1
|
Dilena R, Mauri E, Di Fonzo A, Bana C, Ajmone PF, Rigamonti C, Catenio T, Gangi S, Striano P, Fumagalli M. Case Report: Effect of Targeted Therapy With Carbamazepine in KCNQ2 Neonatal Epilepsy. Front Neurol 2022; 13:942582. [PMID: 35911888 PMCID: PMC9329581 DOI: 10.3389/fneur.2022.942582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
We present a family case of neonatal-onset KCNQ2-related epilepsy due to a novel intronic mutation. Three members of an Italian family (father and offspring) presented with neonatal-onset asymmetric tonic and clonic seizures with peculiar video-electroencephalography and aEEG features referring to sequential seizures. The father and the first son underwent standard of care treatments in line with current neonatal intensive care unit protocols, with a prolonged hospitalization before reaching full seizure control with carbamazepine. After the experience acquired with her family and the latest advances in the literature, the younger daughter was directly treated with carbamazepine, obtaining rapid seizure control and short hospitalization. They all had normal development. Carbamazepine is rarely administered as a first-line option in neonatal seizures. Recent evidence suggests that neonatal intensive care unit protocols should implement a trial with sodium channel blockers such as carbamazepine as first-option anti-seizure medication and a fast access to genetic testing in neonates with sequential seizures without structural brain injury or acute causes. Moreover, we report and discuss the laboratory studies performed on a novel causative intronic mutation in KCNQ2 (c.1525+5 G>A in IVS13), since pathogenicity may be difficult to prove for intronic variants.
Collapse
Affiliation(s)
- Robertino Dilena
- Neurophysiopathology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Robertino Dilena
| | - Eleonora Mauri
- Neurophysiopathology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Cristina Bana
- Neurophysiopathology Unit, Department of Neuroscience and Mental Health, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatic Unit (UONPIA), Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Rigamonti
- Child and Adolescent Neuropsychiatic Unit (UONPIA), Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvana Gangi
- Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Neonatology and NICU, Milan, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS ‘G. Gaslini' Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Monica Fumagalli
- Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Neonatology and NICU, Milan, Italy
| |
Collapse
|
2
|
Li Q, Wang Y, Pan Y, Wang J, Yu W, Wang X. Unraveling synonymous and deep intronic variants causing aberrant splicing in two genetically undiagnosed epilepsy families. BMC Med Genomics 2021; 14:152. [PMID: 34107977 PMCID: PMC8188693 DOI: 10.1186/s12920-021-01008-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Variants identified through parent-child trio-WES yield up to 28-55% positive diagnostic rate across a variety of Mendelian disorders, there remain numerous patients who do not receive a genetic diagnosis. Studies showed that some aberrant splicing variants, which are either not readily detectable by WES or could be miss-interpreted by regular detecting pipelines, are highly relevant to human diseases. METHODS We retrospectively investigated the negative molecular diagnostics through trio-WES for 15 genetically undiagnosed patients whose clinical manifestations were highly suspected to be genetic disorders with well-established genotype-phenotype relationships. We scrutinized the synonymous variants from WES data and Sanger sequenced the suspected intronic region for deep intronic variants. The functional consequences of variants were analyzed by in vitro minigene experiments. RESULTS Here, we report two abnormal splicing events, one of which caused exon truncating due to the activation of cryptic splicing site by a synonymous variant; the other caused partial intron retention due to the generation of splicing sites by a deep intronic variant. CONCLUSIONS We suggest that, despite initial negative genetic test results in clinically highly suspected genetic diseases, the combination of predictive bioinformatics and functional analysis should be considered to unveil the genetic etiology of undiagnosed rare diseases.
Collapse
Affiliation(s)
- Qiang Li
- Guiyang Maternal and Child Health Care Hospital, Guiyang, 550002, China.
