1
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
2
|
Nissen CG, Mosley DD, Kharbanda KK, Katafiasz DM, Bailey KL, Wyatt TA. Malondialdehyde Acetaldehyde-Adduction Changes Surfactant Protein D Structure and Function. Front Immunol 2022; 13:866795. [PMID: 35669781 PMCID: PMC9164268 DOI: 10.3389/fimmu.2022.866795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.
Collapse
Affiliation(s)
- Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
3
|
Ochoa CA, Nissen CG, Mosley DD, Bauer CD, Jordan DL, Bailey KL, Wyatt TA. Aldehyde Trapping by ADX-102 Is Protective against Cigarette Smoke and Alcohol Mediated Lung Cell Injury. Biomolecules 2022; 12:393. [PMID: 35327585 PMCID: PMC8946168 DOI: 10.3390/biom12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Most individuals diagnosed with alcohol use disorders smoke cigarettes. Large concentrations of malondialdehyde and acetaldehyde are found in lungs co-exposed to cigarette smoke and alcohol. Aldehydes directly injure lungs and form aldehyde protein adducts, impacting epithelial functions. Recently, 2-(3-Amino-6-chloroquinolin-2-yl)propan-2-ol (ADX-102) was developed as an aldehyde-trapping drug. We hypothesized that aldehyde-trapping compounds are protective against lung injury derived from cigarette smoke and alcohol co-exposure. To test this hypothesis, we pretreated mouse ciliated tracheal epithelial cells with 0-100 µM of ADX-102 followed by co-exposure to 5% cigarette smoke extract and 50 mM of ethanol. Pretreatment with ADX-102 dose-dependently protected against smoke and alcohol induced cilia-slowing, decreases in bronchial epithelial cell wound repair, decreases in epithelial monolayer resistance, and the formation of MAA adducts. ADX-102 concentrations up to 100 µM showed no cellular toxicity. As protein kinase C (PKC) activation is a known mechanism for slowing cilia and wound repair, we examined the effects of ADX-102 on smoke and alcohol induced PKC epsilon activity. ADX-102 prevented early (3 h) activation and late (24 h) autodownregulation of PKC epsilon in response to smoke and alcohol. These data suggest that reactive aldehydes generated from cigarette smoke and alcohol metabolism may be potential targets for therapeutic intervention to reduce lung injury.
Collapse
Affiliation(s)
- Carmen A. Ochoa
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Christopher D. Bauer
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Destiny L. Jordan
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
4
|
Mackus M, van de Loo AJAE, Garssen J, Kraneveld AD, Scholey A, Verster JC. The Role of Alcohol Metabolism in the Pathology of Alcohol Hangover. J Clin Med 2020; 9:E3421. [PMID: 33113870 PMCID: PMC7692803 DOI: 10.3390/jcm9113421] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
The limited number of available studies that examined the pathology of alcohol hangover focused on biomarkers of alcohol metabolism, oxidative stress and the inflammatory response to alcohol as potentially important determinants of hangover severity. The available literature on alcohol metabolism and oxidative stress is reviewed in this article. The current body of evidence suggests a direct relationship between blood ethanol concentration and hangover severity, whereas this association is not significant for acetaldehyde. The rate of alcohol metabolism seems to be an important determinant of hangover severity. That is, fast elimination of ethanol is associated with experiencing less severe hangovers. An explanation for this observation may be the fact that ethanol-in contrast to acetaldehyde-is capable of crossing the blood-brain barrier. With slower ethanol metabolism, more ethanol is able to reach the brain and elicit hangover symptoms. Hangover severity was also significantly associated with biomarkers of oxidative stress. More oxidative stress in the first hours after alcohol consumption was associated with less severe next-day hangovers (i.e., a significant negative correlation was found between hangover severity and malondialdehyde). On the contrary, more oxidative stress at a later stage after alcohol consumption was associated with having more severe next-day hangovers (i.e., a significant positive correlation was found between hangover severity and 8-isoprostane). In conclusion, assessment of biomarkers of alcohol metabolism suggests that fast elimination of ethanol is associated with experiencing less severe hangovers. More research is needed to further examine the complex interrelationship between alcohol metabolism, the role of acetaldehyde and oxidative stress and antioxidants, and the pathology of the alcohol hangover.
