1
|
Wood EK, Lemmon DP, Schwandt ML, Lindell SG, Barr CS, Suomi SJ, Higley JD. Central nervous system monoamine metabolite response to alcohol exposure is associated with future alcohol intake in a nonhuman primate model (Macaca mulatta). Addict Biol 2022; 27:e13142. [PMID: 35470557 PMCID: PMC9444692 DOI: 10.1111/adb.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
It is widely held that the central monoamine neurotransmitters modulate alcohol intake. Few studies, however, directly assess the relationship between baseline and alcohol-induced monoamine turnover, as well as the change from baseline, as predictors of alcohol intake. Using a nonhuman primate model, this study investigates baseline, alcohol-induced and alcohol-induced change in monoamine activity and their relationship with alcohol intake. Alcohol-naïve, adolescent rhesus macaques (Macaca mulatta, N = 114) were administered a standardized intravenous bolus of alcohol solution (16.8%, v/v) on two occasions, approximately 1 month apart. One month prior to and 1 h following each alcohol infusion, cisternal cerebrospinal fluid (CSF) was obtained and assayed for monoamine metabolite concentrations. Approximately 6-7 months later, subjects were allowed unfettered access to an aspartame-sweetened alcohol solution (8.4%, v/v) for 1 h/day, 5 days/week, over 5-7 weeks. Results showed strong positive correlations between baseline and post-infusion CSF monoamine metabolite concentrations, indicating a trait-like response. Low baseline and post-infusion serotonin and dopamine metabolite concentrations and a smaller change in serotonin and dopamine metabolites from one infusion to the next were associated with higher alcohol intake. Low baseline and post-infusion norepinephrine metabolite concentrations predicted high alcohol intake, but unlike the other monoamines, a greater change in norepinephrine metabolite concentrations from one infusion to the next was associated with higher alcohol intake. These findings suggest that individual differences in naturally occurring and alcohol-induced monoamine activity, as well as the change between exposures, are important modulators of initial alcohol consumption and may play a role in the risk for excessive alcohol intake.
Collapse
Affiliation(s)
| | - Dani P. Lemmon
- Department of Psychology Brigham Young University Provo Utah USA
| | - Melanie L. Schwandt
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
| | - Stephen G. Lindell
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Rockville Maryland USA
| | - Christina S. Barr
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Rockville Maryland USA
| | - Stephen J. Suomi
- Section of Comparative Ethology, Eunice Shriver Kennedy National Institute of Child Health and Human Development National Institutes of Health Poolesville Maryland USA
| | - James Dee Higley
- Department of Psychology Brigham Young University Provo Utah USA
| |
Collapse
|
2
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
3
|
Stimulant and motivational effects of alcohol: Lessons from rodent and primate models. Pharmacol Biochem Behav 2014; 122:37-52. [DOI: 10.1016/j.pbb.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
|
4
|
Silveri MM. GABAergic contributions to alcohol responsivity during adolescence: insights from preclinical and clinical studies. Pharmacol Ther 2014; 143:197-216. [PMID: 24631274 DOI: 10.1016/j.pharmthera.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/04/2023]
Abstract
There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol use disorders.
Collapse
Affiliation(s)
- Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Duffing TM, Greiner SG, Mathias CW, Dougherty DM. Stress, substance abuse, and addiction. Curr Top Behav Neurosci 2014; 18:237-263. [PMID: 24510301 DOI: 10.1007/7854_2014_276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Experiencing stressful life events is reciprocally associated with substance use and abuse. The nature of these relationships varies based on the age of stress exposure and stage of substance use involvement. This chapter reviews the developmental and biological processes involved in the relationship of stress exposure and substance use initiation, substance use maintenance and relapse, and response to substance abuse treatment. Special emphasis is given to describing the various stress-related mechanisms involved in substance use and abuse, highlighting the differences between each of these phases of drug use and drawing upon current research to make suggestions for treatments of substance use disorder (SUD) patients. Stress is inherent to the experience of life and, in many situations, unavoidable. Through ongoing research and treatment development, there is the potential to modify the relationship of stress with ongoing substance use and abuse.
Collapse
|
6
|
Sinclair D, Purves-Tyson TD, Allen KM, Weickert CS. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology (Berl) 2014; 231:1581-99. [PMID: 24481565 PMCID: PMC3967083 DOI: 10.1007/s00213-013-3415-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. OBJECTIVES In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. RESULTS AND CONCLUSIONS Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.
Collapse
Affiliation(s)
- Duncan Sinclair
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia ,Neuropsychiatric Signaling Program, Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Tertia D Purves-Tyson
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Katherine M Allen
- Schizophrenia Research Institute, Sydney, Australia ,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia ,Macquarie Group Chair of Schizophrenia Research, Neuroscience Research Australia, Barker Street, Randwick, NSW 2031 Australia ,School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Gonçalves PD, Cunha PJ, Malbergier A, do Amaral RA, de Oliveira LG, Yang JJ, de Andrade AG. The association between low alcohol use and traffic risk behaviors among Brazilian college students. Alcohol 2012; 46:673-9. [PMID: 22921955 DOI: 10.1016/j.alcohol.2012.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/28/2012] [Accepted: 08/05/2012] [Indexed: 01/06/2023]
Abstract
Although there are a large number of studies focused on binge drinking and traffic risk behaviors (TRB), little is known regarding low levels of alcohol consumption and its association to TRB. The aim of this cross-sectional study is to examine the association of low to moderate alcohol intake pattern and TRB in college students in Brazil. 7037 students from a National representative sample were selected under rigorous inclusion criteria. All study participants voluntarily fulfilled a structured, anonymous, and self-questionnaire regarding alcohol and drug use, social-demographic data, and TRB. Alcohol was assessed according to the average number of alcoholic units consumed on standard occasions over the past 12 months. The associations between alcohol intake and TRB were summarized with odds ratio and their confidence interval obtained from logistic regression. Compared with abstainers students who consumed only one alcohol unit had the risk of being a passenger in a car driven by a drunk driver increased by almost four times, students who reported using five or more units were increased by almost five times the risk of being involved in a car crash. Compared with students who consumed one alcohol unit, the risk of driving under the influence of alcohol increased four times in students using three alcohol units. Age group, use of illicit drugs, employment status, gender, and marital status significantly influenced occurrence of TRB among college students. Our study highlights the potential detrimental effects of low and moderate pattern of alcohol consumption and its relation to riding with an intoxicated driver and other TRB. These data suggest that targeted interventions should be implemented in order to prevent negative consequences due to alcohol use in this population.