| | | | - Yijun Pan
- Guiyang Maternal and Child Health Care Hospital, Guiyang, 550002, China
| | - Jia Wang
- Cipher Gene, Ltd., Beijing, 100080, China
| | - Weishi Yu
- Cipher Gene, Ltd., Beijing, 100080, China
| | | |
Collapse
|
3
|
van Loo KMJ, Becker AJ. Transcriptional Regulation of Channelopathies in Genetic and Acquired Epilepsies. Front Cell Neurosci 2020; 13:587. [PMID: 31992970 PMCID: PMC6971179 DOI: 10.3389/fncel.2019.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by recurrent uncontrolled seizures and has an idiopathic “genetic” etiology or a symptomatic “acquired” component. Genetic studies have revealed that many epilepsy susceptibility genes encode ion channels, including voltage-gated sodium, potassium and calcium channels. The high prevalence of ion channels in epilepsy pathogenesis led to the causative concept of “ion channelopathies,” which can be elicited by specific mutations in the coding or promoter regions of genes in genetic epilepsies. Intriguingly, expression changes of the same ion channel genes by augmentation of specific transcription factors (TFs) early after an insult can underlie acquired epilepsies. In this study, we review how the transcriptional regulation of ion channels in both genetic and acquired epilepsies can be controlled, and compare these epilepsy “ion channelopathies” with other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Karen M J van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
4
|
Laccetta G, Fiori S, Giampietri M, Ferrari A, Cetica V, Bernardini M, Chesi F, Mazzotti S, Parrini E, Ciantelli M, Guzzetta A, Ghirri P. A de novo KCNQ2 Gene Mutation Associated With Non-familial Early Onset Seizures: Case Report and Revision of Literature Data. Front Pediatr 2019; 7:348. [PMID: 31552204 PMCID: PMC6743415 DOI: 10.3389/fped.2019.00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Among neonatal epileptic syndromes, benign familial neonatal seizures (BFNS) are often due to autosomal-dominant mutations of the KCNQ2 gene. Seizures are usually characterized by asymmetric tonic posturing with apnea with onset in the first 7 days of life; they may even occur more than 10 times per day or evolve into status epilepticus. The delivery course of our patient was uneventful and family history was negative; on the second day of life the baby became pale, rigid, and apnoic during breastfeeding and appeared jittery and irritable when stimulated or examined. At age 3 days, she experienced clusters of generalized tonic seizures with pallor, desaturation, bradycardia, and partial response to intravenous phenobarbital; during her 4th and 5th days of life, three episodes of tonic seizures were noticed. At age 6 days, the patient experienced about 10 episodes of tonic seizures involving both sides of the body, which gradually responded to intravenous phenytoin. Electroencephalograms revealed abnormalities but brain MRI was normal. The patient is seizure-free since postnatal day 21; she is now 12 months old with cognitive development within normal limits at Bayley III Scale and mild motor delay. The patient is on maintenance therapy with phenobarbital since she was 7 months old. A de novo heterozygous mutation (c.853C>T/p.P285S) in the KCNQ2 gene was identified. We therefore describe a case of de novo KCNQ2-related neonatal convulsions with necessity of multiple anticonvulsants for the control of seizures, mutation occurring in the pore channel of the voltage-gated potassium channel subfamily Q member 2 associated with a likely benign course; furthermore, the same mutation of the KCNQ2 gene and a similar one (c.854C>A/p.P285H) have already been described in association with Ohtahara syndrome. Probably acquired environmental, perinatal and genetic risk factors are very important in determining the different phenotype; we hope that the rapid progress of analysis tools in molecular diagnosis can also be used in the search of an individualized therapeutic approach for these patients.
Collapse
Affiliation(s)
- Gianluigi Laccetta
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Matteo Giampietri
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Manuela Bernardini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Francesca Chesi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Sara Mazzotti
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's University Hospital, University of Florence, Florence, Italy
| | - Massimiliano Ciantelli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| | - Andrea Guzzetta
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Maternal and Child Health, Santa Chiara Hospital, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Lee IC, Yang JJ, Liang JS, Chang TM, Li SY. KCNQ2-Associated Neonatal Epilepsy: Phenotype Might Correlate With Genotype. J Child Neurol 2017; 32:704-711. [PMID: 28399683 DOI: 10.1177/0883073817701873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyzed the KCNQ2 wild-type gene and 3 mutations to highlight the important association between the KCNQ2 phenotype and genotype. The clinical phenotypes of 3 mutations (p.E515D, p.V543 M, and p.R213Q) were compared. KCNQ2, wild-type, and mutant KCNQ2 alleles were transfected into HEK293 cells before whole-cell patch-clamp analysis. Neurodevelopmental outcomes were worst in patients with the p.R213Q mutation, better in patients with the p.E515D mutation, and best in patients with the novel p.V543 M mutation. The currents in p.E515D and in p.V543 M were significantly lower than in the wild type in homomeric and heteromeric transfected HEK293 cells ( P < .05). The opening threshold shifted to values that were more positive, and the maximal current induced by strong depolarization was higher in cells with the p.E515D and p.R213Q mutations. We provide evidence that genotype is involved in determining clinical phenotype, including the seizure frequency and outcome.