Collapse
Affiliation(s)
- Marlou Mackus
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
| | - Aurora JAE van de Loo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Global Centre of Excellence Immunology, Nutricia Danone Research, 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
| |
Collapse
|
5
|
van de Loo AJ, Mackus M, Kwon O, Krishnakumar IM, Garssen J, Kraneveld AD, Scholey A, Verster JC. The Inflammatory Response to Alcohol Consumption and Its Role in the Pathology of Alcohol Hangover. J Clin Med 2020; 9:E2081. [PMID: 32630717 PMCID: PMC7408936 DOI: 10.3390/jcm9072081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
An increasing number of studies are focusing on the inflammatory response to alcohol as a potentially important determinant of hangover severity. In this article, data from two studies were re-evaluated to investigate the relationship between hangover severity and relevant biomarkers of alcohol metabolism, oxidative stress and the inflammatory response to alcohol. Hangover severity was significantly and positively correlated with blood concentrations of biomarkers of the inflammatory response to alcohol, in particular, Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP). At 4 h after alcohol consumption, blood ethanol concentration (but not acetaldehyde) was significantly and positively associated with elevated levels of IL-6, suggesting a direct inflammatory effect of ethanol. In addition, biomarkers of oxidative stress, i.e., malondialdehyde and 8-isoprostrane, were significantly correlated with hangover severity, suggesting that oxidative stress also contributes to the inflammatory response. The timing of the assessments suggests initial slow elimination of ethanol in the first hours after alcohol consumption. As a consequence, more ethanol is present in the second half of the night and the next morning, which will elicit more oxidative stress and a more profound inflammatory response. Together, these processes result in more severe hangovers.
Collapse
Affiliation(s)
- Aurora J.A.E. van de Loo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (A.J.A.E.v.d.L.); (M.M.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
| | - Marlou Mackus
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (A.J.A.E.v.d.L.); (M.M.); (J.G.); (A.D.K.)
| | - Oran Kwon
- BioFood Laboratory/BioFood Network, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea;
| | | | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (A.J.A.E.v.d.L.); (M.M.); (J.G.); (A.D.K.)
- Global Centre of Excellence Immunology, Nutricia Danone Research, 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (A.J.A.E.v.d.L.); (M.M.); (J.G.); (A.D.K.)
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, VIC 3122 Melbourne, Australia;
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (A.J.A.E.v.d.L.); (M.M.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
- BioFood Laboratory/BioFood Network, Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 120-750, Korea;
| |
Collapse
|
6
|
Vandemoortele A, Babat P, Yakubu M, De Meulenaer B. Reactivity of Free Malondialdehyde during In Vitro Simulated Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2198-2204. [PMID: 28244323 DOI: 10.1021/acs.jafc.7b00053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An aqueous buffer, a saturated glycerol triheptanoate oil, and a Tween 20 stabilized fully hydrogenated coconut oil-in-water emulsion, all spiked with malondialdehyde, were subjected to in vitro digestion. A dynamic equilibrium between malondialdehyde, its aldol self-condensation products, and its hydrolytic cleavage products was observed. This equilibrium depended upon the kind of sample and the temperature at which these samples were preincubated during 24 h. The presence of oil during gastric digestion protected the aldol self-condensation and cleavage products from conversion to malondialdehyde, which occurred in the aqueous acidic gastric chyme. In parallel, the presence of oil enhanced the reactivity of malondialdehyde throughout the gastrointestinal digestion process. Malondialdehyde recoveries after digestion varied between 42 and 90%, depending upon the model system studied, with the aldol self-condensation as the main reaction pathway. In conclusion, this study revealed that malondialdehyde is a very reactive molecule whose reactivity does not stop at the point of ingestion.
Collapse
Affiliation(s)
- Angelique Vandemoortele
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Pinar Babat
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Mariam Yakubu
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Unit, Department of Food Safety and Food Quality (Partner in Food2Know), Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
7
|
Ramaiah S, Rivera C, Arteel G. Early-Phase Alcoholic Liver Disease: An Update on Animal Models, Pathology, and Pathogenesis. Int J Toxicol 2016; 23:217-31. [PMID: 15371166 DOI: 10.1080/10915810490502069] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be one of the most common etiology of liver disease and is a major cause of morbidity and mortality worldwide. The pathologic stages of ALD comprises of steatosis, steatohepatitis, and fibrosis/cirrhosis. Steatosis and steatohepatitis represents the early phase of ALD and are precursor stages for fibrosis/cirrhosis. Numerous research efforts have been directed at recognizing cofactors interacting with alcohol in the pathogenesis of steatosis and steatohepatitis. This review will elucidate the constellation of complex pathogenesis, available animal models, and microscopic pathologic findings mostly in the early-phase of ALD. The role of endotoxin, reactive oxygen species, alcohol metabolism, and cytokines are discussed. Understanding the mechanisms of early-phase ALD should provide insight into the development of therapeutic strategies and thereby decrease the morbidity and mortality associated with ALD.
