1
|
Ikemoto S, von Ellenrieder N, Gotman J. Interictal epileptiform discharge-related BOLD responses in the default mode network and subcortical regions. Clin Neurophysiol 2024; 170:29-40. [PMID: 39662333 DOI: 10.1016/j.clinph.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE To examine the blood oxygen level-dependent (BOLD) responses in the default mode network (DMN) and subcortical regions in relation to epileptic events in scalp EEG and intracranial EEG (iEEG). METHODS We retrospectively compared BOLD responses in the DMN and subcortical regions to interictal epileptiform discharge (IED) characteristics of the scalp and iEEG in consecutive patients with focal epilepsy. All voxels were used as the denominator to assess the positive and negative BOLD ratios in each region, and the percentage of voxels with significant activation or deactivation was assessed. RESULTS Seventy-one EEG-fMRI studies were included. The widespread IED group showed a higher negative BOLD ratio in the DMN than did the focal IED group. Spike and ripple spreads in iEEG positively correlated with a positive BOLD ratio in the DMN and subcortical regions and a negative BOLD ratio in the DMN. Fast ripple spread showed no correlation with the BOLD ratio in any region. CONCLUSIONS IEDs affect local regions, as well as distant neocortical (DMN) and subcortical regions, depending on their localization and characteristics. SIGNIFICANCE Our findings showed both positive and negative IED-related BOLD responses in subcortical regions and new evidence of network dysfunction related to focal epileptic activity.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC H3A2B4, Canada; The Jikei University School of Medicine, Department of Pediatrics, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan.
| | - Nicolás von Ellenrieder
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC H3A2B4, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, 3801 Rue University, Montreal, QC H3A2B4, Canada
| |
Collapse
|
2
|
Chen M, Guo K, Ding Y, Liu W, Yu R, Zhang L, Hu Y, Wu Y, Zhang R. Vagus nerve stimulation modulating the directed brain network of patients with drug-resistant epilepsy. Biomed Signal Process Control 2024; 95:106361. [DOI: 10.1016/j.bspc.2024.106361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Li J, Yang F, Zhan F, Estin J, Iyer A, Zhao M, Niemeyer JE, Luo P, Li D, Lin W, Liou JY, Ma H, Schwartz TH. Mesoscopic mapping of hemodynamic responses and neuronal activity during pharmacologically induced interictal spikes in awake and anesthetized mice. J Cereb Blood Flow Metab 2024; 44:911-924. [PMID: 38230631 PMCID: PMC11318398 DOI: 10.1177/0271678x241226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
Imaging hemodynamic responses to interictal spikes holds promise for presurgical epilepsy evaluations. Understanding the hemodynamic response function is crucial for accurate interpretation. Prior interictal neurovascular coupling data primarily come from anesthetized animals, impacting reliability. We simultaneously monitored calcium fluctuations in excitatory neurons, hemodynamics, and local field potentials (LFP) during bicuculline-induced interictal events in both isoflurane-anesthetized and awake mice. Isoflurane significantly affected LFP amplitude but had little impact on the amplitude and area of the calcium signal. Anesthesia also dramatically blunted the amplitude and latency of the hemodynamic response, although not its area of spread. Cerebral blood volume change provided the best spatial estimation of excitatory neuronal activity in both states. Targeted silencing of the thalamus in awake mice failed to recapitulate the impact of anesthesia on hemodynamic responses suggesting that isoflurane's interruption of the thalamocortical loop did not contribute either to the dissociation between the LFP and the calcium signal nor to the alterations in interictal neurovascular coupling. The blood volume increase associated with interictal spikes represents a promising mapping signal in both the awake and anesthetized states.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fan Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Fengrui Zhan
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Joshua Estin
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Aditya Iyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Mingrui Zhao
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - James E Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Peijuan Luo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Weihong Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jyun-you Liou
- Department of Anesthesiology, Weill Cornell Medicine, New York, USA
| | - Hongtao Ma
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, USA
| |
Collapse
|
4
|
Ikemoto S, Pana R, von Ellenrieder N, Gotman J. Electroencephalography-functional magnetic resonance imaging for clinical evaluation in focal epilepsy. Epilepsia Open 2024; 9:84-95. [PMID: 37724422 PMCID: PMC10839335 DOI: 10.1002/epi4.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the contribution of simultaneous recording of electroencephalography-functional magnetic resonance imaging (EEG-fMRI) in the diagnosis of epilepsy syndrome, localization of the epileptogenic zone (EZ), and decision-making regarding surgical treatment. METHODS We performed a retrospective study to evaluate patients with focal epilepsy who underwent EEG-fMRI. Two evaluators assessed epilepsy syndrome, presumed focus, and surgical candidacy and defined confidence levels. They assessed these clinical characteristics first without EEG-fMRI and then including EEG-fMRI to assess how the results of EEG-fMRI changed the evaluations. We also determined how the clinical evaluation was affected by the concordance level between the blood oxygen level-dependent (BOLD) response and the presumed focus location, and by the confidence level of the BOLD response itself based on the t-value of the primary and secondary clusters. RESULTS Fifty-one scans from 48 patients were included. The BOLD map affected 66.7% of the evaluations by altering evaluation items (epilepsy syndrome, presumed focus, or surgical candidacy) or their confidence levels. EEG-fMRI results increased the confidence levels of epilepsy syndrome, presumed focus, or surgical candidacy in 47.1% of patients but reduced clinical confidence in these features in 11.8%. More specifically, the confidence levels increased for epilepsy syndrome in 28.5%, identification of presumed focus in 33.9%, and determination of surgical candidacy in 29.4%. The BOLD signal confidence level, whether high or low, did not influence these clinical factors. SIGNIFICANCE Previous studies have emphasized the utility of EEG-fMRI for the localization of the epileptogenic zone. This study demonstrated the potential of EEG-fMRI to influence clinical confidence when determining epilepsy syndrome, the presumed epileptic focus, and surgical candidacy.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of PediatricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Raluca Pana
- Montreal Neurological Institute and HospitalMontrealQuebecCanada
| | | | - Jean Gotman
- Montreal Neurological Institute and HospitalMontrealQuebecCanada
| |
Collapse
|
5
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
6
|
Abarrategui B, Mariani V, Rizzi M, Berta L, Scarpa P, Zauli FM, Squarza S, Banfi P, d’Orio P, Cardinale F, Del Vecchio M, Caruana F, Avanzini P, Sartori I. Language lateralization mapping (reversibly) masked by non-dominant focal epilepsy: a case report. Front Hum Neurosci 2023; 17:1254779. [PMID: 37900727 PMCID: PMC10600519 DOI: 10.3389/fnhum.2023.1254779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Language lateralization in patients with focal epilepsy frequently diverges from the left-lateralized pattern that prevails in healthy right-handed people, but the mechanistic explanations are still a matter of debate. Here, we debate the complex interaction between focal epilepsy, language lateralization, and functional neuroimaging techniques by introducing the case of a right-handed patient with unaware focal seizures preceded by aphasia, in whom video-EEG and PET examination suggested the presence of focal cortical dysplasia in the right superior temporal gyrus, despite a normal structural MRI. The functional MRI for language was inconclusive, and the neuropsychological evaluation showed mild deficits in language functions. A bilateral stereo-EEG was proposed confirming the right superior temporal gyrus origin of seizures, revealing how ictal aphasia emerged only once seizures propagated to the left superior temporal gyrus and confirming, by cortical mapping, the left lateralization of the posterior language region. Stereo-EEG-guided radiofrequency thermocoagulations of the (right) focal cortical dysplasia not only reduced seizure frequency but led to the normalization of the neuropsychological assessment and the "restoring" of a classical left-lateralized functional MRI pattern of language. This representative case demonstrates that epileptiform activity in the superior temporal gyrus can interfere with the functioning of the contralateral homologous cortex and its associated network. In the case of presurgical evaluation in patients with epilepsy, this interference effect must be carefully taken into consideration. The multimodal language lateralization assessment reported for this patient further suggests the sensitivity of different explorations to this interference effect. Finally, the neuropsychological and functional MRI changes after thermocoagulations provide unique cues on the network pathophysiology of focal cortical dysplasia and the role of diverse techniques in indexing language lateralization in complex scenarios.
Collapse
Affiliation(s)
- Belén Abarrategui
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurology, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Valeria Mariani
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Neurology and Stroke Unit, ASST Santi Paolo e Carlo, Presidio San Carlo Borromeo, Milan, Italy
| | - Michele Rizzi
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Berta
- Department of Medical Physics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Pina Scarpa
- Cognitive Neuropsychology Centre, Department of Neuroscience, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Flavia Maria Zauli
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
- Department of Philosophy “P. Martinetti”, Università degli Studi di Milano, Milan, Italy
| | - Silvia Squarza
- Department of Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Paola Banfi
- Neurology and Stroke Unit, ASST Sette Laghi Ospedale di Circolo, Varese, Italy
| | - Piergiorgio d’Orio
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Francesco Cardinale
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Unit of Neuroscience, Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Fausto Caruana
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Ivana Sartori
- “Claudio Munari” Epilepsy Surgery Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
7
|
Pedersen M, Abbott DF, Jackson GD. Wearable OPM-MEG: A changing landscape for epilepsy. Epilepsia 2022; 63:2745-2753. [PMID: 35841260 PMCID: PMC9805039 DOI: 10.1111/epi.17368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
Magnetoencephalography with optically pumped magnometers (OPM-MEG) is an emerging and novel, cost-effective wearable system that can simultaneously record neuronal activity with high temporal resolution ("when" neuronal activity occurs) and spatial resolution ("where" neuronal activity occurs). This paper will first outline recent methodological advances in OPM-MEG compared to conventional superconducting quantum interference device (SQUID)-MEG before discussing how OPM-MEG can become a valuable and noninvasive clinical support tool in epilepsy surgery evaluation. Although OPM-MEG and SQUID-MEG share similar data features, OPM-MEG is a wearable design that fits children and adults, and it is also robust to head motion within a magnetically shielded room. This means that OPM-MEG can potentially extend the application of MEG into the neurobiology of severe childhood epilepsies with intellectual disabilities (e.g., epileptic encephalopathies) without sedation. It is worth noting that most OPM-MEG sensors are heated, which may become an issue with large OPM sensor arrays (OPM-MEG currently has fewer sensors than SQUID-MEG). Future implementation of triaxial sensors may alleviate the need for large OPM sensor arrays. OPM-MEG designs allowing both awake and sleep recording are essential for potential long-term epilepsy monitoring.
Collapse
Affiliation(s)
- Mangor Pedersen
- Department of Psychology and NeuroscienceAuckland University of TechnologyAucklandNew Zealand
| | - David F. Abbott
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia,Department of Medicine, Austin Health and Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Graeme D. Jackson
- Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia,Department of Medicine, Austin Health and Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Lee YJ, Bae H, Byun JC, Kwon S, Oh SS, Kim S. Clinical Usefulness of Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging in Children With Focal Epilepsy. J Clin Neurol 2022; 18:535-546. [PMID: 36062771 PMCID: PMC9444567 DOI: 10.3988/jcn.2022.18.5.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose The current study analyzed the interictal epileptiform discharge (IED)-related hemodynamic response and aimed to determine the clinical usefulness of simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) in defining the epileptogenic zone (EZ) in children with focal epilepsy. Methods Patients with focal epilepsy showing IEDs on conventional EEG were evaluated using EEG-fMRI. Statistical analyses were performed using the times of spike as events modeled with multiple hemodynamic response functions. The area showing the most significant t-value for blood-oxygen-level-dependent (BOLD) changes was compared with the presumed EZ. Moreover, BOLD responses between -9 and +9 s around the spike times were analyzed to track the hemodynamic response patterns over time. Results Half (n=13) of 26 EEG-fMRI investigations of 19 patients were successful. Two patients showed 2 different types of spikes, resulting in 15 analyses. The maximum BOLD response was concordant with the EZ in 11 (73.3%) of the 15 analyses. In 10 (66.7%) analyses, the BOLD response localized the EZs more specifically. Focal BOLD responses in the EZs occurred before IEDs in 11 analyses and were often widespread after IEDs. Hemodynamic response patterns were consistent in the same epilepsy syndrome or when repeating the investigation in the same patients. Conclusions EEG-fMRI can provide additional information for localizing the EZ in children with focal epilepsy, and also reveal the pathogenesis of pediatric epilepsy by evaluating the patterns in the hemodynamic response across time windows of IEDs.
