1
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Rajput A, Sharma P, Kumar N, Singh H, Singh T, Singh S, Singh Bedi PM, Singh B, Arora S, Kaur S. Anticonvulsant potential of Grewia tiliaefolia in pentylenetetrazole induced epilepsy: insights from in vivo and in silico studies. Metab Brain Dis 2023; 38:2355-2367. [PMID: 37436587 DOI: 10.1007/s11011-023-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Epilepsy, a chronic neurological condition, impacts millions of individuals globally and remains a significant contributor to both illness and mortality. Available antiepileptic drugs have serious side effects which warrants to explore different medicinal plants used for the management of epilepsy reported in Traditional Indian Medicinal System (TIMS). Therefore, we explored the antiepileptic potential of the Grewia tiliaefolia (Tiliaeceae) which is known for its neuroprotective properties. Aerial parts of G. tiliaefolia were subjected to extraction with increasing order of polarity viz. hexane, chloroform and methanol. Antioxidant potential of hexane, chloroform and methanol extracts of G. tiliaefolia was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay, total antioxidant capacity (TAC) assay, reducing power assay (RPA) and DNA nicking assay. Additionally, quantitative antioxidant assays were also conducted to quantify total phenolic (TPC) and total flavonoid content (TFC). As revealed by in vitro assays, methanol extract was found to contain more phenolic content. Hence, the methanol extract was further explored for its anticonvulsant potential in pentylenetetrazole (PTZ) induced acute seizures in mice. The methanol extract (400 mg/kg) significantly increased the latency to occurrence of myoclonic jerks and generalized tonic clonic seizures (GTCS). Additionally, it also reduced duration and seizure severity score associated with GTCS. The Grewia tiliaefolia methanol extract was further screened by Ultra High-Performance Liquid Chromatography (UHPLC) for presence of polyphenolic compounds, among which gallic acid and kaempferol were present in higher amount and were further analysed by in silico study to predict their possible binding sites and type of interactions these compounds show with gamma amino butyric acid (GABA) receptor and glutamate α amino-3- hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu-AMPA) receptor. It was revealed that gallic acid and kaempferol had shown agonistic interaction for GABA receptor and antagonistic interaction for Glu-AMPA receptor. We concluded that G. tiliaefolia showed anticonvulsant potential possibly because of gallic acid and kaempferol possibly mediated through GABA and Glu-AMPA receptor.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
3
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
4
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
5
|
Abstract
Deep brain stimulation (DBS) entails neurosurgery to implant electrodes in specific brain structures to modulate the behavior of a particular neural circuit. DBS is best known for treating advanced Parkinson disease and can potentially be applicable to other motor and even cognitive dysfunctions. Here, we describe a detailed protocol allowing for electrode preparation, surgical procedures, stimulation delivery, and field potential recordings in both anesthetized and behaving mice, and the benefit evaluation of DBS at the fimbria-fornix by using a fear conditioning test. For complete details on the use and execution of this protocol, please refer to Hao et al. (2015).
