1
|
Flores-Ramirez FJ, Illenberger JM, Pascasio GE, Matzeu A, Mason BJ, Martin-Fardon R. Alternative use of suvorexant (Belsomra ®) for the prevention of alcohol drinking and seeking in rats with a history of alcohol dependence. Front Behav Neurosci 2022; 16:1085882. [PMID: 36620860 PMCID: PMC9813433 DOI: 10.3389/fnbeh.2022.1085882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Alcohol use disorder (AUD) is one of the most treatment-resistant medical conditions globally. The orexin (Orx) system regulates diverse physiological processes, including stress, and is a system of interest for the development of pharmaceuticals to treat substance use disorders, particularly AUD. The present study tested the ability of the dual orexin receptor antagonist suvorexant (SUV), marketed by Merck as Belsomra®, for the treatment of insomnia, to decrease alcohol self-administration and the stress-induced reinstatement of alcohol-seeking behavior in male Wistar rats with a history of alcohol dependence. Rats were trained to orally self-administer 10% alcohol (30 min/day for 3 weeks) and were either made dependent via chronic intermittent alcohol vapor exposure (14 h ON, 10 h OFF) for 6 weeks or exposed to air (non-dependent). Starting on week 7, the effect of SUV (0-20 mg/kg, p.o.) was tested on alcohol self-administration at acute abstinence (8 h after vapor was turned OFF) twice weekly. A separate cohort of rats that were prepared in parallel was removed from alcohol vapor exposure and then subjected to extinction training for 14 sessions. Once extinction was achieved, the rats received SUV (0 and 5 mg/kg, p.o.) and were tested for the footshock stress-induced reinstatement of alcohol-seeking behavior. Suvorexant at 5, 10, and 20 mg/kg selectively decreased alcohol intake in dependent rats. Furthermore, 5 mg/kg SUV prevented the stress-induced reinstatement of alcohol-seeking behavior in dependent rats only. These results underscore the significance of targeting the Orx system for the treatment of substance use disorders generally and suggest that repurposing SUV could be an alternative approach for the treatment of AUD.
Collapse
|
2
|
Rizk AA, Jenkins BW, Al-Sabagh Y, Hamidullah S, Reitz CJ, Rasouli M, Martino TA, Khokhar JY. The Impact of Sex, Circadian Disruption, and the ClockΔ19/Δ19 Genotype on Alcohol Drinking in Mice. Genes (Basel) 2022; 13:genes13040701. [PMID: 35456507 PMCID: PMC9031797 DOI: 10.3390/genes13040701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
Shift work is associated with increased alcohol drinking, more so in males than females, and is thought to be a coping mechanism for disrupted sleep cycles. However, little is presently known about the causal influence of circadian rhythm disruptions on sex differences in alcohol consumption. In this study, we disrupted circadian rhythms in female and male mice using both environmental (i.e., shifting diurnal cycles) and genetic (i.e., ClockΔ19/Δ19 mutation) manipulations, and measured changes in alcohol consumption and preference using a two-bottle choice paradigm. Alcohol consumption and preference, as well as food and water consumption, total caloric intake, and weight were assessed in adult female and male ClockΔ19/Δ19 mutant mice or wild-type (WT) litter-mates, housed under a 12-hour:12-hour light:dark (L:D) cycle or a shortened 10-hour:10-hour L:D cycle. Female WT mice (under both light cycles) increased their alcohol consumption and preference over time, a pattern not observed in male WT mice. Compared to WT mice, ClockΔ19/Δ19 mice displayed increased alcohol consumption and preference. Sex differences were not apparent in ClockΔ19/Δ19 mice, with or without shifting diurnal cycles. In conclusion, sex differences in alcohol consumption patterns are evident and increase with prolonged access to alcohol. Disrupting circadian rhythms by mutating the Clock gene greatly increases alcohol consumption and abolishes sex differences present in WT animals.
Collapse
|
3
|
Egenrieder L, Mitricheva E, Spanagel R, Noori HR. No basal or drug‐induced sex differences in striatal dopaminergic levels: a cluster and meta‐analysis of rat microdialysis studies. J Neurochem 2019; 152:482-492. [DOI: 10.1111/jnc.14911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Lisamon Egenrieder
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | | | - Rainer Spanagel
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Hamid R. Noori
- Institute of Psychopharmacology Central Institute of Mental Health Medical Faculty Mannheim University of Heidelberg Mannheim Germany
- Max Planck Institute for Biological Cybernetics Tübingen Germany
| |
Collapse
|
4
|
Matzeu A, Terenius L, Martin-Fardon R. Exploring Sex Differences in the Attenuation of Ethanol Drinking by Naltrexone in Dependent Rats During Early and Protracted Abstinence. Alcohol Clin Exp Res 2018; 42:2466-2478. [PMID: 30320880 DOI: 10.1111/acer.13898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite considerable efforts, few drugs are available for the treatment of alcohol (ethanol [EtOH]) use disorder (AUD). EtOH directly or indirectly modulates several aspects of the central nervous system, including neurotransmitter/neuromodulator systems. Relapse vulnerability is a challenge for the treatment of EtOH addiction. EtOH withdrawal symptoms create motivational states that lead to compulsive EtOH drinking and relapse even after long periods of abstinence. Among the therapeutics to treat AUD, naltrexone (NTX) is a pharmacological treatment for relapse. The present study evaluated the effect of NTX on EtOH drinking in male and female EtOH-dependent rats during abstinence. METHODS Wistar rats (males and females) were first trained to orally self-administer 10% EtOH. Half of the rats were then made dependent by chronic intermittent EtOH (CIE) vapor exposure, and the other half were exposed to air. Using this model, rats exhibit somatic and motivational signs of withdrawal. At the end of EtOH vapor (or air) exposure, the rats were tested for the effects of NTX (10 mg/kg, oral) on EtOH self-administration at 3 abstinence time points: acute abstinence (A-Abst, 8 hours), late abstinence (L-Abst, 2 weeks), and protracted abstinence (P-Abst, 6 weeks). RESULTS NTX decreased EtOH intake in nondependent rats, regardless of sex and abstinence time point. In postdependent rats, NTX decreased EtOH intake only at a delayed abstinence time point (P-Abst) in males, whereas it similarly reduced EtOH drinking in females at all abstinence time points. CONCLUSIONS The therapeutic efficacy of NTX depends on the time of intervention during abstinence and is different between males and females. The data further suggest that EtOH dependence causes different neuroadaptations in male and female rats, reflected by differential effects of NTX. The results underscore the significance of considering the duration of EtOH abstinence and sex as a biological variable as important factors when developing pharmacotherapies for AUD.