Collapse
|
8
|
|
9
|
Brenhouse HC, Andersen SL. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 2011; 35:1687-703. [PMID: 21600919 PMCID: PMC3134153 DOI: 10.1016/j.neubiorev.2011.04.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 11/20/2022]
Abstract
Adolescence is a transitional period between childhood and adulthood that encompasses vast changes within brain systems that parallel some, but not all, behavioral changes. Elevations in emotional reactivity and reward processing follow an inverted U shape in terms of onset and remission, with the peak occurring during adolescence. However, cognitive processing follows a more linear course of development. This review will focus on changes within key structures and will highlight the relationships between brain changes and behavior, with evidence spanning from functional magnetic resonance imaging (fMRI) in humans to molecular studies of receptor and signaling factors in animals. Adolescent changes in neuronal substrates will be used to understand how typical and atypical behaviors arise during adolescence. We draw upon clinical and preclinical studies to provide a neural framework for defining adolescence and its role in the transition to adulthood.
Collapse
Affiliation(s)
- Heather C. Brenhouse
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - Susan L. Andersen
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| |
Collapse
|
10
|
Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD. The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 2010; 58:122-37. [PMID: 19900453 PMCID: PMC2883625 DOI: 10.1016/j.yhbeh.2009.10.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 01/04/2023]
Abstract
Adolescence is the developmental epoch during which children become adults-intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence. The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Schwandt ML, Lindell SG, Chen S, Higley JD, Suomi SJ, Heilig M, Barr CS. Alcohol response and consumption in adolescent rhesus macaques: life history and genetic influences. Alcohol 2010; 44:67-80. [PMID: 20113875 DOI: 10.1016/j.alcohol.2009.09.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/05/2009] [Accepted: 09/02/2009] [Indexed: 11/16/2022]
Abstract
The use of alcohol by adolescents is a growing problem and has become an important research topic in the etiology of the alcohol use disorders. A key component of this research has been the development of animal models of adolescent alcohol consumption and alcohol response. Because of their extended period of adolescence, rhesus macaques are especially well suited for modeling alcohol-related phenotypes that contribute to the adolescent propensity for alcohol consumption. In this review, we discuss studies from our laboratory that have investigated both the initial response to acute alcohol administration and the consumption of alcohol in voluntary self-administration paradigms in adolescent rhesus macaques. These studies confirm that adolescence is a time of dynamic change both behaviorally and physiologically, and that alcohol response and alcohol consumption are influenced by life history variables, such as age, sex, and adverse early experience in the form of peer-rearing. Furthermore, genetic variants that alter functioning of the serotonin, endogenous opioid, and corticotropin-releasing hormone systems are shown to influence both physiological and behavioral outcomes, in some cases interacting with early experience to indicate gene by environment interactions. These findings highlight several of the pathways involved in alcohol response and consumption, namely reward, behavioral dyscontrol, and vulnerability to stress, and demonstrate a role for these pathways during the early stages of alcohol exposure in adolescence.
Collapse
Affiliation(s)
- Melanie L Schwandt
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM. Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology (Berl) 2009; 206:1-21. [PMID: 19547960 PMCID: PMC3025448 DOI: 10.1007/s00213-009-1585-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/26/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND RATIONALE Epidemiological evidence suggests that people who begin experimenting with drugs of abuse during early adolescence are more likely to develop substance use disorders (SUDs), but this correlation does not guarantee causation. Animal models, in which age of onset can be tightly controlled, offer a platform for testing causality. Many animal models address drug effects that might promote or discourage drug intake and drug-induced neuroplasticity. METHODS We have reviewed the preclinical literature to investigate whether adolescent rodents are differentially sensitive to rewarding, reinforcing, aversive, locomotor, and withdrawal-induced effects of drugs of abuse. RESULTS AND CONCLUSIONS The rodent model literature consistently suggests that the balance of rewarding and aversive effects of drugs of abuse is tipped toward reward in adolescence. However, increased reward does not consistently lead to increased voluntary intake: age effects on voluntary intake are drug and method specific. On the other hand, adolescents are consistently less sensitive to withdrawal effects, which could protect against compulsive drug seeking. Studies examining neuronal function have revealed several age-related effects but have yet to link these effects to vulnerability to SUDs. Taken together, the findings suggest factors which may promote recreational drug use in adolescents, but evidence relating to pathological drug-seeking behavior is lacking. A call is made for future studies to address this gap using behavioral models of pathological drug seeking and for neurobiologic studies to more directly link age effects to SUD vulnerability.
Collapse
|
13
|
Schwandt ML, Higley JD, Suomi SJ, Heilig M, Barr CS. Rapid Tolerance and Locomotor Sensitization in Ethanol-Nave Adolescent Rhesus Macaques. Alcohol Clin Exp Res 2008; 32:1217-28. [DOI: 10.1111/j.1530-0277.2008.00676.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|