Collapse
Affiliation(s)
- Qi Wang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Bin Tang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jianrong Tang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
6
|
Takahashi S, Takechi K, Jozukuri N, Niimura T, Chuma M, Goda M, Zamami Y, Izawa-Ishizawa Y, Imanishi M, Horinouchi Y, Ikeda Y, Tsuchiya K, Yanagawa H, Ishizawa K. Examination of the antiepileptic effects of valacyclovir using kindling mice- search for novel antiepileptic agents by drug repositioning using a large medical information database. Eur J Pharmacol 2021; 902:174099. [PMID: 33910036 DOI: 10.1016/j.ejphar.2021.174099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/26/2022]
Abstract
Despite the availability of more than 20 clinical antiepileptic drugs, approximately 30% of patients with epilepsy do not respond to antiepileptic drug treatment. Therefore, it is important to develop antiepileptic products that function via novel mechanisms. In the present study, we evaluated data from one of the largest global databases to identify drugs with antiepileptic effects, and subsequently attempted to understand the effect of the combination of antiepileptic drugs and valacyclovir in epileptic seizures using a kindling model. To induce kindling in mice, pentylenetetrazol at a dose of 40 mg/kg was administered once every 48 h. Valacyclovir was orally administered 30 min before antiepileptic drug injection in kindled mice, and behavioral seizures were monitored for 20 min following pentylenetetrazol administration. Additionally, c-Fos expression in the hippocampal dentate gyrus was measured in kindled mice. Valacyclovir showed inhibitory effects on pentylenetetrazol-induced kindled seizures. In addition, simultaneous use of levetiracetam and valacyclovir caused more potent inhibition of seizure activity, and neither valproic acid nor diazepam augmented the anti-seizure effect in kindled mice. Furthermore, kindled mice showed increased c-Fos levels in the dentate gyrus. The increase in c-Fos expression was significantly inhibited by the simultaneous use of levetiracetam and valacyclovir. The findings of the present study indicate that a combination of levetiracetam and valacyclovir had possible anticonvulsive effects on pentylenetetrazol-induced kindled epileptic seizures. These results suggest that valacyclovir may have an antiseizure effect in patients with epilepsy.
Collapse
Affiliation(s)
- Shimon Takahashi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| | - Kenshi Takechi
- Department of Drug Information Analysis, College of Pharmaceutical Sciences, Matsuyama University, Japan.
| | - Natsumi Jozukuri
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Masayuki Chuma
- Department of Hospital Pharmacy & Pharmacology, Asahikawa Medical University & University Hospital, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan; Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, AWA Support Center, Japan
| | - Masaki Imanishi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan
| | - Yuya Horinouchi
- Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihamabouji Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroaki Yanagawa
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Japan; Department of Pharmacy, Tokushima University Hospital, Japan
| |
Collapse
|
7
|
Alcoreza OB, Patel DC, Tewari BP, Sontheimer H. Dysregulation of Ambient Glutamate and Glutamate Receptors in Epilepsy: An Astrocytic Perspective. Front Neurol 2021; 12:652159. [PMID: 33828523 PMCID: PMC8019783 DOI: 10.3389/fneur.2021.652159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Given the important functions that glutamate serves in excitatory neurotransmission, understanding the regulation of glutamate in physiological and pathological states is critical to devising novel therapies to treat epilepsy. Exclusive expression of pyruvate carboxylase and glutamine synthetase in astrocytes positions astrocytes as essential regulators of glutamate in the central nervous system (CNS). Additionally, astrocytes can significantly alter the volume of the extracellular space (ECS) in the CNS due to their expression of the bi-directional water channel, aquaporin-4, which are enriched at perivascular endfeet. Rapid ECS shrinkage has been observed following epileptiform activity and can inherently concentrate ions and neurotransmitters including glutamate. This review highlights our emerging knowledge on the various potential contributions of astrocytes to epilepsy, particularly supporting the notion that astrocytes may be involved in seizure initiation via failure of homeostatic responses that lead to increased ambient glutamate. We also review the mechanisms whereby ambient glutamate can influence neuronal excitability, including via generation of the glutamate receptor subunit GluN2B-mediated slow inward currents, as well as indirectly affect neuronal excitability via actions on metabotropic glutamate receptors that can potentiate GluN2B currents and influence neuronal glutamate release probabilities. Additionally, we discuss evidence for upregulation of System x c - , a cystine/glutamate antiporter expressed on astrocytes, in epileptic tissue and changes in expression patterns of glutamate receptors.
