1
|
Qin L, Zou J, Barnett A, Vetreno RP, Crews FT, Coleman LG. TRAIL Mediates Neuronal Death in AUD: A Link between Neuroinflammation and Neurodegeneration. Int J Mol Sci 2021; 22:2547. [PMID: 33806288 PMCID: PMC7961445 DOI: 10.3390/ijms22052547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Although the cause of progressive neurodegeneration is often unclear, neuronal death can occur through several mechanisms. In conditions such as Alzheimer's or alcohol use disorder (AUD), Toll-like receptor (TLR) induction is observed with neurodegeneration. However, links between TLR activation and neurodegeneration are lacking. We report a role of apoptotic neuronal death in AUD through TLR7-mediated induction of death receptor signaling. In postmortem human cortex, a two-fold increase in apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in neurons was found in AUD versus controls. This occurred with the increased expression of TLR7 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors. Binge ethanol treatment in C57BL/6 mice increased TLR7 and induced neuronal apoptosis in cortical regions that was blocked by TLR7 antagonism. Mechanistic studies in primary organotypic brain slice culture (OBSC) found that the inhibition of TLR7 and its endogenous ligand let-7b blocked ethanol-induced neuronal cell death. Both IMQ and ethanol induced the expression of TRAIL and its death receptor. In addition, TRAIL-neutralizing monoclonal antibodies blocked both imiquimod (IMQ) and ethanol induced neuronal death. These findings implicate TRAIL as a mediator of neuronal apoptosis downstream of TLR7 activation. TLR7 and neuronal apoptosis are implicated in other neurodegenerative diseases, including Alzheimer's disease. Therefore, TRAIL may represent a therapeutic target to slow neurodegeneration in multiple diseases.
Collapse
Affiliation(s)
- Liya Qin
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Jian Zou
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Alexandra Barnett
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon G. Coleman
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
3
|
Coleman LG, Zou J, Crews FT. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 2017; 14:22. [PMID: 28118842 PMCID: PMC5264311 DOI: 10.1186/s12974-017-0799-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. METHODS TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. RESULTS We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. CONCLUSIONS Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.
Collapse
Affiliation(s)
- Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina School of Medicine, 104 Manning Drive, 1007 Thurston-Bowles Building, CB# 7178 UNC-CH, Chapel Hill, NC, 27599, USA. .,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA.
| | - Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 104 Manning Drive, CB#7178, Thurston-Bowles Building Room 1007, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Reynolds AR, Saunders MA, Prendergast MA. Ethanol Stimulates Endoplasmic Reticulum Inositol Triphosphate and Sigma Receptors to Promote Withdrawal-Associated Loss of Neuron-Specific Nuclear Protein/Fox-3. Alcohol Clin Exp Res 2016; 40:1454-61. [PMID: 27177604 DOI: 10.1111/acer.13097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/01/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Prior studies demonstrate that ethanol (EtOH) exposure induces the release of intracellular calcium (CA(2+) ) in modulation of γ-aminobutyric acid-ergic tone and produces concomitant alterations in sigma (σ)-1 protein expression that may contribute to the development EtOH dependence. However, the influence of CA(2+) released from endoplasmic reticulum (ER)-bound inositol triphosphate (IP3) and σ-1 receptors in regulating hippocampal function has yet to be delineated. METHODS Rat hippocampal explants were subjected to chronic intermittent EtOH (CIE) exposure with or without the addition of IP3 inhibitor xestospongin C (0 to 0.5 μM) or σ-1 receptor antagonist BD-1047 (0 to 80 μM). Hippocampal viability was assessed via immunohistochemical labeling of neuron-specific nuclear protein (NeuN)/Fox-3 in CA1, CA3, and dentate gyrus (DG) subregions. RESULTS Exposure to CIE produced consistent and significant decreases of NeuN/Fox-3 in each primary cell layer of the hippocampal formation. Co-exposure to xestospongin reversed these effects in the CA1 subregion and significantly attenuated these effects in the CA3 and DG regions. Xestospongin application also significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi. Co-exposure to 20 μM BD-1047 also reversed the loss of NeuN/Fox-3 during CIE exposure in each hippocampal cell layer, whereas exposure to 80 μM BD-1047 did not alter NeuN/Fox-3 in EtOH-treated hippocampi. By contrast, 80 μM BD-1047 application significantly increased NeuN/Fox-3 immunofluorescence in EtOH-naïve hippocampi in each subregion. CONCLUSIONS These data suggest that EtOH stimulates ER IP3 and σ-1 receptors to promote hippocampal loss of NeuN/Fox-3 during CIE.
Collapse
Affiliation(s)
- Anna R Reynolds
- Department of Behavioral Science, University of Kentucky, Lexington, Kentucky
| | - Meredith A Saunders
- Department of Psychology, University of Kentucky, Lexington, Kentucky.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, Kentucky.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
Lutz JA, Carter M, Fields L, Barron S, Littleton JM. Altered relation between lipopolysaccharide-induced inflammatory response and excitotoxicity in rat organotypic hippocampal slice cultures during ethanol withdrawal. Alcohol Clin Exp Res 2015; 39:827-35. [PMID: 25845566 DOI: 10.1111/acer.12705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/18/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) causes neurotoxicity by several mechanisms including excitotoxicity and neuroinflammation, but little is known about the interaction between these mechanisms. Because neuroinflammation is known to enhance excitotoxicity, we hypothesized that neuroinflammation contributes to the enhanced excitotoxicity, which is associated with EtOH withdrawal (EWD). The aim of this study was to evaluate the lipopolysaccharide (LPS)-induced inflammatory response of cultured hippocampal tissue during EWD and its effects on the enhanced N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, which occurs at this time. METHODS Using a neonatal organotypic hippocampal slice culture (OHSC) model, we assessed the effects of NMDA and LPS (separately or combined) during EWD after 10 days of EtOH exposure. Neurotoxicity was assessed using propidium iodide uptake, and the inflammatory response was evaluated by measuring the release of tumor necrosis factor (TNF)-alpha (quantified by enzyme-linked immunosorbent assay) and nitric oxide (NO; quantified by the Griess reaction) into culture media. Furthermore, we explored the potential role of the microglial cell type using immortalized BV2 microglia treated with EtOH for 10 days and challenged with LPS during EWD. RESULTS As predicted, NMDA-induced toxicity was potentiated by LPS under control conditions. However, during EWD, the reverse was observed and LPS inhibited peak NMDA-induced toxicity. Additionally, LPS-induced release of TNF-alpha and NO during EWD was reduced compared to control conditions. In BV2 microglia, following EtOH exposure, LPS-induced release of NO was reduced, whereas TNF-alpha release was potentiated. CONCLUSIONS During EWD following chronic EtOH exposure, OHSC exhibited a desensitized inflammatory response to LPS and the effects of LPS on NMDA toxicity were reversed. This might be explained by a change in microglia to an anti-inflammatory and neuroprotective phenotype. In support, studies on BV2 microglia indicate that EtOH exposure and EWD do alter the response of these cells to LPS, but this cannot fully explain the changes observed in the OHSC. The data suggest that neuroinflammation and excitotoxicity do interact during EWD. However, the interaction is not as simple as we originally proposed. This in turn illustrates the need to assess the extent, importance, and relation of these mechanisms in models of EtOH exposure producing neurotoxicity.