Collapse
Affiliation(s)
- Inn-Chi Lee
- 1 Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,2 Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- 3 Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jao-Shwann Liang
- 4 Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tung-Ming Chang
- 5 Division of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Shuan-Yow Li
- 2 Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,3 Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Mirza N, Appleton R, Burn S, du Plessis D, Duncan R, Farah JO, Feenstra B, Hviid A, Josan V, Mohanraj R, Shukralla A, Sills GJ, Marson AG, Pirmohamed M. Genetic regulation of gene expression in the epileptic human hippocampus. Hum Mol Genet 2017; 26:1759-1769. [PMID: 28334860 PMCID: PMC5411756 DOI: 10.1093/hmg/ddx061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a serious and common neurological disorder. Expression quantitative loci (eQTL) analysis is a vital aid for the identification and interpretation of disease-risk loci. Many eQTLs operate in a tissue- and condition-specific manner. We have performed the first genome-wide cis-eQTL analysis of human hippocampal tissue to include not only normal (n = 22) but also epileptic (n = 22) samples. We demonstrate that disease-associated variants from an epilepsy GWAS meta-analysis and a febrile seizures (FS) GWAS are significantly more enriched with epilepsy-eQTLs than with normal hippocampal eQTLs from two larger independent published studies. In contrast, GWAS meta-analyses of two other brain diseases associated with hippocampal pathology (Alzheimer's disease and schizophrenia) are more enriched with normal hippocampal eQTLs than with epilepsy-eQTLs. These observations suggest that an eQTL analysis that includes disease-affected brain tissue is advantageous for detecting additional risk SNPs for the afflicting and closely related disorders, but not for distinct diseases affecting the same brain regions. We also show that epilepsy eQTLs are enriched within epilepsy-causing genes: an epilepsy cis-gene is significantly more likely to be a causal gene for a Mendelian epilepsy syndrome than to be a causal gene for another Mendelian disorder. Epilepsy cis-genes, compared to normal hippocampal cis-genes, are more enriched within epilepsy-causing genes. Hence, we utilize the epilepsy eQTL data for the functional interpretation of epilepsy disease-risk variants and, thereby, highlight novel potential causal genes for sporadic epilepsy. In conclusion, an epilepsy-eQTL analysis is superior to normal hippocampal tissue eQTL analyses for identifying the variants and genes underlying epilepsy.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Richard Appleton
- The Roald Dahl EEG Unit, Paediatric Neurosciences Foundation, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Sasha Burn
- Department of Neurosurgery, Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - Daniel du Plessis
- Department of Cellular Pathology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Roderick Duncan
- Department of Neurology, Christchurch Hospital, Christchurch 8140, New Zealand
| | - Jibril Osman Farah
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Vivek Josan
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Arif Shukralla
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Graeme J. Sills
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony G. Marson
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
7
|
A KCNQ2 E515D mutation associated with benign familial neonatal seizures and continuous spike and waves during slow-wave sleep syndrome in Taiwan. J Formos Med Assoc 2016; 116:711-719. [PMID: 28038823 DOI: 10.1016/j.jfma.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. METHODS We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. RESULTS Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). CONCLUSION KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures.
Collapse
|
8
|
Abstract
Epilepsy affects almost 1% of the population, and yet the pathophysiology of this disorder is unknown in the majority of the cases. Recently, a number of mutations in different genes were identified, mostly in cases of familial epilepsy with a Mendelian mode of inheritance. The majority of these genes code for voltage- or ligand-gated ion channels. Interestingly, not only generalized epilepsies, but also focal epilepsies were shown to be caused by mutated genes, which in some cases are expressed ubiquitously in the brain. This review will focus on the monogenic familial epilepsies and the clinical and molecular aspects of these diseases.
Collapse
Affiliation(s)
- Danielle M Andrade
- University of Toronto, Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada.
| | | |
Collapse
|
9
|
Ferraro TN, Dlugos DJ, Buono RJ. Role of genetics in the diagnosis and treatment of epilepsy. Expert Rev Neurother 2014; 6:1789-800. [PMID: 17181426 DOI: 10.1586/14737175.6.12.1789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epilepsy is a heterogeneous group of multifactorial diseases, the vast majority determined by interactions between many genes and environmental factors; however, there are rare epilepsy syndromes that can be caused by a single gene mutation and are inherited according to classical mendelian genetic principles. Finding disease-causing genetic mutations in epilepsy has provided new opportunities for aiding diagnosis and developing therapies. Thus, the discovery of KCNQ2 mutations in benign familial neonatal convulsions, SCN1A mutations in severe myoclonic epilepsy of infancy and in generalized epilepsy with febrile seizures plus, and CHRA4 and CHRB2 mutations in autosomal-dominant nocturnal frontal lobe epilepsy, has led to the establishment of epilepsy as a disorder of ion channel function and, furthermore, has led to the introduction of genetic tests that are available clinically to aid in diagnosis and treatment. At the present time, clinical use of genetic testing in epilepsy is greatest in suspected cases of severe myoclonic epilepsy of infancy, generalized epilepsy with febrile seizures plus, atypical cases of benign familial neonatal convulsions and 'occult' cases of autosomal-dominant nocturnal frontal lobe epilepsy without a family history. Overall, clinical use is limited by the low number of documented disease-associated mutations and the uncertain clinical significance of many test results. Further elucidation of the relationship between gene mutations and channel function will add value to genetic testing in the future, as will better characterization of the association between gene mutations and clinical phenotypes.