Collapse
Affiliation(s)
- Shashi Ramaiah
- Department of Pathobiology, Texas Veterinary Medical Center, College of Veterinary Medicine, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
8
|
Sapkota M, Kharbanda KK, Wyatt TA. Malondialdehyde-Acetaldehyde-Adducted Surfactant Protein Alters Macrophage Functions Through Scavenger Receptor A. Alcohol Clin Exp Res 2016; 40:2563-2572. [PMID: 27783409 PMCID: PMC5133169 DOI: 10.1111/acer.13248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/20/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reactive aldehydes such as acetaldehyde and malondialdehyde generated as a result of alcohol metabolism and cigarette smoke exposure lead to the formation of malondialdehyde-acetaldehyde-adducted proteins (MAA adducts). These aldehydes can adduct to different proteins such as bovine serum albumin and surfactant protein A or surfactant protein D (SPD). Macrophages play an important role in innate immunity, but the effect of MAA adducts on macrophage function has not yet been examined. Because macrophage scavenger receptor A (SRA; CD204) mediates the uptake of modified proteins, we hypothesized that the effects of MAA-modified proteins on macrophage function are primarily mediated through SRA. METHODS We tested this hypothesis by exposing SPD-MAA to macrophages and measuring functions. SPD-MAA treatment significantly stimulated pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) release in the macrophage cell line, RAW 264.7. RESULTS A significant reduction in phagocytosis of zymosan particles was also observed. SPD-MAA stimulated a significant dose-dependent increase in TNF-α and interleukin (IL)-6 release from peritoneal macrophages (PMs) of wild-type (WT) mice. But significantly less TNF-α and IL-6 were released from PMs of SRA-/- mice. We observed a significant reduction in phagocytosis of zymosan particles in PMs from WT mice treated with SPD-MAA. No further SPD-MAA-induced reduction was seen in PMs from SRA-/- mice. SPD-MAA treatment significantly increased SRA mRNA expression, but had no effect on surface receptor protein expression. Protein kinase C alpha inhibitor and NF-κB inhibitor significantly reduced pro-inflammatory cytokine release in response to SPD-MAA. CONCLUSIONS In conclusion, our data demonstrate that SRA is important for MAA-adducted protein-mediated effect on macrophage functions.
Collapse
Affiliation(s)
- Muna Sapkota
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
9
|
Antoniak DT, Duryee MJ, Mikuls TR, Thiele GM, Anderson DR. Aldehyde-modified proteins as mediators of early inflammation in atherosclerotic disease. Free Radic Biol Med 2015; 89:409-18. [PMID: 26432980 DOI: 10.1016/j.freeradbiomed.2015.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022]
Abstract
Inflammation is widely accepted to play a major role in atherosclerosis and other cardiovascular diseases. However, the exact mechanism(s) by which inflammation exerts its pathogenic effect remains poorly understood. A number of oxidatively modified proteins have been associated with cardiovascular disease. Recently, attention has been given to the oxidative compound of malondialdehyde and acetaldehyde, two reactive aldehydes known to covalently bind and adduct macromolecules. These products have been shown to form stable malondialdehyde-acetaldehyde (MAA) adducts that are reactive and induce immune responses. These adducts have been found in inflamed and diseased cardiovascular tissue of patients. Antibodies to these adducted proteins are measurable in the serum of diseased patients. The isotypes involved in the immune response to MAA (i.e., IgM, IgG, and IgA) are predictive of atherosclerotic disease progression and cardiovascular events such as an acute myocardial infarction or coronary artery bypass grafting. Therefore, it is the purpose of this article to review the past and current knowledge of aldehyde-modified proteins and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Derrick T Antoniak
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA; Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel R Anderson
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules 2015; 5:2477-503. [PMID: 26437442 PMCID: PMC4693244 DOI: 10.3390/biom5042477] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis.