Collapse
Affiliation(s)
- Oscar B Alcoreza
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,School of Medicine, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Dipan C Patel
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Bhanu P Tewari
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
8
|
Sarahian N, Mohammadi MT, Darabi S, Faghihi N. Fenofibrate protects the neurovascular unit and ameliorates plasma corticosterone levels in pentylenetetrazole-induced kindling seizure in mice. Brain Res 2021; 1758:147343. [PMID: 33556377 DOI: 10.1016/j.brainres.2021.147343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/03/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Epileptic seizures are the most common neurological diseases that change the function of neurovascular unit at molecular levels accompanied by activation of a wide variety of neurodegenerative cascades. Based on the pleiotropic functions of peroxisome proliferator-activated receptor-alpha (PPARα), the current study evaluated the neuroprotective effects of fenofibrate (an effective PPARα agonist) on the brain injuries induced by pentylenetetrazole (PTZ)-induced kindling seizure. Adult male NMRI mice were randomly assigned into four groups (n = 14) as follows; control, untreated kindled mice (PTZ) and two fenofibrate-treated kindled groups. Repeated intraperitoneal injections of PTZ (45 mg/kg) were used to develop kindling seizure every 48 h for 21 days. Treated mice were administered orally fenofibrate at doses of 30 and 50 mg/kg/day during the study. Plasma corticosterone and brain levels of brain-derived neurotrophic factor (BDNF), malondialdehyde (MDA) and mRNA transcription of p53, as well as blood-brain barrier (BBB) permeability, were determined at termination of the study. Fenofibrate considerably improved seizure latency and anxiety-like behaviors in treated kindled mice. Fenofibrate at doses of 30 and 50 mg/kg significantly (P < 0.001) decreased plasma corticosterone (56.88 ± 0.80 and 54.81 ± 0.29 ng/mL, respectively) compared to PTZ group (74.96 ± 1.60 ng/mL). It also significantly (P < 0.05) decreased BDNF levels in both treatment groups (8.13 ± 0.14 and 8.74 ± 0.09 ng/mL, respectively) compared to PTZ group (9.68 ± 0.20 ng/mL). Fenofibrate particularly at higher dose significantly (P < 0.01) decreased MDA content and mRNA expression levels of p53 in treated kindled mice by 67% and 28%, respectively, compared to PTZ group. Similarly, 50 mg/kg fenofibrate significantly (P < 0.05) decreased Evans blue extravasation into brain in treated kindled mice (8.72 ± 0.96 µg/g) compared to PTZ group (15.31 ± 2.18 µg/g). Our results revealed the anticonvulsive and neuroprotective effects of fenofibrate in PTZ-induced kindling seizure in mice. Fenofibrate also improved the neurovascular functions at molecular levels in kindling seizure that might be associated with ameliorating the seizure behaviors.
Collapse
Affiliation(s)
- Nahid Sarahian
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shamsi Darabi
- Department of Physiology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Nastaran Faghihi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
10
|
Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Pentylenetetrazol kindling induces cortical astrocytosis and increased expression of extracellular matrix molecules in mice. Brain Res Bull 2020; 163:120-134. [PMID: 32726668 DOI: 10.1016/j.brainresbull.2020.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Although epilepsy is one of the most common chronic neurological disorders with a prevalence of approximately 1.0 %, the underlying pathophysiology remains to be elucidated. Understanding the molecular and cellular mechanisms involved in the development of epilepsy is important for the development of appropriate therapeutic strategy. In this study, we investigated the effects of status epilepticus on astrocytes, microglia, and extracellular matrix (ECM) molecules in the somatosensory cortex and piriform cortex of mice. Activation of astrocytes was observed in many cortices except the retrosplenial granular cortex after pentylenetetrazol (PTZ)-induced kindling in mice. Activated astrocytes in the cortex were found in layers 1-3 but not in layers 4-6. In the somatosensory and piriform cortices, no change was observed in the number of parvalbumin (PV)-positive neurons and PV-positive neurons covered with perineuronal nets. However, the amount of ECM in the extracellular space increased. The expression of VGLUT1- and GAD67-positive synapses also increased. Thus, in the PTZ-kindling epilepsy mice model, an increase in the number of ECM molecules and activation of astrocytes were observed in the somatosensory cortex and piriform cortex. These results indicate that PTZ-induced seizures affect not only the hippocampus but also other cortical areas. Our study findings may help to develop new therapeutic approaches to prevent seizures or their sequelae.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, 701-0193, Japan.