Collapse
Affiliation(s)
- Yun Jeong Lee
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Hyunwoo Bae
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Jun Chul Byun
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Soonhak Kwon
- Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea.
| | - Saeyoon Kim
- Department of Pediatrics, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
9
|
Shoeibi A, Moridian P, Khodatars M, Ghassemi N, Jafari M, Alizadehsani R, Kong Y, Gorriz JM, Ramírez J, Khosravi A, Nahavandi S, Acharya UR. An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 149:106053. [DOI: 10.1016/j.compbiomed.2022.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
|
10
|
Aydın S, Akın B. Machine learning classification of maladaptive rumination and cognitive distraction in terms of frequency specific complexity. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Lee H, Graham SJ, Kuo W, Lin F. Ballistocardiogram suppression in concurrent EEG-MRI by dynamic modeling of heartbeats. Hum Brain Mapp 2022; 43:4444-4457. [PMID: 35695703 PMCID: PMC9435020 DOI: 10.1002/hbm.25965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
The ballistocardiogram (BCG), the induced electric potentials by the head motion originating from heartbeats, is a prominent source of noise in electroencephalography (EEG) data during magnetic resonance imaging (MRI). Although methods have been proposed to suppress the BCG artifact, more work considering the variability of cardiac cycles and head motion across time and subjects is needed to provide highly robust correction. Here, a method called "dynamic modeling of heartbeats" (DMH) is proposed to reduce BCG artifacts in EEG data recorded inside an MRI system. The DMH method models BCG artifacts by combining EEG points at time instants with similar dynamics. The modeled BCG artifact is then subtracted from the EEG recording to suppress the BCG artifact. Performance of DMH was tested and specifically compared with the Optimal Basis Set (OBS) method on EEG data recorded inside a 3T MRI system with either no MRI acquisition (Inside-MRI), echo-planar imaging (EPI-EEG), or fast MRI acquisition using simultaneous multi-slice and inverse imaging methods (SMS-InI-EEG). In a steady-state visual evoked response (SSVEP) paradigm, the 15-Hz oscillatory neuronal activity at the visual cortex after DMH processing was about 130% of that achieved by OBS processing for Inside-MRI, SMS-InI-EEG, and EPI-EEG conditions. The DMH method is computationally efficient for suppressing BCG artifacts and in the future may help to improve the quality of EEG data recorded in high-field MRI systems for neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hsin‐Ju Lee
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Simon J. Graham
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Wen‐Jui Kuo
- Institute of NeuroscienceNational Yang Ming Chiao‐Tung UniversityTaipeiTaiwan,Brain Research CenterNational Yang‐Ming Chiao‐Tung UniversityTaipeiTaiwan
| | - Fa‐Hsuan Lin
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioCanada,Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
12
|
Ito Y, Maki Y, Okai Y, Kidokoro H, Bagarinao E, Takeuchi T, Ohno A, Nakata T, Ishihara N, Okumura A, Yamamoto H, Maesawa S, Natsume J. Involvement of brain structures in childhood epilepsy with centrotemporal spikes. Pediatr Int 2022; 64:e15001. [PMID: 34562291 DOI: 10.1111/ped.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND We aimed to investigate electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) findings to elucidate the interictal epileptiform discharge (IED)-related functional alterations in deep brain structures and the neocortex in childhood epilepsy with centrotemporal spikes (CECTS). METHODS Ten children with CECTS (median age 8.2 years), referred to our hospital within a year of onset, were eligible for inclusion. They underwent EEG-fMRI recording during sleep. Llongitudinal evaluations, including medical examinations, intelligence tests, and questionnaires about developmental disabilities, were performed. The initial evaluation was performed at the same time as the EEG-fMRI, and the second evaluation was performed over 2 years after the initial evaluation. RESULTS Three children were unable to maintain sleep during the EEG-fMRI recording, and the remaining seven children were eligible for further assessment. All patients showed unilateral-dominant centrotemporal spikes during scans. One patient had only positive hemodynamic responses, while the others had both positive and negative hemodynamic responses. All patients showed IED-related hemodynamic responses in the bilateral neocortex. For deep brain structures, IED-related hemodynamic responses were observed in the cingulate gyrus (n = 4), basal ganglia (n = 3), thalamus (n = 2), and default mode network (n = 1). Seizure frequencies at the second evaluation were infrequent or absent, and the longitudinal results of intelligence tests and questionnaires were within normal ranges. CONCLUSIONS We demonstrated that IEDs affect broad brain areas, including deep brain structures such as the cingulate gyrus, basal ganglia, and thalamus. Deep brain structures may play an important role in the pathophysiology of CECTS.
Collapse
Affiliation(s)
- Yuji Ito
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pediatrics, Aichi Prefecture Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Japan
| | - Yuki Maki
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Okai
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pediatric Neurology, Toyota Municipal Child Development Center, Toyota, Japan
| | - Hiroyuki Kidokoro
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Tomoya Takeuchi
- Department of Pediatrics, Japanese Red Cross Nagoya Daiichi Hospital, Toyota, Japan
| | - Atsuko Ohno
- Department of Pediatric Neurology, Toyota Municipal Child Development Center, Toyota, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Brain & Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Schur S, Moreau JT, Khoo HM, Koupparis A, Simard Tremblay E, Myers KA, Osterman B, Rosenblatt B, Farmer JP, Saint-Martin C, Turpin S, Hall J, Olivier A, Bernasconi A, Bernasconi N, Baillet S, Dubeau F, Gotman J, Dudley RWR. New interinstitutional, multimodal presurgical evaluation protocol associated with improved seizure freedom for poorly defined cases of focal epilepsy in children. J Neurosurg Pediatr 2022; 29:74-82. [PMID: 34624842 DOI: 10.3171/2021.6.peds218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In an attempt to improve postsurgical seizure outcomes for poorly defined cases (PDCs) of pediatric focal epilepsy (i.e., those that are not visible or well defined on 3T MRI), the authors modified their presurgical evaluation strategy. Instead of relying on concordance between video-electroencephalography and 3T MRI and using functional imaging and intracranial recording in select cases, the authors systematically used a multimodal, 3-tiered investigation protocol that also involved new collaborations between their hospital, the Montreal Children's Hospital, and the Montreal Neurological Institute. In this study, the authors examined how their new strategy has impacted postsurgical outcomes. They hypothesized that it would improve postsurgical seizure outcomes, with the added benefit of identifying a subset of tests contributing the most. METHODS Chart review was performed for children with PDCs who underwent resection following the new strategy (i.e., new protocol [NP]), and for the same number who underwent treatment previously (i.e., preprotocol [PP]); ≥ 1-year follow-up was required for inclusion. Well-defined, multifocal, and diffuse hemispheric cases were excluded. Preoperative demographics and clinical characteristics, resection volumes, and pathology, as well as seizure outcomes (Engel class Ia vs > Ia) at 1 year postsurgery and last follow-up were reviewed. RESULTS Twenty-two consecutive NP patients were compared with 22 PP patients. There was no difference between the two groups for resection volumes, pathology, or preoperative characteristics, except that the NP group underwent more presurgical evaluation tests (p < 0.001). At 1 year postsurgery, 20 of 22 NP patients and 10 of 22 PP patients were seizure free (OR 11.81, 95% CI 2.00-69.68; p = 0.006). Magnetoencephalography and PET/MRI were associated with improved postsurgical seizure outcomes, but both were highly correlated with the protocol group (i.e., independent test effects could not be demonstrated). CONCLUSIONS A new presurgical evaluation strategy for children with PDCs of focal epilepsy led to improved postsurgical seizure freedom. No individual presurgical evaluation test was independently associated with improved outcome, suggesting that it may be the combined systematic protocol and new interinstitutional collaborations that makes the difference rather than any individual test.
Collapse
Affiliation(s)
- Solon Schur
- 1Montreal Neurological Institute and Hospital, McGill University Health Center, Department of Neurology and Neurosurgery, McGill University
| | - Jeremy T Moreau
- 2McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University.,3Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Hui Ming Khoo
- 4Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | - Kenneth A Myers
- 6Division of Neurology and Department of Clinical Neurophysiology, Montreal Children's Hospital
| | - Bradley Osterman
- 6Division of Neurology and Department of Clinical Neurophysiology, Montreal Children's Hospital
| | - Bernard Rosenblatt
- 6Division of Neurology and Department of Clinical Neurophysiology, Montreal Children's Hospital
| | - Jean-Pierre Farmer
- 3Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | - Sophie Turpin
- 8Division of Nuclear Medicine, Medical Imaging, CHU Ste-Justine and Montreal Children's Hospital; and
| | - Jeff Hall
- 1Montreal Neurological Institute and Hospital, McGill University Health Center, Department of Neurology and Neurosurgery, McGill University
| | - Andre Olivier
- 1Montreal Neurological Institute and Hospital, McGill University Health Center, Department of Neurology and Neurosurgery, McGill University
| | - Andrea Bernasconi
- 9Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- 9Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Francois Dubeau
- 1Montreal Neurological Institute and Hospital, McGill University Health Center, Department of Neurology and Neurosurgery, McGill University
| | - Jean Gotman
- 5Montreal Neurological Institute, McGill University
| | - Roy W R Dudley
- 1Montreal Neurological Institute and Hospital, McGill University Health Center, Department of Neurology and Neurosurgery, McGill University.,3Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Mirandola L, Ballotta D, Talami F, Giovannini G, Pavesi G, Vaudano AE, Meletti S. Temporal Lobe Spikes Affect Distant Intrinsic Connectivity Networks. Front Neurol 2021; 12:746468. [PMID: 34975714 PMCID: PMC8718871 DOI: 10.3389/fneur.2021.746468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: To evaluate local and distant blood oxygen level dependent (BOLD) signal changes related to interictal epileptiform discharges (IED) in drug-resistant temporal lobe epilepsy (TLE). Methods: Thirty-three TLE patients undergoing EEG–functional Magnetic Resonance Imaging (fMRI) as part of the presurgical workup were consecutively enrolled. First, a single-subject spike-related analysis was performed: (a) to verify the BOLD concordance with the presumed Epileptogenic Zone (EZ); and (b) to investigate the Intrinsic Connectivity Networks (ICN) involvement. Then, a group analysis was performed to search for common BOLD changes in TLE. Results: Interictal epileptiform discharges were recorded in 25 patients and in 19 (58%), a BOLD response was obtained at the single-subject level. In 42% of the cases, BOLD changes were observed in the temporal lobe, although only one patient had a pure concordant finding, with a single fMRI cluster overlapping (and limited to) the EZ identified by anatomo-electro-clinical correlations. In the remaining 58% of the cases, BOLD responses were localized outside the temporal lobe and the presumed EZ. In every patient, with a spike-related fMRI map, at least one ICN appeared to be involved. Four main ICNs were preferentially involved, namely, motor, visual, auditory/motor speech, and the default mode network. At the single-subject level, EEG–fMRI proved to have high specificity (above 65%) in detecting engagement of an ICN and the corresponding ictal/postictal symptom, and good positive predictive value (above 67%) in all networks except the visual one. Finally, in the group analysis of BOLD changes related to IED revealed common activations at the right precentral gyrus, supplementary motor area, and middle cingulate gyrus. Significance: Interictal temporal spikes affect several distant extra-temporal areas, and specifically the motor/premotor cortex. EEG–fMRI in patients with TLE eligible for surgery is recommended not for strictly localizing purposes rather it might be useful to investigate ICNs alterations at the single-subject level.