Collapse
Affiliation(s)
- Joseph A Lutz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | | | | | | | | |
Collapse
|
6
|
Oka M, Hirouchi M, Tamura M, Sugahara S, Oyama T. Acamprosate {monocalcium bis(3-acetamidopropane-1-sulfonate)} reduces ethanol-drinking behavior in rats and glutamate-induced toxicity in ethanol-exposed primary rat cortical neuronal cultures. Eur J Pharmacol 2013; 718:323-31. [PMID: 24012782 DOI: 10.1016/j.ejphar.2013.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/19/2013] [Accepted: 08/24/2013] [Indexed: 01/09/2023]
Abstract
Acamprosate, the calcium salt of bis(3-acetamidopropane-1-sulfonate), contributes to the maintenance of abstinence in alcohol-dependent patients, but its mechanism of action in the central nervous system is unclear. Here, we report the effect of acamprosate on ethanol-drinking behavior in standard laboratory Wistar rats, including voluntary ethanol consumption and the ethanol-deprivation effect. After forced ethanol consumption arranged by the provision of only one drinking bottle containing 10% ethanol, the rats were given a choice between two drinking bottles, one containing water and the other containing 10% ethanol. In rats selected for high ethanol preference, repeated oral administration of acamprosate diminished voluntary ethanol drinking. After three months of continuous access to two bottles, rats were deprived of ethanol for three days and then presented with two bottles again. After ethanol deprivation, ethanol preference was increased, and the increase was largely abolished by acamprosate. After exposure of primary neuronal cultures of rat cerebral cortex to ethanol for four days, neurotoxicity, as measured by the extracellular leakage of lactate dehydrogenase (LDH), was induced by incubation with glutamate for 1h followed by incubation in the absence of ethanol for 24h. The N-methyl-D-aspartate receptor blocker 5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine, the metabotropic glutamate receptor subtype 5 antagonist 6-methyl-2-(phenylethynyl)pyridine and the voltage-gated calcium-channel blocker nifedipine all inhibited glutamate-induced LDH leakage from ethanol-exposed neurons. Acamprosate inhibited the glutamate-induced LDH leakage from ethanol-exposed neurons more strongly than that from intact neurons. In conclusion, acamprosate showed effective reduction of drinking behavior in rats and protected ethanol-exposed neurons by multiple blocking of glutamate signaling.
Collapse
Affiliation(s)
- Michiko Oka
- Research Laboratories, Nippon Shinyaku Co., Ltd., 14, Nishinosho-monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan.
| | | | | | | | | |
Collapse
|
7
|
Oxygen glucose deprivation causes mitochondrial dysfunction in cultivated rat hippocampal slices: Protective effects of CsA, its immunosuppressive congener [D-Ser]8CsA, the novel non-immunosuppressive cyclosporin derivative Cs9, and the NMDA receptor antagonist MK 801. Mitochondrion 2013; 13:539-47. [DOI: 10.1016/j.mito.2012.07.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/11/2012] [Accepted: 07/15/2012] [Indexed: 02/06/2023]
|
8
|
Abstract
Acamprosate, in combination with psychosocial therapy, has been shown to be clinically effective in maintaining abstinence in alcohol dependence. Current research suggests that its mechanism of action involves functional antagonism of the ionotropic glutamate N-methyl-d-aspartate (NMDA) receptor. However, direct interactions between acamprosate and the NMDA receptor are weak, and recent findings suggest that acamprosate may modulate NMDA receptors via regulatory polyamine sites, or that it may act directly on metabotropic glutamate receptors. All of these mechanisms are novel for the treatment of alcohol dependence and have far-reaching implications for understanding relapse, as well as for the discovery of drugs with greater efficacy. Understanding the mechanism of action of acamprosate may be an important stimulus for change in the perception and treatment of alcohol dependence.
Collapse
|
9
|
Prendergast MA, Mulholland PJ. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict Biol 2012; 17:209-23. [PMID: 21967628 PMCID: PMC3254017 DOI: 10.1111/j.1369-1600.2011.00375.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress contributes to the development of ethanol dependence and is also a consequence of dependence. However, the complexity of physiological interactions between activation of the hypothalamic-pituitary-adrenal (HPA) axis and ethanol itself is not well delineated. Emerging evidence derived from examination of corticotropin-releasing factor systems and glucocorticoid receptor systems in ethanol dependence suggests a role for pharmacological manipulation of the HPA axis in attenuating ethanol intake, though it is not clear how activation of the HPA axis may promote ethanol dependence or contribute to the neuroadaptative changes that accompany the development of dependence and the severity of ethanol withdrawal. This review examines the role that glucocorticoids, in particular, have in promoting ethanol-associated plasticity of glutamatergic synapses by influencing expression of endogenous linear polyamines and polyamine-sensitive polypeptide subunits of N-methyl-D-aspartate (NMDA)-type glutamate receptors. We provide evidence that interactions among glucocorticoid systems, polyamines and NMDA receptors are highly relevant to both the development of ethanol dependence and to behavioral and neuropathological sequelae associated with ethanol withdrawal. Examination of these issues is likely to be of critical importance not only in further elucidating the neurobiology of HPA axis dysregulation in ethanol dependence, but also with regard to identification of novel therapeutic targets that may be exploited in the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Mark A. Prendergast
- University of Kentucky, Department of Psychology, 741 South Limestone Street, Lexington, KY 40536, U.S.A
- Spinal Cord and Brain Injury Research Center, B449 Biomedical and Biological Sciences Research Building, 741 South Limestone Street, Lexington, KY 40536, U.S.A
| | - Patrick J. Mulholland
- Departments of Neurosciences and Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, IOP 462 North Charleston, South Carolina 29425, U.S.A
| |
Collapse
|
10
|
Lewis B, Wellmann KA, Kehrberg AMH, Carter ML, Baldwin T, Cohen M, Barron S. Behavioral deficits and cellular damage following developmental ethanol exposure in rats are attenuated by CP-101,606, an NMDAR antagonist with unique NR2B specificity. Pharmacol Biochem Behav 2011; 100:545-53. [PMID: 22037411 DOI: 10.1016/j.pbb.2011.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
NMDAR-mediated excitotoxicity has been implicated in some of the impairments following fetal ethanol exposure. Previous studies suggest that both neuronal cell death and some of the behavioral deficits can be reduced by NMDAR antagonism during withdrawal, including antagonism of a subpopulation of receptors containing NR2B subunits. To further investigate NR2B involvement, we selected a compound, CP-101,606 (CP) which binds selectively to NR2B/2B stoichiometries, for both in vitro and in vivo analyses. For the in vitro study, hippocampal explants were exposed to ethanol for 10 days and then 24 h following removal of ethanol, cellular damage was quantified via propidium iodide fluorescence. In vitro ethanol withdrawal-associated neurotoxicity was prevented by CP (10 and 25 nM). In vivo ethanol exposure was administered on PNDs 1-7 with CP administered 21 h following cessation. Activity (PNDs 20-21), motor skills (PNDs 31-33), and maze navigation (PNDs 43-44) were all susceptible to ethanol insult; treatment with CP (15 mg/kg) rescued these deficits. Our findings show that CP-101,606, a drug that blocks the NR2B/2B receptor, can reduce some of the damaging effects of "3rd trimester" alcohol exposure in our rodent model. Further work is clearly warranted on the neuroprotective potential of this drug in the developing brain.