Collapse
|
11
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Carson JS, Xiong W, Dale M, Yu F, Duryee MJ, Anderson DR, Thiele GM, Baxter BT. Antibodies against malondialdehyde-acetaldehyde adducts can help identify patients with abdominal aortic aneurysm. J Vasc Surg 2015; 63:477-84. [PMID: 25724613 DOI: 10.1016/j.jvs.2014.08.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/30/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a pathologic dilation of the aorta. Inflammation of the aortic wall has been shown to be involved in AAA formation. Malondialdehyde-acetaldehyde (MAA) adducts are MAA/protein hybrids with immunogenic, proinflammatory, and profibrotic properties. Levels of MAA adducts are elevated in patients with coronary artery disease; however, the role of MAA adducts in AAA is unclear. We hypothesize that levels of circulating antibodies against MAA adducts are increased in patients with AAA. METHODS Plasma samples were collected from mice and patients with AAA and control patients with atherosclerosis but not AAA. AAA was induced in mice by a standard CaCl2 protocol, with matching sham mice. Plasma levels of anti-MAA antibodies were quantified by enzyme-linked immunosorbent assay. RESULTS Patients with AAA exhibited higher levels of immunoglobulin G and immunoglobulin A anti-MAA antibody subtypes (P = .049 and .026, respectively) compared with control patients. Conversely, immunoglobulin M anti-MAA antibodies in AAA patients were lower compared with control patients (P = .018). In CaCl2-treated mice, immunoglobulin G anti-MAA antibodies were elevated after AAA formation (P = .006). CONCLUSIONS The pattern of anti-MAA antibodies is able to distinguish between patients with AAA and patients with atherosclerosis but no AAA. These results demonstrate that MAA adducts are associated with AAA and suggest that they may play a role in either initiating or propagating chronic inflammation in AAA.
Collapse
Affiliation(s)
- Jeffrey S Carson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Wanfen Xiong
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Matthew Dale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Neb
| | - Michael J Duryee
- Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Neb; Experimental Immunology Laboratory, Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Daniel R Anderson
- Experimental Immunology, Research in Cardiovascular Disease Laboratory, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - Geoffrey M Thiele
- Experimental Immunology Laboratory, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Neb; Experimental Immunology Laboratory, Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | - B Timothy Baxter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb.
| |
Collapse
|
13
|
Gonen A, Hansen LF, Turner WW, Montano EN, Que X, Rafia A, Chou MY, Wiesner P, Tsiantoulas D, Corr M, VanNieuwenhze MS, Tsimikas S, Binder CJ, Witztum JL, Hartvigsen K. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J Lipid Res 2014; 55:2137-55. [PMID: 25143462 DOI: 10.1194/jlr.m053256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought to determine the responsible immunodominant and atheroprotective adducts. We now demonstrate that fluorescent adducts of MDA involving the condensation of two or more MDA molecules with lysine to form malondialdehyde-acetaldehyde (MAA)-type adducts generate immunodominant epitopes that lead to atheroprotective responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do not target relevant antigens. These data demonstrate the feasibility of development of a small-molecule immunogen that could stimulate MAA-specific immune responses, which could be used to develop a vaccine approach to retard or prevent atherogenesis.
Collapse
Affiliation(s)
- Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Lotte F Hansen
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Erica N Montano
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Xuchu Que
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Apaїs Rafia
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Meng-Yun Chou
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Philipp Wiesner
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Christoph J Binder
- Department of Medicine, University of California, San Diego, La Jolla, CA Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Karsten Hartvigsen
- Department of Medicine, University of California, San Diego, La Jolla, CA Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Acute ethanol causes hepatic mitochondrial depolarization in mice: role of ethanol metabolism. PLoS One 2014; 9:e91308. [PMID: 24618581 PMCID: PMC3950152 DOI: 10.1371/journal.pone.0091308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 02/12/2014] [Indexed: 12/20/2022] Open
Abstract
Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to steatosis and increased mitochondrial respiration. Onset of this mitochondrial depolarization is linked, at least in part, to metabolism of ethanol to acetaldehyde.