Collapse
Affiliation(s)
- Laura Mirandola
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, “San Giovanni Bosco” Hospital, Torino, Italy
- *Correspondence: Laura Mirandola ; ; orcid.org/0000-0002-1626-2932
| | - Daniela Ballotta
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giada Giovannini
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile Baggiovara (OCB) Hospital, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurosurgery Unit, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile Baggiovara (OCB) Hospital, Modena, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile Baggiovara (OCB) Hospital, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile Baggiovara (OCB) Hospital, Modena, Italy
- Stefano Meletti ; orcid.org/0000-0003-0334-539X
| |
Collapse
|
15
|
Ebrahimzadeh E, Shams M, Seraji M, Sadjadi SM, Rajabion L, Soltanian-Zadeh H. Localizing Epileptic Foci Using Simultaneous EEG-fMRI Recording: Template Component Cross-Correlation. Front Neurol 2021; 12:695997. [PMID: 34867704 PMCID: PMC8634837 DOI: 10.3389/fneur.2021.695997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
Conventional EEG-fMRI methods have been proven to be of limited use in the sense that they cannot reveal the information existing in between the spikes. To resolve this issue, the current study obtains the epileptic components time series detected on EEG and uses them to fit the Generalized Linear Model (GLM), as a substitution for classical regressors. This approach allows for a more precise localization, and equally importantly, the prediction of the future behavior of the epileptic generators. The proposed method approaches the localization process in the component domain, rather than the electrode domain (EEG), and localizes the generators through investigating the spatial correlation between the candidate components and the spike template, as well as the medical records of the patient. To evaluate the contribution of EEG-fMRI and concordance between fMRI and EEG, this method was applied on the data of 30 patients with refractory epilepsy. The results demonstrated the significant numbers of 29 and 24 for concordance and contribution, respectively, which mark improvement as compared to the existing literature. This study also shows that while conventional methods often fail to properly localize the epileptogenic zones in deep brain structures, the proposed method can be of particular use. For further evaluation, the concordance level between IED-related BOLD clusters and Seizure Onset Zone (SOZ) has been quantitatively investigated by measuring the distance between IED/SOZ locations and the BOLD clusters in all patients. The results showed the superiority of the proposed method in delineating the spike-generating network compared to conventional EEG-fMRI approaches. In all, the proposed method goes beyond the conventional methods by breaking the dependency on spikes and using the outside-the-scanner spike templates and the selected components, achieving an accuracy of 97%. Doing so, this method contributes to improving the yield of EEG-fMRI and creates a more realistic perception of the neural behavior of epileptic generators which is almost without precedent in the literature.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Shams
- Neural Engineering Laboratory, Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, United States
| | - Masoud Seraji
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, United States
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Lila Rajabion
- School of Graduate Studies, SUNY Empire State College, Manhattan, NY, United States
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
16
|
Daniel Arzate-Mena J, Abela E, Olguín-Rodríguez PV, Ríos-Herrera W, Alcauter S, Schindler K, Wiest R, Müller MF, Rummel C. Stationary EEG pattern relates to large-scale resting state networks - An EEG-fMRI study connecting brain networks across time-scales. Neuroimage 2021; 246:118763. [PMID: 34863961 DOI: 10.1016/j.neuroimage.2021.118763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Relating brain dynamics acting on time scales that differ by at least an order of magnitude is a fundamental issue in brain research. The same is true for the observation of stable dynamical structures in otherwise highly non-stationary signals. The present study addresses both problems by the analysis of simultaneous resting state EEG-fMRI recordings of 53 patients with epilepsy. Confirming previous findings, we observe a generic and temporally stable average correlation pattern in EEG recordings. We design a predictor for the General Linear Model describing fluctuations around the stationary EEG correlation pattern and detect resting state networks in fMRI data. The acquired statistical maps are contrasted to several surrogate tests and compared with maps derived by spatial Independent Component Analysis of the fMRI data. By means of the proposed EEG-predictor we observe core nodes of known fMRI resting state networks with high specificity in the default mode, the executive control and the salience network. Our results suggest that both, the stationary EEG pattern as well as resting state fMRI networks are different expressions of the same brain activity. This activity is interpreted as the dynamics on (or close to) a stable attractor in phase space that is necessary to maintain the brain in an efficient operational mode. We discuss that this interpretation is congruent with the theoretical framework of complex systems as well as with the brain's energy balance.
Collapse
Affiliation(s)
- J Daniel Arzate-Mena
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos,Cuernavaca Morelos, Mexico
| | - Eugenio Abela
- Center for Neuropsychiatrics, Psychiatric Services Aargau AG, Windisch, Switzerland
| | | | - Wady Ríos-Herrera
- Facultad de Psicología Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sarael Alcauter
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Müller
- Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico; Centro de Ciencias de la Complejidad (C3), Universisdad Nacional Autónoma de México, Mexico City 04510, Mexico; Centro Internacional de Ciencias A. C., Cuernavaca, México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging, University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Sun Y, Li Y, Sun J, Zhang K, Tang L, Wu C, Gao Y, Liu H, Huang S, Hu Z, Xiang J, Wang X. Functional reorganization of brain regions into a network in childhood absence epilepsy: A magnetoencephalography study. Epilepsy Behav 2021; 122:108117. [PMID: 34246893 DOI: 10.1016/j.yebeh.2021.108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Epilepsy is considered as a network disorder. However, it is unknown how normal brain activity develops into the highly synchronized discharging activity seen in disordered networks. This study aimed to explore the epilepsy brain network and the significant re-combined brain areas in childhood absence epilepsy (CAE). METHODS Twenty-two children with CAE were recruited to study the neural source activity during ictal-onset and interictal periods at frequency bands of 1-30 Hz and 30-80 Hz with magnetoencephalography (MEG) scanning. Accumulated source imaging (ASI) was used to analyze the locations of neural source activity and peak source strength. RESULTS Most of the participants had more active source activity locations in the ictal-onset period rather than in the interictal period, both at 1-30 Hz and 30-80 Hz. The frontal lobe (FL), the temporo-parietal junction (T-P), and the parietal lobe (PL) became the main active areas of source activity during the ictal period, while the precuneus (PC), cuneus, and thalamus were relatively inactive. CONCLUSIONS Some brain areas become more excited and have increased source activity during seizures. These significant brain regions might be re-combined to form an epilepsy network that regulates the process of absence seizures. SIGNIFICANCE The study confirmed that important brain regions are reorganized in an epilepsy network, which provides a basis for exploring the network mechanism of CAE development. Imaging findings may provide a reference for clinical characteristics.
Collapse
Affiliation(s)
- Yulei Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yihan Li
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jintao Sun
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ke Zhang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuan Gao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongxing Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, Jiangsu 210029, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
18
|
Duma GM, Danieli A, Vettorel A, Antoniazzi L, Mento G, Bonanni P. Investigation of dynamic functional connectivity of the source reconstructed epileptiform discharges in focal epilepsy: A graph theory approach. Epilepsy Res 2021; 176:106745. [PMID: 34428725 DOI: 10.1016/j.eplepsyres.2021.106745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of the present study is to investigate with noninvasive methods the modulation of dynamic functional connectivity during interictal epileptiform discharge (IED). METHOD We reconstructed the cortical source of the EEG recorded IED of 17 patients with focal epilepsy. We then computed dynamic connectivity using the time resolved phase locking value (PLV). We derived graph theory indices (i.e. degree, strength, local efficiency, clustering coefficient and global efficiency). Finally, we selected the atlas node with the maximum activation as the IED cortical source investigating the graph indices dynamics in theta, alpha, beta and gamma frequency bands. RESULTS We observed IED-locked modulations of the graph indexes depending on the frequency bands. We detected a modulation of the strength, clustering coefficient, local and global efficiency both in theta and in alpha bands, which also displayed modulations of the degree index. In the beta band only the global efficiency was modulated by the IED, while no effects were detected in the gamma band. Finally, we found a correlation between alpha and theta local efficiency, as well as alpha global efficiency, and the epilepsy duration. SIGNIFICANCE Our findings suggest that the neural synchronization is not limited to the IED cortical source, but implies a phase synchronization across multiple brain areas. We hypothesize that the aberrant electrical activity originating from the IED locus is spread amongst the other network nodes throughout the low frequency bands (i.e. theta and alpha). Moreover, IED-dependent increase in the global efficiency indicates that the IED interfere with the whole network functioning. We finally discussed possible application of this methodology for future investigation.
Collapse
Affiliation(s)
- Gian Marco Duma
- Department of General Psychology, University of Padova, Italy; Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS "E. Medea", Conegliano, TV, Italy.
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS "E. Medea", Conegliano, TV, Italy
| | - Airis Vettorel
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS "E. Medea", Conegliano, TV, Italy
| | - Lisa Antoniazzi
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS "E. Medea", Conegliano, TV, Italy
| | - Giovanni Mento
- Department of General Psychology, University of Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS "E. Medea", Conegliano, TV, Italy
| |
Collapse
|
19
|
Zhang M, Li B, Liu Y, Tang R, Lang Y, Huang Q, He J. Different Modes of Low-Frequency Focused Ultrasound-Mediated Attenuation of Epilepsy Based on the Topological Theory. MICROMACHINES 2021; 12:mi12081001. [PMID: 34442623 PMCID: PMC8399944 DOI: 10.3390/mi12081001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
Epilepsy is common brain dysfunction, where abnormal synchronized activities can be observed across multiple brain regions. Low-frequency focused pulsed ultrasound has been proven to modulate the epileptic brain network. In this study, we used two modes of low-intensity focused ultrasound (pulsed-wave and continuous-wave) to sonicate the brains of KA-induced epileptic rats, analyzed the EEG functional brain connections to explore their respective effect on the epileptic brain network, and discuss the mechanism of ultrasound neuromodulation. By comparing the brain network characteristics before and after sonication, we found that two modes of ultrasound both significantly affected the functional brain network, especially in the low-frequency band below 12 Hz. After two modes of sonication, the power spectral density of the EEG signals and the connection strength of the brain network were significantly reduced, but there was no significant difference between the two modes. Our results indicated that the ultrasound neuromodulation could effectively regulate the epileptic brain connections. The ultrasound-mediated attenuation of epilepsy was independent of modes of ultrasound.
Collapse
Affiliation(s)
- Minjian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Bo Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Yafei Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Rongyu Tang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Yiran Lang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; (R.T.); (Y.L.)
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
| | - Jiping He
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (M.Z.); (B.L.); (Y.L.); (Q.H.)
- Correspondence: ; Tel.: +86-010-68917396
| |
Collapse
|
20
|
Ramos IDSS, Coelho CVG, Ribeiro F, Lopes AF. Executive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Child Neuropsychol 2021; 28:30-60. [PMID: 34251988 DOI: 10.1080/09297049.2021.1945019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Self-limited epilepsy with centrotemporal spikes (ECTS) is one of the most frequent focal epilepsies amongst children. Because remission usually occurs before 16 years old and patients present infrequent clinical manifestation, ECTS was considered benign for a long time. Despite the reports on cognitive deficits associated with ECTS in the last years, knowledge about the condition's specific executive function domains (inhibitory control, working memory, cognitive flexibility, verbal fluency, and higher-order executive functions) is still lacking. The following systematic review was conducted according to PRISMA guidelines. The PubMed and Scopus databases and gray literature were searched according to the following eligibility criteria: (1) original articles published in peer-review journals; (2) studies that present assessment of children with ECTS; and (3) studies with an available assessment of the executive function of the participants. A total of 43 studies (1179 patients and 1086 healthy controls) met the inclusion criteria. Data from 19 studies were extracted, and meta-analysis methods were used to compare results in the three main executive function domains and verbal fluency. The study quality was measured through the Newcastle-Ottawa Scale (NOS) and the evidence quality with the GRADEpro tool. Results and conclusions: The present systematic review is the first to gather information about executive functioning in children with ECTS. According to the meta-analyses, children with ECTS show weaker performances when compared with a control group in inhibitory control, cognitive flexibility, and verbal fluency. However, because the quality of evidence was classified as very low, caution is needed when interpreting the strength of the results.