Collapse
Affiliation(s)
- Thomas N Ferraro
- University of Pennsylvania, Department of Psychiatry, 125 S.31 Street, Room 2209 TRL, Philadelphia, PA 19104-3403, USA.
| | | | | |
Collapse
|
10
|
Ishii A, Yasumoto S, Ihara Y, Inoue T, Fujita T, Nakamura N, Ohfu M, Yamashita Y, Takatsuka H, Taga T, Miyata R, Ito M, Tsuchiya H, Matsuoka T, Kitao T, Murakami K, Lee WT, Kaneko S, Hirose S. Genetic analysis of PRRT2 for benign infantile epilepsy, infantile convulsions with choreoathetosis syndrome, and benign convulsions with mild gastroenteritis. Brain Dev 2013; 35:524-30. [PMID: 23073245 DOI: 10.1016/j.braindev.2012.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022]
Abstract
PURPOSE PRRT2 mutations were recently identified in benign familial infantile epilepsy (BFIE) and infantile convulsions with paroxysmal choreoathetosis (ICCA) but no abnormalities have so far been identified in their phenotypically similar seizure disorder of benign convulsions with mild gastroenteritis (CwG), while mutations in KCNQ2 and KCNQ3 have been recognized in benign familial neonatal epilepsy (BFNE). The aim of this study was to identify PRRT2 mutations in infantile convulsions in Asian families with BFIE and ICCA, CwG and BFNE. METHODS We recruited 26 unrelated Japanese affected with either BFIE or non-familial benign infantile seizures and their families, including three families with ICCA. A total of 17 Japanese and Taiwanese with CwG, 50 Japanese with BFNE and 96 healthy volunteers were also recruited. Mutations of PRRT2 were sought using direct sequencing. RESULTS Heterozygous truncation mutation (c.649dupC) was identified in 15 of 26 individuals with benign infantile epilepsy (52.1%). All three families of ICCA harbored the same mutation (100%). Another novel mutation (c.1012+2dupT) was found in the proband of a family with BFIE. However, no PRRT2 mutation was found in either CwG or BFNE. CONCLUSIONS The results confirm that c.649dupC, a truncating mutation of PRRT2, is a hotspot mutation resulting in BFIE or ICCA regardless of the ethnic background. In contrast, PRRT2 mutations do not seem to be associated with CwG or BFNE. Screening for PRRT2 mutation might be useful in early-stage differentiation of BFIE from CwG.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Blumkin L, Suls A, Deconinck T, De Jonghe P, Linder I, Kivity S, Dabby R, Leshinsky-Silver E, Lev D, Lerman-Sagie T. Neonatal seizures associated with a severe neonatal myoclonus like dyskinesia due to a familial KCNQ2 gene mutation. Eur J Paediatr Neurol 2012; 16:356-60. [PMID: 22169383 DOI: 10.1016/j.ejpn.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/09/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
UNLABELLED Mutations in the potassium channel gene KCNQ2, usually cause benign familial neonatal epilepsy. This is an autosomal dominant disorder characterized by clusters of seizures occurring in the first days of life. Most patients have normal psychomotor development and spontaneous remission of seizures by 12 months of age. Since Rett and Teubel reported the first family in 1964 and the identification of KCNQ2 gene mutations in this family by Zimprich et al. in 2006, phenotypic variability has been recognized including: later onset of seizures, myokymia in isolation or accompanied by seizures, neurological deficit and mental retardation. We report a mother and son with an atypical presentation of familial neonatal epilepsy. The mother has persistent epilepsy and subnormal intelligence. The son developed a severe dyskinesia clinically compatible with multifocal myoclonus in the neonatal period that only responded to carbamazepine. He also has ataxia and delayed psychomotor development. EMG revealed a spontaneous occurrence of repetitive normal motor potentials in different muscle groups. Genetic analysis identified a heterozygous missense mutation in KCNQ2 in the child and his mother. CONCLUSION KCNQ2 mutations can present with a neonatal onset multifocal myoclonus-like dyskinesia.