Collapse
|
15
|
A comparative DFT study of the Schiff base formation from acetaldehyde and butylamine, glycine and phosphatidylethanolamine. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1263-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Argüelles S, Muñoz MF, Cano M, Machado A, Ayala A. In vitro and in vivo protection by melatonin against the decline of elongation factor-2 caused by lipid peroxidation: preservation of protein synthesis. J Pineal Res 2012; 53:1-10. [PMID: 22462727 DOI: 10.1111/j.1600-079x.2011.00961.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As organisms age, a considerable decrease in protein synthesis takes place in all tissues. Among the possible causes of the decline of translation in old animals are the modifications of elongation factor-2 (eEF-2). eEF-2 occupies an essential role in protein synthesis where it catalyzes the ribosomal translocation reaction. eEF-2 is particularly sensitive to increased oxidative stress. However, all oxidants do not affect eEF-2, only compounds that increase lipid peroxidation. As peroxides are unstable compounds, they decompose and generate a series of highly reactive compounds, including aldehydes malondialdehyde (MDA) and 4-hydroxynoenal (HNE). We have previously reported that hepatic eEF-2 forms adducts with low-molecular weight aldehydes, MDA and HNE. Therefore, the protection of eEF-2 must be specifically carried out by a compound with lipoperoxyl radical-scavenging features such as melatonin. In this article, we show the ability of melatonin to protect against the changes that occur in the eEF-2 under conditions of lipid peroxidation induced by cumene hydroperoxide (CH), a compound used experimentally to induce lipid breakdown. As experimental models, we used cultured cells and rats treated with this oxidant compound. eEF-2 levels, adduct formation of this protein with MDA and HNE, and lipid peroxides were determined. In the cultured cells, protein synthesis rate was also measured. Our results show that melatonin prevented the molecular changes in eEF-2 and the decline in protein synthesis rate secondary to lipid peroxidation. The results also show that serum levels of several hormones were affected by CH-induced oxidative stress, which was partially or totally prevented by melatonin.
Collapse
Affiliation(s)
- Sandro Argüelles
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España, Spain
| | | | | | | | | |
Collapse
|
17
|
McCaskill ML, Kharbanda KK, Tuma DJ, Reynolds JD, DeVasure JM, Sisson JH, Wyatt TA. Hybrid malondialdehyde and acetaldehyde protein adducts form in the lungs of mice exposed to alcohol and cigarette smoke. Alcohol Clin Exp Res 2011; 35:1106-13. [PMID: 21428986 DOI: 10.1111/j.1530-0277.2011.01443.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Most alcohol abusers smoke cigarettes and approximately half of all cigarette smokers consume alcohol. However, no animal models of cigarette and alcohol co-exposure exist to examine reactive aldehydes in the lungs. Cigarette smoking results in elevated lung acetaldehyde (AA) and malondialdehyde (MDA) levels. Likewise, alcohol metabolism produces AA via the action of alcohol dehydrogenase and MDA via lipid peroxidation. A high concentration of AA and MDA form stable hybrid protein adducts known as malondialdehyde-acetaldehyde (MAA) adducts. We hypothesized that chronic cigarette smoke and alcohol exposure in an in vivo mouse model would result in the in vivo formation of MAA adducts. METHODS We fed C57BL/6 mice ad libitum ethanol (20%) in drinking water and exposed them to whole-body cigarette smoke 2 h/d, 5 d/wk for 6 weeks. Bronchoalveolar lavage fluid and lung homogenates were assayed for AA, MDA, and MAA adduct concentrations. MAA-adducted proteins were identified by Western blot and ELISA. RESULTS Smoke and alcohol exposure alone elevated both AA and MDA, but only the combination of smoke+alcohol generated protein-adducting concentrations of AA and MDA. MAA-adducted protein (~500 ng/ml) was significantly elevated in the smoke+alcohol-exposed mice. Of the 5 MAA-adducted proteins identified by Western blot, 1 protein band immunoprecipitated with antibodies to surfactant protein D. Similar to in vitro PKC stimulation by purified MAA-adducted protein, protein kinase C (PKC) epsilon was activated only in tracheal epithelial extracts from smoke- and alcohol-exposed mice. CONCLUSIONS These data demonstrate that only the combination of cigarette smoke exposure and alcohol feeding in mice results in the generation of significant AA and MDA concentrations, the formation of MAA-adducted protein, and the activation of airway epithelial PKC epsilon in the lung.