Collapse
Affiliation(s)
- Inês Duarte Sá Seixas Ramos
- Institute of Health Sciences, Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Carolina Vanessa Gomes Coelho
- Institute of Health Sciences, Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal.,CIERL-UMa - Research Centre for Regional and Local Studies, Funchal, Ilha da Madeira, Portugal
| | - Filipa Ribeiro
- Institute of Health Sciences, Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
| | - Ana Filipa Lopes
- Centro de Desenvolvimento da Criança Torrado da Silva do Hospital Garcia de Orta, Almada, Portugal.,Neuropsychological Assessment and Ageing Processes (NAAP-CINEICC-FPCE) da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Egan MK, Larsen R, Wirsich J, Sutton BP, Sadaghiani S. Safety and data quality of EEG recorded simultaneously with multi-band fMRI. PLoS One 2021; 16:e0238485. [PMID: 34214093 PMCID: PMC8253410 DOI: 10.1371/journal.pone.0238485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Simultaneously recorded electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is highly informative yet technically challenging. Until recently, there has been little information about EEG data quality and safety when used with newer multi-band (MB) fMRI sequences. Here, we measure the relative heating of a MB protocol compared with a standard single-band (SB) protocol considered to be safe. We also evaluated EEG quality recorded concurrently with the MB protocol on humans. MATERIALS AND METHODS We compared radiofrequency (RF)-related heating at multiple electrodes and magnetic field magnitude, B1+RMS, of a MB fMRI sequence with whole-brain coverage (TR = 440 ms, MB factor = 4) against a previously recommended, safe SB sequence using a phantom outfitted with a 64-channel EEG cap. Next, 9 human subjects underwent eyes-closed resting state EEG-fMRI using the MB sequence. Additionally, in three of the subjects resting state EEG was recorded also during the SB sequence and in an fMRI-free condition to directly compare EEG data quality across scanning conditions. EEG data quality was assessed by the ability to remove gradient and cardioballistic artifacts along with a clean spectrogram. RESULTS The heating induced by the MB sequence was lower than that of the SB sequence by a factor of 0.73 ± 0.38. This is consistent with an expected heating ratio of 0.64, calculated from the square of the ratio of B1+RMS values of the sequences. In the resting state EEG data, gradient and cardioballistic artifacts were successfully removed using traditional template subtraction. All subjects showed an individual alpha peak in the spectrogram with a posterior topography characteristic of eyes-closed EEG. The success of artifact rejection for the MB sequence was comparable to that in traditional SB sequences. CONCLUSIONS Our study shows that B1+RMS is a useful indication of the relative heating of fMRI protocols. This observation indicates that simultaneous EEG-fMRI recordings using this MB sequence can be safe in terms of RF-related heating, and that EEG data recorded using this sequence is of acceptable quality after traditional artifact removal techniques.
Collapse
Affiliation(s)
- Maximillian K. Egan
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Ryan Larsen
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- EEG and Epilepsy Unit, Univ. Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Brad P. Sutton
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Bioengineering Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Sepideh Sadaghiani
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
22
|
Fu C, Aisikaer A, Chen Z, Yu Q, Yin J, Yang W. Different Functional Network Connectivity Patterns in Epilepsy: A Rest-State fMRI Study on Mesial Temporal Lobe Epilepsy and Benign Epilepsy With Centrotemporal Spike. Front Neurol 2021; 12:668856. [PMID: 34122313 PMCID: PMC8193721 DOI: 10.3389/fneur.2021.668856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The stark discrepancy in the prognosis of epilepsy is closely related to brain damage features and underlying mechanisms, which have not yet been unraveled. In this study, differences in the epileptic brain functional connectivity states were explored through a network-based connectivity analysis between intractable mesial temporal lobe epilepsy (MTLE) patients and benign epilepsy with centrotemporal spikes (BECT). Resting state fMRI imaging data were collected for 14 MTLE patients, 12 BECT patients and 16 healthy controls (HCs). Independent component analysis (ICA) was performed to identify the cortical functional networks. Subcortical nuclei of interest were extracted from the Harvard-Oxford probability atlas. Network-based statistics were used to detect functional connectivity (FC) alterations across intranetworks and internetworks, including the connectivity between cortical networks and subcortical nuclei. Compared with HCs, MTLE patients showed significant lower activity between the connectivity of cortical networks and subcortical nuclei (especially hippocampus) and lower internetwork FC involving the lateral temporal lobe; BECT patients showed normal cortical-subcortical FC with hyperconnectivity between cortical networks. Together, cortical-subcortical hypoconnectivity in MTLE suggested a low efficiency and collaborative network pattern, and this might be relevant to the final decompensatory state and the intractable prognosis. Conversely, cortical-subcortical region with normal connectivity remained well in global cooperativity, and compensatory internetwork hyperconnectivity caused by widespread cortical abnormal discharge, which might account for the self-limited clinical outcome in BECT. Based on the fMRI functional network study, different brain network patterns might provide a better explanation of mechanisms in different types of epilepsy.
Collapse
Affiliation(s)
- Cong Fu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Aikedan Aisikaer
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Yu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianzhong Yin
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Sadjadi SM, Ebrahimzadeh E, Shams M, Seraji M, Soltanian-Zadeh H. Localization of Epileptic Foci Based on Simultaneous EEG-fMRI Data. Front Neurol 2021; 12:645594. [PMID: 33986718 PMCID: PMC8110922 DOI: 10.3389/fneur.2021.645594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) enables a non-invasive investigation of the human brain function and evaluation of the correlation of these two important modalities of brain activity. This paper explores recent reports on using advanced simultaneous EEG–fMRI methods proposed to map the regions and networks involved in focal epileptic seizure generation. One of the applications of EEG and fMRI combination as a valuable clinical approach is the pre-surgical evaluation of patients with epilepsy to map and localize the precise brain regions associated with epileptiform activity. In the process of conventional analysis using EEG–fMRI data, the interictal epileptiform discharges (IEDs) are visually extracted from the EEG data to be convolved as binary events with a predefined hemodynamic response function (HRF) to provide a model of epileptiform BOLD activity and use as a regressor for general linear model (GLM) analysis of the fMRI data. This review examines the methodologies involved in performing such studies, including techniques used for the recording of EEG inside the scanner, artifact removal, and statistical analysis of the fMRI signal. It then discusses the results reported for patients with primary generalized epilepsy and patients with different types of focal epileptic disorders. An important matter that these results have brought to light is that the brain regions affected by interictal epileptic discharges might not be limited to the ones where they have been generated. The developed methods can help reveal the regions involved in or affected by a seizure onset zone (SOZ). As confirmed by the reviewed literature, EEG–fMRI provides information that comes particularly useful when evaluating patients with refractory epilepsy for surgery.
Collapse
Affiliation(s)
- Seyyed Mostafa Sadjadi
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elias Ebrahimzadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad Shams
- Neural Engineering Laboratory, Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, United States
| | - Masoud Seraji
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States.,Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, NJ, United States
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Neuroimage Signal and Image Analysis Group, School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
24
|
Jiang S, Li H, Pei H, Liu L, Li Z, Chen Y, Li X, Li Q, Yao D, Luo C. Connective profiles and antagonism between dynamic and static connectivity underlying generalized epilepsy. Brain Struct Funct 2021; 226:1423-1435. [PMID: 33730218 DOI: 10.1007/s00429-021-02248-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/27/2021] [Indexed: 11/28/2022]
Abstract
This study aims to characterize the connective profiles and the coupling relationship between dynamic and static functional connectivity (dFC and sFC) in large-scale brain networks in patients with generalized epilepsy (GE). Functional, structural and diffuse MRI data were collected from 83 patients with GE and 106 matched healthy controls (HC). Resting-state BOLD time course was deconvolved to neural time course using a blind hemodynamic deconvolution method. Then, five connective profiles, including the structural connectivity (SC) and BOLD/neural time course-derived sFC/dFC networks, were constructed based on the proposed whole brain atlas. Network-level weighted correlation probability (NWCP) were proposed to evaluate the association between dFC and sFC. Both the BOLD signal and neural time course showed highly concordant findings and the present study emphasized the consistent findings between two functional approaches. The patients with GE showed hypervariability and enhancement of FC, and notably decreased SC in the subcortical network. Besides, increased dFC, weaker anatomic links, and complex alterations of sFC were observed in the default mode network of GE. Moreover, significantly increased SC and predominantly increased sFC were found in the frontoparietal network. Remarkably, antagonism between dFC and sFC was observed in large-scale networks in HC, while patients with GE showed significantly decreased antagonism in core epileptic networks. In sum, our study revealed distinct connective profiles in different epileptic networks and provided new clues to the brain network mechanism of epilepsy from the perspective of antagonism between dynamic and static functional connectivity.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Xiangkui Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China
| | - Qifu Li
- Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China.,Department of Neurology, First Affiliated Hospital of Hainan Medical University, Haikou, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China.,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Qingshuihe Campus: No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, People's Republic of China. .,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China. .,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
25
|
Ito Y, Maesawa S, Bagarinao E, Okai Y, Nakatsubo D, Yamamoto H, Kidokoro H, Usui N, Natsume J, Hoshiyama M, Wakabayashi T, Sobue G, Ozaki N. Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J Neurosurg 2021; 134:1027-1036. [PMID: 32168485 DOI: 10.3171/2020.1.jns192567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors recently reported a novel subsecond analysis method of analyzing EEG-functional MRI (fMRI) to improve the detection rate of epileptic focus. This study aims to validate the utility of this method for presurgical evaluation in pharmacoresistant focal epilepsy. METHODS Among 13 patients with focal epilepsy undergoing presurgical examinations including simultaneous EEG-fMRI at 3T, 11 patients had interictal epileptiform discharges (IEDs) during fMRI. The authors used the sequence of topographic maps during the IEDs as a reference to obtain subsecond fMRI activation maps with the same temporal resolution as the EEG data, and constructed "spike-and-slow-wave-activation-summary" (SSWAS) maps that showed the activation frequency of voxels during IEDs. Clusters were defined by thresholding the SSWAS maps (voxel value > 10), and those containing voxels with the top 3 highest activation frequencies were considered significant. Significant hemodynamic responses using conventional event-related (ER) analysis and SSWAS maps were compared with the resection areas and surgical outcomes at 1 year after surgery. RESULTS Using ER analysis, 4 (36%) of 11 patients had significant hemodynamic responses. One of 4 patients had significant hemodynamic responses in the resection area and good surgical outcome. Using SSWAS maps, 10 (91%) of 11 patients had significant hemodynamic responses. Six of 10 patients had significant hemodynamic responses in the resection area, and 5 of the 6 patients achieved good surgical outcomes. The remaining 4 patients had significant hemodynamic responses distant from the resection area, and only 1 of the 4 patients achieved good surgical outcomes. The sensitivity, specificity, positive predictive value, and negative predictive value of SSWAS maps were 83.3%, 75.0%, 83.3%, and 75.0%, respectively. CONCLUSIONS This study demonstrated the clinical utility of SSWAS maps for presurgical evaluation of pharmacoresistant focal epilepsy. The findings indicated that subsecond EEG-fMRI analysis may help surgeons choose the resection areas that could lead to good surgical outcomes.