Collapse
Affiliation(s)
| | - Lars Terenius
- Department of Neuroscience, Scripps Research, La Jolla, California.,Clinical Neuroscience, Experimental Addiction Research, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
5
|
Fetal alcohol spectrum disorders: Zebrafish in the analysis of the milder and more prevalent form of the disease. Behav Brain Res 2017; 352:125-132. [PMID: 28988969 DOI: 10.1016/j.bbr.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) represent a large unmet medical need. Exposure of the developing human embryo to alcohol can lead to life-long suffering. Despite the well documented deleterious effects of alcohol on the developing fetus, pregnant women continue to drink alcohol, and FASD remains the leading cause of preventable mental retardation and other behavioral abnormalities. Particularly prevalent are the milder forms of the disease cluster, representing children who do not show obvious physical signs and who may be undiagnosed or misdiagnosed. To develop treatment and diagnostic tools, researchers have turned to animal models. The zebrafish is becoming one of the leading biomedical research organisms that may facilitate discovery of the biological mechanisms underlying this disease and the identification of biomarkers that may be used for diagnosis. Here we review the latest advances of this field, mostly focussing on the discoveries made in our own laboratory and others with zebrafish employed to analyze the effects of moderate to low level of exposure to alcohol. We argue that the zebrafish represents unique advantages, and adding information obtained with this species to the mix of other animal models will significantly increase translational relevance of animal biomedical research for the analysis of human FASD.
Collapse
|
6
|
Nentwig TB, Myers KP, Grisel JE. Initial subjective reward to alcohol in Sprague-Dawley rats. Alcohol 2017; 58:19-22. [PMID: 28109344 DOI: 10.1016/j.alcohol.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Initial subjective response to the rewarding properties of alcohol predicts voluntary consumption and the risk for alcohol use disorders. We assessed the initial subjective reward to alcohol in rats using a single exposure conditioned place preference (SE-CPP) paradigm. Sprague-Dawley rats demonstrate preference for a context paired with a single systemic injection of ethanol (1.0 g/kg, delivered intraperitoneally). However, expression of SE-CPP in males depended on pairing ethanol with the first exposure of two (ethanol; saline) to the conditioning apparatus and procedures, while conditioning day did not appreciably affect SE-CPP in females, consistent with the view that females experience heightened addiction vulnerability. This model offers researchers a high throughput assay for investigating factors that influence alcohol reward and may point the way toward more effective prevention and treatment efforts.
Collapse
|
7
|
Muñoz-Villegas P, Rodríguez VM, Giordano M, Juárez J. Risk-taking, locomotor activity and dopamine levels in the nucleus accumbens and medial prefrontal cortex in male rats treated prenatally with alcohol. Pharmacol Biochem Behav 2017; 153:88-96. [DOI: 10.1016/j.pbb.2016.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
8
|
Priddy BM, Carmack SA, Thomas LC, Vendruscolo JCM, Koob GF, Vendruscolo LF. Sex, strain, and estrous cycle influences on alcohol drinking in rats. Pharmacol Biochem Behav 2016; 152:61-67. [PMID: 27498303 DOI: 10.1016/j.pbb.2016.08.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/24/2022]
Abstract
Although women appear to be more vulnerable to alcohol-induced pathophysiology than men, the neurobiological basis for sex differences is largely unknown, partially because most studies on alcohol drinking are conducted in male subjects only. The present study examined sex differences in alcohol consumption in two rat strains, Long Evans and Wistar, using multiple behavioral paradigms. The effects of the estrous cycle on alcohol consumption were monitored throughout the study. The results indicated that females drank more alcohol than males when given either continuous or intermittent access to alcohol (vs. water) in their home cages (voluntary drinking). Under operant conditions, no sex or strain differences were found in drinking prior to development of alcohol dependence. However, upon dependence induction by chronic, intermittent alcohol vapor exposure, Wistar rats of both sexes substantially escalated their alcohol intake compared with their nondependent drinking levels, whereas Long Evans rats only exhibited a moderate escalation of drinking. Under these conditions, the estrous cycle had no effect on alcohol drinking in any strain and drinking model. Thus, strain, sex, and drinking conditions interact to modulate nondependent and dependent alcohol drinking. The present results emphasize the importance of including sex and strain as biological variables in exploring individual differences in alcohol drinking and dependence.
Collapse
Affiliation(s)
- Brittany M Priddy
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Stephanie A Carmack
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Lisa C Thomas
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
9
|
Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front Psychiatry 2016; 6:175. [PMID: 26903885 PMCID: PMC4745113 DOI: 10.3389/fpsyt.2015.00175] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to discuss recent findings related to sex differences in behavioral dyscontrol that lead to drug addiction, and clinical implications for humans are discussed. This review includes research conducted in animals and humans that reveals fundamental aspects of behavioral dyscontrol. The importance of sex differences in aspects of behavioral dyscontrol, such as impulsivity and compulsivity, is discussed as major determinants of drug addiction. Behavioral dyscontrol during adolescence is also an important consideration, as this is the time of onset for drug addiction. These vulnerability factors additively increase drug-abuse vulnerability, and they are integral aspects of addiction that covary and interact with sex differences. Sex differences in treatments for drug addiction are also reviewed in terms of their ability to modify the behavioral dyscontrol that underlies addictive behavior. Customized treatments to reduce behavioral dyscontrol are discussed, such as (1) using natural consequences such as non-drug rewards (e.g., exercise) to maintain abstinence, or using punishment as a consequence for drug use, (2) targeting factors that underlie behavioral dyscontrol, such as impulsivity or anxiety, by repurposing medications to relieve these underlying conditions, and (3) combining two or more novel behavioral or pharmacological treatments to produce additive reductions in drug seeking. Recent published work has indicated that factors contributing to behavioral dyscontrol are an important target for advancing our knowledge on the etiology of drug abuse, intervening with the drug addiction process and developing novel treatments.
