch GS. Mas Receptor Activation Slows Tumor Growth and Attenuates Muscle Wasting in Cancer. Cancer Res 2018; 79:706-719. [PMID: 30420474 DOI: 10.1158/0008-5472.can-18-1207] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. Cachexia robs patients of their strength and capacity to perform daily tasks and live independently. Effective treatments are needed urgently. Here, we investigated the therapeutic potential of activating the "alternative" axis of the renin-angiotensin system, involving ACE2, angiotensin-(1-7), and the mitochondrial assembly receptor (MasR), for treating cancer cachexia. Plasmid overexpression of the MasR or pharmacologic angiotensin-(1-7)/MasR activation did not affect healthy muscle fiber size in vitro or in vivo but attenuated atrophy induced by coculture with cancer cells in vitro. In mice with cancer cachexia, the MasR agonist AVE 0991 slowed tumor development, reduced weight loss, improved locomotor activity, and attenuated muscle wasting, with the majority of these effects dependent on the orexigenic and not antitumor properties of AVE 0991. Proteomic profiling and IHC revealed that mechanisms underlying AVE 0991 effects on skeletal muscle involved miR-23a-regulated preservation of the fast, glycolytic fibers. MasR activation is a novel regulator of muscle phenotype, and AVE 0991 has orexigenic, anticachectic, and antitumorigenic effects, identifying it as a promising adjunct therapy for cancer and other serious muscle wasting conditions. SIGNIFICANCE: These findings demonstrate that MasR activation has multiple benefits of being orexigenic, anticachectic, and antitumorigenic, revealing it as a potential adjunct therapy for cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/706/F1.large.jpg.See related commentary by Rupert et al., p. 699.
Collapse
Affiliation(s)
- Kate T Murphy
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia.
| | - Mohammed I Hossain
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Annabel Chee
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Vanessa Haynes
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Suzannah J Read
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - David I Stapleton
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Jose G Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, Florida
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, Florida
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond) 2018; 132:1055-1067. [DOI: 10.1042/cs20171549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood–brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.
Collapse
|
24
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
25
|
Gromotowicz-Poplawska A, Szoka P, Kolodziejczyk P, Kramkowski K, Wojewodzka-Zelezniakowicz M, Chabielska E. New agents modulating the renin-angiotensin-aldosterone system-Will there be a new therapeutic option? Exp Biol Med (Maywood) 2016; 241:1888-1899. [PMID: 27439538 DOI: 10.1177/1535370216660211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is more complex than it was originally regarded. According to the current subject knowledge, there are two main axes of the RAAS: (1) angiotensin-converting enzyme (ACE)-angiotensin II-AT1 receptor axis and (2) ACE2-angiotensin-(1-7)-Mas receptor axis. The activation of the first axis leads to deleterious effects, including vasoconstriction, endothelial dysfunction, thrombosis, inflammation, and fibrosis; therefore, blocking the components of this axis is a highly rational and commonly used therapeutic procedure. The ACE2-Ang-(1-7)-Mas receptor axis has a different role, since it often opposes the effects induced by the classical ACE-Ang II-AT1 axis. Once the positive effects of the ACE2-Ang-(1-7)-Mas axis were discovered, the alternative ways of pharmacotherapy activating this axis of RAAS appeared. This article briefly describes new molecules affecting the RAAS, namely: recombinant human ACE2, ACE2 activators, angiotensin-(1-7) peptide and non-peptide analogs, aldosterone synthase inhibitors, and the third and fourth generation of mineralocorticoid receptor antagonists. The results of the experimental and clinical studies are encouraging, which leads us to believe that these new molecules can support the treatment of cardiovascular diseases as well as cardiometabolic disorders.
Collapse
Affiliation(s)
| | - Piotr Szoka
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Patrycjusz Kolodziejczyk
- Department of Pharmaceutical Analysis, Medical University of Bialystok, 15-522 Bialystok, Poland
| | - Karol Kramkowski
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
26
|
Dhawale VS, Amara VR, Karpe PA, Malek V, Patel D, Tikoo K. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model. Toxicol Appl Pharmacol 2016; 306:17-26. [PMID: 27343405 DOI: 10.1016/j.taap.2016.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2weeks. 48h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers.
Collapse
Affiliation(s)
- Vaibhav Shrirang Dhawale
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Venkateswara Rao Amara
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Pinakin Arun Karpe
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Vajir Malek
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Deep Patel
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar, Punjab 160062, India..
| |
Collapse
|
27
|
Wong MK. Other Angiotensins. HANDBOOK OF HORMONES 2016. [PMCID: PMC7149573 DOI: 10.1016/b978-0-12-801028-0.00178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Besides the major role of angiotensin II (Ang II) in the renin-angiotensin system (RAS), other angiotensin peptides with different lengths were recently discovered to be biologically active and they possess individual receptors and signaling pathways. Ang III stimulates AT1 and AT2 receptors and its signaling pathway is similar to that of Ang II but has a specific role on aldosterone stimulation in adrenal cortex. The Ang(1–7)/Mas receptor axis is known to antagonize the effects of the AT1 axis. These include anti-hypertrophic action, anti-thrombotic and anti-fibrotic effect, and vasodilation via stimulation of NO synthesis in endothelium and potentiation of the bradykinin effect. Ang IV stimulates insulin-regulated aminopeptidase (IRAP) or AT4 receptor and is involved in facilitation of memory such as reversing memory deficits caused by alcohol abuse and ischemia. AT4 antagonist decreases renal blood flow and increases urinary sodium excretion, and these effects are independent of the AT1 pathway.