Collapse
Affiliation(s)
- Lubov Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A compound heterozygous missense mutation and a large deletion in the KCTD7 gene presenting as an opsoclonus-myoclonus ataxia-like syndrome. J Neurol 2012; 259:2590-8. [DOI: 10.1007/s00415-012-6545-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/14/2022]
|
13
|
Ishii A, Zhang B, Kaneko S, Hirose S. Positive association between benign familial infantile convulsions and LGI4. Brain Dev 2010; 32:538-43. [PMID: 19815358 DOI: 10.1016/j.braindev.2009.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE LGI4 is located in 19q13.11, where the locus of benign familial infantile convulsions (BFIC) has been mapped. LGI4 belongs to a family of proteins with the epilepsy-associated repeat (EAR) domain and is associated with various epilepsies. We investigated whether LGI4 is a candidate gene for BFIC. METHODS Fifteen patients with BFIC were examined for mutations and/or polymorphisms of LGI4 by using a direct sequencing method. RESULTS Several frequent polymorphisms were identified. The genotype frequency distribution of c.1722G/A polymorphism was significantly different between patients with BFIC and control subjects (p<0.05). Logistic regression analysis showed that the G allele of c.1722G/A polymorphism had significant recessive effects on the increased relative risk for BFIC (p<0.05). There was no association between c.1722G/A polymorphism and benign familial neonatal convulsion, an epilepsy phenotype similar to BFIC but genetically distinguished from BFIC. DISCUSSION The positive genotypic association between BFIC and c.1722G/A polymorphism suggests that LGI4 might contribute to the susceptibility to BFIC.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, Jonanku, Fukuoka, Japan
| | | | | | | |
Collapse
|
14
|
Functional analysis of novel KCNQ2 mutations found in patients with Benign Familial Neonatal Convulsions. Neurosci Lett 2009; 462:24-9. [PMID: 19559753 DOI: 10.1016/j.neulet.2009.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/19/2009] [Accepted: 06/19/2009] [Indexed: 12/16/2022]
Abstract
Benign Familial Neonatal Convulsions (BFNC) are a rare epilepsy disorder with an autosomal-dominant inheritance. It is linked to mutations in the potassium channel genes KCNQ2 and KCNQ3. These encode for Kv7.2 and Kv7.3 potassium ion channels, which produce an M-current that regulates the potential firing action in neurons through modulation of the membrane potential. We report on the biophysical and biochemical properties of V589X, T359K and P410fs12X mutant-KCNQ2 ion channels that were detected in three BFNC families. Mutant KCNQ2 cDNAs were co-expressed with WT-KCNQ2 and KCNQ3 cDNAs in HEK293 cells to mimic heterozygous expression of the KCNQ2 mutations in BFNC patients. The resulting potassium currents were measured using patch-clamp techniques and showed an approximately 75% reduction in current and a depolarized shift in the voltage dependence of activation. Furthermore, the time-constant of activation of M-currents in cells expressing T359K and P410fs12X was slower compared to cells expressing only wild-type proteins. Immunofluorescent labeling of HEK293 cells stably expressing GFP-tagged KCNQ2-WT or mutant alpha-subunits indicated cell surface expression of WT, V589X and T359K mutants, suggesting a loss-of-function, while P410fs12X was predominantly retained in the ER and sub-cellular compartments outside the ER suggesting an effectively haplo-insufficient effect.
Collapse
|
15
|
Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126:173-93. [PMID: 19536565 DOI: 10.1007/s00439-009-0702-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/02/2009] [Indexed: 01/10/2023]
Abstract
Epilepsy is the most common neurological disorder affecting young people. The etiologies are multiple and most cases are sporadic. However, some rare families with Mendelian inheritance have provided evidence of genes' important role in epilepsy. Two important but apparently different groups of disorders have been extensively studied: epilepsies associated with malformations of cortical development (MCDs) and epilepsies associated with a structurally normal brain (or with minimal abnormalities only). This review is focused on clinical and molecular aspects of focal cortical dysplasia, polymicrogyria, periventricular nodular heterotopia, subcortical band heterotopia, lissencephaly and schizencephaly as examples of MCDs. Juvenile myoclonic epilepsy, childhood absence epilepsy, some familial forms of focal epilepsy and epilepsies associated with febrile seizures are discussed as examples of epileptic conditions in (apparently) structurally normal brains.