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan.
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| |
Collapse
|
11
|
Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plast 2019; 2019:8924634. [PMID: 31827499 PMCID: PMC6885262 DOI: 10.1155/2019/8924634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice. Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice. In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures. This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with epilepticus in PTZ-kindled mice.
Collapse
|
12
|
Jankovic MJ, Kapadia PP, Krishnan V. Home-cage monitoring ascertains signatures of ictal and interictal behavior in mouse models of generalized seizures. PLoS One 2019; 14:e0224856. [PMID: 31697745 PMCID: PMC6837443 DOI: 10.1371/journal.pone.0224856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is a significant contributor to worldwide disability. In epilepsy, disability can be broadly divided into two components: ictal (pertaining to the burden of unpredictable seizures and associated medical complications including death) and interictal (pertaining to more pervasive debilitating changes in cognitive and emotional behavior). In this study, we objectively and noninvasively appraise aspects of ictal and interictal behavior in mice using instrumented home-cage chambers designed to assay kinematic and appetitive behavioral measures. Through daily intraperitoneal injections of the chemoconvulsant pentylenetetrazole (PTZ) applied to C57BL/6J mice, we coordinately measure how “behavioral severity” (complex dynamic changes in movement and sheltering behavior) and convulsive severity (latency and occurrence of convulsive seizures) evolve or kindle with repeated injections. By closely studying long epochs between PTZ injections, we identify an interictal syndrome of nocturnal hypoactivity and increased sheltering behavior which remits with the cessation of seizure induction. We observe elements of this interictal behavioral syndrome in seizure-prone DBA/2J mice and in mice with a pathogenic Scn1a mutation (modeling Dravet syndrome). Through analyzing their responses to PTZ, we illustrate how convulsive severity and “behavioral” severity are distinct and independent aspects of the overall severity of a PTZ-induced seizure. Our results illustrate the utility of an ethologically centered automated approach to quantitatively appraise murine expressions of disability in mouse models of seizures and epilepsy. In doing so, this study highlights the very unique psychopharmacological profile of PTZ.
Collapse
Affiliation(s)
- Miranda J. Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Paarth P. Kapadia
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Vaishnav Krishnan
- Department of Neurology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
14
|
Zhang J, Chen X, Kårbø M, Zhao Y, An L, Wang R, Wang K, Huang Z. Anticonvulsant effect of dipropofol by enhancing native GABA currents in cortical neurons in mice. J Neurophysiol 2018; 120:1404-1414. [DOI: 10.1152/jn.00241.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Temporal lobe epilepsy (TLE), the most common pharmacoresistant focal epilepsy disorder, remains a major unmet medical need. Propofol is used as a short-acting medication for general anesthesia and refractory status epilepticus with issues of decreased consciousness and memory loss. Dipropofol, a derivative of propofol, has been reported to exert antioxidative and antibacterial activities. Here we report that dipropofol exerted anticonvulsant activity in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices from the medial entorhinal cortex (mEC) revealed that dipropofol hyperpolarized the resting membrane potential and reduced the number of action potential firings, resulting in suppression of cortical neuronal excitability. Furthermore, dipropofol activated native tonic GABAA currents of mEC layer II stellate neurons in a dose-dependent manner with an EC50 value of 9.3 ± 1.6 μM (mean ± SE). Taken together, our findings show that dipropofol activated GABAA currents and exerted anticonvulsant activities in mice, thus possessing developmental potential for new anticonvulsant therapy. NEW & NOTEWORTHY The anticonvulsant effect of dipropofol was shown in a mouse model of kainic acid-induced seizures. Whole cell patch-clamp recordings of brain slices showed suppression of cortical neuronal excitability by dipropofol. Dipropofol activated the native tonic GABAA currents in a dose-dependent manner.