Collapse
|
28
|
Klein S, Herath CB, Schierwagen R, Grace J, Haltenhof T, Uschner FE, Strassburg CP, Sauerbruch T, Walther T, Angus PW, Trebicka J. Hemodynamic Effects of the Non-Peptidic Angiotensin-(1-7) Agonist AVE0991 in Liver Cirrhosis. PLoS One 2015; 10:e0138732. [PMID: 26406236 PMCID: PMC4583473 DOI: 10.1371/journal.pone.0138732] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Background & Aims Although in cirrhosis with portal hypertension levels of the vasoconstrictor angiotensin II are increased, this is accompanied by increased production of angiotensin (Ang)-(1–7), the endogenous ligand of the Mas receptor (MasR), which blunts hepatic fibrosis and decreases hepatic vascular resistance. Therefore, we investigated the effects of the non-peptidic Ang-(1–7) agonist, AVE0991, in experimental cirrhosis. Methods Cirrhosis was induced by bile duct ligation (BDL) or carbon tetrachloride (CCl4) intoxication. The coloured microsphere technique assessed portal and systemic hemodynamic effects of AVE0991 in vivo. Hepatic expression of eNOS, p-eNOS, iNOS, JAK2, ROCK and p-Moesin were analyzed by western blots. Activities of ACE and ACE2 were investigated fluorometrically. Moreover, fibrosis was assessed in BDL rats receiving AVE0991. Results In vivo, AVE0991 decreased portal pressure (PP) in both rat models of cirrhosis. Importantly, systemic effects were not observed. The hepatic effects of AVE0991 were based on upregulation of vasodilating pathways involving p-eNOS and iNOS, as well as by downregulation of the vasoconstrictive pathways (ROCK, p-Moesin). Short-term treatment with AVE0991 decreased the activity of ACE2, long-term treatment did not affect hepatic fibrosis in BDL rats. Conclusions The non-peptidic agonist of Ang-(1–7), AVE0991, decreases portal pressure without influencing systemic pressure. Thus, although it does not inhibit fibrosis, AVE0991 may represent a promising new therapeutic strategy for lowering portal pressure.
Collapse
Affiliation(s)
- Sabine Klein
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Chandana B. Herath
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | | | - Josephine Grace
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Tom Haltenhof
- Department of Obstetrics, Centre for Perinatal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Frank E. Uschner
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | | | - Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Thomas Walther
- Department of Obstetrics, Centre for Perinatal Medicine, Division of Women and Child Health, University of Leipzig, Leipzig, Germany
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Peter W. Angus
- Department of Gastronenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Jonel Trebicka
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
29
|
Raymer B, Ebner D. Small molecule and peptide therapies for chronic heart failure: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:1175-90. [PMID: 26173447 DOI: 10.1517/13543776.2015.1061997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Chronic heart failure (CHF) is the long-term inability of the heart to meet circulatory demands under normal conditions. Effects of CHF can include increased blood volume, increased vascular resistance and compromised contractility leading to fluid retention, dyspnea and fatigue. Current standard of care for chronic systolic heart failure is directed towards managing hypoperfusion through the renin-angiotensin-aldosterone and sympathetic nervous systems. Treatment may also involve reversal of maladaptive cardiac remodeling and prevention of life-threatening arrhythmias. AREAS COVERED This review highlights small molecule and peptidic agents for the treatment of CHF with patents published between 2011 and 2014. Targets are subdivided into inotropic agents, ventricular remodeling, diuretics and the renin-angiotensin-aldosterone system. EXPERT OPINION CHF represents a large, unmet medical need where improved therapies are needed. The renin-angiotensin-aldosterone system pathway continues to be a major source of new therapies for CHF with new inotropic therapies emerging. Promising initial clinical results for a few approaches combined with the expectation of additional clinical results in the near future make this an exciting time in the pursuit of new treatments for CHF.