Collapse
Affiliation(s)
- Michael L McCaskill
- VA Research Service, Department of Veterans Affairs Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Modification of mouse A2M B (620-792) and A2M N (168-230) by malondialdehyde and acetaldehyde attenuates the proteinase and TGF-β1 binding ability of A2MB. FEBS Lett 2011; 585:829-33. [DOI: 10.1016/j.febslet.2011.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 12/29/2022]
|
19
|
Osain Welcome M, Alekseevich Pereverzev V. P03-223 - Are adducts responsible for addictive behaviors? Eur Psychiatry 2010. [DOI: 10.1016/s0924-9338(10)71277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
20
|
Argüelles S, Machado A, Ayala A. Adduct formation of 4-hydroxynonenal and malondialdehyde with elongation factor-2 in vitro and in vivo. Free Radic Biol Med 2009; 47:324-30. [PMID: 19447174 DOI: 10.1016/j.freeradbiomed.2009.05.010] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/17/2009] [Accepted: 05/11/2009] [Indexed: 11/21/2022]
Abstract
Protein synthesis is universally affected by aging in all organisms. There is no clear consensus about the mechanism underlying the decline of translation with aging. Previous reports from our laboratory have shown that the elongation step is especially affected with aging as a consequence of alterations in elongation factor-2 (eEF-2), the monomeric protein that catalyzes the movement of the ribosome along the mRNA during protein synthesis. eEF-2 seems to be specifically affected by lipid peroxidant compounds, which concomitantly produce several reactive, toxic aldehydes, such as MDA and HNE. These aldehydes are able to form adducts with proteins that lead to their inactivation. In this paper we studied the formation of adducts between MDA or HNE and eEF-2. The study was performed both in vitro, using liver homogenates treated with cumene hydroperoxide, and in vivo using young control rats, treated with the same oxidant, and 12-and 24-month-old rats. In all cases we found a decrease in the levels of eEF-2, an increase in the amount of lipid peroxidation, and a concomitant formation of adducts between eEF-2 and MDA or HNE. The results suggest that one possible mechanism responsible for the decline of protein synthesis during aging could be the alteration in eEF-2 levels, secondary to lipid peroxidation and adduct formation with these aldehydes.
Collapse
Affiliation(s)
- Sandro Argüelles
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | |
Collapse
|
21
|
Antigen-presenting cells under the influence of alcohol. Trends Immunol 2008; 30:13-22. [PMID: 19059005 DOI: 10.1016/j.it.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/16/2022]
Abstract
The negative influence of alcohol (ethanol) and its metabolites on innate and adaptive immunity is well-recognized. Much attention has recently been focused on the impact of acute and chronic alcohol exposure on antigen-presenting cells (APC). In particular, insights have been gained into how the properties of human blood monocytes and rodent macrophages are influenced by alcohol in vitro and in vivo. Here, we review the impact of alcohol on various aspects of APC function and the underlying mechanisms, including its effects on intracellular signaling events. We also discuss new information regarding the influence of alcohol on various APC populations in the liver, a primary site of alcohol metabolism.
Collapse
|
22
|
Kanaly RA, Hanaoka T, Sugimura H, Toda H, Matsui S, Matsuda T. Development of the adductome approach to detect DNA damage in humans. Antioxid Redox Signal 2006; 8:993-1001. [PMID: 16771689 DOI: 10.1089/ars.2006.8.993] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of new strategies designed to detect DNA damage caused by oxidative stress and other means may advance our understanding of the roles of such types of damage in the etiology of cancers, in aging processes, and as biomarkers of exposure. A DNA adduct detection method that uses liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) to detect multiple DNA adducts in human lung tissue is reported herein. This adductome analysis strategy is designed to detect the neutral loss of 2 -deoxyribose from positively ionized 2 -deoxynucleoside adducts in multiple reaction ion monitoring mode (MRM) transmitting the [M + H](+) > [M + H - 116](+) transition over a total of 374 transitions in the mass range from m/z 228.8 to m/z 602.8. Data analysis is optimized and coupled with a comprehensive manual screening process designed to minimize the number of artifactual adducts appearing in the final analysis. In the final analysis, putative adducts were organized into an adductome map and unambiguous confirmation of selected oxidative adducts were made by stable isotope dilution and comparison to authentic standards. The future applications of this method are discussed.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Triantafillidis JK, Papalois AE, Parasi A, Anagnostakis E, Burnazos S, Gikas A, Merikas EG, Douzinas E, Karagianni M, Sotiriou H. Favorable response to subcutaneous administration of infliximab in rats with experimental colitis. World J Gastroenterol 2005; 11:6843-7. [PMID: 16425394 PMCID: PMC4725043 DOI: 10.3748/wjg.v11.i43.6843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of infliximab (Remicade) on experimental colitis produced by 2,4,6,trinitrobenzene sulfonic acid (TNBS) in rats.
METHODS: Thirty-six Wistar rats were allocated into four groups (three groups of six animals each and a fourth of 12 animals). Six more healthy animals served as normal controls (Group 5). Group 1: colitis was induced by intracolonic installation of 25 mg of TNBS dissolved in 0.25 mL of 50% ethanol and infliximab was subcutaneously administered at a dose of 5 mg/kg BW; Group 2: colitis was induced and infliximab was subcutaneously administered at a dose of 10 mg/kg BW; Group 3: colitis was induced and infliximab was subcutaneously administered at a dose of 15 mg/kg BW; Group 4: colitis was induced without treatment with infliximab. Infliximab was administered on d 2–6. On the 7th d, all animals were killed. The colon was fixed in 10% buffered formalin and examined by light microscopy for the presence and activity of colitis and the extent of tissue damage. Tumor necrosis factor-alpha (TNF-α) and malondialdehyde (MDA) were also measured.