Collapse
Affiliation(s)
| | - John R. Smethells
- Program in PharmacoNeuroImmunology, Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Parker MO, Evans AMD, Brock AJ, Combe FJ, Teh MT, Brennan CH. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood. Addict Biol 2016; 21:49-60. [PMID: 25138642 DOI: 10.1111/adb.12176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning.
Collapse
Affiliation(s)
- Matthew O. Parker
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alexandra M-D. Evans
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Alistair J. Brock
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Fraser J. Combe
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; UK
| |
Collapse
|
11
|
Fabio M, Vivas L, Pautassi R. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain. Neuroscience 2015; 301:221-34. [DOI: 10.1016/j.neuroscience.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/14/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
12
|
Uban KA, Comeau WL, Bodnar T, Yu WK, Weinberg J, Galea LAM. Amphetamine sensitization and cross-sensitization with acute restraint stress: impact of prenatal alcohol exposure in male and female rats. Psychopharmacology (Berl) 2015; 232:1705-16. [PMID: 25420606 PMCID: PMC4412762 DOI: 10.1007/s00213-014-3804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE Individuals with fetal alcohol spectrum disorder (FASD) are at increased risk for substance use disorders (SUD). In typically developing individuals, susceptibility to SUD is associated with alterations in dopamine and hypothalamic-pituitary-adrenal (HPA) systems, and their interactions. Prenatal alcohol exposure (PAE) alters dopamine and HPA systems, yet effects of PAE on dopamine-HPA interactions are unknown. Amphetamine-stress cross-sensitization paradigms were utilized to investigate sensitivity of dopamine and stress (HPA) systems, and their interactions following PAE. METHODS Adult Sprague-Dawley offspring from PAE, pair-fed, and ad libitum-fed control groups were assigned to amphetamine-(1-2 mg/kg) or saline-treated conditions, with injections every other day for 15 days. Fourteen days later, all animals received an amphetamine challenge (1 mg/kg) and 5 days later, hormones were measured under basal or acute stress conditions. Amphetamine sensitization (augmented locomotion, days 1-29) and cross-sensitization with acute restraint stress (increased stress hormones, day 34) were assessed. RESULTS PAE rats exhibited a lower threshold for amphetamine sensitization compared to controls, suggesting enhanced sensitivity of dopaminergic systems to stimulant-induced changes. Cross-sensitization between amphetamine (dopamine) and stress (HPA hormone) systems was evident in PAE, but not in control rats. PAE males exhibited increased dopamine receptor expression (medial prefrontal cortex (mPFC)) compared to controls. CONCLUSIONS PAE alters induction and expression of sensitization/cross-sensitization, as reflected in locomotor, neural, and endocrine changes, in a manner consistent with increased sensitivity of dopamine and stress systems. These results provide insight into possible mechanisms that could underlie increased prevalence of SUD, as well as the impact of widely prescribed stimulant medications among adolescents with FASD.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada,
| | | | | | | | | | | |
Collapse
|
13
|
Peterson VL, McCool BA, Hamilton DA. Effects of ethanol exposure and withdrawal on dendritic morphology and spine density in the nucleus accumbens core and shell. Brain Res 2014; 1594:125-35. [PMID: 25452024 DOI: 10.1016/j.brainres.2014.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/24/2022]
Abstract
Exposure to drugs of abuse can result in profound structural modifications on neurons in circuits involved in addiction that may contribute to drug dependence, withdrawal and related processes. Structural alterations on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) have been observed following exposure to and withdrawal from a variety of drugs; however, relatively little is known about the effects of alcohol exposure and withdrawal on structural alterations of NAc MSNs. In the present study male rats were chronically exposed to vaporized ethanol for 10 days and underwent 1 or 7 days of withdrawal after which the brains were processed for Golgi-Cox staining and analysis of dendritic length, branching and spine density. MSNs of the NAc shell and core underwent different patterns of changes following ethanol exposure and withdrawal. At 1 day of withdrawal there were modest reductions in the dendritic length and branching of MSNs in both the core and the shell compared to control animals exposed only to air. At 7 days of withdrawal the length and branching of shell MSNs was reduced, whereas the length and branching of core MSNs were increased relative to the shell. The density of mature spines was increased in the core at 1 day of withdrawal, whereas the density of less mature spines was increased in both regions at 7 days of withdrawal. Collectively, these observations indicate that MSNs of the NAc core and shell undergo distinct patterns of structural modifications following ethanol exposure and withdrawal suggesting that modifications in dendritic structure in these regions may contribute differentially to ethanol withdrawal.
Collapse
Affiliation(s)
- Veronica L Peterson
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
14
|
Uban KA, Comeau WL, Ellis LA, Galea LAM, Weinberg J. Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 2013; 38:1953-66. [PMID: 23579081 PMCID: PMC3758462 DOI: 10.1016/j.psyneuen.2013.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/19/2022]
Abstract
Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control males and females. Overall, these findings enhance our understanding of PAE effects on the cross-talk between HPA and DA systems, and provide insight into possible mechanisms underlying mental health problems that are related to stress and DA signaling, including SUD, which have a high prevalence among individuals with FASD.