Collapse
Affiliation(s)
- Brian Raymer
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| | - David Ebner
- a Cardiovascular, Metabolic, and Endocrine Diseases Chemistry, Pfizer Worldwide Research and Development , Cambridge, MA, USA +1 617 551 3414 ; +1 617 551 3082 ;
| |
Collapse
|
30
|
Olkowicz M, Chlopicki S, Smolenski RT. Perspectives for angiotensin profiling with liquid chromatography/mass spectrometry to evaluate ACE/ACE2 balance in endothelial dysfunction and vascular pathologies. Pharmacol Rep 2015; 67:778-85. [PMID: 26321281 DOI: 10.1016/j.pharep.2015.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, inflammation, structural remodeling, thrombosis and calcification leads to cardiovascular diseases. Angiotensin (Ang) II (1-8) - synthesized mainly by angiotensin converting enzyme (ACE) is the best characterized mediator of the renin-angiotensin system (RAS). This peptide initially identified by its vasoactive properties was found to play a major role in vascular response to insult. However, recent discovery of angiotensin converting enzyme 2 (ACE2) that produces vasoprotective Ang-(1-7) peptide highlighted complexity of the system and suggested that balance between ACE/Ang II and ACE2/Ang-(1-7) is fundamental in maintaining vascular homeostasis and its disorders are associated with cardiovascular pathology. There is therefore a need to develop methods for comprehensive analysis of biologically active Ang peptides and their metabolites of ACE/Ang II and ACE2/Ang-(1-7) axes. Liquid chromatography/mass spectrometry (LC/MS) is an analytical technique that offers potential for specific, simultaneous analysis of Ang peptides. With sensitivity added by application of preconcentration nanochromatography reaching picomolar concentrations, practically all Ang peptides identified so far could be quantified in biological samples. Ang profiling is important not only for understanding their physiological or pathological role but could also serve as an early diagnostic biomarker of endothelial dysfunction and cardiovascular pathology. It could also be used for monitoring the efficacy of the RAS-targeted therapies. Although, the methodology requires further improvements to adopt it for routine application, Ang peptide profiling with targeted LC/MS analysis might assess functional balance between ACE/Ang II and ACE2/Ang-(1-7) axes, facilitate our understanding of the cardiovascular pathology and enhance biomarker portfolio in cardiovascular diseases.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland; Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
31
|
Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1. J Cardiovasc Pharmacol 2014; 63:453-60. [PMID: 24390175 DOI: 10.1097/fjc.0000000000000069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II to angiotensin-(1-7) that activates Mas receptors, inhibits ACE1, and modulates bradykinin receptor sensitivity. This in vitro study compared the direct and indirect effects of angiotensin-(1-7), the ACE1 inhibitor captopril, and diminazene aceturate (DIZE) an alleged ACE2 activator in rings of porcine coronary arteries, by measuring changes of isometric tension. Angiotensin-(1-7), captopril, and DIZE did not cause significant changes in tension before or after desensitization of bradykinin receptors in preparations contracted with U46619. Bradykinin caused concentration-dependent and endothelium-dependent relaxations that were not affected by DIZE but were potentiated to a similar extent by angiotensin-(1-7) and captopril, given alone or in combination. Bradykinin responses potentiated by angiotensin-(1-7) and captopril were not affected by the BK1 antagonist SSR240612 and remained augmented in the presence of either N-nitro-L-arginine methyl ester hydrochloride plus indomethacin or TRAM-34 plus UCL-1684. ACE2 was identified in the coronary endothelium by immunofluorescence, but its basal activity was not influenced by DIZE. These results suggest that in coronary arteries, angiotensin-(1-7) and captopril both improves NO bioavailability and enhances endothelium-dependent hyperpolarization to bradykinin solely by ACE1 inhibition. Endothelial ACE2 activity cannot be increased by DIZE to produce local adequate amounts of angiotensin-(1-7) to influence vascular tone.
Collapse
|
32
|
Mendonça L, Mendes-Ferreira P, Bento-Leite A, Cerqueira R, Amorim MJ, Pinho P, Brás-Silva C, Leite-Moreira AF, Castro-Chaves P. Angiotensin-(1–7) Modulates Angiotensin II-Induced Vasoconstriction in Human Mammary Artery. Cardiovasc Drugs Ther 2014; 28:513-22. [DOI: 10.1007/s10557-014-6555-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello MLM, Marques FD, Pereira JM, Lautner RQ, Santos RAS, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol 2014; 170:835-46. [PMID: 23889691 DOI: 10.1111/bph.12318] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1-7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation. EXPERIMENTAL APPROACH We used BALB/c mice (6-8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse(-1) , i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg(-1) ·per day, s.c.) or saline (100 μL·kg(-1) ·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates. KEY RESULTS Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs. CONCLUSIONS AND IMPLICATIONS AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1-7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma.