Collapse
|
16
|
Lee IC, Chen JY, Chen YJ, Yu JS, Su PH. Benign familial neonatal convulsions: novel mutation in a newborn. Pediatr Neurol 2009; 40:387-91. [PMID: 19380078 DOI: 10.1016/j.pediatrneurol.2008.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/26/2008] [Accepted: 12/01/2008] [Indexed: 10/20/2022]
Abstract
Benign familial neonatal convulsions are a rare, autosomal-dominant form of neonatal epileptic syndrome. It can occur 1 week after birth, and usually involves frequent episodes, but with a benign course. The diagnosis depends on family history and clinical features. The mutant gene locates at 20q13, a voltage-gated potassium-channel gene (KCNQ2). Our patient exhibited an uneventful delivery course and onset of seizures at age 2 days. The general tonic seizures were unique and asymmetric, with frequencies of >20 per day. Results of examinations were within normal limits, including biochemistry and brain magnetic resonance imaging. Abnormalities included a small ventricular septum defect on cardiac sonography unrelated to the seizures, and nonspecific, multiple, high-voltage sharp waves and spike waves occurring infrequently in the central region on electroencephalogram. After phenobarbital and phenytoin use, the seizures persisted. On day 12, another antiepileptic drug, vigabatrin (unavailable in the United States), was used, and seizures decreased. A novel mutation of KCNQ2 was identified from a blood sample. The baby had occasional seizures with drug treatment at age 3 months. Benign familial neonatal convulsion should be considered in a baby with a unique seizure pattern and positive family history. Genetic counseling and diagnosis are mandatory.
Collapse
Affiliation(s)
- Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, Chung-Shan Medical University Hospital, Institute of Medicine of Chung-Shan Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Ishii A, Fukuma G, Uehara A, Miyajima T, Makita Y, Hamachi A, Yasukochi M, Inoue T, Yasumoto S, Okada M, Kaneko S, Mitsudome A, Hirose S. A de novo KCNQ2 mutation detected in non-familial benign neonatal convulsions. Brain Dev 2009; 31:27-33. [PMID: 18640800 DOI: 10.1016/j.braindev.2008.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/12/2008] [Accepted: 05/23/2008] [Indexed: 11/17/2022]
Abstract
BACKGROUND The underlying genetic abnormalities of rare familial idiopathic epilepsy have been identified, such as mutation in KCNQ2, a K(+) channel gene. Yet, few genetic abnormalities have been reported for commoner epilepsy, i.e., sporadic idiopathic epilepsy, which share a phenotype similar to those of familial epilepsy. OBJECTIVE To search for the genetic cause of seizures in a girl with the diagnosis of non-familial benign neonatal convulsions, and define the consequence of the genetic abnormality identified. METHODS Genetic abnormality was explored within candidate genes for benign familial neonatal and infantile convulsions, such as KCNQ2, 3, 5, KCNE2, SCN1A and SCN2A. The electrophysiological properties of the channels harboring the identified mutation were examined. Western blotting and immunostaining were employed to characterize the expression and intracellular localization of the mutant channel molecules. RESULTS A novel heterozygous mutation (c.910-2delTTC or TTT, Phe304del) of KCNQ2 was identified in the patient. The mutation was de novo verified by parentage analysis. The mutation was associated with impaired functions of KCNQ K(+) channel. The mutant channels were expressed on the cell surface. CONCLUSION The mutant Phe304del of KCNQ2 leads to null function of the KCNQ K(+) channel but the mutation does not alter proper channel sorting onto the cell membrane. Our findings indicate that the genes responsible for rare inherited forms of idiopathic epilepsy could be also involved in sporadic forms of idiopathic epilepsy and expand our notion of the involvement of molecular mechanisms in the more common forms of idiopathic epilepsy.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jin Z, Liang GH, Cooper EC, Jarlebark L. Expression and localization of K channels KCNQ2 and KCNQ3 in the mammalian cochlea. Audiol Neurootol 2008; 14:98-105. [PMID: 18827480 DOI: 10.1159/000158538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/23/2008] [Indexed: 11/19/2022] Open
Abstract
KCNQ1 and KCNQ4 voltage-gated potassium channel subunits play key roles in hearing. Other members of the KCNQ family also encode slow, low voltage-activated K(+) M currents. We have previously reported the presence of M-like K(+) currents in sensory hair cells, and expression of Kcnq family genes in the cochlea. Here, we describe Kcnq2/3 gene expression and distribution of M channel subunits KCNQ2 and 3 in the cochlea. By using RT-PCR, we found expression of Kcnq2 in the modiolus and organ of Corti, while Kcnq3 expression was also detected in the cochlear lateral wall. Five alternative splice variants of the Kcnq2 gene, one of which has not been reported previously, were identified in the rat cochlea. KCNQ2 and KCNQ3 immunoreactivities were observed in spiral ganglion auditory neurons. In addition, the unmyelinated parts of the nerve fibers innervating hair cells and synaptic regions under hair cells showed KCNQ2 immunoreactivity. KCNQ3 immunoreactivity was also prominent in spiral ganglion satellite cells. These findings suggest that cochlear M channels play important roles in regulation of cellular excitability and maintenance of cochlear K(+) homeostasis in the auditory system.