Collapse
Affiliation(s)
- Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoling Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Matti Kårbø
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Zhao
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - Long An
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - Rutao Wang
- Tech-Development Department, Xi’an Libang Pharmaceutical Company, Xi’an, China
| | - KeWei Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int 2018; 115:11-23. [DOI: 10.1016/j.neuint.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
|
16
|
Batten SR, Matveeva EA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. Brain Behav 2017; 7:e00795. [PMID: 28948088 PMCID: PMC5607557 DOI: 10.1002/brb3.795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.
Collapse
Affiliation(s)
- Seth R. Batten
- Department of PsychologyUniversity of KentuckyCollege of Arts and SciencesLexingtonKYUSA
| | - Elena A. Matveeva
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Sidney W. Whiteheart
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Thomas C. Vanaman
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Greg A. Gerhardt
- Department of NeuroscienceUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - John T. Slevin
- Neurology ServiceVeterans Affairs Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky Medical CenterLexingtonKYUSA
| |
Collapse
|
17
|
Faghihi N, Mohammadi MT. Anticonvulsant and Antioxidant Effects of Pitavastatin Against Pentylenetetrazol-Induced Kindling in Mice. Adv Pharm Bull 2017; 7:291-298. [PMID: 28761832 PMCID: PMC5527244 DOI: 10.15171/apb.2017.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose: The pleiotropic effects of statins (antioxidant and anti-inflammation) have been reported by previous studies. Therefore, we aimed to determine whether pitavastatin has protective effects against pentylenetetrazol (PTZ)-induced kindling in mice and also whether pitavastatin improves the brain antioxidant capacity and attenuates the oxidative injuries in kindled mice.
Methods: Twenty-four mice were randomly divided into four groups (each group n=6); control, PTZ-kindling and PTZ-kindled rats treated with pitavastatin (1&4 mg/kg). PTZ kindling seizures were induced by repetitive intraperitoneal injections of PTZ (65 mg/kg) every 48 hours till day twenty-one. Animals received daily oral pitavastatin for twenty-one days. Latency, score and duration of the seizures were recorded. The activities of catalase (CAT) ad superoxide dismutase (SOD), and likewise the contents of malondialdehyde (MDA) and nitrate were assessed in the brains of all rats.
Results: There was a progressive reduction in latency of the kindled rats in the next injections of PTZ. Pitavastatin reduced this value (latency) particularly at higher dose. Seizures duration and score also decreased in treatment groups. SOD and CAT activities significantly decreased in PTZ-kindling group by 62% and 64%, respectively, but pitavastatin did not significantly change the SOD and CAT activities. Brain MDA and nitrate significantly increased in PTZ-kindling group by 53% and 30%, respectively. Pitavastatin at higher dose significantly decreased the MDA and nitrate contents of PTZ-kindling rats by 45% and 32%, respectively.
Conclusion: Our findings revealed that pitavastatin can improve the behavioral expression of the PTZ-kindling rats and attenuate the seizure-induced oxidative/nitrosative damage.
Collapse
Affiliation(s)
- Nastaran Faghihi
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Qian F, Tang FR. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis. Curr Neuropharmacol 2017; 14:551-62. [PMID: 27030135 PMCID: PMC4983745 DOI: 10.2174/1570159x14666160331142228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis.