Collapse
Affiliation(s)
- Kristina A Uban
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
15
|
Nowak P, Labus L, Stabryla J, Durczok A, Brus R, Nowicka J, Shani J. Biogenic Amines in Striatum of Rats that Had Been Treated with Ethanol, and Their Brains Later Stored in Different Temperatures. ACTA ACUST UNITED AC 2011; 9:339-42. [PMID: 14527879 DOI: 10.3109/713745172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate how ethanol pretreatment and storage temperatures of brain striatum affect levels of biogenic amines in this tissue. Adult Wistar male rats were injected with 25% ethanol (5.0 g/kg i.p.) while the control rats were administered i.p. with the same volume of saline. Two hours later the rats were decapitated, their brains removed, and the striatum separated. Each striatum was divided into three parts: one part was immediately frozen on dry ice and kept at -70 degrees C; a second fragment was kept in a household refrigerator (+4 degrees C); and the third fragment was kept at +22 degrees C. Twenty-four hours later, levels of DA, DOPAC, HVA, 3-MT, 5-HT, and 5-HIAA in the striatum were assayed by HPLC/ED. Immediately after decapitation; ethanol levels were assayed in the serum of ethanol-pretreated and saline-pretreated rats using gas chromatography. Our results indicate that levels of striatal DA, DOPAC, and HVA in saline-pretreated rats decreased significantly when the storage temperature of the striatum was raised from -70 degrees C, through +4 degrees C, to +22 degrees C, while levels of striatal 5-HT and 5-HIAA remained constant within the temperature range tested and levels of 3-MT fluctuated. In ethanol-pretreated rats, striatal levels of DOPAC, HVA, and 5-HIAA were increased in all three storage temperatures, while levels of DA, 5-HT, and 3-MT were decreased in those temperatures. Those decreases were most profound in striatal samples kept at +22 degrees C. We conclude that concern about possible interactions between drugs and biogenic amines should be exercised.
Collapse
Affiliation(s)
- Przemyslaw Nowak
- Department of Pharmacology, Medical University of Silesia, Poland
| | | | | | | | | | | | | |
Collapse
|
16
|
Lawrence RC, Otero NKH, Kelly SJ. Selective effects of perinatal ethanol exposure in medial prefrontal cortex and nucleus accumbens. Neurotoxicol Teratol 2011; 34:128-35. [PMID: 21871563 DOI: 10.1016/j.ntt.2011.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/20/2011] [Accepted: 08/04/2011] [Indexed: 01/18/2023]
Abstract
Ethanol exposure during development is the leading known cause of mental retardation and can result in characteristic physiological and cognitive deficits, often termed Fetal Alcohol Spectrum Disorders (FASD). Previous behavioral findings using rat models of FASD have suggested that there are changes in the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC) following ethanol exposure during development. This study used a rat model of FASD to evaluate dendritic morphology in both the NAC and mPFC and cell number in the NAC. Dendritic morphology in mPFC and NAC was assessed using a modified Golgi stain and analyzed via three dimensional reconstructions with Neurolucida (MBF Bioscience). Cell counts in the NAC (shell and core) were determined using an unbiased stereology procedure (Stereo Investigator (MBF Bioscience)). Perinatal ethanol exposure did not affect neuronal or glial cell population numbers in the NAC. Ethanol exposure produced a sexually dimorphic effect on dendritic branching at one point along the NAC dendrites but was without effect on all other measures of dendritic morphology in the NAC. In contrast, spine density was reduced and distribution was significantly altered in layer II/III neurons of the mPFC following ethanol exposure. Ethanol exposure during development was also associated with an increase in soma size in the mPFC. These findings suggest that previously observed sexually dimorphic changes in activation of the NAC in a rat model of FASD may be due to altered input from the mPFC.
Collapse
Affiliation(s)
- R Charles Lawrence
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
17
|
Gass JT, Jenkins WJ, Marino MD, Lugo JN, Kelly SJ. Alcohol exposure during development: analysis of effects on female sexual behavior. Alcohol Clin Exp Res 2007; 31:2065-72. [PMID: 17949467 DOI: 10.1111/j.1530-0277.2007.00525.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol exposure during development has been shown to alter a variety of social behaviors in both humans and rodents. Sexual behavior in rodents has been well characterized and lends itself to a detailed investigation of the manner in which ethanol impacts this particular social behavior. METHODS Rats were exposed to ethanol during both the prenatal and early postnatal period (ET). Control groups included rats exposed to the administration procedures alone (intubated-control) and nontreated controls (NC). Sexual behavior of intact naïve female rats in estrus was assessed in adulthood (approximately postnatal day 90) and activity was measured by the number of crossings between chambers in the 3-chamber test apparatus. A separate study examined the olfactory preferences for 4 odors by intact naïve female rats in all 3 groups. The 4 odors were the odors resulting from 1 hour of occupation of the test chamber by an intact male, 1 hour of occupation of the test chamber by a gonadectomized male, 0.5 ml of urine from an intact male, and 0.5 ml of urine from a gonadectomized male. RESULTS ET female rats showed a reduced return latency after ejaculation compared to both control groups. There was a trend toward a reduction in percent exits after all forms of male behavior in the ET animals compared to the control groups. No significant differences across groups were seen in the lordosis quotient, activity, or the behavior of the nonexperimental male. ET female rats showed a reduced preference for the odor from the intact male compared to both control groups and a reduced preference for the odor from the gonadectomized male compared to NC females only. CONCLUSIONS These data suggest that ethanol exposure during the prenatal and postnatal period in females alters sexual motivation and changes the processing of olfactory cues and possibly coital cues from male rats.
Collapse
Affiliation(s)
- Justin T Gass
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | |
Collapse
|
18
|
Mathews TA, John CE, Lapa GB, Budygin EA, Jones SR. No role of the dopamine transporter in acute ethanol effects on striatal dopamine dynamics. Synapse 2006; 60:288-94. [PMID: 16786536 DOI: 10.1002/syn.20301] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The acute effects of ethanol on dopamine (DA) release and clearance in the caudate-putamen were evaluated in wild-type and dopamine transporter (DAT) knockout (DAT-KO) mice, using microdialysis and voltammetry. Dialysate DA levels were elevated, approximately 80% above baseline levels, after administration of 2 g/kg ethanol in both wild-type and DAT-KO mice. In brain slices containing the caudate-putamen, a low (20 mM) concentration of ethanol produced no change in electrically stimulated DA release in either wild-type or DAT-KO mice. A high concentration (200 mM) of ethanol caused a similar decrease in DA release in slices from both types of mice. DA clearance was unaltered across the genotypes at low and high concentrations of ethanol. The fact that ethanol had similar effects in wild-type and DAT-KO mice, measured by in vivo microdialysis or brain slice voltammetry, supports the idea that acute ethanol does not interact with the DAT to produce its effects on the DA system.