Collapse
Affiliation(s)
- Zhe Jin
- Center for Hearing and Communication Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
19
|
Sadewa AH, Sasongko TH, Lee MJ, Daikoku K, Yamamoto A, Yamasaki T, Tanaka S, Matsuo M, Nishio H. Germ-line mutation of KCNQ2, p.R213W, in a Japanese family with benign familial neonatal convulsion. Pediatr Int 2008; 50:167-71. [PMID: 18353052 DOI: 10.1111/j.1442-200x.2008.02539.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Benign familial neonatal convulsion (BFNC) is an autosomal-dominantly inherited epilepsy of neonates. The KCNQ2 and KCNQ3 genes have been cloned as the responsible genes for BFNC. Detection of mutations in these genes is helpful for confirmation of BFNC or differential diagnosis of convulsive disorders in the neonatal period. METHODS A Japanese family with BFNC was investigated. Two siblings were clinically diagnosed as having BFNC. KCNQ2 and KCNQ3 were screened for mutations using a combination of polymerase chain reaction and denaturing high-performance liquid chromatography. Nucleotide substitutions were confirmed by direct sequencing. RESULTS In the affected siblings a C-to-T heterozygous substitution was detected at nucleotide 683 (c.683C>T) in KCNQ2, leading to substitution of arginine with tryptophan at amino acid position 213 (p.R213W) in the S4 voltage-sensing domain of the KCNQ2 protein. The detected mutation may disrupt this highly conserved region among potassium channel proteins. The c.683C>T substitution in KCNQ2 was not present in the parents. KCNQ3 was also analyzed and a single nucleotide polymorphism, c.1241A>G (National Center for Biotechnology Information (NCBI), SNP ID: rs2303995), was detected in the index family. CONCLUSIONS Two siblings with BFNC had a novel heterozygous missense mutation, p.R213W, in KCNQ2. This mutation may affect potassium gating, leading to neuronal excitability or convulsions in the patients. Furthermore, neither of the parents had the p.R213W mutation, indicating that it was a germ-line mutation. The possibility of recurrence of such a germ-line mutation in the next siblings should be explained during genetic counseling.
Collapse
Affiliation(s)
- Ahmad H Sadewa
- Department of Public Health, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007; 81:1289-97. [PMID: 17999366 DOI: 10.1086/522590] [Citation(s) in RCA: 489] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/02/2007] [Indexed: 01/17/2023] Open
Abstract
Mutations in SHANK3, which encodes a synaptic scaffolding protein, have been described in subjects with an autism spectrum disorder (ASD). To assess the quantitative contribution of SHANK3 to the pathogenesis of autism, we determined the frequency of DNA sequence and copy-number variants in this gene in 400 ASD-affected subjects ascertained in Canada. One de novo mutation and two gene deletions were discovered, indicating a contribution of 0.75% in this cohort. One additional SHANK3 deletion was characterized in two ASD-affected siblings from another collection, which brings the total number of published mutations in unrelated ASD-affected families to seven. The combined data provide support that haploinsufficiency of SHANK3 can cause a monogenic form of autism in sufficient frequency to warrant consideration in clinical diagnostic testing.
Collapse
Affiliation(s)
- Rainald Moessner
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, M5G 1L7, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Heinzen EL, Yoon W, Weale ME, Sen A, Wood NW, Burke JR, Welsh-Bohmer KA, Hulette CM, Sisodiya SM, Goldstein DB. Alternative ion channel splicing in mesial temporal lobe epilepsy and Alzheimer's disease. Genome Biol 2007; 8:R32. [PMID: 17343748 PMCID: PMC1868939 DOI: 10.1186/gb-2007-8-3-r32] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/16/2007] [Accepted: 03/07/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Alternative gene transcript splicing permits a single gene to produce multiple proteins with varied functions. Bioinformatic investigations have identified numerous splice variants, but whether these transcripts are translated to functional proteins and the physiological significance of these alternative proteins are largely unknown. Through direct identification of splice variants associated with disease states, we can begin to address these questions and to elucidate their roles in disease predisposition and pathophysiology. This work specifically sought to identify disease-associated alternative splicing patterns in ion channel genes by comprehensively screening affected brain tissue collected from patients with mesial temporal lobe epilepsy and Alzheimer's disease. New technology permitting the screening of alternative splice variants in microarray format was employed. Real time quantitative PCR was used to verify observed splice variant patterns. RESULTS This work shows for the first time that two common neurological conditions are associated with extensive changes in gene splicing, with 25% and 12% of the genes considered having significant changes in splicing patterns associated with mesial temporal lobe epilepsy and Alzheimer's disease, respectively. Furthermore, these changes were found to exhibit unique and consistent patterns within the disease groups. CONCLUSION This work has identified a set of disease-associated, alternatively spliced gene products that represent high priorities for detailed functional investigations into how these changes impact the pathophysiology of mesial temporal lobe epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Erin L Heinzen