Collapse
Affiliation(s)
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Wang X, Wang Y, Zhang C, Liu C, Zhao B, Wei N, Zhang JG, Zhang K. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus. Brain Res 2016; 1646:174-181. [PMID: 27262683 DOI: 10.1016/j.brainres.2016.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 01/23/2023]
Abstract
Both endocannabinoids and dynorphin are feedback messengers in nervous system that act at the presynaptic nerve terminal to inhibit transmitter release. Many studies showed the cannabinoid-opioid cross-modulation in antinociception, hypothermia, sedation and reward. The aim of this study was to assess the influence of early application of cannabinoid type 1 (CB1) receptor antagonism SR141716A after brain injury on dynorphin-κ opioid receptor (KOR) system and the expression of metabotropic glutamate receptors (mGluRs) in a rat model of fluid percussion injury (FPI). Firstly, seizure latency induced by pentylenetetrazole was significantly prolonged 6 weeks after brain injury in group of SR141716A treatment. Then, PCR and western blot showed that SR141716A inhibited the long-term up-regulation of CB1 receptors in hippocampus. However, SR141716A resulted in long-term potentiation of dynorphin release and did not influence the up-regulation of KOR in hippocampus after brain injury. Furthermore, SR141716A reverse the overexpression of mGluR5 in the late stage of brain injury. We propose that during the induction of epileptogenesis after brain injury, early application of CB1 receptor antagonism could prevent long-term hyperexcitability by up-regulation of dynorphin-KOR system and prevention of mGluR5 induced epileptogenesis in hippocampus.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Yao Wang
- Beijing Jingmei Group General Hospital, Heishan Street 18, Mentougou, Beijing 102300, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Naili Wei
- Department of Neurosurgery, The Second Hospital of Lanzhou University, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Neurosurgical Institute, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Neurosurgical Institute, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China.
| |
Collapse
|
20
|
Takechi K, Suemaru K, Kiyoi T, Tanaka A, Araki H. The α4β2 nicotinic acetylcholine receptor modulates autism-like behavioral and motor abnormalities in pentylenetetrazol-kindled mice. Eur J Pharmacol 2016; 775:57-66. [PMID: 26868186 DOI: 10.1016/j.ejphar.2016.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy is associated with several psychiatric disorders, including cognitive impairment, autism and attention deficit/hyperactivity disorder (ADHD). However, the psychopathology of epilepsy is frequently unrecognized and untreated in patients. In the present study, we investigated the effects of ABT-418, a neuronal nicotinic acetylcholine receptor agonist, on pentylenetetrazol (PTZ)-kindled mice with behavioral and motor abnormalities. PTZ-kindled mice displayed impaired motor coordination (in the rotarod test), anxiety (in the elevated plus maze test) and social approach impairment (in the three-chamber social test) compared with control mice. ABT-418 treatment (0.05 mg/kg, intraperitoneally) alleviated these behavioral abnormalities in PTZ-kindled mice. Immunolabeling of tissue sections demonstrated that expression of the α4 nicotinic acetylcholine receptor subunit in the medial habenula was similar in control and PTZ-kindled mice. However, expression was significantly decreased in the piriform cortex in PTZ-kindled mice. In addition, we examined the expression of the synaptic adhesion molecule neuroligin 3 (NLG3). NLG3 expression in the piriform cortex was significantly higher in PTZ-kindled mice compared with control mice. Collectively, our findings suggest that ADHD-like or autistic-like behavioral abnormalities associated with epilepsy are closely related to the downregulation of the α4 nicotinic receptor and the upregulation of NLG3 in the piriform cortex. In summary, this study indicates that ABT-418 might have therapeutic potential for attentional impairment in epileptic patients with psychiatric disorders such as autism and ADHD.