Collapse
Affiliation(s)
- Tiffany A Mathews
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
19
|
Nowak P, Dabrowska J, Bortel A, Izabela B, Kostrzewa RM, Brus R. Prenatal cadmium and ethanol increase amphetamine-evoked dopamine release in rat striatum. Neurotoxicol Teratol 2006; 28:563-72. [PMID: 17005368 DOI: 10.1016/j.ntt.2006.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 07/19/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
To explore interactive deleterious effects of the teratogens ethanol and cadmium, pregnant rats were given cadmium (CdCl(2), 50 ppm) and/or ethanol (10%), or tap water (controls) in the drinking water for the entire 21 days of pregnancy. At 3 months after birth, in vivo microdialysis was used to determine that there was a 4000% evoked release of DA by AMPH (AMPH, 4.0 mg/kg i.p.) in the striatum of rats exposed prenatally to both ethanol and cadmium, vs. a 2000% evoked release by AMPH in rats exposed prenatally to only ethanol or cadmium or tap water. Haloperidol (HAL)-evoked DA release was suppressed in groups exposed prenatally to ethanol, while HAL-evoked DOPAC and HVA release was greatest after co-exposure to prenatal cadmium and ethanol. These in vivo microdialysis results indicate that ontogenetic co-exposure to cadmium, and ethanol produces a long-lived suppressive effect on HAL-evoked DA release and a long-lived enhancing effect on AMPH-evoked DA release in rat striatum. These findings clearly demonstrate that there is marked alteration in dopaminergic regulation after ontogenetic cadmium and ethanol co-exposure, which in this regard resembles the reaction of the striatonigral pathway on AMPH-evoked DA release in rats with behavioral sensitization.
Collapse
Affiliation(s)
- Przemysław Nowak
- Department of Pharmacology, Medical University of Silesia, 41-808 Zabrze, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Thanos PK, Taintor NB, Rivera SN, Umegaki H, Ikari H, Roth G, Ingram DK, Hitzemann R, Fowler JS, Gatley SJ, Wang GJ, Volkow ND. DRD2 Gene Transfer Into the Nucleus Accumbens Core of the Alcohol Preferring and Nonpreferring Rats Attenuates Alcohol Drinking. Alcohol Clin Exp Res 2006; 28:720-8. [PMID: 15166646 DOI: 10.1097/01.alc.0000125270.30501.08] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transient overexpression of the dopamine D2 receptor (DRD2) gene in the nucleus accumbens (NAc) using an adenoviral vector has been associated with a significant decrease in alcohol intake in Sprague Dawley rats. This overexpression of DRD2 reduced alcohol consumption in a two-bottle-choice paradigm and supported the view that high levels of DRD2 may be protective against alcohol abuse. METHODS Using a limited access (1 hr) two-bottle-choice (water versus 10% ethanol) drinking paradigm, we examined the effects of the DRD2 vector in alcohol intake in the genetically inbred alcohol-preferring (P) and -nonpreferring (NP) rats. In addition, micro-positron emission tomography imaging was used at the completion of the study to assess in vivo the chronic (7 weeks) effects of ethanol exposure on DRD2 levels between the two groups. RESULTS P rats that were treated with the DRD2 vector (in the NAc) significantly attenuated their alcohol preference (37% decrease) and intake (48% decrease), and these measures returned to pretreatment levels by day 20. A similar pattern of behavior (attenuation of ethanol drinking) was observed in NP rats. Analysis of the [C]raclopride micro-positron emission tomography data after chronic (7 weeks) exposure to ethanol revealed clear DRD2 binding differences between the P and NP rats. P rats showed 16% lower [C]raclopride specific binding in striatum than the NP rats. CONCLUSIONS These findings further support our hypothesis that high levels of DRD2 are causally associated with a reduction in alcohol consumption and may serve as a protective factor against alcoholism. That this effect was seen in P rats, which are predisposed to alcohol intake, suggests that they are protective even in those who are genetically predisposed to high alcohol intake. It is noteworthy that increasing DRD2 significantly decreased alcohol intake but did not abolish it, suggesting that high DRD2 levels may specifically interfere with the administration of large quantities of alcohol. The significantly higher DRD2 concentration in NP than P rats after 7 weeks of ethanol therefore could account for low alcohol intake.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Department of Medicine, Brookhaven National Laboratory, Upton, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sobrian SK, Jones BL, James H, Kamara FN, Holson RR. Prenatal ethanol preferentially enhances reactivity of the dopamine D1 but not D2 or D3 receptors in offspring. Neurotoxicol Teratol 2005; 27:73-93. [PMID: 15681123 DOI: 10.1016/j.ntt.2004.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/03/2004] [Accepted: 09/07/2004] [Indexed: 11/26/2022]
Abstract
Reports of prenatal ethanol (ETOH) effects on the dopamine system are inconsistent. In an attempt to clarify this issue, dams were given 35% ethanol-derived calories as the sole nutrient source in a liquid diet from the 10th through the 20th day of gestation (ETOH). Controls were pair-fed (PF) an isocaloric liquid diet or given ad libitum access to laboratory chow (LC). Prenatal exposure to both liquid diets reduced body weight of offspring relative to LC controls, more so for ETOH than for PF exposure. Prenatal ETOH also decreased litter size and viability, relative to both LC and PF control groups. On postnatal days 21-23, male and female offspring were given an injection of saline vehicle or one of eight specific dopamine receptor agonists or antagonists. Immediately after injection subjects were placed in individual observation cages, and over the following 30 min, eight behaviors (square entries, grooming, rearing, circling, sniffing, yawning, head and oral movements) were observed and quantified. No prenatal treatment effects on drug-induced behaviors were observed for dopamine D2 (Apomorphine, DPAT or Quinpirole) or D3 (PD 152255, Nafadotride, Apo or Quin effects on yawning) receptor agonists or antagonists, or for the vehicle control. In contrast, prenatal treatment effects were seen with drugs affecting the dopamine D1 receptor. Both D1 agonists (SKF 38393) and antagonists (SCH 23390 and high doses of spiperone) altered behaviors, especially oral and sniffing behaviors, in a manner which suggested enhanced dopamine D1 drug sensitivity in both ETOH and PF offspring relative to LC controls. These results suggest that at this age, both sexes experience a prenatal undernutrition-linked increase in the behavioral response to dopamine D1 agonists and antagonists, which can be intensified by gestational exposure to alcohol.