Collapse
Affiliation(s)
- M G Rodrigues-Machado
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR), Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Magierowski M, Jasnos K, Pawlik M, Krzysiek-Maczka G, Ptak-Belowska A, Olszanecki R, Kwiecien S, Korbut R, Brzozowski T. Role of angiotensin-(1-7) in gastroprotection against stress-induced ulcerogenesis. The involvement of mas receptor, nitric oxide, prostaglandins, and sensory neuropeptides. J Pharmacol Exp Ther 2013; 347:717-26. [PMID: 24049058 DOI: 10.1124/jpet.113.207233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is a major vasoactive metabolite of angiotensin I (Ang I), both being important components of the renin-angiotensin system (RAS). Ang-(1-7) acting via Mas receptor was documented in kidneys, heart, brain, and gastrointestinal (GI)-tract. We studied the gastroprotective activity of exogenous Ang-(1-7) in rats exposed to water immersion and restraint stress (WRS) without or with A-779 [d-Ala7-Ang-(1-7), an antagonist of Ang-(1-7) Mas receptors], AVE 0991 (5-formyl-4-methoxy-2-phenyl-1[[4-[2-(ethylaminocarbonylsulfonamido)-5-isobutyl-3-thienyl]-phenyl]-methyl]-imidazole), the agonist of Ang-(1-7) receptor, as well as the inhibition of nitric-oxide (NO) synthase, the suppression of cyclo-oxygenase (COX)-1 (indomethacin, SC-560 [5-(4-chloro-phenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl-pyrazole]), the activity COX-2 (rofecoxib), and denervation with capsaicin. The mRNA expression of constitutively expressed nitric-oxide synthase (cNOS), inducible nitric-oxide synthase (iNOS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α was analyzed by reverse transcription polymerase chain reaction. The WRS lesions were dose-dependently reduced by pretreatment with Ang-(1-7), which also caused an increase in gastric blood flow (GBF) and luminal content of NO. COX-1 and COX-2 inhibitors or L-NNA (N5-[imino(nitroamino)methyl]-L-ornithine) reversed the reduction in lesion number and the rise in GBF evoked by Ang-(1-7). Ang II augmented the WRS lesions, decreased GBF and increased the plasma IL-1β and TNF-α levels. Capsaicin denervation attenuated the reduction of Ang-(1-7)-induced gastric lesions and the rise in GBF; these effects were restored by supplementation with calcitonin gene-related peptide (CGRP). The cNOS mRNA was upregulated while iNOS, IL-1β and TNF-α mRNAs were downregulated in Ang-(1-7)-pretreated rats. We conclude that Ang-(1-7), in contrast to Ang II, which worsened WRS ulcerogenesis, affords potent gastroprotection against WRS ulcerogenesis via an increase in GBF mediated by NO, endogenous prostaglandins, sensory neuropeptides, and anti-inflammatory action involving the inhibition of proinflammatory markers iNOS, IL-1β, and TNF-α.
Collapse
Affiliation(s)
- Marcin Magierowski
- Department of Physiology (M.M., K.J., M.P., G.K-M., A.P-B., S.K., T.B.) and Department of Pharmacology (R.O., R.K.), Jagiellonian University Medical College, Cracow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang T, Gao L, Lu J, Zhang YD. ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke. Curr Neuropharmacol 2013; 11:209-17. [PMID: 23997755 PMCID: PMC3637674 DOI: 10.2174/1570159x11311020007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/12/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
The renin-angiotensin system (RAS) in brain is a crucial regulator for physiological homeostasis and diseases of cerebrovascular system, such as ischemic stroke. Overactivation of brain Angiotensin-converting enzyme (ACE) - Angiotensin II (Ang II) - Angiotensin II type 1 receptor (AT1R) axis was found to be involved in the progress of hypertension, atherosclerosis and thrombogenesis, which increased the susceptibility to ischemic stroke. Besides, brain Ang II levels have been revealed to be increased in ischemic tissues after stroke, and contribute to neural damage through elevating oxidative stress levels and inducing inflammatory response in the ischemic hemisphere via AT1R. In recent years, new components of RAS have been discovered, including ACE2, Angiotensin-(1-7) [Ang-(1-7)] and Mas, which constitute ACE2-Ang-(1-7)-Mas axis. ACE2 converts Ang II to Ang-(1-7), and Ang-(1-7) binds with its receptor Mas, exerting benefical effects in cerebrovascular disease. Through interacting with nitric oxide and bradykinin, Ang-(1-7) could attenuate the development of hypertension and the pathologic progress of atherosclerosis. Besides, its antithrombotic activity also prevents thrombogenic events, which may contribute to reduce the risk of ischemic stroke. In addition, after ischemia insult, ACE2-Ang-(1-7)-Mas has been shown to reduce the cerebral infarct size and improve neurological deficits through its antioxidative and anti-inflammatory effects. Taken together, activation of the ACE2-Ang-(1-7)-Mas axis may become a novel therapeutic target in prevention and treatment of ischemia stroke, which deserves further investigations.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, P.R. China
| | | | | | | |
Collapse
|
36
|
Clarke C, Flores-Muñoz M, McKinney CA, Milligan G, Nicklin SA. Regulation of cardiovascular remodeling by the counter-regulatory axis of the renin-angiotensin system. Future Cardiol 2013; 9:23-38. [PMID: 23259473 DOI: 10.2217/fca.12.75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The counter-regulatory axis of the renin-angiotensin system (RAS) is a novel therapeutic target in cardiovascular disease. Pathophysiological effects mediated via angiotensin II (Ang II) are well established in regulation of blood pressure, cardiac and vascular remodeling, and renal sodium handling, which lead to disorders such as hypertension and associated end-organ damage, atherosclerosis and heart failure. The counter-regulatory axis of the RAS is centered on the angiotensin-converting enzyme 2/angiotensin-1-7 (Ang-[1-7])/Mas receptor axis and has been shown to inhibit many detrimental phenotypes in cardiovascular disease. More recently, an alternative peptide, angiotensin-(1-9) (Ang-[1-9]), has been reported as a potential new member of this axis. This review will discuss the cardiovascular regulatory roles of Ang-(1-7) and Ang-(1-9) in the counter-regulatory axis of the RAS, and the potential for new therapeutic approaches in cardiovascular disease.