Collapse
Affiliation(s)
- B Lewis
- Dept. of Psychology, University of Kentucky, Lexington, KY 40506-0044, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wellmann K, Lewis B, Barron S. Agmatine reduces ultrasonic vocalization deficits in female rat pups exposed neonatally to ethanol. Neurotoxicol Teratol 2009; 32:158-63. [PMID: 19945529 DOI: 10.1016/j.ntt.2009.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 10/30/2009] [Accepted: 11/21/2009] [Indexed: 11/17/2022]
Abstract
Rat pups, in isolation, produce ultrasonic vocalizations (USVs). These USVs have been used as a diagnostic tool for developmental toxicity. We have shown that neonatal ethanol (ETOH) exposure produces deficits in this behavior. The current study was designed to examine whether agmatine (AG), which binds to imidazoline receptors and modulates n-methyl-d-aspartate receptors (NMDAR), could reduce these deficits. In addition, this study examined critical periods for ETOH's effects on USVs by administering ETOH during either the 1st or 2nd postnatal week. Neonatal rats received intragastric intubations of either ETOH (6g/kg/day), ETOH and AG (6g/kg/day and 20mg/kg/day), AG (20mg/kg/day), or maltose on postnatal days (PND) 1-7 or 8-14. A non-intubated control was also included. Subjects were tested on PND 15. Neonatal ETOH exposure significantly increased the latency to vocalize for females and reduced the rate of USVs in both males and females exposed to ETOH on PND 1-7. Agmatine reduced these deficits, in female but not male pups. Subjects exposed to ETOH on PND 8-14 showed no evidence of abnormal USVs. These findings suggest that there may be gender differences in response to AG following neonatal ETOH exposure and also provide further support that the first neonatal week is a particularly sensitive time for the developmentally toxic effects of ETOH in rodents.
Collapse
Affiliation(s)
- Kristen Wellmann
- Department of Psychology, Kastle Hall, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
12
|
Kotlinska J, Bochenski M. The influence of various glutamate receptors antagonists on anxiety-like effect of ethanol withdrawal in a plus-maze test in rats. Eur J Pharmacol 2008; 598:57-63. [DOI: 10.1016/j.ejphar.2008.09.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/05/2008] [Accepted: 09/18/2008] [Indexed: 01/30/2023]
|
13
|
Mann K, Kiefer F, Spanagel R, Littleton J. Acamprosate: recent findings and future research directions. Alcohol Clin Exp Res 2008; 32:1105-10. [PMID: 18540918 DOI: 10.1111/j.1530-0277.2008.00690.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article explores the mechanisms of action and the potential responder profile of acamprosate, a compound efficacious in relapse prevention of alcoholism. New evidence at the molecular and cellular level suggests that acamprosate attenuates hyper-glutamatergic states that occur during early abstinence and involves iono (NMDA)- and metabotrotropic (mGluR5) glutamate receptors along with augmented intracellular calcium release and electrophysiological changes. Thus mutant mice with enhanced glutamate levels exhibit higher alcohol consumption than wild type mice and respond better to acamprosate, demonstrating that acamprosate acts mainly on a hyper-glutamatergic system. This mode of action further suggests that acamprosate exhibits neuroprotective properties. In rats, cue-induced reinstatement behavior is significantly reduced by acamprosate treatment whereas cue-induced craving responses in alcohol-dependent patients seem not to be affected by this treatment. An ongoing study ("Project Predict") defines specific responder profiles for an individualized use of acamprosate and naltrexone. Neurophysiological as well as psychometric data are used to define 2 groups of patients: "reward cravers" and "relief cravers". While naltrexone should work better in the first group, acamprosate is hypothesized to be efficacious in the latter where withdrawal associated and/or cue induced hyper-glutamatergic states are thought to trigger relapse. Further research should target the definition of subgroups applying endophenotypic approaches, e.g. by detecting a hyperglutamatergic syndrome using MR spectroscopy.
Collapse
Affiliation(s)
- Karl Mann
- The Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health University of Heidelberg, Mannheim, Germany
| | | | | | | |
Collapse
|
14
|
Nutt D, Lingford-Hughes A. Addiction: the clinical interface. Br J Pharmacol 2008; 154:397-405. [PMID: 18414399 PMCID: PMC2442452 DOI: 10.1038/bjp.2008.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/09/2022] Open
Abstract
This review gives an overview of what we see as the key issues in the human pharmacology of drugs of addiction. We review evidence of efficacy and mechanisms by which treatments act and point out areas where further work is needed. The role of agonist, partial agonist and antagonist treatments for opioid addiction is detailed and current issues relating to the mechanisms of actions at the receptor level and how to improve on compliance are discussed. The role of the brain dopamine and GABA-A systems in drug dependence is considered in relation to the growing pharmacology of these receptor systems, and the current status of novel preclinical targets reviewed. In addition, the different roles of dynamic and kinetic factors in both addiction and its treatment are discussed in relation to the underlying neuropharmacology of the disorders as defined from human and preclinical studies. Finally, some pointers to future research and especially to drug development by pharma are elaborated.