Collapse
Affiliation(s)
- Kenshi Takechi
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Katsuya Suemaru
- School of Pharmacy, Shujitsu University, 1-6-1 Nishikawara, Naka-ku, Okayama 703-8516, Japan
| | - Takeshi Kiyoi
- Integrated Center for Science, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Akihiro Tanaka
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hiroaki Araki
- Division of Pharmacy, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
21
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
22
|
Pomierny-Chamioło L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 2014; 142:281-305. [DOI: 10.1016/j.pharmthera.2013.12.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023]
|
23
|
Li B, Wang L, Sun Z, Zhou Y, Shao D, Zhao J, Song Y, Lv J, Dong X, Liu C, Wang P, Zhang X, Cui R. The anticonvulsant effects of SR 57227 on pentylenetetrazole-induced seizure in mice. PLoS One 2014; 9:e93158. [PMID: 24690630 PMCID: PMC3972186 DOI: 10.1371/journal.pone.0093158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 02/28/2014] [Indexed: 01/13/2023] Open
Abstract
Recently, studies have shown that serotonin plays an important role in the control of seizure. However, the specific role of 5-HT receptor subtypes is not yet well described, in particular that of the 5-HT3 receptor. The present study was aimed to investigate the role of 5-HT3 receptor on the pentylenetetrazole (PTZ)-induced seizure in mice. Firstly, seizure latency was significantly prolonged by a 5-HT3 receptor agonist SR 57227 in a dose-dependent manner. Seizure score and mortality were also decreased by SR 57227 in PTZ-treated mice. Furthermore, these anticonvulsant effects of SR 57227 were inhibited by a 5-HT3 receptor antagonist ondansetron. However, ondansetron alone had no effect on seizure latency, seizure score or mortality at different doses. Immunohistochemical studies have also shown that c-Fos expression was significantly increased in hippocampus (dentate gyrus, CA1, CA3 and CA4) of PTZ-treated mice. Furthermore, c-Fos expression was significantly inhibited by ondansetron in mice treated with PTZ and SR 57227. An ELISA study showed that SR 57227 attenuated the PTZ-induced inhibitory effects of GABA levels in hippocampus and cortex, and the attenuated effects of SR 57227 were antagonized by ondansetron in hippocampus but not cortex. Our findings suggest that activation of 5-HT3 receptor by SR 57227, which plays an important role on the control of seizure induced by PTZ, may be related to GABA activity in hippocampus. Therefore, 5-HT3 receptor subtype is a potential target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Bingjin Li
- Second hospital of Jilin University, Changchun, China
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Liang Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| | - Zhihui Sun
- First hospital of Jilin University, Changchun, China
| | - Yang Zhou
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Dongyuan Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Jing Zhao
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Yunong Song
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Jiayin Lv
- China-Japan Union Hospital, Changchun, China
| | - Xue Dong
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Changhong Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Pu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
| | - Xingyi Zhang
- Second hospital of Jilin University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| | - Ranji Cui
- Second hospital of Jilin University, Changchun, China
- National Engineering Laboratory for Druggable Gene and Protein Screening Northeast Normal University, Changchun, China
- * E-mail: (RC); (LW); (XZ)
| |
Collapse
|
24
|
Walls SA, Rosenwasser AM, Devaud LL. Sex and regional differences in effects of chronic intermittent ethanol exposure on subsequent excitotoxic challenges in hippocampal slice cultures. Neurosci Lett 2013; 550:6-11. [PMID: 23680460 DOI: 10.1016/j.neulet.2013.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 01/07/2023]
Abstract
The organotypic hippocampal slice culture technique was used to study how the effects of repeated ethanol withdrawal might differ between males and females at the cellular level, including potential modulation of subsequent insults. A chronic intermittent ethanol (CIE) exposure paradigm was employed, with 3 days of exposure followed by 24 h withdrawal for 3 cycles. Slices were next exposed to corticosterone (CORT) or pentylenetetrazol (PTZ) for 24 h then imaged for propidium iodide (PI) signal intensities. There were sex-selective responses in the CA1 region and dentate gyrus of the hippocampal slice cultures to treatment with CIE and/or CORT or PTZ. The 50 mM CIE alone generally did not increase the PI signal, but enhanced sensitivity to the toxic effects of CORT (particularly for females) and PTZ (particularly for males). In contrast, 100 mM CIE elicited a toxic response that was greater in females than males, and was exacerbated by exposure to PTZ. These data showed that hippocampal sexual dimorphism influences sensitivity to ethanol and other toxic chemicals even in an immature state. Low-dose CIE may attenuate harm from additional challenges in a hippocampal sex- and region-selective manner. These findings add to the growing evidence of important neurobiological sex differences in responses to chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Shawn A Walls
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States.