Collapse
Affiliation(s)
- Carolyn Clarke
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
37
|
Fraga-Silva RA, Ferreira AJ, Dos Santos RAS. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep 2013; 15:31-8. [PMID: 23212695 DOI: 10.1007/s11906-012-0324-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is well known that the renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cardiovascular diseases. This is well illustrated by the great success of ACE inhibitors and angiotensin (Ang) II AT(1) blockers in the treatment of hypertension and its complications. In the past decade, the classical concept of RAS orchestrated by a series of enzymatic reactions culminating in the linear generation and action of Ang II has expanded and become more complex. From the discoveries of new components such as the angiotensin converting enzyme 2 and the receptor Mas emerged a novel concept of dual opposite branches of the RAS: one vasoconstrictor and pro-hypertensive composed of ACE/Ang II/AT1; and other vasodilator and anti-hypertensive composed of ACE2/Ang-(1-7)/Mas. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular system and highlight the initiatives to develop potential therapeutic strategies based on this axis for treating hypertension.
Collapse
|
38
|
The nonpeptide ANG-(1–7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci 2013; 92:266-75. [DOI: 10.1016/j.lfs.2012.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/11/2012] [Accepted: 12/21/2012] [Indexed: 01/30/2023]
|
39
|
Su JB. Different cross-talk sites between the renin-angiotensin and the kallikrein-kinin systems. J Renin Angiotensin Aldosterone Syst 2013; 15:319-28. [PMID: 23386283 DOI: 10.1177/1470320312474854] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeting the renin-angiotensin system (RAS) constitutes a major advance in the treatment of cardiovascular diseases. Evidence indicates that angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers act on both the RAS and the kallikrein-kinin system (KKS). In addition to the interaction between the RAS and KKS at the level of angiotensin-converting enzyme catalyzing both angiotensin II generation and bradykinin degradation, the RAS and KKS also interact at other levels: 1) prolylcarboxypeptidase, an angiotensin II inactivating enzyme and a prekallikrein activator; 2) kallikrein, a kinin-generating and prorenin-activating enzyme; 3) angiotensin-(1-7) exerts kininlike effects and potentiates the effects of bradykinin; and 4) the angiotensin AT1 receptor forms heterodimers with the bradykinin B2 receptor. Moreover, angiotensin II enhances B1 and B2 receptor expression via transcriptional mechanisms. These cross-talks explain why both the RAS and KKS are up-regulated in some circumstances, whereas in other circumstances both systems change in the opposite manner, expressed as an activated RAS and a depressed KKS. As the cross-talks between the RAS and the KKS play an important role in response to different stimuli, taking these cross-talks between the two systems into account may help in the development of drugs targeting the two systems.
Collapse
Affiliation(s)
- Jin Bo Su
- Inserm U955, Maisons-Alfort, France, and Faculté de Médecine de Créteil, Université Paris-Est, France
| |
Collapse
|
40
|
Chornous VA, Grozav AN, Bratenko MK, Vovk MV. Polyfunctional imidazoles: IV. Synthesis of 2-aryl-4-chloro-1-methyl(aryl)-1H-imidazole-5-carbaldehydes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1070428011100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol 2011; 301:H1341-52. [PMID: 21803946 DOI: 10.1152/ajpheart.00202.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined the effect of ANG-(1-7) on salt-induced suppression of endothelium-dependent vasodilatation in the mesenteric arteries of male Sprague-Dawley rats. Chronic intravenous infusion of ANG-(1-7), oral administration of the nonpeptide mas receptor agonist AVE-0991, and acute preincubation of the arteries with ANG-(1-7) and AVE-0991 all restored vasodilator responses to both ACh and histamine that were absent in the arteries of rats fed a high-salt (4% NaCl) diet. The protective effects of ANG-(1-7) and AVE-0991 were inhibited by acute or chronic administration of the mas receptor antagonist A-779, the ANG II type 2 (AT(2)) receptor blocker PD-123319, or N-nitro-l-arginine methyl ester, but not the ANG II type 1 receptor antagonist losartan. Preincubation with the antioxidant tempol or the nitric oxide (NO) donor diethylenetriamine NONOate and acute and chronic administration of the AT(2) receptor agonist CGP-42112 mimicked the protective effect of ANG-(1-7) to restore vascular relaxation. Acute preincubation with ANG-(1-7) and chronic infusion of ANG-(1-7) ameliorated the elevated superoxide levels in rats fed a high-salt diet, but the expression of Cu/Zn SOD and Mn SOD enzyme proteins in the vessel wall was unaffected by ANG-(1-7) infusion. These results indicate that both acute and chronic systemic administration of ANG-(1-7) or AVE-0991 restore endothelium-dependent vascular relaxation in salt-fed Sprague-Dawley rats by reducing vascular oxidant stress and enhancing NO availability via mas and AT(2) receptors. These findings suggest a therapeutic potential for mas/AT(2) receptor activation in preventing the vascular oxidant stress and endothelial dysfunction associated with elevated dietary salt intake.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