Collapse
Affiliation(s)
- D Nutt
- Psychopharmacology Unit, University of Bristol, Bristol, UK.
| | | |
Collapse
|
15
|
Barron S, Mulholland PJ, Littleton JM, Prendergast MA. Age and gender differences in response to neonatal ethanol withdrawal and polyamine challenge in organotypic hippocampal cultures. Alcohol Clin Exp Res 2008; 32:929-36. [PMID: 18445110 DOI: 10.1111/j.1530-0277.2008.00649.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Polyamines are synthesized and released in high concentrations during CNS development. These agents can potentiate N-methyl-D-aspartate receptor (NMDAR) function and appear to play an important role in CNS development. Previous work has shown that polyamine release is increased during ethanol withdrawal (EWD). This likely promotes NMDAR overactivity and contributes to neurotoxicity during EWD, however, little is known regarding such effects in early neonatal brain. The present study compared the effects of EWD and polyamine exposure on toxicity in hippocampal slice cultures derived from postnatal day 2 (PND 2) or postnatal day 8 (PND 8) day-old rats. Due to changes in NMDAR subtypes and response to polyamines, we predicted that slices taken from PND 2 pups would be more sensitive to EWD and polyamine challenge. METHODS Organotypic hippocampal slice cultures were obtained from neonatal rats either 2 or 8 days of age (PND 2 or PND 8). Five days after explantation, cultures were exposed to ETOH (50 mM- typically subthreshold for EWD induced cell death) for 10 days and then withdrawn from ETOH for 24-hour in the presence of 100 microM of the polyamine spermidine and/or 100 microM ifenprodil, an NMDAR antagonist that blocks the NMDAR that is the most sensitive to polyamine modulation. Cytotoxicity was measured after 24-hour by visualization of propidium iodide (PI) fluorescence. RESULTS There were clear age and gender-dependent differences in response to EWD and to polyamines. EWD produced significant increases in PI uptake in all subregions (CA1, CA3 and DG) of cultures derived from PND 2 pups, but not PND 8 pups. Exposure of cultures to spermidine for 24-hour also produced significant increases in cytotoxicity in all 3 regions of PND 2 cultures with no gender differences. In contrast, there were both gender and region-specific differences in response to spermidine in cultures from PND 8. While the CA1 region of both sexes displayed increased cytotoxicity following spermidine exposure, only females showed increased cytotoxicity in the CA3 region while the DG appeared relatively insensitive to spermidine. Exposure to spermidine during EWD produced enhanced toxicity in all 3 hippocampal subregions in tissue from both PND 2 and PND 8 rats and this was reduced or prevented by co-exposure to ifenprodil. Of interest, the PND 2 hippocampus was significantly more sensitive than the PND 8 hippocampus to the toxic effects of EWD and to spermidine during EWD in the DG and CA3 regions. CONCLUSIONS Hippocampal slice cultures derived from PND 2 rats were more sensitive to the toxic effects of both EWD and EWD + spermidine exposure than were those derived from PND 8 rats. These findings are similar to recent behavioral data collected from our lab showing greater sensitivity to ETOH's behavioral teratogenic effects when ETOH exposure in vivo occurred during the first postnatal week relative to the second postnatal week. Ifenprodil's ability to block the toxic effects of spermidine during EWD suggests that excess activity of NR2B subunits of the NMDAR contributed to the excitatory and cytotoxic effects of EWD plus spermidine. While no sex differences in toxicity were observed in cultures taken from pups during the first postnatal week, these data do suggest that later in neonatal life (i.e., the second postnatal week), the female hippocampus may be more sensitive to polyamine-induced neurotoxicity than males.
Collapse
Affiliation(s)
- Susan Barron
- Psychology Department, University of Kentucky, Lexington, Kentucky 40506-0044, USA.
| | | | | | | |
Collapse
|
16
|
Knapp DJ, Overstreet DH, Breese GR. Baclofen blocks expression and sensitization of anxiety-like behavior in an animal model of repeated stress and ethanol withdrawal. Alcohol Clin Exp Res 2007; 31:582-95. [PMID: 17374037 PMCID: PMC2864137 DOI: 10.1111/j.1530-0277.2007.00342.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Repeated exposures to forced ethanol diets (EDs) or restraint stress sensitize anxiety-like behavior during a future ethanol withdrawal. The present investigation assessed whether pretreatment of rats with agents targeting receptor systems thought to be important in treating relapse in alcoholic patients would prevent sensitization of anxiety-like behavior. METHODS Groups of rats were exposed to either (1) three 5-day cycles of ED with 2 days of withdrawal between cycles, (2) continuous ED, or (3) 5 days of ED in a single cycle preceded by 2 episodes of restraint stress 6 days apart. Drugs [baclofen, acamprosate, naloxone, lamotrigine, ifenprodil, dizocilpine (MK-801), CGS19755, diazepam, flumazenil, or 6-methyl-2-(phenylethynyl)pyridine] were given prophylactically during the first and second withdrawal periods only or, in separate baclofen experiments, acutely during the third withdrawal or during withdrawal from continuous ED. Baclofen administration preceded each stress session in the stress-withdrawal protocols. Anxiety-like behavior was assessed in the social interaction (SI) test 5 hours after the ethanol was removed or after 3 days of abstinence. RESULTS Baclofen (1.25, 2.5, and 5 mg/kg), flumazenil (5 mg/kg), and diazepam (1 mg/kg) blocked the reduction in SI induced by ethanol withdrawal. Among the drugs that alter glutamate function, only acamprosate (300 mg/kg) was effective. In the stress protocols, baclofen (5 mg/kg) given before each of the 2 restraint stress sessions before ethanol exposure or before stress during abstinence also attenuated SI deficits. CONCLUSIONS These findings suggest that GABAB and GABAA, but not glutamate or opioid mechanisms, are involved in adaptive changes associated with anxiety-like behavior induced by these repeated ethanol-withdrawal and stress-withdrawal paradigms. The lack of action of agents attenuating different aspects of glutamate function suggests that acamprosate's action is related to some other, as yet undetermined, mechanism.