Collapse
Affiliation(s)
- Sonya K Sobrian
- Department of Pharmacology, Howard University College of Medicine, 520 W Street, NW, Washington, DC 20059, USA.
| | | | | | | | | |
Collapse
|
22
|
Central and peripheral neurochemical alterations and immune effects of prenatal ethanol exposure in rats. Int J Dev Neurosci 2005. [DOI: 10.1016/0736-5748(96)00001-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2005; 103:121-46. [PMID: 15369680 DOI: 10.1016/j.pharmthera.2004.06.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiological processes by which ethanol seeking and consumption are established and maintained are thought to involve areas of the brain that mediate motivated behavior, such as the mesolimbic dopamine system. The mesolimbic dopamine system is comprised of cells that originate in the ventral tegmental area (VTA) and project to several forebrain regions, including a prominent terminal area, the nucleus accumbens (NAcc). The NAcc has been subdivided into core and shell subregions. Both areas receive converging excitatory input from the cortex and amygdala and dopamine input from the VTA, with the accumbal medium spiny neuron situated to integrate the signals. Although forced ethanol administration enhances dopamine activity in the NAcc, conclusions regarding the role of mesolimbic dopamine in ethanol reinforcement cannot be made from these experiments. Behavioral experiments consistently show that pharmacological manipulations of the dopamine transmission in the NAcc alter responding for ethanol, although ethanol reinforcement is maintained after lesions of the accumbal dopamine system. Additionally, extracellular dopamine increases in the NAcc during operant self-administration of ethanol, which is consistent with a role of dopamine in ethanol reinforcement. Behavioral studies that distinguish appetitive responding from ethanol consumption show that dopamine is important in ethanol-seeking behavior, whereas neurochemical studies suggest that accumbal dopamine is also important during ethanol consumption before pharmacological effects occur. Cellular studies suggest that ethanol alters synaptic plasticity in the mesolimbic system, possibly through dopaminergic mechanisms, and this may underlie the development of ethanol reinforcement. Thus, anatomical, pharmacological, neurochemical, cellular, and behavioral studies are more clearly defining the role of mesolimbic dopamine in ethanol reinforcement.
Collapse
Affiliation(s)
- Rueben A Gonzales
- Department of Pharmacology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA.
| | | | | |
Collapse
|
24
|
Middaugh LD, Szumlinski KK, Van Patten Y, Marlowe ALB, Kalivas PW. Chronic Ethanol Consumption by C57BL/6 Mice Promotes Tolerance to Its Interoceptive Cues and Increases Extracellular Dopamine, an Effect Blocked by Naltrexone. Alcohol Clin Exp Res 2003; 27:1892-900. [PMID: 14691376 DOI: 10.1097/01.alc.0000099264.36220.48] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND C57BL/6 (B6) mice voluntarily consume ethanol. Although preingestive factors might be accountable, the fact that B6 mice voluntarily consume sufficient ethanol to set the conditions for an ethanol-deprivation effect suggest that post-ingestive pharmacological induced changes also occur. In this study, we determined the amounts of ethanol voluntarily consumed by B6 mice and associated blood ethanol levels (BEL), the effects of this consumption on extracellular dopamine (DA) and how this was altered by naltrexone, as well as on its interoceptive discriminative cues. METHODS In experiment 1, the amounts of 12% ethanol consumed at 2, 4, and 6 hr into the active phase of the circadian cycle and associated BEL were determined. In experiment 2, dialysate samples were collected for 1 hr to establish basal DA levels. Mice were then injected with saline or naltrexone (6 mg/kg) and given access to water and 12% ethanol or to water only, and samples were collected at 20-min intervals for the next 2 hr. In experiment 3, mice were trained to discriminate ethanol's interoceptive cues via operant techniques, and half were given 3 weeks access to ethanol and water, the other half water only. Ethanol-consuming and water control mice were again tested for their ability to discriminate the drug's interoceptive cues. RESULTS Mice ingested nearly 6 g/kg of ethanol and attained BEL near 100 mg/100 mL by 6 hr into the active phase. Ethanol intake at 2-hr into the dark phase was approximately 2.5 g/kg, and increased DA to approximately 100% above basal levels. Naltrexone reduced ethanol consumption and blocked the DA increase. Ethanol consumption for 3 weeks attenuated its discriminative cues. CONCLUSIONS B6 mice voluntarily consume sufficient ethanol (1) to produce intoxicating BEL; (2) to increase DA levels in nucleus accumbens, an effect blocked by naltrexone; and (3) to attenuate its discriminative cues.
Collapse
Affiliation(s)
- Lawrence D Middaugh
- Center for Drug and Alcohol Programs, Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | | | |
Collapse
|
25
|
Lee S, Schmidt D, Tilders F, Rivier C. Increased activity of the hypothalamic-pituitary-adrenal axis of rats exposed to alcohol in utero: role of altered pituitary and hypothalamic function. Mol Cell Neurosci 2000; 16:515-28. [PMID: 11085885 DOI: 10.1006/mcne.2000.0890] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prenatal exposure to ethanol (E) enhances the offspring's ACTH and corticosterone responses to stressors. Here, we determined the role of increased pituitary responsiveness and/or PVN neuronal activity in this phenomenon. Pregnant rats were exposed to E vapors during days 7-18 of gestation, and we compared the responses of their 55- to 60-day-old offspring (E rats) to those of control (C) dams. PVN mRNA levels of the immediate early genes (IEGs) c-fos and NGFI-B, which were low under basal conditions in all groups, showed a peak response 15 min after shocks and 45 min after LPS treatment. These responses were significantly enhanced in E, compared to C offspring of both genders. CRF, but not VP hnRNA levels were also significantly higher in the PVN of shocked E offspring. Resting median eminence content of CRF and VP, and pituitary responsiveness to CRF, were unchanged, while responsiveness to VP was marginally increased in females. These results indicate that prenatal alcohol selectively augments the neuronal activity of hypothalamic CRF perikarya.