42
|
Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond) 2011; 121:297-303. [DOI: 10.1042/cs20110036] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AT1R (angiotensin type 1 receptor) and AT2R (angiotensin type 2 receptor) are well known to be involved in the complex cardiovascular actions of AngII (angiotensin II). However, shorter peptide fragments of AngII are thought to have biological activity in their own right and elicit effects that oppose those mediated by AngII. In the present study, we have used HEK (human embryonic kidney)-293 cells stably transfected with either AT1R or AT2R to perform a systematic analysis of binding affinities of all the major angiotensin peptides. Additionally, we tested the novel AT2R agonist Compound 21, as well as the MasR (Mas receptor) agonist and antagonist AVE0991 and A-779 respectively, for their ability to bind to AT1R or AT2R. Candesartan, CGP42214 and PD123319 were used as reference compounds. Binding studies using 125I-[Sar1Ile8]AngII on the AT1R-transfected HEK-293 cells revealed only AngII, AngIII [angiotensin III; angiotensin-(2–8)] and candesartan to have high affinity for AT1R. In the AT2R-transfected HEK-293 cells, competition for 125I-[Sar1Ile8]AngII binding was observed for all ligands except candesartan, AVE0991 and A-779, the latter two compounds having negligible affinity at either AT1R or AT2R. The rank order of affinity of ligands at AT2R was CGP42112>AngII≥AngIII>Compound 21≥PD123319≫AngIV [angiotensin IV; angiotensin-(3–8)]>Ang-(1–7) [angiotensin-(1–7)]. Of note, although AngIV and Ang-(1–7) exhibited only modest affinity at AT2R compared with AngII, these two angiotensin peptides, together with AngIII, had substantial AT2R selectivity over AT1R. Collectively, our results suggest that shorter angiotensin peptides can act as endogenous ligands at AT2R.
Collapse
|
43
|
Marques FD, Ferreira AJ, Sinisterra RDM, Jacoby BA, Sousa FB, Caliari MV, Silva GAB, Melo MB, Nadu AP, Souza LE, Irigoyen MCC, Almeida AP, Santos RAS. An oral formulation of angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension 2011; 57:477-83. [PMID: 21282558 DOI: 10.1161/hypertensionaha.110.167346] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study we evaluated the cardiac effects of a pharmaceutical formulation developed by including angiotensin (Ang)-(1-7) in hydroxypropyl β-cyclodextrin (HPβCD), in normal, infarcted, and isoproterenol-treated rats. Myocardial infarction was produced by left coronary artery occlusion. Isoproterenol (2 mg/kg, IP) was administered daily for 7 days. Oral administration of HPβCD/Ang-(1-7) started immediately before infarction or associated with the first dose of isoproterenol. After 7 days of treatment, the rats were euthanized, and the Langendorff technique was used to analyze cardiac function. In addition, heart function was chronically (15, 30, 50 days) analyzed by echocardiography. Cardiac sections were stained with hematoxylin/eosin and Masson trichrome to evaluate cardiac hypertrophy and damage, respectively. Pharmacokinetic studies showed that oral HPβCD/Ang-(1-7) administration significantly increased Ang-(1-7) on plasma whereas with the free peptide it was without effect. Oral administration of HPβCD/Ang-(1-7) (30 μg/kg) significantly reduced the deleterious effects induced by myocardial infarction on systolic and diastolic tension, ±dT/dt, perfusion pressure, and heart rate. Strikingly, a 50% reduction of the infarcted area was observed in HPβCD/Ang-(1-7)-treated rats. Furthermore, HPβCD/Ang-(1-7) attenuated the heart function impairment and cardiac remodeling induced by isoproterenol. In infarcted rats chronically treated with HPβCD/Ang-(1-7), the reduction of ejection fraction and fractional shorting and the increase in systolic and diastolic left ventricular volumes observed in infarcted rats were attenuated. Altogether, these findings further confirm the cardioprotective effects of Ang-(1-7). More importantly, our data indicate that the HPβCD/Ang-(1-7) is a feasible formulation for oral administration of Ang-(1-7), which can be used as a cardioprotective drug.