RESULTS: Significant differences concerning the presence of reparable lesions and the extent of bowel mucosa without active inflammation in all groups of animals treated with infliximab compared with controls were found. Significant reduction of the tissue levels of TNF-α in all groups of treated animals as compared with the untreated ones was found (0.47±0.44, 1.09±0.86, 0.43±0.31 vs 18.73±10.53 respectively). Significant reduction in the tissue levels of MDA was noticed in group 1 as compared to group 4, as well as between groups 2 and 4.
CONCLUSION: Subcutaneous administration of infliximab reduces the inflammatory activity as well as tissue TNF-α and MDA levels in chemical colitis in rats. Infliximab at a dose of 5 mg/kg BW achieves better histological results and produces higher reduction of the levels of TNF-α than at a dose of 10 mg/kg BW. Infliximab at a dose of 5 mg/kg BW produces higher reduction of tissue MDA levels than at a dose of 15 mg/kg BW.
Collapse
Affiliation(s)
- John K Triantafillidis
- Department of Gastroenterology, Saint Panteleimon General State Hospital, Nicea, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Patel VB, Worrall S, Emery PW, Preedy VR. PROTEIN ADDUCT SPECIES IN MUSCLE AND LIVER OF RATS FOLLOWING ACUTE ETHANOL ADMINISTRATION. Alcohol Alcohol 2005; 40:485-93. [PMID: 16131499 DOI: 10.1093/alcalc/agh196] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. METHODS Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. RESULTS Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. CONCLUSIONS Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Collapse
Affiliation(s)
- Vinood B Patel
- Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | | | | | | |
Collapse
|
25
|
Arbak P, Yavuz O, Bukan N, Balbay O, Ulger F, Annakkaya AN. Serum Oxidant and Antioxidant Levels in Diesel Exposed Toll Collectors. J Occup Health 2004; 46:281-8. [PMID: 15308827 DOI: 10.1539/joh.46.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been suggested that exposure to diesel exhaust may lead to adverse effects due to the generation of oxidants. To evaluate the end products of oxidative stress in DE exposure, toll collectors who are considered a high risk group in regard to occupational toxins were compared to controls who had office-based occupations in the same company in this cross sectional study. A total of 38 toll collectors constituted the study group. All subjects were male. The toll collectors and 29 controls were similar regarding age, smoking status and duration of work. All subjects underwent a clinical examination and an interviewer-administrated questionnaire regarding respiratory symptoms, past medical and occupational history, and pulmonary function tests were performed in all subjects. Serum malondialdehyde (MDA), nitrite+nitrate and vitamin E levels were measured. Toll collectors showed higher serum MDA (5.76 +/- 2.15 micromol/L vs. 3.07 +/- 0.76 micromol/L, p=0.0001) and nitrite+nitrate levels (96.50 +/- 45.54 micromol/L vs. 19.32 +/- 11.77 micromol/L, p=0.0001) than controls. Vitamin E levels were similar in toll collectors and controls (10.57 +/- 3.44 mg/L and 9.72 +/- 2.44 mg/L, respectively, p=0.267). There was no difference between groups in terms of the findings of clinical examinations and respiratory symptoms. In pulmonary function parameters, only peak expiratory flow (PEF) in toll collectors was significantly lower than that of controls (88.9% predicted and 104.2% predicted, respectively, p=0.012). In conclusion, we suggest that serum MDA and nitrite+nitrate levels may be used as biological markers of oxidative stress related to DE exposure, but prospective controlled clinical studies are necessary to clarify the possible association between concentrations of MDA and nitrite+nitrate and pulmonary diseases related to DE exposure.
