1
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
2
|
Grecco GG, Haggerty DL, Doud EH, Fritz BM, Yin F, Hoffman H, Mosley AL, Simpson E, Liu Y, Baucum AJ, Atwood BK. A multi-omic analysis of the dorsal striatum in an animal model of divergent genetic risk for alcohol use disorder. J Neurochem 2020; 157:1013-1031. [PMID: 33111353 DOI: 10.1111/jnc.15226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022]
Abstract
The development of selectively bred high and low alcohol-preferring mice (HAP and LAP, respectively) has allowed for an assessment of the polygenetic risk for pathological alcohol consumption and phenotypes associated with alcohol use disorder (AUD). Accumulating evidence indicates that the dorsal striatum (DS) is a central node in the neurocircuitry underlying addictive processes. Therefore, knowledge of differential gene, protein, and phosphorylated protein expression in the DS of HAP and LAP mice may foster new insights into how aberrant DS functioning may contribute to AUD-related phenotypes. To begin to elucidate these basal differences, a complementary and integrated analysis of DS tissue from alcohol-naïve male and female HAP and LAP mice was performed using RNA sequencing, quantitative proteomics, and phosphoproteomics. These datasets were subjected to a thorough analysis of gene ontology, pathway enrichment, and hub gene assessment. Analyses identified 2,108, 390, and 521 significant differentially expressed genes, proteins, and phosphopeptides, respectively between the two lines. Network analyses revealed an enrichment in the differential expression of genes, proteins, and phosphorylated proteins connected to cellular organization, cytoskeletal protein binding, and pathways involved in synaptic transmission and functioning. These findings suggest that the selective breeding to generate HAP and LAP mice may lead to a rearrangement of synaptic architecture which could alter DS neurotransmission and plasticity differentially between mouse lines. These rich datasets will serve as an excellent resource to inform future studies on how inherited differences in gene, protein, and phosphorylated protein expression contribute to AUD-related phenotypes.
Collapse
Affiliation(s)
- Gregory G Grecco
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David L Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emma H Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brandon M Fritz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fuqin Yin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hunter Hoffman
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Baucum
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brady K Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
3
|
Iancu OD, Colville A, Walter NA, Darakjian P, Oberbeck DL, Daunais JB, Zheng CL, Searles RP, McWeeney SK, Grant KA, Hitzemann R. On the relationships in rhesus macaques between chronic ethanol consumption and the brain transcriptome. Addict Biol 2018; 23:196-205. [PMID: 28247455 DOI: 10.1111/adb.12501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/19/2022]
Abstract
This is the first description of the relationship between chronic ethanol self-administration and the brain transcriptome in a non-human primate (rhesus macaque). Thirty-one male animals self-administered ethanol on a daily basis for over 12 months. Gene transcription was quantified with RNA-Seq in the central nucleus of the amygdala (CeA) and cortical Area 32. We constructed coexpression and cosplicing networks, and we identified areas of preservation and areas of differentiation between regions and network types. Correlations between intake and transcription included largely distinct gene sets and annotation categories across brain regions and between expression and splicing; positive and negative correlations were also associated with distinct annotation groups. Membrane, synaptic and splicing annotation categories were over-represented in the modules (gene clusters) enriched in positive correlations (CeA); our cosplicing analysis further identified the genes affected only at the exon inclusion level. In the CeA coexpression network, we identified Rab6b, Cdk18 and Igsf21 among the intake-correlated hubs, while in the Area 32, we identified a distinct hub set that included Ppp3r1 and Myeov2. Overall, the data illustrate that excessive ethanol self-administration is associated with broad expression and splicing mechanisms that involve membrane and synapse genes.
Collapse
|
4
|
Hoffman PL, Saba LM, Flink S, Grahame NJ, Kechris K, Tabakoff B. Genetics of gene expression characterizes response to selective breeding for alcohol preference. GENES, BRAIN, AND BEHAVIOR 2014; 13:743-57. [PMID: 25160899 PMCID: PMC4241152 DOI: 10.1111/gbb.12175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 01/30/2023]
Abstract
Numerous selective breeding experiments have been performed with rodents, in an attempt to understand the genetic basis for innate differences in preference for alcohol consumption. Quantitative trait locus (QTL) analysis has been used to determine regions of the genome that are associated with the behavioral difference in alcohol preference/consumption. Recent work suggests that differences in gene expression represent a major genetic basis for complex traits. Therefore, the QTLs are likely to harbor regulatory regions (eQTLs) for the differentially expressed genes that are associated with the trait. In this study, we examined brain gene expression differences over generations of selection of the third replicate lines of high and low alcohol-preferring (HAP3 and LAP3) mice, and determined regions of the genome that control the expression of these differentially expressed genes (de eQTLs). We also determined eQTL regions (rv eQTLs) for genes that showed a decrease in variance of expression levels over the course of selection. We postulated that de eQTLs that overlap with rv eQTLs, and also with phenotypic QTLs, represent genomic regions that are affected by the process of selection. These overlapping regions controlled the expression of candidate genes (that displayed differential expression and reduced variance of expression) for the predisposition to differences in alcohol consumption by the HAP3/LAP3 mice.