Collapse
Affiliation(s)
- Fúlvia D Marques
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cardiac hypertrophy is classically considered as an adaptive and compensatory response enabling cardiomyocytes to increase their work output and thus cardiac function. Biomechanical stress and neurohumoral activation are the most important triggers of pathological hypertrophy and the transition of cardiac hypertrophy to heart failure. Several novel regulators and putative drug targets of cardiac hypertrophy have been found by using gene-modified and acquired models of cardiac hypertrophy. Recent studies have also revealed distinct patterns of cardiac substrate utilization in cardiac hypertrophy and heart failure. The use of novel systems biology techniques such as metabolomics may therefore in future provide insights into the metabolic processes and cardiovascular biology related to cardiac hypertrophy and also extend the ability to discover circulating biomarkers for cardiovascular diseases. The present review discusses current knowledge on molecular mechanisms of cardiac hypertrophy, with special emphasis on novel regulators and putative drug targets of cardiac hypertrophy such as the tissue renin-angiotensin-aldosterone system, calcineurin/nuclear factor of activated T cells pathway, phosphatidylinositol 3-kinase/growth promoting protein kinase B, mammalian target of rapamycin, histone deacetylases, AMPkinases, microRNAs and angiogenetic factors.
Collapse
|
45
|
Zeng WT, Chen WY, Leng XY, Tang LL, Sun XT, Li CL, Dai G. Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991. Cardiovasc Ther 2010; 30:152-61. [PMID: 21167013 DOI: 10.1111/j.1755-5922.2010.00255.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS We evaluated effects of the nonpeptide angiotensin (ANG)-(1-7) analog AVE 0991 (AVE) on cardiac function and remodeling as well as transforming growth factor-beta1 (TGF-β1)/tumor necrosis factor-alpha (TNF-α) expression in myocardial infarction rat models. METHODS AND RESULTS Sprague-Dawley rats underwent either sham surgery or coronary ligation. They were divided into four groups: sham, control, AVE, and AVE+A-779 [[D-Ala(7) ]-ANG-(1-7), a selective antagonist for the ANG-(1-7)] group. After 4 weeks of treatment, the AVE group displayed a significant elevation in left ventricular fractional shorting (LVFS) (25.5 ± 7.3% vs. 18.4 ± 3.3%, P < 0.05) and left ventricular ejection fraction (LVEF) (44.8 ± 7.6% vs. 32.7 ± 6.5%, P < 0.05) when compared to the control group, but no effects on the left ventricular end-diastolic and end-systolic diameters (LVDd and LVDs, respectively) were observed. In addition, we found that the myocyte diameter (18 ± 2 μm vs. 22 ± 4 μm, P < 0.05), infarct size (42.6 ± 3.6% vs. 50.9 ± 4.4%, P < 0.001) and collagen volume fraction (CVF) (16.4 ± 2.2% vs. 25.3 ± 3.2%, P < 0.001) were significantly reduced in the AVE group when compared to the control group. There were no differences in LVFS, LVEF, myocyte diameter, and infarct size between the control and AVE+A-779 groups. AVE also markedly attenuated the increased mRNA expression of collagen I (P < 0.001) and collagen III (P < 0.001) and inhibited the overexpression of TGF-β1 (P < 0.05) and TNF-α (P < 0.05) compared to the control group. CONCLUSION AVE could improve cardiac function and attenuate ventricular remodeling in MI rat models. It may involve the inhibition of inflammatory factors TGF-β1/TNF-α overexpression and the action on the specific receptor Mas of ANG-(1-7).
Collapse
Affiliation(s)
- Wu-tao Zeng
- Cardiovascular Medical Department, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2010; 299:H1024-33. [PMID: 20656887 DOI: 10.1152/ajpheart.00328.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg(-1)·min(-1)) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10(-10)-10(-5) M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10(-10)-10(-5) M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [D-ALA(7)]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg(-1)·min(-1)) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
47
|
de Vries L, Reitzema-Klein CE, Meter-Arkema A, van Dam A, Rink R, Moll GN, Akanbi MHJ. Oral and pulmonary delivery of thioether-bridged angiotensin-(1-7). Peptides 2010; 31:893-8. [PMID: 20206220 DOI: 10.1016/j.peptides.2010.02.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/17/2022]
Abstract
Instability and proteolytic degradation limit the delivery options and in vivo efficacy of many therapeutic peptides. We previously generated a thioether stabilized angiotensin-(1-7) analog, cAng-(1-7), which is resistant against proteolytic degradation in the circulation. We here investigated oral and pulmonary delivery of this compound. In a first step we investigated the in vitro stability of the peptide under conditions that mimic those that will be met after oral administration. We demonstrated that cAng-(1-7) is stable at pH 2.0, a pH value close to that of the stomach, has enhanced resistance to breakdown by proteases from pancreas at pH 7.4, and is resistant to breakdown by proteases from liver at the lysosomal pH 5.0. We subsequently demonstrated that, in the absence of any delivery system or formulation, cAng-(1-7) can be delivered orally and via the lung, with bioavailabilities of 0.28+/-0.05% and 28+/-5%, whereas drug uptake was maximal after subcutaneous administration (bioavailability of 98+/-6%). Therapeutic concentrations could be reached via all three routes of administration. The data prove that introduction of a thioether bridge in peptides opens novel delivery options for medically important peptides.