Collapse
Affiliation(s)
- Yuji Ito
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- Departments of2Pediatrics
- 3Department of Pediatrics, Aichi Prefecture Mikawa Aoitori Medical and Rehabilitation Center for Developmental Disabilities, Okazaki, Aichi; and
| | - Satoshi Maesawa
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- 4Neurosurgery
| | | | - Yu Okai
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- Departments of2Pediatrics
| | - Daisuke Nakatsubo
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- 4Neurosurgery
| | - Hiroyuki Yamamoto
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- Departments of2Pediatrics
| | - Hiroyuki Kidokoro
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- Departments of2Pediatrics
| | - Naotaka Usui
- 5Department of Neurosurgery, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Jun Natsume
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- Departments of2Pediatrics
- 6Developmental Disability Medicine
| | | | | | - Gen Sobue
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- 7Neurology, and
| | - Norio Ozaki
- 1Brain & Mind Research Center, Nagoya University, Nagoya, Aichi
- 8Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi
| |
Collapse
|
26
|
Li R, Wang H, Wang L, Zhang L, Zou T, Wang X, Liao W, Zhang Z, Lu G, Chen H. Shared and distinct global signal topography disturbances in subcortical and cortical networks in human epilepsy. Hum Brain Mapp 2021; 42:412-426. [PMID: 33073893 PMCID: PMC7776006 DOI: 10.1002/hbm.25231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/08/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023] Open
Abstract
Epilepsy is a common brain network disorder associated with disrupted large-scale excitatory and inhibitory neural interactions. Recent resting-state fMRI evidence indicates that global signal (GS) fluctuations that have commonly been ignored are linked to neural activity. However, the mechanisms underlying the altered global pattern of fMRI spontaneous fluctuations in epilepsy remain unclear. Here, we quantified GS topography using beta weights obtained from a multiple regression model in a large group of epilepsy with different subtypes (98 focal temporal epilepsy; 116 generalized epilepsy) and healthy population (n = 151). We revealed that the nonuniformly distributed GS topography across association and sensory areas in healthy controls was significantly shifted in patients. Particularly, such shifts of GS topography disturbances were more widespread and bilaterally distributed in the midbrain, cerebellum, visual cortex, and medial and orbital cortex in generalized epilepsy, whereas in focal temporal epilepsy, these networks spread beyond the temporal areas but mainly remain lateralized. Moreover, we found that these abnormal GS topography patterns were likely to evolve over the course of a longer epilepsy disease. Our study demonstrates that epileptic processes can potentially affect global excitation/inhibition balance and shift the normal GS topological distribution. These progressive topographical GS disturbances in subcortical-cortical networks may underlie pathophysiological mechanisms of global fluctuations in human epilepsy.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hongyu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liangcheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Leiyao Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ting Zou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xuyang Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhiqiang Zhang
- Department of Medical ImagingJinling Hospital, Nanjing University School of MedicineNanjingChina
| | - Guangming Lu
- Department of Medical ImagingJinling Hospital, Nanjing University School of MedicineNanjingChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduChina
- MOE Key Laboratory for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
27
|
Van Eyndhoven S, Dupont P, Tousseyn S, Vervliet N, Van Paesschen W, Van Huffel S, Hunyadi B. Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. Neuroimage 2020; 228:117652. [PMID: 33359347 PMCID: PMC7903163 DOI: 10.1016/j.neuroimage.2020.117652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
EEG-correlated fMRI analysis is widely used to detect regional BOLD fluctuations that are synchronized to interictal epileptic discharges, which can provide evidence for localizing the ictal onset zone. However, the typical, asymmetrical and mass-univariate approach cannot capture the inherent, higher order structure in the EEG data, nor multivariate relations in the fMRI data, and it is nontrivial to accurately handle varying neurovascular coupling over patients and brain regions. We aim to overcome these drawbacks in a data-driven manner by means of a novel structured matrix-tensor factorization: the single-subject EEG data (represented as a third-order spectrogram tensor) and fMRI data (represented as a spatiotemporal BOLD signal matrix) are jointly decomposed into a superposition of several sources, characterized by space-time-frequency profiles. In the shared temporal mode, Toeplitz-structured factors account for a spatially specific, neurovascular 'bridge' between the EEG and fMRI temporal fluctuations, capturing the hemodynamic response's variability over brain regions. By analyzing interictal data from twelve patients, we show that the extracted source signatures provide a sensitive localization of the ictal onset zone (10/12). Moreover, complementary parts of the IOZ can be uncovered by inspecting those regions with the most deviant neurovascular coupling, as quantified by two entropy-like metrics of the hemodynamic response function waveforms (9/12). Hence, this multivariate, multimodal factorization provides two useful sets of EEG-fMRI biomarkers, which can assist the presurgical evaluation of epilepsy. We make all code required to perform the computations available at https://github.com/svaneynd/structured-cmtf.
Collapse
Affiliation(s)
- Simon Van Eyndhoven
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium.
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute, Leuven, Belgium
| | - Simon Tousseyn
- Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, Heeze, the Netherlands
| | - Nico Vervliet
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Van Huffel
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Belgium
| | - Borbála Hunyadi
- Circuits and Systems Group (CAS), Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
28
|
Roodakker KR, Ezra B, Gauffin H, Latini F, Zetterling M, Berntsson S, Landtblom AM. Ecstatic and gelastic seizures related to the hypothalamus. Epilepsy Behav Rep 2020; 16:100400. [PMID: 35028554 PMCID: PMC8714766 DOI: 10.1016/j.ebr.2020.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ecstatic seizures constitute a rare form of epilepsy, and the semiology is diverse. Previously, brain areas including the temporal lobe and the insula have been identified to be involved in clinical expression. The aim of this report is to review changes in ecstatic seizures in a patient before and after operation for a hypothalamic hamartoma, and to scrutinize the relation to gelastic seizures. In this case, the ecstatic seizures disappeared after surgery of the hamartoma but reappeared eleven years later. Clinical information was retrospectively obtained from medical records, interviews, and a questionnaire covering seizure semiology that pertained to ecstatic and gelastic seizures. Our findings imply a possible connection between gelastic and ecstatic seizures, originating from a hypothalamic hamartoma. To our knowledge, this location has not previously been described in ecstatic seizures. Gelastic seizures may in this case be associated with ecstatic seizures. We speculate that patients with ecstatic seizures may have an ictal activation of neuronal networks that involve the insula. Our case may add information to the knowledge concerning ecstatic seizures.
Collapse
Affiliation(s)
- Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Bisrat Ezra
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Helena Gauffin
- Department of Neurology and Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Shala Berntsson
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
- Department of Neurology and Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Neurology Division, Clinic of Medical Specialist, Motala General Hospital, Motala, Sweden
| |
Collapse
|
29
|
Iannotti GR, Preti MG, Grouiller F, Carboni M, De Stefano P, Pittau F, Momjian S, Carmichael D, Centeno M, Seeck M, Korff CM, Schaller K, De Ville DV, Vulliemoz S. Modulation of epileptic networks by transient interictal epileptic activity: A dynamic approach to simultaneous EEG-fMRI. NEUROIMAGE-CLINICAL 2020; 28:102467. [PMID: 33395963 PMCID: PMC7645285 DOI: 10.1016/j.nicl.2020.102467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
EEG-fMRI has been instrumental in characterizing brain networks in epilepsy. Its value is documented in the pre-surgical assessment of drug-resistant epilepsy. The delineation of brain areas to resect is fundamental for the post-surgical outcome. Standard EEG-fMRI in epilepsy assesses static functional connectivity of the network. EEG-fMRI dynamic connectivity identifies transitory features of specific connections. We integrate dynamic fMRI connectivity and dynamic patterns of simultaneous scalp EEG. This allows to better characterize the spatiotemporal aspects of epileptic networks. This may help in more efficiently target the surgical intervention.
Epileptic networks, defined as brain regions involved in epileptic brain activity, have been mapped by functional connectivity in simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) recordings. This technique allows to define brain hemodynamic changes, measured by the Blood Oxygen Level Dependent (BOLD) signal, associated to the interictal epileptic discharges (IED), which together with ictal events constitute a signature of epileptic disease. Given the highly time-varying nature of epileptic activity, a dynamic functional connectivity (dFC) analysis of EEG-fMRI data appears particularly suitable, having the potential to identify transitory features of specific connections in epileptic networks. In the present study, we propose a novel method, defined dFC-EEG, that integrates dFC assessed by fMRI with the information recorded by simultaneous scalp EEG, in order to identify the connections characterised by a dynamic profile correlated with the occurrence of IED, forming the dynamic epileptic subnetwork. Ten patients with drug-resistant focal epilepsy were included, with different aetiology and showing a widespread (or multilobar) BOLD activation, defined as involving at least two distinct clusters, located in two different lobes and/or extended to the hemisphere contralateral to the epileptic focus. The epileptic focus was defined from the IED-related BOLD map. Regions involved in the occurrence of interictal epileptic activity; i.e., forming the epileptic network, were identified by a general linear model considering the timecourse of the fMRI-defined focus as main regressor. dFC between these regions was assessed with a sliding-window approach. dFC timecourses were then correlated with the sliding-window variance of the IED signal (VarIED), to identify connections whose dynamics related to the epileptic activity; i.e., the dynamic epileptic subnetwork. As expected, given the very different clinical picture of each individual, the extent of this subnetwork was highly variable across patients, but was but was reduced of at least 30% with respect to the initially identified epileptic network in 9/10 patients. The connections of the dynamic subnetwork were most commonly close to the epileptic focus, as reflected by the laterality index of the subnetwork connections, reported higher than the one within the original epileptic network. Moreover, the correlation between dFC timecourses and VarIED was predominantly positive, suggesting a strengthening of the dynamic subnetwork associated to the occurrence of IED. The integration of dFC and scalp IED offers a more specific description of the epileptic network, identifying connections strongly influenced by IED. These findings could be relevant in the pre-surgical evaluation for the resection or disconnection of the epileptogenic zone and help in reaching a better post-surgical outcome. This would be particularly important for patients characterised by a widespread pathological brain activity which challenges the surgical intervention.
Collapse
Affiliation(s)
- G R Iannotti
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Switzerland; Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland.
| | - M G Preti
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - F Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Switzerland; Laboratory of Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - M Carboni
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - P De Stefano
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - F Pittau
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland; Epilepsy Unit, Institution de Lavigny, Switzerland
| | - S Momjian
- Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - D Carmichael
- Biomedical Engineering Department, Kings College London, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - M Centeno
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Unit, Neurology Department, Clinica Universidad de Pamplona, Navarra, Spain
| | - M Seeck
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - C M Korff
- Pediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Schaller
- Neurosurgery, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| | - D Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - S Vulliemoz
- EEG and Epilepsy, Clinical Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Switzerland
| |
Collapse
|
30
|
Kowalczyk MA, Omidvarnia A, Dhollander T, Jackson GD. Dynamic analysis of fMRI activation during epileptic spikes can help identify the seizure origin. Epilepsia 2020; 61:2558-2571. [PMID: 32954506 DOI: 10.1111/epi.16695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We use the dynamic electroencephalography-functional magnetic resonance imaging (EEG-fMRI) method to incorporate variability in the amplitude and field of the interictal epileptic discharges (IEDs) into the fMRI analysis. We ask whether IED variability analysis can (a) identify additional activated brain regions during the course of IEDs, not seen in standard analysis; and (b) demonstrate the origin and spread of epileptic activity. We explore whether these functional changes recapitulate the structural connections and propagation of epileptic activity during seizures. METHODS Seventeen patients with focal epilepsy and at least 30 IEDs of a single type during simultaneous EEG-fMRI were studied. IED variability and EEG source imaging (ESI) analysis extracted time-varying dynamic changes. General linear modeling (GLM) generated static functional maps. Dynamic maps were compared to static functional maps. The dynamic sequence from IED variability was compared to the ESI results. In a subset of patients, we investigated structural connections between active brain regions using diffusion-based fiber tractography. RESULTS IED variability distinguished the origin of epileptic activity from its propagation in 15 of 17 (88%) patients. This included two cases where no result was obtained from the standard GLM analysis. In both of these cases, IED variability revealed activation in line with the presumed epileptic focus. Two cases showed no result from either method. Both had very high spike rates associated with dysplasia in the postcentral gyrus. In all 15 cases with dynamic activation, the observed dynamics were concordant with ESI. Fiber tractography identified specific white matter pathways between brain regions that were active at IED onset and propagation. SIGNIFICANCE Dynamic techniques involving IED variability can provide additional power for EEG-fMRI analysis, compared to standard analysis, revealing additional biologically plausible information in cases with no result from the standard analysis and gives insight into the origin and spread of IEDs.