Collapse
Affiliation(s)
- Darin J Knapp
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | |
Collapse
|
17
|
Mello CF, Rubin MA, Sultana R, Barron S, Littleton JM, Butterfield DA. Difluoromethylornithine decreases long-lasting protein oxidation induced by neonatal ethanol exposure in the hippocampus of adolescent rats. Alcohol Clin Exp Res 2007; 31:887-94. [PMID: 17386069 DOI: 10.1111/j.1530-0277.2007.00369.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol exposure and withdrawal during central nervous system development can cause oxidative stress and produce severe and long-lasting behavioral and morphological alterations in which polyamines seem to play an important role. However, it is not known if early ethanol exposure causes long-lasting protein oxidative damage and if polyamines play a role in such a deleterious effect of ethanol. METHODS In this study we investigated the effects of early ethanol exposure (6 g/kg/d, by gavage), from postnatal day (PND) 1 to 8, and of the administration of difluoromethylornithine (DFMO, 500 mg/kg, i.p., on PND 8), a polyamine biosynthesis inhibitor, on the extent of oxidative modification of proteins. Indices of oxidative modification of proteins included protein carbonyls, 3-nitrotyrosine (3-NT), and protein bound 4-hydroxynonenal (HNE) in the hippocampus, cerebellum, hypothalamus, striatum, and cerebral cortex of Sprague-Dawley rats at PND 40. RESULTS Both ethanol and DFMO administration alone increased protein carbonyl immunoreactivity in the hippocampus at PND 40, but the combination of DFMO and ethanol resulted in no effect on protein carbonyl levels. No alterations in the content of protein-bound HNE, 3-NT, or carbonyl were found in any other cerebral structure. CONCLUSIONS These results suggest that the hippocampus is selectively affected by early ethanol exposure and by polyamine synthesis inhibition. In addition, the results suggest a role for polyamines in the long-lasting increase of protein carbonyls induced by ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Carlos Fernando Mello
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
In recent years, advances in neuroscience led to the development of new medications to treat alcohol dependence and especially to prevent alcohol relapse after detoxification. Whereas the earliest medications against alcohol dependence were fortuitously discovered, recently developed drugs are increasingly based on alcohol's neurobiological mechanisms of action. This review discusses the most recent developments in alcohol pharmacotherapy and emphasizes the neurobiological basis of anti-alcohol medications. There are currently three approved drugs for the treatment of alcohol dependence with quite different mechanisms of action. Disulfiram is an inhibitor of the enzyme aldehyde dehydrogenase and acts as an alcohol-deterrent drug. Naltrexone, an opiate antagonist, reduces alcohol craving and relapse in heavy drinking, probably via a modulation of the mesolimbic dopamine activity. Finally, acamprosate helps maintaining alcohol abstinence, probably through a normalization of the chronic alcohol-induced hyperglutamatergic state. In addition to these approved medications, many other drugs have been suggested for preventing alcohol consumption on the basis of preclinical studies. Some of these drugs remain promising, whereas others have produced disappointing results in preliminary clinical studies. These new drugs in the field of alcohol pharmacotherapy are also discussed, together with their mechanisms of action.
Collapse
Affiliation(s)
- Sophie Tambour
- Unité de Recherche en Psychologie Expérimentale et Neurosciences Cognitives (URPENC), Université de Liège, Boulevard du Rectorat 5/B32, B-4000 Liège, Belgium
| | | |
Collapse
|
19
|
Wilkins LH, Prendergast MA, Blanchard J, Holley RC, Chambers ER, Littleton JM. Potential Value of Changes in Cell Markers in Organotypic Hippocampal Cultures Associated With Chronic EtOH Exposure and Withdrawal: Comparison with NMDA-Induced Changes. Alcohol Clin Exp Res 2006; 30:1768-80. [PMID: 17010144 DOI: 10.1111/j.1530-0277.2006.00210.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies have shown that withdrawal from ethanol (EtOH) exposure induces neuronal damage, as indicated by propidium iodide (PI) uptake, in organotypic hippocampal slice cultures. This is prevented by MK801, suggesting that damage is "excitotoxic," resulting from activation of N-methyl-d-aspartate (NMDA) receptors by endogenous glutamate. To avoid reliance on a single indicator, and to enable assessment of recovery from the EtOH withdrawal (EWD) insult, we assessed changes in cell markers for neurons and glia, as well as cell division, following either EWD or NMDA challenge (as a positive control). METHODS Organotypic cultures from postnatal day (PND) 8 rats were cultured for 5 days before exposure to EtOH (mean concentration approximately 65 mM) for 10 days before EWD. Cultures of the same "days in vitro" age (DIV16) were exposed to NMDA (200 microM) for 1 hour. Neuronal injury was visualized using PI and indices of neurons, glia, or cell division were measured at intervals up to 10 days following the neurotoxic insults. Each time point and measurement used separate slice cultures, and these were treated as separate experiments with paired controls. Regional neuronal content was assessed by neuronal nuclear protein (NeuN) and calbindin D28k (Calb), glial content by glial fibrillary acidic protein (GFAP), and cell division by bromodeoxyuridine (BrdU) incorporation, all measured immunohistochemically. RESULTS Chronic exposure to EtOH was associated with a dramatic reduction in BrdU incorporation in all regions of cultures. Propidium iodide fluorescence in the CA1 region was elevated significantly after EWD and more so after NMDA challenge. Reduced immunoreactivity (IR) of NeuN and Calb suggested that loss of neurons resulted from the EWD insult. Bromodeoxyuridine incorporation was initially depressed even further by EWD, but had returned to control levels after 3 days. In contrast, following NMDA insult, BrdU incorporation was significantly and persistently elevated above control levels after 3 days. Glial fibrillary acidic protein was reduced immediately after both EWD and NMDA challenge. Several days after EWD, expression of neuronal and glial markers, although variable, had generally returned to control levels. In contrast, NeuN IR remained significantly reduced after NMDA challenge. CONCLUSIONS In general, the use of additional markers supports data obtained with PI uptake alone and suggests that neurons (and glia) are lost from the culture following EWD or NMDA challenge. These cell markers recover several days after EWD, but it is unclear whether functional recovery accompanies these changes. If the dramatic effect of EtOH exposure and EWD on BrdU incorporation reflects reduced neuro- and gliogenesis, it is likely that this adversely affects long-term recovery from EWD. Finally, some markers showed significant and consistent changes after EWD, whereas others did not. This information may facilitate the use of this model in evaluation of potential medications that protect against and/or promote recovery from neurotoxicity.
Collapse
Affiliation(s)
- Lincoln H Wilkins
- Department of Behavioral Sciences, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
De Witte P, Littleton J, Parot P, Koob G. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs 2005; 19:517-37. [PMID: 15963001 DOI: 10.2165/00023210-200519060-00004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acamprosate is an abstinence-promoting drug widely used in the treatment of alcohol dependence but which has a mechanism of action that has remained obscure for many years. Recently, evidence has emerged that this drug may interact with excitatory glutamatergic neurotransmission in general and as an antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5) in particular. These findings provide, for the first time, a satisfactory, unifying hypothesis that can bring together and explain the diverse neurochemical effects of acamprosate. Glutamic acid is involved in several aspects of alcohol dependence and withdrawal, many of which can be modified by acamprosate. For example, during chronic exposure to alcohol, the glutamatergic system becomes upregulated, leaving the brain exposed to excessive glutamatergic activity when alcohol is abruptly withdrawn. The surge in glutamic acid release that occurs following alcohol withdrawal can be attenuated by acamprosate. The elevated extracellular levels of glutamic acid observed in withdrawal, together with supersensitivity of NMDA receptors, may expose vulnerable neurons to excitotoxicity, possibly contributing to the neuronal loss sometimes observed in chronic alcohol dependence. In vitro studies suggest that the excitotoxicity produced by ethanol can effectively be blocked by acamprosate. Moreover, glutamatergic neurotransmission plays an important role in the acquisition of cue-elicited drinking behaviours, which again can be modulated by acamprosate. In conclusion, the glutamatergic hypothesis of the mechanism of action of acamprosate helps explain many of its effects in human alcohol dependence and points the way to potential new activities, such as neuroprotection, that merit exploration in the clinic.