- Institute for Genome Sciences and Policy, Center for Population Genomics and Pharmacogenetics, Duke University, Durham, NC 27710, USA
| | - Woohyun Yoon
- Institute for Genome Sciences and Policy, Center for Population Genomics and Pharmacogenetics, Duke University, Durham, NC 27710, USA
| | - Michael E Weale
- Institute for Genome Sciences and Policy, Center for Population Genomics and Pharmacogenetics, Duke University, Durham, NC 27710, USA
| | - Arjune Sen
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicholas W Wood
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - James R Burke
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University, Durham, NC 27710, USA
| | - Kathleen A Welsh-Bohmer
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University, Durham, NC 27710, USA
| | - Christine M Hulette
- Joseph and Kathleen Bryan Alzheimer's Disease Research Center, Duke University, Durham, NC 27710, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - David B Goldstein
- Institute for Genome Sciences and Policy, Center for Population Genomics and Pharmacogenetics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
22
|
Heron SE, Scheffer IE, Berkovic SF, Dibbens LM, Mulley JC. Channelopathies in idiopathic epilepsy. Neurotherapeutics 2007; 4:295-304. [PMID: 17395140 DOI: 10.1016/j.nurt.2007.01.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Approximately 70% of all patients with epilepsy lack an obvious extraneous cause and are presumed to have a predominantly genetic basis. Both familial and de novo mutations in neuronal voltage-gated and ligand-gated ion channel subunit genes have been identified in autosomal dominant epilepsies. However, patients with dominant familial mutations are rare and the majority of idiopathic epilepsy is likely to be the result of polygenic susceptibility alleles (complex epilepsy). Data on the identity of the genes involved in complex epilepsy is currently sparse but again points to neuronal ion channels. The number of genes and gene families associated with epilepsy is rapidly increasing and this increase is likely to escalate over the coming years with advances in mutation detection technologies. The genetic heterogeneity underlying idiopathic epilepsy presents challenges for the rational selection of therapies targeting particular ion channels. Too little is currently known about the genetic architecture of the epilepsies, and genetic testing for the known epilepsy genes remains costly. Pharmacogenetic studies have yet to explain why 30% of patients do not respond to the usual antiepileptic drugs. Despite this, the recognition that the idiopathic epilepsies are a group of channelopathies has, to a limited extent, explained the therapeutic action of the common antiepileptic drugs and has assisted clinical diagnosis of some epilepsy syndromes.
Collapse
Affiliation(s)
- Sarah E Heron
- Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, South Australia 5006.
| | | | | | | | | |
Collapse
|
23
|
Pinto D, Louwaars S, Westland B, Volkers L, de Haan GJ, Trenité DGAKN, Lindhout D, Koeleman BPC. Heterogeneity at the JME 6p11?12 Locus: Absence of Mutations in the EFHC1 Gene in Linked Dutch Families. Epilepsia 2006; 47:1743-6. [PMID: 17054699 DOI: 10.1111/j.1528-1167.2006.00676.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The EFHC1 gene, encoding a protein with a Ca(2+)-sensing EF-hand motif, is localized at 6p12 and was recently reported as mutated in six Mexican juvenile myoclonic epilepsy (JME) families linked to this region. We had previously confirmed linkage between JME and 6p11-12 in 18 Dutch families, and shown exclusionary lod scores at 6p21.3. We therefore evaluated the relevance of EFHC1 in our set of 6p11-12-linked families. METHODS We screened all coding and regulatory regions of EFHC1 by direct sequencing, and the detected variants were tested in a case-control association study. RESULTS We found none of the five mutations previously reported in the Mexican families, but identified nine variants, three of which are novel: 5' upstream region (c.-146_147delGC), nonsynonymous (R159W, R182H, M448T, I619L), intronic (IVS3 + 10A>G, IVS8 + 175_176delTT, IVS10 + 59C>T), and 3' UTR (c.+121C>A). These variants did not cosegregate with JME and did not account for the observed linkage at the 6p11-12 locus. Furthermore, no significant association was detected between JME and these variants in 112 unrelated patients and 180 controls. Finally, none of the mutations reported in Mexican families was found in 100 unrelated patients. CONCLUSIONS We found no evidence that EFHC1 is a major genetic risk factor for JME susceptibility in Dutch patients. The EFHC1 variants reported in Mexican families may be mendelian variants specific for those families, suggesting that for Dutch patients and possibly many other populations, the main disease variant at the 6p11-12 is yet to be identified.
Collapse
Affiliation(s)
- Dalila Pinto
- Complex Genetics Section, DBG-Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|