Collapse
Affiliation(s)
- Magdalena A Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Vic., Australia
| | - Amir Omidvarnia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Vic., Australia.,Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Campus Biotech, Geneva, Switzerland.,Department of Radiology and Medical Informatics, Campus Biotech, University of Geneva, Geneva, Switzerland
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Vic., Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Vic., Australia.,Department of Neurology, Austin Health, Heidelberg, Vic., Australia
| |
Collapse
|
31
|
Kananen J, Helakari H, Korhonen V, Huotari N, Järvelä M, Raitamaa L, Raatikainen V, Rajna Z, Tuovinen T, Nedergaard M, Jacobs J, LeVan P, Ansakorpi H, Kiviniemi V. Respiratory-related brain pulsations are increased in epilepsy-a two-centre functional MRI study. Brain Commun 2020; 2:fcaa076. [PMID: 32954328 PMCID: PMC7472909 DOI: 10.1093/braincomms/fcaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Resting-state functional MRI has shown potential for detecting changes in cerebral blood oxygen level-dependent signal in patients with epilepsy, even in the absence of epileptiform activity. Furthermore, it has been suggested that coefficient of variation mapping of fast functional MRI signal may provide a powerful tool for the identification of intrinsic brain pulsations in neurological diseases such as dementia, stroke and epilepsy. In this study, we used fast functional MRI sequence (magnetic resonance encephalography) to acquire ten whole-brain images per second. We used the functional MRI data to compare physiological brain pulsations between healthy controls (n = 102) and patients with epilepsy (n = 33) and furthermore to drug-naive seizure patients (n = 9). Analyses were performed by calculating coefficient of variation and spectral power in full band and filtered sub-bands. Brain pulsations in the respiratory-related frequency sub-band (0.11-0.51 Hz) were significantly (P < 0.05) increased in patients with epilepsy, with an increase in both signal variance and power. At the individual level, over 80% of medicated and drug-naive seizure patients exhibited areas of abnormal brain signal power that correlated well with the known clinical diagnosis, while none of the controls showed signs of abnormality with the same threshold. The differences were most apparent in the basal brain structures, respiratory centres of brain stem, midbrain and temporal lobes. Notably, full-band, very low frequency (0.01-0.1 Hz) and cardiovascular (0.8-1.76 Hz) brain pulses showed no differences between groups. This study extends and confirms our previous results of abnormal fast functional MRI signal variance in epilepsy patients. Only respiratory-related brain pulsations were clearly increased with no changes in either physiological cardiorespiratory rates or head motion between the subjects. The regional alterations in brain pulsations suggest that mechanisms driving the cerebrospinal fluid homeostasis may be altered in epilepsy. Magnetic resonance encephalography has both increased sensitivity and high specificity for detecting the increased brain pulsations, particularly in times when other tools for locating epileptogenic areas remain inconclusive.
Collapse
Affiliation(s)
- Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Ville Raatikainen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Zalan Rajna
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Oulu 90014, Finland
| | - Timo Tuovinen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julia Jacobs
- Department of Pediatric Neurology and Muscular Disease, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pierre LeVan
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hanna Ansakorpi
- Medical Research Center (MRC), Oulu 90220, Finland
- Research Unit of Neuroscience, Neurology, University of Oulu, Oulu 90220, Finland
- Department of Neurology, Oulu University Hospital, Oulu 90029, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| |
Collapse
|
32
|
Roodakker KR, Ezra B, Gauffin H, Latini F, Zetterling M, Berntsson S, Landtblom AM. Ecstatic and gelastic seizures relate to the hypothalamus. Epilepsy Behav Rep 2020; 14:100358. [PMID: 32368731 PMCID: PMC7186513 DOI: 10.1016/j.ebr.2020.100358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 11/27/2022] Open
Abstract
Ecstatic seizures constitute a rare form of epilepsy, and the semiology is diverse. Previously, brain areas including the temporal lobe and the insula have been identified to be involved in clinical expression. The aim of this report is to review changes in ecstatic seizures in a patient before and after operation of a hypothalamic hamartoma, and to scrutinize the relation to gelastic seizures. In this case, the ecstatic seizures disappeared after surgery of the hamartoma but reappeared eleven years later. Clinical information was retrospectively obtained from medical records, interviews, and a questionnaire covering seizure semiology that pertained to ecstatic and gelastic seizures. Our findings imply a possible connection between gelastic and ecstatic seizures, originating from a hypothalamic hamartoma. To our knowledge, this location has not previously been described in ecstatic seizures. Gelastic seizures may in this case were associated with ecstatic seizures. We speclate patients with ecstatic seizures may have an ictal activation of neuronal networks that involves the insula. Our case may add information to the growing knowledge concerning ecstatic seizures.
Collapse
Affiliation(s)
- Kenney Roy Roodakker
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Bisrat Ezra
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Helena Gauffin
- Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Francesco Latini
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Shala Berntsson
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Neuroscience, Neurology, Uppsala University, University Hospital, Uppsala, Sweden.,Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden.,Neurology division, Clinic of Medical Specialist, Motala General Hospital, Motala, Sweden
| |
Collapse
|
33
|
Gil F, Padilla N, Soria-Pastor S, Setoain X, Boget T, Rumiá J, Roldán P, Reyes D, Bargalló N, Conde E, Pintor L, Vernet O, Manzanares I, Ådén U, Carreño M, Donaire A. Beyond the Epileptic Focus: Functional Epileptic Networks in Focal Epilepsy. Cereb Cortex 2019; 30:2338-2357. [DOI: 10.1093/cercor/bhz243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Focal epilepsy can be conceptualized as a network disorder, and the functional epileptic network can be described as a complex system of multiple brain areas that interact dynamically to generate epileptic activity. However, we still do not fully understand the functional architecture of epileptic networks. We studied a cohort of 21 patients with extratemporal focal epilepsy. We used independent component analysis of functional magnetic resonance imaging (fMRI) data. In order to identify the epilepsy-related components, we examined the general linear model-derived electroencephalography-fMRI (EEG–fMRI) time courses associated with interictal epileptic activity as intrinsic hemodynamic epileptic biomarkers. Independent component analysis revealed components related to the epileptic time courses in all 21 patients. Each epilepsy-related component described a network of spatially distributed brain areas that corresponded to the specific epileptic network in each patient. We also provided evidence for the interaction between the epileptic activity generated at the epileptic network and the physiological resting state networks. Our findings suggest that independent component analysis, guided by EEG–fMRI epileptic time courses, have the potential to define the functional architecture of the epileptic network in a noninvasive way. These data could be useful in planning invasive EEG electrode placement, guiding surgical resections, and more effective therapeutic interventions.
Collapse
Affiliation(s)
- Francisco Gil
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Nelly Padilla
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataro, CP 08304, Mataro, Spain
| | - Xavier Setoain
- Epilepsy Program, Department of Nuclear Medicine, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| | - Teresa Boget
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Neuropsychology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Jordi Rumiá
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Pedro Roldán
- Epilepsy Program, Department of Neurosurgery, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - David Reyes
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Núria Bargalló
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Radiology, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Estefanía Conde
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Luis Pintor
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Epilepsy Program, Department of Psychiatry, Hospital Clínic, CDIC, CP 08036, Barcelona, Spain
| | - Oriol Vernet
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Isabel Manzanares
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
| | - Ulrika Ådén
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Mar Carreño
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
| | - Antonio Donaire
- Epilepsy Program, Department of Neurology, Hospital Clínic, Neuroscience Institute, CP 08036, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Clinical and Experimental Neuroscience, Clinical Neurophysiology, CP 08036, Barcelona, Spain
- Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), University of Barcelona, CP 08036, Barcelona, Spain
| |
Collapse
|
34
|
Kowalczyk MA, Omidvarnia A, Abbott DF, Tailby C, Vaughan DN, Jackson GD. Clinical benefit of presurgical EEG‐fMRI in difficult‐to‐localize focal epilepsy: A single‐institution retrospective review. Epilepsia 2019; 61:49-60. [DOI: 10.1111/epi.16399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Amir Omidvarnia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - David F. Abbott
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Chris Tailby
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
| | - David N. Vaughan
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- Department of Neurology Austin Health Heidelberg Australia
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
- Department of Neurology Austin Health Heidelberg Australia
| |
Collapse
|
35
|
Oribe S, Yoshida S, Kusama S, Osawa SI, Nakagawa A, Iwasaki M, Tominaga T, Nishizawa M. Hydrogel-Based Organic Subdural Electrode with High Conformability to Brain Surface. Sci Rep 2019; 9:13379. [PMID: 31527626 PMCID: PMC6746719 DOI: 10.1038/s41598-019-49772-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
A totally soft organic subdural electrode has been developed by embedding an array of poly(3,4-ethylenedioxythiophene)-modified carbon fabric (PEDOT-CF) into the polyvinyl alcohol (PVA) hydrogel substrate. The mesh structure of the stretchable PEDOT-CF allowed stable structural integration with the PVA substrate. The electrode performance for monitoring electrocorticography (ECoG) was evaluated in saline solution, on ex vivo brains, and in vivo animal experiments using rats and porcines. It was demonstrated that the large double-layer capacitance of the PEDOT-CF brings low impedance at the frequency of brain wave including epileptic seizures, and PVA hydrogel substrate minimized the contact impedance on the brain. The most important unique feature of the hydrogel-based ECoG electrode was its shape conformability to enable tight adhesion even to curved, grooved surface of brains by just being placed. In addition, since the hydrogel-based electrode is totally organic, the simultaneous ECoG-fMRI measurements could be conducted without image artifacts, avoiding problems induced by conventional metallic electrodes.
Collapse
Affiliation(s)
- Shuntaro Oribe
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shotaro Yoshida
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shinya Kusama
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shin-Ichiro Osawa
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Atsuhiro Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi-cho, Kodaira-shi, Tokyo, 187-8551, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
36
|
Background EEG Connectivity Captures the Time-Course of Epileptogenesis in a Mouse Model of Epilepsy. eNeuro 2019; 6:ENEURO.0059-19.2019. [PMID: 31346002 PMCID: PMC6709215 DOI: 10.1523/eneuro.0059-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
Large-scale brain networks are increasingly recognized as important for the generation of seizures in epilepsy. However, how a network evolves from a healthy state through the process of epileptogenesis remains unclear. To address this question, here, we study longitudinal epicranial background EEG recordings (30 electrodes, EEG free from epileptiform activity) of a mouse model of mesial temporal lobe epilepsy. We analyze functional connectivity networks and observe that over the time course of epileptogenesis the networks become increasingly asymmetric. Furthermore, computational modelling reveals that a set of nodes, located outside of the region of initial insult, emerges as particularly important for the network dynamics. These findings are consistent with experimental observations, thus demonstrating that ictogenic mechanisms can be revealed on the EEG, that computational models can be used to monitor unfolding epileptogenesis and that both the primary focus and epileptic network play a role in epileptogenesis.
Collapse
|
37
|
González Otárula KA, Khoo HM, von Ellenrieder N, Hall JA, Dubeau F, Gotman J. Spike-related haemodynamic responses overlap with high frequency oscillations in patients with focal epilepsy. Brain 2019; 141:731-743. [PMID: 29360943 DOI: 10.1093/brain/awx383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
Simultaneous scalp EEG/functional MRI measures non-invasively haemodynamic responses to interictal epileptic discharges, which are related to the epileptogenic zone. High frequency oscillations are also an excellent indicator of this zone, but are primarily recorded from intracerebral EEG. We studied the spatial overlap of these two important markers in patients with drug-resistant epilepsy to assess if their combination could help better define the extent of the epileptogenic zone. We included patients who underwent EEG-functional MRI and later intracerebral EEG. Based on intracerebral EEG findings, we separated patients with unifocal seizures from patients with multifocal or unknown onset seizures. Haemodynamic t-maps were coregistered with the intracerebral electrode positions. Each EEG channel was classified as pertaining to one of the following categories: primary haemodynamic cluster (maximum t-value), secondary cluster (t-value > 90% of the primary cluster) or outside the primary and secondary clusters. We marked high frequency oscillations (ripples: 80-250 Hz; fast ripples: 250-500 Hz) during 1 h of slow wave sleep, and compared their rates in each haemodynamic category. After classifying channels as high- or low-rate, the proportion of high-rate channels within the primary or primary plus secondary clusters was compared to the proportion expected by chance. Twenty-five patients, 11 with unifocal and 14 with multifocal/unknown seizure onsets, were studied. We found a significantly higher median high frequency oscillation rate in the primary cluster compared to secondary cluster and outside these two clusters for the unifocal group (P < 0.0001), but not for the multifocal/unknown group. For the unifocal group, the number of high-rate channels within the primary or primary plus secondary clusters was significantly higher than expected by chance. This held only for the high-ripple-rate channels in the multifocal/unknown group. At the patient level, most patients (18/25, or 72%) had at least one high-rate channel within a primary cluster. In patients with unifocal epilepsy, the maximum haemodynamic response (primary cluster) related to scalp interictal discharges overlaps with the tissue generating high frequency oscillations at high rates. If intracranial EEG is warranted, this response should be explored. As a tentative clinical use of the combination of these techniques we propose that higher high frequency oscillation rates inside than outside the maximum response indicates that the patient has indeed a focal epileptogenic zone demarcated by this response, whereas similar rates inside and outside may indicate a widespread epileptogenic zone or an epileptogenic zone not covered by the implantation.