Collapse
Affiliation(s)
- Philippe De Witte
- Biologie Du Comportement, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
22
|
Scott LJ, Figgitt DP, Keam SJ, Waugh J. Acamprosate: a review of its use in the maintenance of abstinence in patients with alcohol dependence. CNS Drugs 2005; 19:445-64. [PMID: 15907154 DOI: 10.2165/00023210-200519050-00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Acamprosate (Campral delayed-release tablet), a synthetic compound with a similar structure to that of the neurotransmitter GABA and the neuromodulator taurine, facilitates the maintenance of abstinence in detoxified alcohol-dependent patients. Although the precise mechanism(s) of action of the drug remains to be fully elucidated, it appears that it most likely involves beneficial modulation of the glutamatergic neurotransmitter system, including antagonism of the mGLu5 metabotropic glutamate receptor, to counteract the imbalance between the glutamatergic and GABAergic systems associated with chronic alcohol exposure and alcohol withdrawal. In several double-blind, placebo-controlled trials of up to 12 months' duration, acamprosate effectively maintained complete abstinence in detoxified alcohol-dependent patients, irrespective of disease severity or the type of psychosocial support. The drug showed better efficacy than placebo and was very well tolerated. Limited data from a relatively well designed trial indicate that the drug has similar efficacy to that of naltrexone and that combination therapy with these two agents provides better efficacy than acamprosate monotherapy, although multicentre direct head-to-head investigations are required to fully establish the potential of this combination. The drug may be particularly useful in those with hepatic impairment and/or liver disease. Thus, in combination with psychosocial and behavioural management programmes, acamprosate is a promising option for the maintenance of abstinence in alcohol-dependent patients after alcohol withdrawal.
Collapse
Affiliation(s)
- Lesley J Scott
- Adis International Limited, Private Bag 65901, Mairangi Bay, Auckland, New Zealand.
| | | | | | | |
Collapse
|
23
|
Worst TJ, Tan JC, Robertson DJ, Freeman WM, Hyytia P, Kiianmaa K, Vrana KE. Transcriptome analysis of frontal cortex in alcohol-preferring and nonpreferring rats. J Neurosci Res 2005; 80:529-38. [PMID: 15846778 DOI: 10.1002/jnr.20496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it is widely accepted that alcohol abuse and alcoholism have a significant genetic component of risk, the identities of the genes themselves remain obscure. To illuminate such potential genetic contributions, DNA macroarrays were used to probe for differences in normative cortical gene expression between rat strains genetically selected for alcohol self-administration preference, AA (Alko, alcohol) and P (Indiana, preferring), or avoidance, ANA (Alko, nonalcohol) and NP (Indiana, nonpreferring). Among 1,176 genes studied, six demonstrated confirmable, differential expression following comparison of ethanol-naive AA and ANA rats. Specifically, the mRNA level for metabotropic glutamate receptor 3 (mGluR3) was down-regulated in the AA vs. ANA lines. In contrast, calcium channel subunit alpha2delta1 (cacna2d1), vesicle-associated membrane protein 2 (VAMP2), syntaxin 1 (both syntaxin 1a and 1b; STX1a and STX1b), and syntaxin binding protein (MUNC-18) mRNAs were found to be increased in frontal cortex following comparison of AA with ANA animals. Bioinformatic analysis of these molecular targets showed that mGluR3 and cacna2d1 fall within chromosomal locations reported to be alcohol-related by the Collaborative Study on the Genetics of Alcoholism (COGA) as well as quantitative trait loci (QTL) studies. To determine further whether these differences were strain specific, the above-mentioned genes were compared in ethanol-preferring (P) and -nonpreferring (NP) selected lines. VAMP2 was the only gene that displayed statistically different mRNA levels in a comparison of P and NP rats. In conclusion, the altered cortical gene expression illuminated here would have the effect of altering neurotransmitter release in AA rats (compared with ANA rats). Such alterations, however, might not be a universal characteristic of all animal models of alcohol abuse and will also require further investigation in post-mortem human samples.
Collapse
Affiliation(s)
- Travis J Worst
- Center for the Neurobehavioral Study of Alcohol, Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mulholland PJ, Self RL, Stepanyan TD, Little HJ, Littleton JM, Prendergast MA. Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro. Neuroscience 2005; 135:1129-39. [PMID: 16165302 DOI: 10.1016/j.neuroscience.2005.06.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/17/2005] [Accepted: 06/22/2005] [Indexed: 11/25/2022]
Abstract
Nutritional deficiencies associated with long-term ethanol consumption may cause neuronal damage in ethanol-dependent individuals. Thiamine deficiency, in particular, is thought to contribute to ethanol-associated cerebellar degeneration, although damage may occur in adequately nourished alcoholics. Thus, the present study examined the effects of thiamine depletion and ethanol exposure on cytotoxicity in rat cerebellum. Organotypic cerebellar slice cultures were treated starting at 25 days in vitro with 100 mM ethanol for 11 days or 10 days followed by a 24-h withdrawal period. This exposure paradigm has previously been shown in hippocampal slice cultures to result in spontaneous cytotoxicity upon ethanol withdrawal. Additional cerebellar cultures were exposed to the thiamine depleting agent pyrithiamine (10-500 microM) for 10 or 11 days, some in the presence of ethanol exposure or withdrawal. Other cultures were co-exposed to thiamine (1-100 microM), 500 microM pyrithiamine, and ethanol for 10 or 11 days. The results demonstrated that neither 11-day ethanol treatment nor withdrawal from 10-day exposure significantly increased cerebellar cytotoxicity, as measured by propidium iodide fluorescence. The 11-day treatment with 100 or 500 microM pyrithiamine significantly increased propidium iodide fluorescence approximately 21% above levels observed in control tissue. Cultures treated with both ethanol (11 days or 10 days plus withdrawal) and 500 microM pyrithiamine displayed a marked increase in cytotoxicity approximately 60-90% above levels observed in control cultures. Pyrithiamine and ethanol-induced cytotoxicity was prevented in cultures co-exposed to thiamine (10-100 microM) for the duration of pyrithiamine treatment. Findings from this report suggest that the cerebellum may be more sensitive to the toxic effects of thiamine deficiency, as compared with alcohol withdrawal, associated with alcohol dependence.