| | | | | |
Collapse
|
25
|
Abstract
Despite of established and effective therapy for epilepsy, 20–25% patients develop therapeutic failure; this encourages finding newer drugs. Novel approaches target receptors which remain unaffected by conventional therapy or inhibit epileptogenesis. AMPA receptor antagonists have shown faster and complete protection compared to diazepam. Protein kinase (PK) plays an important role in the development of epilepsy. PK inhibitors such as K252a, VID-82925, and Herbimycin A have been found effective in inhibition of spread of epileptiform activity and epileptogenesis. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors classified into three groups. Group 1 mGluRs antagonist and Groups 2 and 3 mGluRs agonists inhibited pentylenetetrazole-induced kindled seizures. Combined use of these agents has also shown favorable results. Mammalian target of rapamycin (mTOR) plays a central role in multiple mechanisms of epileptogenesis. mTOR causes transcription, induction of proapoptotic proteins, and autophagy inhibition. Rapamycin was effective in suppression of recurrent seizures as well as in tuberous sclerosis and acute brain injury model. 5% CO2 showed potent effects on cortical epileptiform activity and convulsions in animal epilepsy models and in humans with drug-resistant partial epilepsy. It is found to be rapidly acting, safe and cheap, thus it can be a good option in emergency for suppression of seizure. Neurosteroids are considered as fourth generation neuromessengers, they act as positive allosteric modulators of γ-aminobutyric acid (GABAA) receptors. Clinical trial of ganaxolone, an allopregnanolone analogue, has shown a beneficial role in pharmacoresistant epilepsy. However, most of these drugs are tested in early phases of development and the possible use and safety in epilepsy has to be proven in clinical trials.
Collapse
Affiliation(s)
- Ashish P Anovadiya
- Department of Pharmacology, Government Medical College, Bhavnagar, Gujarat, India
| | | | | |
Collapse
|
26
|
Célanire S, Campo B. Recent advances in the drug discovery of metabotropic glutamate receptor 4 (mGluR4) activators for the treatment of CNS and non-CNS disorders. Expert Opin Drug Discov 2012; 7:261-80. [PMID: 22468956 DOI: 10.1517/17460441.2012.660914] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The metabotropic glutamate receptor type 4 (mGluR4) plays a pivotal role in a plethora of therapeutic areas, as recently demonstrated in preclinical validation studies with several chemical classes of compounds in rodent models of central nervous system (CNS) and peripheral disorders. Activation of mGluR4 with orthosteric agonists, allosteric agonists or pure positive allosteric modulators (PAM) has been postulated to be of broad therapeutic use. AREAS COVERED The authors address past and current drug discovery efforts, insights and achievements in the field toward the identification of therapeutically promising and emerging class of mGluR4 activators, over the 2005 - 2011 period. Chemical structures, properties and in vivo pharmacological results discussed in the present review were retrieved from public literature including PubMed searches, Thomson Pharma and SciFinder databases searches, conferences, proceedings and posters. EXPERT OPINION Developing a subtype-selective, orally bioavailable brain penetrant mGluR4 orthosteric agonist remains challenging. Lack of subtype selectivity and low brain penetration has been a common limitation of the first generation of mGluR4 agonist and potentiators. However, significant progress has recently been made with the identification of several double- to single-digit nanomolar mGluR4 PAM having reasonable pharmacokinetic properties, oral bioavailability and brain penetration. The use of such compounds in research has led to advancement in understanding the central role of mGluR4 in multiple neurodegenerative and neuroinflammatory disorders, such as Parkinson's disease and multiple sclerosis. Our understanding of the potential application of mGluR4 as therapeutic target is expected to grow as these compounds advance into preclinical and clinical development.
Collapse
Affiliation(s)
- Sylvain Célanire
- Medicinal Chemistry Department, Addex Pharmaceuticals, Geneva, Switzerland.
| | | |
Collapse
|
27
|
Regulatory role of the dopamine and norepinephrine transporters in pentylenetetrazol-kindled mice: Association with effect of antidepressants. Eur J Pharmacol 2011; 673:33-9. [DOI: 10.1016/j.ejphar.2011.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/05/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
|