Collapse
Affiliation(s)
- Peri Arbak
- Department of Chest Diseases, Abant Izzet Baysal University, Duzce School of Medicine, Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Niemelä O, Parkkila S, Worrall S, Emery PW, Preedy VR. Generation of Aldehyde-Derived Protein Modifications in Ethanol-Exposed Heart. Alcohol Clin Exp Res 2003; 27:1987-92. [PMID: 14691387 DOI: 10.1097/01.alc.0000099260.58926.f2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although excessive ethanol consumption is known to lead to a variety of adverse effects in the heart, the molecular mechanisms of such effects have remained poorly defined. We hypothesized that posttranslational covalent binding of reactive molecular species to proteins occurs in the heart in response to acute ethanol exposure. METHODS The generation of protein adducts with several aldehydic species was examined by using monospecific antibodies against adducts with malondialdehyde (MDA), acetaldehyde (AA), MDA-AA hybrids, and hydroxyethyl radicals. Specimens of heart tissue were obtained from rats after intraperitoneal injections with alcohol (75 mmol/kg body weight) with or without pretreatment with cyanamide (0.05 mmol/kg body weight), an aldehyde dehydrogenase inhibitor. RESULTS The amounts of MDA and unreduced AA adducts were found to be significantly increased in the heart of the rats treated with ethanol, cyanamide, or both, whereas no other adducts were detected in statistically significant quantities. Immunohistochemical studies for characterization of adduct distribution revealed sarcolemmal adducts of both MDA and AA in the rats treated with ethanol and cyanamide in addition to intracellular adducts, which were also present in the group treated with ethanol alone. CONCLUSIONS These findings support the role of enhanced lipid peroxidation and the generation of protein-aldehyde condensates in vivo as a result of excessive ethanol intake. These findings may have implications in the molecular mechanisms of cardiac dysfunction in alcoholics.
Collapse
Affiliation(s)
- Onni Niemelä
- Etela-Pohjanmaa Central Hospital Laboratory, Department of Clinical Chemistry and Institute of Medical Technology, University of Tampere, Finland.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality worldwide. For example, the Veterans Administration Cooperative Studies reported that patients with cirrhosis and superimposed alcoholic hepatitis had a 4-year mortality of >60%. Interactions between acetaldehyde, reactive oxygen and nitrogen species, inflammatory mediators and genetic factors appear to play prominent roles in the development of ALD. The cornerstone of therapy for ALD is lifestyle modification, including drinking and smoking cessation and losing weight, if appropriate. Nutrition intervention has been shown to play a positive role on both an inpatient and outpatient basis. Corticosteroids are effective in selected patients with alcoholic hepatitis and pentoxifylline appears to be a promising anti-inflammatory therapy. Some complementary and alternative medicine agents, such as milk thistle and S-adenosylmethionine, may be effective in alcoholic cirrhosis. Treatment of the complications of ALD can improve quality of life and, in some cases, decrease short-term mortality.
Collapse
Affiliation(s)
- Gavin Arteel
- University of Louisville Medical Center, Building A, Room 1319, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Although there are numerous experimental data indicating that oxidative stress plays a role in the initiation and progression of alcohol-induced liver disease (ALD), this work has yet to translate into an accepted antioxidant therapy for ALD in humans. With a better understanding of the mechanisms by which oxidative stress leads to liver damage during alcohol exposure, therapies that are more targeted at the cellular/molecular level may be applied in the clinic with potentially greater success. This article discusses the general concepts of oxidative stress and how it relates to current hypotheses in alcohol-induced liver injury, as well as lists several key questions that remain to be addressed in this field: (1) Which prooxidants are involved in ALD? (2) What are the sources of prooxidants in the liver during alcohol exposure? (3) How are oxidants involved in alcohol-induced liver injury? (4) Can a rational and effective antioxidant therapy against ALD be developed?
Collapse
Affiliation(s)
- Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky, USA.
| |
Collapse
|
29
|
Abstract
Malondialdehyde and acetaldehyde react together with proteins in a synergistic manner and form hybrid protein adducts, designated as MAA adducts. MAA-protein adducts are composed of two major products whose structures and mechanism of formation have been elucidated. MAA adduct formation, especially in the liver, has been demonstrated in vivo during ethanol consumption. These protein adducts are capable of inducing a potent immune response, resulting in the generation of antibodies against both MAA epitopes, as well as against epitopes on the carrier protein. Chronic ethanol administration to rats results in significant circulating antibody titers against MAA-adducted proteins, and high anti-MAA titers have been associated with the severity of liver damage in humans with alcoholic liver disease. In vitro exposure of liver endothelial or hepatic stellate cells to MAA adducts induces a proinflammatory and profibrogenic response in these cells. Thus, during excessive ethanol consumption, ethanol oxidation and ethanol-induced oxidative stress result in the formation of acetaldehyde and malondialdehyde, respectively. These aldehydes can react together synergistically with proteins and generate MAA adducts, which are very immunogenic and possess proinflammatory and profibrogenic properties. By virtue of these potentially toxic effects, MAA adducts may play an important role in the pathogenesis of alcoholic liver injury.
Collapse
Affiliation(s)
- Dean J Tuma
- VA Alcohol Research Center, Department of Veterans Affairs Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|