Collapse
Affiliation(s)
- P J Mulholland
- Department of Psychology, 012-I Kastle Hall, University of Kentucky, Lexington, KY 40506-0044, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Littleton J, Zieglgänsberger W. Pharmacological mechanisms of naltrexone and acamprosate in the prevention of relapse in alcohol dependence. Am J Addict 2004; 12:s3-s11. [PMID: 14972776 DOI: 10.1111/j.1521-0391.2003.tb00492.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Naltrexone and acamprosate may ultimately prove to be useful additions to pharmacotherapy for alcoholism by reducing relapse. Naltrexone is a relatively selective competitive antagonist at mu-opioid receptors, and this activity may explain its anti-relapse action either because endogenous opioids are involved in the positively reinforcing effects of alcohol and/or because these same transmitters are involved in the conditioned anticipation of these effects. In contrast, the pharmacology of acamprosate is still poorly understood. This is not surprising because it is a small flexible molecule with similarities to several neuro-active amino acids and is used in high doses. All these factors suggest that it may have multiple actions. Currently, the best explanation for the effects of acamprosate seems to be that it inhibits the glutamatergic transmitter system involved in both the negative reinforcing effects of alcohol and the conditioned "pseudo-withdrawal" that may be important in cue-induced relapse.
Collapse
Affiliation(s)
- John Littleton
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40546-0236, USA.
| | | |
Collapse
|
26
|
Crews FT, Collins MA, Dlugos C, Littleton J, Wilkins L, Neafsey EJ, Pentney R, Snell LD, Tabakoff B, Zou J, Noronha A. Alcohol-Induced Neurodegeneration: When, Where and Why? Alcohol Clin Exp Res 2004; 28:350-64. [PMID: 15112943 DOI: 10.1097/01.alc.0000113416.65546.01] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This manuscript reviews the proceedings of a symposium organized by Drs. Antonio Noronha and Fulton Crews presented at the 2003 Research Society on Alcoholism meeting. The purpose of the symposium was to examine recent findings on when alcohol induced brain damage occurs, e.g., during intoxication and/or during alcohol withdrawal. Further studies investigate specific brain regions (where) and the mechanisms (why) of alcoholic neurodegeneration. The presentations were (1) Characterization of Synaptic Loss in Cerebella of Mature and Senescent Rats after Lengthy Chronic Ethanol Consumption, (2) Ethanol Withdrawal Both Causes Neurotoxicity and Inhibits Neuronal Recovery Processes in Rat Organotypic Hippocampal Cultures, (3) Binge Drinking-Induced Brain Damage: Genetic and Age Related Effects, (4) Binge Ethanol-Induced Brain Damage: Involvement of Edema, Arachidonic Acid and Tissue Necrosis Factor alpha (TNFalpha), and (5) Cyclic AMP Cascade, Stem Cells and Ethanol. Taken together these studies suggest that alcoholic neurodegeneration occurs through multiple mechanisms and in multiple brain regions both during intoxication and withdrawal.
Collapse
|
27
|
Abstract
In the last years important advances have been made in the development of drugs for the treatment of alcohol addiction. Acamprosate (calcium bis-acetylhomotaurine) is one of the better established drugs in this field on the European market. This review focuses first on the pharmacokinetics of acamprosate. The published data and the recent advances in our knowledge on the mechanisms involved in the intestinal absorption and elimination of this drug are summarized. The importance of pharmacokinetics for the proper clinical use of acamprosate is highlighted. The anti-relapse as well as the well-known effects of acamprosate on ethanol intake are discussed. The recent experiments in animal models of conditioned withdrawal are reviewed. These experiments, explored for the first time the anticraving effect of the drug. Finally, the proposed hypotheses on the neuropharmacological mechanism of action of acamprosate are discussed. The discussion deals with the relative importance of various hypotheses as well as with the recent experiments that support them. It is pointed out that further research is necessary in order to clearly understand the mode of action of acamprosate as well as the neurobiological mechanisms involved in alcohol dependence.
Collapse
Affiliation(s)
- Teodoro Zornoza
- Department of Pharmaceutics, Faculty of Pharmacy, University of Valencia, Spain
| | - María J. Cano
- Department of Pharmaceutics, Faculty of Pharmacy, University of Valencia, Spain
| | - Ana Polache
- Department of Pharmaceutics, Faculty of Pharmacy, University of Valencia, Spain
| | - Luis Granero
- Department of Pharmaceutics, Faculty of Pharmacy, University of Valencia, Spain
| |
Collapse
|
28
|
Harris BR, Gibson DA, Prendergast MA, Blanchard JA, Holley RC, Hart SR, Scotland RL, Foster TC, Pedigo NW, Littleton JM. The Neurotoxicity Induced by Ethanol Withdrawal in Mature Organotypic Hippocampal Slices Might Involve Cross-Talk Between Metabotropic Glutamate Type 5 Receptors and N-Methyl-d-Aspartate Receptors. Alcohol Clin Exp Res 2003; 27:1724-35. [PMID: 14634487 DOI: 10.1097/01.alc.0000093601.33119.e3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We recently reported that the sodium salt of acamprosate (Na-acamprosate) demonstrates the characteristics of an antagonist at metabotropic glutamate type 5 receptors (mGluR5s) rather than at N-methyl-d-aspartate receptors (NMDARs). Because mGluR5s are able to enhance the function of NMDARs, this interplay may be involved in the dysregulation of glutamatergic transmission during ethanol withdrawal. The following studies use organotypic hippocampal slice cultures at a mature age to investigate the potential for this interplay in the neurotoxicity associated with withdrawal from long-term ethanol exposure. METHODS At 25 days in vitro, organotypic hippocampal slice cultures prepared from male and female 8-day-old rats were exposed to an initial concentration of 100 mM ethanol for 10 days before undergoing a 24-hr period of withdrawal. The effects of Na-acamprosate; 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893), a noncompetitive antagonist at mGluR5s; 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester, a noncompetitive antagonist at mGluR1s; dizocilpine (MK-801), a noncompetitive NMDAR antagonist; and staurosporine on the neurotoxicity induced by ethanol withdrawal were assessed by determining differences in propidium iodide uptake. Polypeptide levels of mGluR5s and the NR1 and NR2B subunits of NMDARs were also determined via Western blot analyses after 10 days of ethanol exposure. RESULTS Significant neurotoxicity was always evident in the CA1 hippocampal region after a 24-hr withdrawal period. This spontaneous neurotoxicity resulted from intrinsic changes induced by the long-term presence of ethanol. Na-acamprosate (200-1000 microM), SIB-1893 (200-500 microM), MK-801 (20 microM), and staurosporine (200 nM) were all neuroprotective. The polypeptide levels of mGluR5s and NR1 and NR2B subunits of NMDARs were all increased after ethanol exposure; however, the increase in mGluR5s did not achieve statistical significance. CONCLUSIONS From this model of long-term ethanol exposure and withdrawal, the functional interplay between mGluR5s and NMDARs might represent a novel target for the prevention of neurotoxicity associated with ethanol withdrawal.