Collapse
Affiliation(s)
- S Lee
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
26
|
Szot P, White SS, Veith RC, Rasmussen DD. Reduced Gene Expression for Dopamine Biosynthesis and Transport in Midbrain Neurons of Adult Male Rats Exposed Prenatally to Ethanol. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04056.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Druse MJ, Hao HL, Eriksen JL. In Utero Ethanol Exposure Increases Proenkephalin, a Precursor of a Neuropeptide That Is Inhibitory to Neuronal Growth. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04676.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Nielsen DM, Crosley KJ, Keller RW, Glick SD, Carlson JN. Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially affect voluntary ethanol consumption. Brain Res 1999; 823:59-66. [PMID: 10095012 DOI: 10.1016/s0006-8993(99)01099-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic projections to the medial prefrontal cortex (mPFC) were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) to examine how dopamine (DA) asymmetry in the mPFC influences voluntary ethanol consumption. Differences in nucleus accumbens (NAS) DA neurotransmission have been related to individual differences in locomotor activity and in the rewarding efficacy of ethanol. Therefore, differences in locomotor activity were used to further characterize the effects of unilateral mPFC 6-OHDA lesions on ethanol consumption. Male Long Evans rats were assessed for high versus low levels of spontaneous locomotor activity. DA terminals in the left or right mPFC were unilaterally lesioned with 6-OHDA, resulting in an average DA depletion of 54% and 50%, respectively. After a minimum seven-day recovery period, preference for a 10% ethanol solution vs. water was determined in a 24-h 2-bottle home-cage free-choice paradigm. Left mPFC 6-OHDA lesions increased and right lesions decreased ethanol consumption. These differential effects of left and right lesions were primarily attributable to rats exhibiting low locomotor activity prior to surgery. The present data suggest that right greater than left cortical DA asymmetry in combination with low endogenous NAS DA (predicted by low locomotor activity levels) may increase the vulnerability to abuse ethanol.
Collapse
Affiliation(s)
- D M Nielsen
- Department of Pharmacology and Neuroscience, A136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
29
|
Hannigan JH, Hackett JA, Tilak J, Subramanian MG. Sulpiride-induced increases in serum prolactin levels in female rats exposed prenatally to alcohol. Alcohol 1997; 14:585-92. [PMID: 9401675 DOI: 10.1016/s0741-8329(97)00053-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the impact of prenatal alcohol exposure on serum prolactin levels and on the ability of the D2 dopamine antagonist sulpiride to stimulate prolactin release in Long-Evans rats. Pregnant rats were intubated with alcohol (0, 3, or 5 g/kg/day) from gestational day 8 (GD8) to GD20. Adult female offspring were screened for estrous cycle stage. At diestrus, the rats were challenged with a single dose of sulpiride (0, 10, or 40 micrograms/kg) and trunk blood was collected 20 min later. After prenatal exposure to either dose of alcohol, mean basal serum levels of prolactin were about 65% less than the 0 g/kg group, and the 35-40% mean differences from an untreated control group were not significant. Sulpiride produced dramatic dose-dependent increases in serum prolactin levels in all prenatal treatment groups. Across all doses of sulpiride, the group given the higher dose of prenatal alcohol (5 g/kg/day) had significantly lower serum prolactin levels than all other groups. There was no significant interaction between prenatal treatment and sulpiride dose. Neither prenatal alcohol exposure nor sulpiride injections had significant effects on serum corticosterone levels in this study. Although the current results are unclear regarding a baseline decrease in prolactin levels after prenatal alcohol exposure, the overall results suggest that prenatal alcohol exposure decreases prolactin levels but there is no evidence that it does so by altering dopaminergic tone in hypothalamus of female rats.
Collapse
Affiliation(s)
- J H Hannigan
- Department of Obstetrics & Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
30
|
Gillespie RA, Eriksen J, Hao HL, Druse MJ. Effects of maternal ethanol consumption and buspirone treatment on dopamine and norepinephrine reuptake sites and D1 receptors in offspring. Alcohol Clin Exp Res 1997; 21:452-9. [PMID: 9161605 DOI: 10.1111/j.1530-0277.1997.tb03790.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previously, it was shown that in utero ethanol exposure results in decreased serotonin (5-HT) and altered concentrations of 5-HT reuptake sites and 5-HT1A receptors in fetal and/or postnatal rats. Because fetal 5-HT is an essential trophic factor, this laboratory previously investigated the hypotheses that the early ethanol-associated 5-HT deficit contributed to subsequent development abnormalities in the serotonergic system and that the effects of the fetal 5-HT deficit could be prevented by maternal treatment with buspirone, a 5-HT1A receptor agonist. The present report determined the effects of maternal treatment with buspirone on two other neurotransmitter systems in the developing offspring of ethanol-fed dams: dopamine (DA) and norepinephrine reuptake sites and D1 receptors in postnatal day 19 offspring of control and ethanol-fed dams, that received daily injections of saline or 4.5 mg/kg buspirone. These investigations found that in utero ethanol exposure significantly decreased norepinephrine reuptake sites in the dorsomedial hypothalamic nucleus and anteroventral thalamic nucleus. There was also an ethanol effect in the dorsal raphe. D1 receptors were moderately increased (5-10% increase) in the striatum, and DA reuptake sites were unchanged in PN19 ethanol-exposed offspring. No other significant ethanol-related effects were noted. Maternal buspirone treatment did not adversely affect the concentration of DA reuptake sites or D1 receptors in control rats. Thus, whereas buspirone exerts protective effects on the developing 5-HT system of ethanol-exposed rats, it does not appear to damage the development of the DA system. Maternal buspirone produced only one significant abnormality in control offspring; it resulted in significant reduction of norepinephrine reuptake sites in the DR.
Collapse
Affiliation(s)
- R A Gillespie
- Department of Molecular and Cellular Biochemistry, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The substantial advances in understanding fetal alcohol syndrome over the past 20 years were made in large part because of research with animals. This review illustrates recent progress in animal research by focusing primarily on the central nervous system effects of prenatal alcohol exposure. Current findings suggest further progress in understanding consequences, risk factors, mechanisms, prevention and treatment will depend on continued research with animals.