Collapse
Affiliation(s)
- Louwe de Vries
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 2010; 50:439-65. [PMID: 20055710 DOI: 10.1146/annurev.pharmtox.010909.105610] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin-aldosterone system is one of the most important systems in cardiovascular control and in the pathogenesis of cardiovascular diseases. Therefore, it is already a very successful drug target for the therapy of these diseases. However, angiotensins are generated not only in the plasma but also locally in tissues from precursors and substrates either locally expressed or imported from the circulation. In most areas of the brain, only locally generated angiotensins can exert effects on their receptors owing to the blood-brain barrier. Other tissue renin-angiotensin-aldosterone systems are found in cardiovascular organs such as kidney, heart, and vessels and play important roles in the function of these organs and in the deleterious actions of hypertension and diabetes on these tissues. Novel components with mostly opposite actions to the classical renin-angiotensin-aldosterone systems have been described and need functional characterization to evaluate their suitability as novel drug targets.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany.
| |
Collapse
|
49
|
Angiotensin-(1-7), an alternative metabolite of the renin-angiotensin system, is up-regulated in human liver disease and has antifibrotic activity in the bile-duct-ligated rat. Clin Sci (Lond) 2009; 117:375-86. [PMID: 19371232 DOI: 10.1042/cs20080647] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ang-(1-7) (angiotensin-1-7), a peptide product of the recently described ACE (angiotensin-converting enzyme) homologue ACE2, opposes the harmful actions of AngII (angiotensin II) in cardiovascular tissues, but its role in liver disease is unknown. The aim of the present study was to assess plasma levels of Ang-(1-7) in human liver disease and determine its effects in experimental liver fibrosis. Angiotensin peptide levels were measured in cirrhotic and non-cirrhotic patients with hepatitis C. The effects of Ang-(1-7) on experimental fibrosis were determined using the rat BDL (bile-duct ligation) model. Liver histology, hydroxyproline quantification and expression of fibrosis-related genes were assessed. Expression of RAS (renin-angiotensin system) components and the effects of Ang-(1-7) were examined in rat HSCs (hepatic stellate cells). In human patients with cirrhosis, both plasma Ang-(1-7) and AngII concentrations were markedly elevated (P<0.001). Non-cirrhotic patients with hepatitis C had elevated Ang-(1-7) levels compared with controls (P<0.05), but AngII concentrations were not increased. In BDL rats, Ang-(1-7) improved fibrosis stage and collagen Picrosirius Red staining, and reduced hydroxyproline content, together with decreased gene expression of collagen 1A1, alpha-SMA (smooth muscle actin), VEGF (vascular endothelial growth factor), CTGF (connective tissue growth factor), ACE and mas [the Ang-(1-7) receptor]. Cultured HSCs expressed AT1Rs (AngII type 1 receptors) and mas receptors and, when treated with Ang-(1-7) or the mas receptor agonist AVE 0991, produced less alpha-SMA and hydroxyproline, an effect reversed by the mas receptor antagonist A779. In conclusion, Ang-(1-7) is up-regulated in human liver disease and has antifibrotic actions in a rat model of cirrhosis. The ACE2/Ang-(1-7)/mas receptor axis represents a potential target for antifibrotic therapy in humans.
Collapse
|
50
|
Alfany-Fernandez I, Casillas-Ramirez A, Bintanel-Morcillo M, Brosnihan KB, Ferrario CM, Serafin A, Rimola A, Rodés J, Roselló-Catafau J, Peralta C. Therapeutic targets in liver transplantation: angiotensin II in nonsteatotic grafts and angiotensin-(1-7) in steatotic grafts. Am J Transplant 2009; 9:439-51. [PMID: 19191767 DOI: 10.1111/j.1600-6143.2008.02521.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous steatotic livers are discarded as unsuitable for transplantation because of their poor tolerance of ischemia-reperfusion(I/R). The injurious effects of angiotensin (Ang)-II and the benefits of Ang-(1-7) in various pathologies are well documented. We examined the generation of Ang II and Ang-(1-7) in steatotic and nonsteatotic liver grafts from Zucker rats following transplantation. We also studied in both liver grafts the effects of Ang-II receptors antagonists and Ang-(1-7) receptor antagonists on hepatic I/R damage associated with transplantation. Nonsteatotic grafts showed higher Ang II levels than steatotic grafts, whereas steatotic grafts showed higher Ang-(1-7) levels than nonsteatotic grafts. Ang II receptor antagonists protected only nonsteatotic grafts against damage, whereas Ang-(1-7) receptor antagonists were effective only in steatotic grafts. The protection conferred by Ang II receptor antagonists in nonsteatotic grafts was associated with ERK 1/2 overexpression, whereas the beneficial effects of Ang-(1-7) receptor antagonists in steatotic grafts may be mediated by NO inhibition. Our results show that Ang II receptor antagonists are effective only in nonsteatotic liver transplantation and point to a novel therapeutic target in liver transplantation based on Ang-(1-7), which is specific for steatotic liver grafts.
Collapse
Affiliation(s)
- I Alfany-Fernandez
- Centro de Investigaciones Biomédicas Esther Koplowitz, CIBER-EHD, Instituto de Salud Carlos III, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|