Collapse
Affiliation(s)
- Barton R Harris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Chandler Medical Center, Lexington 40546, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krystal JH, Petrakis IL, Krupitsky E, Schutz C, Trevisan L, D'Souza DC. NMDA Receptor Antagonism and the Ethanol Intoxication Signal. Ann N Y Acad Sci 2003; 1003:176-84. [PMID: 14684445 DOI: 10.1196/annals.1300.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper reviews clinical evidence suggesting that antagonism of the N-methyl-D-aspartate subtype of glutamate receptors by ethanol may convey an important component of the ethanol intoxication signal, that is, subjective and objective responses associated with the consumption of a large amount of ethanol. It will then review recent evidence that two phenotypes associated with increased risk for heavy alcohol consumption, recovering ethanol-dependent patients, and healthy individuals with a family history of alcohol dependence, exhibit reduced sensitivity to the dysphoric consequences of administration of the NMDA receptor antagonist, ketamine. Each of these groups displays reduced sensitivity to a potentially important response that might normally trigger the cessation of ethanol consumption. These data raise the possibility that alterations in NMDA receptor function that reduce the response to the NMDA antagonist component of ethanol may increase the risk for heavy drinking. This hypothesis is consistent with growing evidence that NMDA receptor antagonists may play a role in the treatment of alcoholism by suppressing alcohol withdrawal, reducing the development or expression of alcohol tolerance, or preventing or reversing the sensitiziation to ethanol effects.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mulholland PJ, Harris BR, Wilkins LH, Self RL, Blanchard JA, Holley RC, Littleton JM, Prendergast MA. Opposing effects of ethanol and nicotine on hippocampal calbindin-D28k expression. Alcohol 2003; 31:1-10. [PMID: 14615005 DOI: 10.1016/j.alcohol.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Long-term ethanol exposure produces multiple neuroadaptations that likely contribute to dysregulation of Ca(2+) balance and neurotoxicity during ethanol withdrawal. Conversely, nicotine exposure may reduce the neurotoxic consequences of Ca(2+) dysregulation, putatively through up-regulation of the Ca(2+)-buffering protein calbindin-D(28k). The current studies were designed to examine the extent to which 10-day ethanol exposure and withdrawal altered calbindin-D(28k) expression in rat hippocampus. Further, in these studies, we examined the ability of nicotine, through action at alpha(7)(*)-bearing nicotinic acetylcholine receptors (nAChRs), to antagonize the effects of ethanol exposure on calbindin-D(28k) expression. Organotypic cultures of rat hippocampus were exposed to ethanol (50-100 mM) for 10 days. Additional cultures were exposed to 500 nM (-)-nicotine with or without the addition of 50 mM ethanol, 100 nM methyllycaconitine (an alpha(7)*-bearing nAChR antagonist), or both. Prolonged exposure to ethanol (>/=50 mM) produced significant reductions of calbindin-D(28k) immunolabeling in all regions of the hippocampal formation, even at nontoxic concentrations of ethanol. Calbindin-D(28k) expression levels returned to near-control levels after 72 h of withdrawal from 10-day ethanol exposure. Extended (-)-nicotine exposure produced significant elevations in calbindin-D(28k) expression levels that were prevented by methyllycaconitine co-exposure. Co-exposure of cultures to (-)-nicotine with ethanol resulted in an attenuation of ethanol-induced reductions in calbindin-D(28k) expression levels. These findings support the suggestion that long-term ethanol exposure reduces the neuronal capacity to buffer accumulated Ca(2+) in a reversible manner, an effect that likely contributes to withdrawal-induced neurotoxicity. Further, long-term exposure to (-)-nicotine enhances calbindin-D(28k) expression in an alpha(7)* nAChR-dependent manner and antagonizes the effects of ethanol on calbindin-D(28k) expression.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Psychology, University of Kentucky, 115 Kastle Hall, Lexington, KY 40506-0044, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gibson DA, Harris BR, Prendergast MA, Hart SR, Blanchard JA, Holley RC, Pedigo NW, Littleton JM. Polyamines contribute to ethanol withdrawal-induced neurotoxicity in rat hippocampal slice cultures through interactions with the NMDA receptor. Alcohol Clin Exp Res 2003; 27:1099-106. [PMID: 12878916 DOI: 10.1097/01.alc.0000075824.10502.dd] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several reports demonstrate that withdrawal from long-term ethanol exposure is associated with significant central nervous system neurotoxicity, produced at least in part by increased activity of N-methyl-d-aspartate receptors (NMDARs). Recent evidence suggests that elevations in the synthesis and release of the polyamines spermidine and spermine, which are known modulators of NMDARs, contribute to the increased activity of the receptor during ethanol withdrawal. Therefore, the goal of this investigation was to examine what role, if any, spermidine and spermine have in the generation of ethanol withdrawal-induced neurotoxicity. METHODS Neurotoxicity (measured as fluorescence of the cell death indicator propidium iodide, PI), glutamate release (measured by high-performance liquid chromatography analysis), and polyamine concentrations (by high-performance liquid chromatography) were measured in rat hippocampal slice cultures undergoing withdrawal from chronic (10 day) ethanol exposure (100 mM). In addition, the effects of the polyamine synthesis inhibitor di-fluoro-methyl-ornithine (DFMO, 0.1-100 nM) and NMDAR polyamine-site antagonists ifenprodil, arcaine, and agmatine (1 nM-100 microM) on ethanol withdrawal- and NMDA-induced neurotoxicity were measured. RESULTS Ethanol withdrawal significantly increased glutamate release (peaking at 18 hr with a 53% increase), increased concentrations of putrescine and spermidine (136% and 139% increases, respectively, at 18 hr), and produced significant cytotoxicity in the CA1 hippocampal region (56% increase in PI staining relative to controls) of the cultures. The cell death produced by ethanol withdrawal was significantly inhibited by ifenprodil (IC(50) = 14.9 nM), arcaine (IC(50) = 37.9 nM), agmatine (IC(50) = 41.5 nM), and DFMO (IC(50) = 0.6 nM). NMDA (5 microM) significantly increased PI staining in the CA1 region of the hippocampal cultures (365% relative to controls), but ifenprodil, arcaine, agmatine, and DFMO all failed to significantly affect this type of toxicity. CONCLUSIONS These data implicate a role for polyamines in ethanol withdrawal-induced neurotoxicity and suggest that inhibiting the actions of polyamines on NMDARs may be neuroprotective under these conditions.
Collapse
Affiliation(s)
- D Alex Gibson
- Department of Pharmacology, University of Kentucky, Tobacco and Health Research Institute, Lexington 40546-0236, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Paula L Hoffman
- Department of Pharmacology C-236, University of Colorado Health Sciences Center, 4200 E. Ninth Avenue, Denver, CO 80262, USA
| |
Collapse
|