Collapse
Affiliation(s)
- J H Hannigan
- Wayne State University School of Medicine, C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Berman RF, Hannigan JH, Sperry MA, Zajac CS. Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density. Alcohol 1996; 13:209-16. [PMID: 8814658 DOI: 10.1016/0741-8329(95)02049-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of environmental enrichment on synaptic spine density in hippocampal area CAI were examined in rats exposed prenatally to alcohol. Pregnant dams were given ethanol via intragastric intubation (6 g/kg/day) from gestational days 8 through 19, or given isocaloric sucrose. An untreated control group was also used. After weaning, offspring from the three groups were then reared for 10 weeks in either isolated (caged alone, not handled) or enriched (group housed with "toys," handled) conditions. Animals were then sacrificed, the brains Golgi impregnated, and CAI pyramidal cell apical and basilar spine densities quantified. Among isolated animals there were no significant differences between control and alcohol-exposed groups. In general, environmental enrichment increased apical or basilar spine densities in untreated and sucrose controls. However, in prenatal alcohol-exposed animals, environmental enrichment did not increase spine densities. Because the environmental enrichment acted postnatally, these findings suggest that the effects of prenatal alcohol exposure included decreased neural plasticity enduring into early adulthood. Such a reduction in neuroanatomical plasticity in hippocampus may be associated with cognitive impairments found following prenatal alcohol exposure.
Collapse
Affiliation(s)
- R F Berman
- Fetal Alcohol Research Center, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
33
|
Boggan WO, Xu W, Shepherd CL, Middaugh LD. Effects of prenatal ethanol exposure on dopamine systems in C57BL/6J mice. Neurotoxicol Teratol 1996; 18:41-8. [PMID: 8700042 DOI: 10.1016/0892-0362(95)02027-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Young rats prenatally exposed to ethanol exhibit heightened responses to dopaminergie (DA) drugs, altered brain concentrations of dopamine, and its metabolite dihydroxyphenylacetic acid (DOPAC), and transient reductions in DA receptor binding. Adult mice exposed to ethanol prenatally also exhibit increased responses to DA drugs; however, brain concentrations of DA and DOPAC are unaltered. The effects of prenatal ethanol exposure on DA or DOPAC concentrations in young mice or on DA receptor binding in mice of any age are unknown. Therefore, to determine if the different effects of prenatal ethanol exposure on rats and mice are due to age at time of testing or species, we determined its effects on DA concentrations and turnover in young mice under conditions previously reported for adult offspring and on DA D1 and D2 receptor binding in both young and adult offspring. Consistent with our previous report for adult offspring, prenatal ethanol exposure did not alter DA concentrations or turnover. The treatment did, however, diminish periadolescent growth as previously reported and produced a transient increase in DA D1, but not DA D2 receptor binding. DA receptor binding was not altered in adult offspring. Although unrelated to prenatal ethanol exposure, the sexes differed on all of the DA measures. Combined with previous reports, the present study suggests that species rather than age is more likely to account for the different effects of prenatal ethanol exposure on DA systems, and that sex differences in DA systems should be further examined.
Collapse
Affiliation(s)
- W O Boggan
- Medical University of South Carolina, Department of Psychiatry and Behavioral Sciences, Charleston 29425-0742, USA
| | | | | | | |
Collapse
|
34
|
Becker HC, Weathersby RT, Hale RL. Prenatal ethanol exposure alters sensitivity to the effects of apomorphine given alone and in combination with ethanol on locomotor activity in adult male mouse offspring. Neurotoxicol Teratol 1995; 17:57-64. [PMID: 7708020 DOI: 10.1016/0892-0362(94)00055-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have indicated that prenatal ethanol (EtOH) exposure alters developing catecholamine (CA) systems and acute sensitivity to the locomotor stimulant effects of EtOH. The purpose of this study was to examine whether prenatal EtOH exposure influences the effects of the direct dopamine (DA) agonist apomorphine given alone as well as in combination with a low-dose stimulant challenge of EtOH. Standard lab chow or liquid diets containing either 25% EtOH-derived calories (EDC), or 0% EDC were given to pregnant C3H/He mice on gestation days 6-18. At 90 days of age, male offspring from each prenatal treatment group were monitored for 10 min in an open field following IP injections of apomorphine (0, 0.15, 0.3, 0.6, or 1.2 mg/kg) and either EtOH (1.5 g/kg) or saline. EtOH alone increased activity by 120-143% in all three groups of offspring. In control offspring, apomorphine dose-dependently decreased activity up to 74%-78% and blocked the stimulant effect of EtOH at all doses tested. However, in prenatal EtOH-exposed offspring, higher doses of apomorphine were significantly less effective in reducing both baseline and EtOH-stimulated activity compared to control mice. This effect is most likely not due to differences in pharmacokinetics, because blood EtOH concentrations were similar across apomorphine doses and prenatal treatment conditions. As such, these results support the hypothesis that prenatal exposure to EtOH alters acute sensitivity to the locomotor stimulant effects of EtOH, particularly under conditions in which CA systems mediating those effects are additionally challenged. In addition, the results suggest that prenatal EtOH exposure results in a long-lasting perturbation of central DA receptor sensitivity.
Collapse
Affiliation(s)
- H C Becker
- VA Medical Center, Research Service, Charleston, SC 29401
| | | | | |
Collapse
|
35
|
West JR, Chen WJ, Pantazis NJ. Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Metab Brain Dis 1994; 9:291-322. [PMID: 7898398 DOI: 10.1007/bf02098878] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fetal alcohol exposure has multiple deleterious effects on brain development, and represents a leading known cause of mental retardation. This review of the effects of alcohol exposure on the developing brain evaluates results from human, animal and in vitro studies, but focuses on key research issues, including possible mechanisms of damage. Factors that affect the risk and severity of fetal alcohol damage also are considered.
Collapse
Affiliation(s)
- J R West
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University Health Science Center, College Station 77843-1114
| | | | | |
Collapse
|