Collapse
Affiliation(s)
| | - Hui Ming Khoo
- Montreal Neurological Institute and Hospital, McGill University, Canada.,Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Jeffery A Hall
- Montreal Neurological Institute and Hospital, McGill University, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Canada
| |
Collapse
|
38
|
Ebrahimzadeh E, Soltanian-Zadeh H, Araabi BN, Fesharaki SSH, Habibabadi JM. Component-related BOLD response to localize epileptic focus using simultaneous EEG-fMRI recordings at 3T. J Neurosci Methods 2019; 322:34-49. [PMID: 31026487 DOI: 10.1016/j.jneumeth.2019.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Simultaneous EEG-fMRI experiments record spatiotemporal dynamics of epileptic activity. A shortcoming of spike-based EEG-fMRI studies is their inability to provide information about behavior of epileptic generators when no spikes are visible. NEW METHOD We extract time series of epileptic components identified on EEG and fit them with Generalized Linear Model (GLM) model. This allows a precise and reliable localization of epileptic foci in addition to predicting generator's behavior. The proposed method works in the source domain and delineates generators considering spatial correlation between spike template and candidate components in addition to patient's medical records. RESULTS The proposed method was applied on 20 patients with refractory epilepsy and 20 age- and gender-matched healthy controls. The identified components were examined statistically and threshold of localization accuracy was determined as 86% based on Receiver Operating Characteristic (ROC) curve analysis. Accuracy, sensitivity, and specificity were found to be 88%, 85%, and 95%, respectively. Contribution of EEG-fMRI and concordance between EEG and fMRI were also evaluated. Concordance was found in 19 patients and contribution in 17. COMPARISON WITH EXISTING METHODS We compared the proposed method with conventional methods. Our comparisons showed superiority of the proposed method. In particular, when epileptogenic zone was located deep in the brain, the method outperformed existing methods. CONCLUSIONS This study contributes substantially to increasing the yield of EEG-fMRI and presents a realistic estimate of the neural behavior of epileptic generators, to the best of our knowledge, for the first time in the literature.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, and Seaman Family MR Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, MI, USA.
| | - Babak Nadjar Araabi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Jafar Mehvari Habibabadi
- Isfahan Neurosciences Research Center, Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Spectral entropy indicates electrophysiological and hemodynamic changes in drug-resistant epilepsy - A multimodal MREG study. NEUROIMAGE-CLINICAL 2019; 22:101763. [PMID: 30927607 PMCID: PMC6444290 DOI: 10.1016/j.nicl.2019.101763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Abstract
Objective Epilepsy causes measurable irregularity over a range of brain signal frequencies, as well as autonomic nervous system functions that modulate heart and respiratory rate variability. Imaging dynamic neuronal signals utilizing simultaneously acquired ultra-fast 10 Hz magnetic resonance encephalography (MREG), direct current electroencephalography (DC-EEG), and near-infrared spectroscopy (NIRS) can provide a more comprehensive picture of human brain function. Spectral entropy (SE) is a nonlinear method to summarize signal power irregularity over measured frequencies. SE was used as a joint measure to study whether spectral signal irregularity over a range of brain signal frequencies based on synchronous multimodal brain signals could provide new insights in the neural underpinnings of epileptiform activity. Methods Ten patients with focal drug-resistant epilepsy (DRE) and ten healthy controls (HC) were scanned with 10 Hz MREG sequence in combination with EEG, NIRS (measuring oxygenated, deoxygenated, and total hemoglobin: HbO, Hb, and HbT, respectively), and cardiorespiratory signals. After pre-processing, voxelwise SEMREG was estimated from MREG data. Different neurophysiological and physiological subfrequency band signals were further estimated from MREG, DC-EEG, and NIRS: fullband (0–5 Hz, FB), near FB (0.08–5 Hz, NFB), brain pulsations in very-low (0.009–0.08 Hz, VLFP), respiratory (0.12–0.4 Hz, RFP), and cardiac (0.7–1.6 Hz, CFP) frequency bands. Global dynamic fluctuations in MREG and NIRS were analyzed in windows of 2 min with 50% overlap. Results Right thalamus, cingulate gyrus, inferior frontal gyrus, and frontal pole showed significantly higher SEMREG in DRE patients compared to HC. In DRE patients, SE of cortical Hb was significantly reduced in FB (p = .045), NFB (p = .017), and CFP (p = .038), while both HbO and HbT were significantly reduced in RFP (p = .038, p = .045, respectively). Dynamic SE of HbT was reduced in DRE patients in RFP during minutes 2 to 6. Fitting to the frontal MREG and NIRS results, DRE patients showed a significant increase in SEEEG in FB in fronto-central and parieto-occipital regions, in VLFP in parieto-central region, accompanied with a significant decrease in RFP in frontal pole and parietal and occipital (O2, Oz) regions. Conclusion This is the first study to show altered spectral entropy from synchronous MREG, EEG, and NIRS in DRE patients. Higher SEMREG in DRE patients in anterior cingulate gyrus together with SEEEG and SENIRS results in 0.12–0.4 Hz can be linked to altered parasympathetic function and respiratory pulsations in the brain. Higher SEMREG in thalamus in DRE patients is connected to disturbances in anatomical and functional connections in epilepsy. Findings suggest that spectral irregularity of both electrophysiological and hemodynamic signals are altered in specific way depending on the physiological frequency range. Simultaneous imaging methods indicate spectral irregularity in neurovascular and electrophysiological brain pulsations in DRE. Altered spectral entropy in EEG, NIRS and BOLD indicate dysfunctional brain pulsations in respiratory frequency in epilepsy. Spectral irregularity (0-5 Hz) of BOLD in right thalamus supports previous structural and functional findings in epilepsy.
Collapse
|
40
|
Cohen N, Tsizin E, Fried I, Fahoum F, Hendler T, Gazit T, Medvedovsky M. Conductive gel bridge sensor for motion tracking in simultaneous EEG-fMRI recordings. Epilepsy Res 2018; 149:117-122. [PMID: 30623776 DOI: 10.1016/j.eplepsyres.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
Abstract
EEG-fMRI allows the localization of the hemodynamic correlates of neural activity and has been shown to be useful as a diagnostic tool in pre-surgical evaluation of refractory epilepsy. However, EEG recordings may be highly contaminated by artifacts induced by movements inside the magnetic field thus rendering the scan difficult for interpretation. Existing methods for motion correction require additional equipment or hardware modification. We introduce a simple method for motion artifact detection, the conductive gel bridge sensor (CGBS), easily applicable using the standard setup. We report examples of CGBS use in two patients with epilepsy and demonstrate the method's ability to successfully differentiate between epochs of brain activity and those of movement.
Collapse
Affiliation(s)
- Noa Cohen
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Evgeny Tsizin
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Epilepsy and EEG Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Gazit
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | |
Collapse
|
41
|
Kananen J, Tuovinen T, Ansakorpi H, Rytky S, Helakari H, Huotari N, Raitamaa L, Raatikainen V, Rasila A, Borchardt V, Korhonen V, LeVan P, Nedergaard M, Kiviniemi V. Altered physiological brain variation in drug-resistant epilepsy. Brain Behav 2018; 8:e01090. [PMID: 30112813 PMCID: PMC6160661 DOI: 10.1002/brb3.1090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Functional magnetic resonance imaging (fMRI) combined with simultaneous electroencephalography (EEG-fMRI) has become a major tool in mapping epilepsy sources. In the absence of detectable epileptiform activity, the resting state fMRI may still detect changes in the blood oxygen level-dependent signal, suggesting intrinsic alterations in the underlying brain physiology. METHODS In this study, we used coefficient of variation (CV) of critically sampled 10 Hz ultra-fast fMRI (magnetoencephalography, MREG) signal to compare physiological variance between healthy controls (n = 10) and patients (n = 10) with drug-resistant epilepsy (DRE). RESULTS We showed highly significant voxel-level (p < 0.01, TFCE-corrected) increase in the physiological variance in DRE patients. At individual level, the elevations range over three standard deviations (σ) above the control mean (μ) CVMREG values solely in DRE patients, enabling patient-specific mapping of elevated physiological variance. The most apparent differences in group-level analysis are found on white matter, brainstem, and cerebellum. Respiratory (0.12-0.4 Hz) and very-low-frequency (VLF = 0.009-0.1 Hz) signal variances were most affected. CONCLUSIONS The CVMREG increase was not explained by head motion or physiological cardiorespiratory activity, that is, it seems to be linked to intrinsic physiological pulsations. We suggest that intrinsic brain pulsations play a role in DRE and that critically sampled fMRI may provide a powerful tool for their identification.
Collapse
Affiliation(s)
- Janne Kananen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Timo Tuovinen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Hanna Ansakorpi
- Research Unit of Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Department of Neurology and Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Seppo Rytky
- Department of Clinical Neurophysiology, Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| | - Heta Helakari
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Niko Huotari
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Lauri Raitamaa
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Ville Raatikainen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Aleksi Rasila
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Viola Borchardt
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Pierre LeVan
- Faculty of Medicine, Department of Radiology - Medical Physics, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester, Rochester, New York.,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Vesa Kiviniemi
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oulu Functional NeuroImaging-Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
42
|
Gupta L, Hofman PAM, Besseling RMH, Jansen JFA, Backes WH. Abnormal Blood Oxygen Level-Dependent Fluctuations in Focal Cortical Dysplasia and the Perilesional Zone: Initial Findings. AJNR Am J Neuroradiol 2018; 39:1310-1315. [PMID: 29794237 DOI: 10.3174/ajnr.a5684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/01/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Focal cortical dysplasia is a common cause of intractable epilepsy for which neurosurgery is an option. Delineations of a focal cortical dysplasia lesion on structural brain images may not necessarily reflect the functional borders of normal tissue. Our objective was to determine whether abnormalities in spontaneous blood oxygen level-dependent fluctuations arise in focal cortical dysplasia lesions and proximal regions. MATERIALS AND METHODS Fourteen patients with focal cortical dysplasia-related epilepsy and 16 healthy controls underwent structural and resting-state functional MR imaging. Three known blood oxygen level-dependent measures were determined, including the fractional amplitude of low-frequency fluctuations, regional homogeneity, and wavelet entropy. These measures were evaluated in the lesion and perilesional zone and normalized to the contralateral cortex of patients with focal cortical dysplasia and healthy controls. RESULTS Patients showed significantly decreased fractional amplitude of low-frequency fluctuations and increased wavelet entropy in the focal cortical dysplasia lesion and the perilesional zone (≤2 cm) relative to the contralateral homotopic cortex and the same regions in healthy controls. Regional homogeneity was significantly increased in the focal cortical dysplasia lesion compared with the contralateral homotopic cortex and healthy controls. CONCLUSIONS Abnormalities in spontaneous blood oxygen level-dependent fluctuations were seen up to 2 cm distant from the radiologically visible boundary. It was demonstrated that functional boundaries go beyond structural boundaries of focal cortical dysplasia lesions. Validation is required to reveal whether this information is valuable for surgical planning and outcome evaluation of focal cortical dysplasia lesions and comparing current results with electrophysiologic analysis.
Collapse
Affiliation(s)
- L Gupta
- From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.)
| | - P A M Hofman
- From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.)
- School for Mental Health and Neuroscience (P.A.M.H., J.F.A.J., W.H.B.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R M H Besseling
- From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.)
- Department of Electrical Engineering (R.M.H.B.), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J F A Jansen
- From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.)
- School for Mental Health and Neuroscience (P.A.M.H., J.F.A.J., W.H.B.), Maastricht University Medical Center, Maastricht, the Netherlands
| | - W H Backes
- From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.)
- School for Mental Health and Neuroscience (P.A.M.H., J.F.A.J., W.H.B.), Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
43
|
Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Gröhn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage 2018; 172:9-20. [DOI: 10.1016/j.neuroimage.2018.01.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022] Open
|
44
|
Neal EG, Maciver S, Vale FL. Multimodal, noninvasive seizure network mapping software: A novel tool for preoperative epilepsy evaluation. Epilepsy Behav 2018; 81:25-32. [PMID: 29459252 DOI: 10.1016/j.yebeh.2018.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Despite rigorous preoperative evaluation, epilepsy surgery achieves seizure freedom in only two-thirds of cases. Current preoperative evaluation does not include a detailed network analysis despite the association of network-level changes with epilepsy. OBJECTIVE We sought to create a software algorithm to map individualized epilepsy networks by combining noninvasive electroencephalography (EEG) source localization and nonconcurrent resting state functional magnetic resonance imaging (rsfMRI). METHODS Scalp EEG and rsfMRI data were acquired for three sample cases: one healthy control case, one case of right temporal lobe epilepsy, and one case of bitemporal seizure onset. Data from rsfMRI were preprocessed, and a time-series function was extracted. Connection coefficients were used to threshold out spurious connections and model global functional networks in a 3D map. Epileptic discharges were localized using a forward model of cortical mesh dipoles followed by an empirical Bayesian approach of inverse source reconstruction and co-registered with rsfMRI. Co-activating brain regions were mapped. RESULTS Three illustrative sample cases are presented. In the healthy control case, the software showed symmetrical global connectivity. In the right temporal lobe epilepsy case, asymmetry was found in the global connectivity metrics with a paucity of connectivity ipsilateral to the epileptogenic cortex. The superior longitudinal fasciculus, uncinate fasciculus, and commissural fibers connecting disparate and discontinuous cortical regions involved in the epilepsy network were visualized. In the case with bitemporal lobe epilepsy, global connectivity was symmetric. It showed a network of correlating cortical activity local to epileptogenic tissue in both temporal lobes. The network involved white matter tracks in a similar pattern to those seen in the right temporal case. CONCLUSIONS This modeling algorithm allows better definition of the global brain network and potentially demonstrates differences in connectivity between an epileptic and a non-epileptic brain. This finding may be useful for mapping cortico-cortical connections representing the putative epilepsy networks. With this methodology, we localized the epileptogenic brain and showed network asymmetry and long-distance cortical co-activation. This software tool is the first to use a multimodal, nonconcurrent, and noninvasive approach to model and visualize the epilepsy network.
Collapse
Affiliation(s)
- Elliot G Neal
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Stephanie Maciver
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Fernando L Vale
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
45
|
Dynamic functional disturbances of brain network in seizure-related cognitive outcomes. Epilepsy Res 2018; 140:15-21. [DOI: 10.1016/j.eplepsyres.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 12/02/2017] [Indexed: 11/23/2022]
|
46
|
Hao Y, Khoo HM, von Ellenrieder N, Zazubovits N, Gotman J. DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning. NEUROIMAGE-CLINICAL 2017; 17:962-975. [PMID: 29321970 PMCID: PMC5752096 DOI: 10.1016/j.nicl.2017.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/02/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
Presurgical evaluation that can precisely delineate the epileptogenic zone (EZ) is one important step for successful surgical resection treatment of refractory epilepsy patients. The noninvasive EEG-fMRI recording technique combined with general linear model (GLM) analysis is considered an important tool for estimating the EZ. However, the manual marking of interictal epileptic discharges (IEDs) needed in this analysis is challenging and time-consuming because the quality of the EEG recorded inside the scanner is greatly deteriorated compared to the usual EEG obtained outside the scanner. This is one of main impediments to the widespread use of EEG-fMRI in epilepsy. We propose a deep learning based semi-automatic IED detector that can find the candidate IEDs in the EEG recorded inside the scanner which resemble sample IEDs marked in the EEG recorded outside the scanner. The manual marking burden is greatly reduced as the expert need only edit candidate IEDs. The model is trained on data from 30 patients. Validation of IEDs detection accuracy on another 37 consecutive patients shows our method can improve the median sensitivity from 50.0% for the previously proposed template-based method to 84.2%, with false positive rate as 5 events/min. Reproducibility validation on 15 patients is applied to evaluate if our method can produce similar hemodynamic response maps compared with the manual marking ground truth results. We explore the concordance between the maximum hemodynamic response and the intracerebral EEG defined EZ and find that both methods produce similar percentage of concordance (76.9%, 10 out of 13 patients, electrode was absent in the maximum hemodynamic response in two patients). This tool will make EEG-fMRI analysis more practical for clinical usage. A deep learning based epileptic discharge detector for EEG-fMRI is proposed. The burden of manually marking epileptic discharges is greatly reduced. Our method can produce similar EEG-fMRI results compared with traditional method.
Collapse
Affiliation(s)
- Yongfu Hao
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Natalja Zazubovits
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
47
|
Omidvarnia A, Pedersen M, Vaughan DN, Walz JM, Abbott DF, Zalesky A, Jackson GD. Dynamic coupling between fMRI local connectivity and interictal EEG in focal epilepsy: A wavelet analysis approach. Hum Brain Mapp 2017; 38:5356-5374. [PMID: 28737272 DOI: 10.1002/hbm.23723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 06/01/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023] Open
Abstract
Simultaneous scalp EEG-fMRI recording is a noninvasive neuroimaging technique for combining electrophysiological and hemodynamic aspects of brain function. Despite the time-varying nature of both measurements, their relationship is usually considered as time-invariant. The aim of this study was to detect direct associations between scalp-recorded EEG and regional changes of hemodynamic brain connectivity in focal epilepsy through a time-frequency paradigm. To do so, we developed a voxel-wise framework that analyses wavelet coherence between dynamic regional phase synchrony (DRePS, calculated from fMRI) and band amplitude fluctuation (BAF) of a target EEG electrode with dominant interictal epileptiform discharges (IEDs). As a proof of concept, we applied this framework to seven patients with focal epilepsy. The analysis produced patient-specific spatial maps of DRePS-BAF coupling, which highlight regions with a strong link between EEG power and local fMRI connectivity. Although we observed DRePS-BAF coupling proximate to the suspected seizure onset zone in some patients, our results suggest that DRePS-BAF is more likely to identify wider 'epileptic networks'. We also compared DRePS-BAF with standard EEG-fMRI analysis based on general linear modelling (GLM). There was, in general, little overlap between the DRePS-BAF maps and GLM maps. However, in some subjects the spatial clusters revealed by these two analyses appeared to be adjacent, particularly in medial posterior cortices. Our findings suggest that (1) there is a strong time-varying relationship between local fMRI connectivity and interictal EEG power in focal epilepsy, and (2) that DRePS-BAF reflect different aspects of epileptic network activity than standard EEG-fMRI analysis. These two techniques, therefore, appear to be complementary. Hum Brain Mapp 38:5356-5374, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amir Omidvarnia
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia
| | - Mangor Pedersen
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Jennifer M Walz
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia
| | - David F Abbott
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia.,Melbourne School of Engineering, Building 173, The University of Melbourne, Parkville, Victoria, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Austin Campus, Heidelberg, Victoria, Australia.,Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
48
|
Padmanabhan P, Nedumaran AM, Mishra S, Pandarinathan G, Archunan G, Gulyás B. The Advents of Hybrid Imaging Modalities: A New Era in Neuroimaging Applications. ACTA ACUST UNITED AC 2017; 1:e1700019. [PMID: 32646180 DOI: 10.1002/adbi.201700019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Indexed: 01/29/2023]
Abstract
Hybrid Imaging modalities have shown great potential in medical imaging and diagnosis. A more comprehensive and targeted view of neurological disorders can be achieved by blending the anatomical and functional perspectives through hybridization. With consistently improving technologies, there have been many developments in fused imaging techniques over the past few decades. This article provides an overview of various bimodal and trimodal hybrid imaging techniques being developed and explored for neuroimaging applications. Recent advancements and potentials are discussed for single photon emission computed tomography-computed tomography (SPECT-CT), positron emission tomography-CT (PET-CT), PET-magnetic resonance imaging (PET-MRI), electroencephalography-functional magnetic resonance imaging (EEG-fMRI), magnetoencephalography-fMRI (MEG-fMRI), EEG-near-infrared spectroscopy (EEG-NIRS), magnetic resonance-PET-EEG (MR-PET-EEG) and MR-PET-CT in the perspective of neuroimaging. A comparison of these hybrid approaches is provided on a single platform to analyze their performance on the basis of several common factors essential for imaging and analyzing neurological disorders and in vivo molecular processes. This article also provides an overview of recently developed advanced imaging technologies that are being hybridized with other imaging modalities and being explored as potential techniques for neuroscience. Novel approaches and clinical applications of hybrid neuroimaging are anticipated with inclusion of new technologies, better sensing capabilities, multimodal probes, and improved hybridization.
Collapse
Affiliation(s)
- Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Anu Maashaa Nedumaran
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.,Department of Biomedical Engineering, SRM University, SRM Nagar, Kattankulathur, Kanchipuram, Tamil Nadu, 603203, India
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Ganesh Pandarinathan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.,Department of Biomedical Engineering, SRM University, SRM Nagar, Kattankulathur, Kanchipuram, Tamil Nadu, 603203, India
| | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
49
|
Pittau F, Ferri L, Fahoum F, Dubeau F, Gotman J. Contributions of EEG-fMRI to Assessing the Epileptogenicity of Focal Cortical Dysplasia. Front Comput Neurosci 2017; 11:8. [PMID: 28265244 PMCID: PMC5316536 DOI: 10.3389/fncom.2017.00008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose: To examine the ability of the BOLD response to EEG spikes to assess the epileptogenicity of the lesion in patients with focal cortical dysplasia (FCD). Method: Patients with focal epilepsy and FCD who underwent 3T EEG-fMRI from 2006 to 2010 were included. Diagnosis of FCD was based on neuroradiology (MRI+), or histopathology in MRI-negative cases (MRI−). Patients underwent 120 min EEG-fMRI recording session. Spikes similar to those recorded outside the scanner were marked in the filtered EEG. The lesion (in MRI+) or the removed cortex (in MRI−) was marked on the anatomical T1 sequence, blindly to the BOLD response, after reviewing the FLAIR images. For each BOLD response we assessed the concordance with the spike field and with the lesion in MRI+ or the removed cortex in MRI−. BOLD responses were considered “concordant” if the maximal t-value was inside the marking. Follow-up after resection was used as gold-standard. Results: Twenty patients were included (13 MRI+, 7 MRI−), but in seven the EEG was not active or there were artifacts during acquisition. In all 13 studied patients, at least one BOLD response was concordant with the spike field; in 9/13 (69%) at least one BOLD response was concordant with the lesion: in 6/7 (86%) MRI+ and in 3/6 (50%) MRI− patients. Conclusions: Our study shows a high level of concordance between FCD and BOLD response. This data could provide useful information especially for MRI negative patients. Moreover, it shows in almost all FCD patients, a metabolic involvement of remote cortical or subcortical structures, corroborating the concept of epileptic network.
Collapse
Affiliation(s)
- Francesca Pittau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill UniversityQuébec, QC, Canada; Neurology Department, Geneva University HospitalsGeneva, Switzerland
| | - Lorenzo Ferri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Firas Fahoum
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - François Dubeau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| | - Jean Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Québec, QC, Canada
| |
Collapse
|
50
|
Wang B, Meng L. Functional brain network alterations in epilepsy: A magnetoencephalography study. Epilepsy Res 2016; 126:62-9. [DOI: 10.1016/j.eplepsyres.2016.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/08/2016] [Accepted: 06/25/2016] [Indexed: 11/26/2022]
|