Collapse
Affiliation(s)
- Paula L. Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephen Flink
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Nicholas J. Grahame
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN 46202
| | - Katerina Kechris
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
5
|
Mulligan MK, Dubose C, Yue J, Miles MF, Lu L, Hamre KM. Expression, covariation, and genetic regulation of miRNA Biogenesis genes in brain supports their role in addiction, psychiatric disorders, and disease. Front Genet 2013; 4:126. [PMID: 23847651 PMCID: PMC3701868 DOI: 10.3389/fgene.2013.00126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022] Open
Abstract
The role of miRNA and miRNA biogenesis genes in the adult brain is just beginning to be explored. In this study we have performed a comprehensive analysis of the expression, genetic regulation, and co-expression of major components of the miRNA biogenesis pathway using human and mouse data sets and resources available on the GeneNetwork web site (genenetwork.org). We found a wide range of variation in expression in both species for key components of the pathway—Drosha, Pasha, and Dicer. Across species, tissues, and expression platforms all three genes are generally well-correlated. No single genetic locus exerts a strong and consistent influence on the expression of these key genes across murine brain regions. However, in mouse striatum, many members of the miRNA pathway are correlated—including Dicer, Drosha, Pasha, Ars2 (Srrt), Eif2c1 (Ago1), Eif2c2 (Ago2), Zcchc11, and Snip1. The expression of these genes may be partly influenced by a locus on Chromosome 9 (105.67–106.32 Mb). We explored ~1500 brain phenotypes available for the C57BL/6J × DBA/2J (BXD) genetic mouse population in order to identify miRNA biogenesis genes correlated with traits related to addiction and psychiatric disorders. We found a significant association between expression of Dicer and Drosha in several brain regions and the response to many drugs of abuse, including ethanol, cocaine, and methamphetamine. Expression of Dicer, Drosha, and Pasha in most of the brain regions explored is strongly correlated with the expression of key members of the dopamine system. Drosha, Pasha, and Dicer expression is also correlated with the expression of behavioral traits measuring depression and sensorimotor gating, impulsivity, and anxiety, respectively. Our study provides a global survey of the expression and regulation of key miRNA biogenesis genes in brain and provides preliminary support for the involvement of these genes and their product miRNAs in addiction and psychiatric disease processes.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gonik M, Frank E, Keßler MS, Czamara D, Bunck M, Yen YC, Pütz B, Holsboer F, Bettecken T, Landgraf R, Müller-Myhsok B, Touma C, Czibere L. The endocrine stress response is linked to one specific locus on chromosome 3 in a mouse model based on extremes in trait anxiety. BMC Genomics 2012; 13:579. [PMID: 23114097 PMCID: PMC3557225 DOI: 10.1186/1471-2164-13-579] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/29/2012] [Indexed: 12/17/2022] Open
Abstract
Background The hypothalamic-pituitary-adrenal (HPA) axis is essential to control physiological stress responses in mammals. Its dysfunction is related to several mental disorders, including anxiety and depression. The aim of this study was to identify genetic loci underlying the endocrine regulation of the HPA axis. Method High (HAB) and low (LAB) anxiety-related behaviour mice were established by selective inbreeding of outbred CD-1 mice to model extremes in trait anxiety. Additionally, HAB vs. LAB mice exhibit comorbid characteristics including a differential corticosterone response upon stress exposure. We crossbred HAB and LAB lines to create F1 and F2 offspring. To identify the contribution of the endocrine phenotypes to the total phenotypic variance, we examined multiple behavioural paradigms together with corticosterone secretion-based phenotypes in F2 mice by principal component analysis. Further, to pinpoint the genomic loci of the quantitative trait of the HPA axis stress response, we conducted genome-wide multipoint oligogenic linkage analyses based on Bayesian Markov chain Monte Carlo approach as well as parametric linkage in three-generation pedigrees, followed by a two-dimensional scan for epistasis and association analysis in freely segregating F2 mice using 267 single-nucleotide polymorphisms (SNPs), which were identified to consistently differ between HAB and LAB mice as genetic markers. Results HPA axis reactivity measurements and behavioural phenotypes were represented by independent principal components and demonstrated no correlation. Based on this finding, we identified one single quantitative trait locus (QTL) on chromosome 3 showing a very strong evidence for linkage (2ln (L-score) > 10, LOD > 23) and significant association (lowest Bonferroni adjusted p < 10-28) to the neuroendocrine stress response. The location of the linkage peak was estimated at 42.3 cM (95% confidence interval: 41.3 - 43.3 cM) and was shown to be in epistasis (p-adjusted < 0.004) with the locus at 35.3 cM on the same chromosome. The QTL harbours genes involved in steroid synthesis and cardiovascular effects. Conclusion The very prominent effect on stress-induced corticosterone secretion of the genomic locus on chromosome 3 and its involvement in epistasis highlights the critical role of this specific locus in the regulation of the HPA axis.
Collapse
Affiliation(s)
- Mariya Gonik
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B. A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology 2011; 60:1269-80. [PMID: 21185315 PMCID: PMC3079014 DOI: 10.1016/j.neuropharm.2010.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022]
Abstract
Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Laura M. Saba
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Beth Bennett
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Paula L. Hoffman
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Kelsey Barcomb
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Takao Ishii
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Katerina Kechris
- Colorado School of Public Health, Campus Box B119, Aurora, CO 80045 USA,
| | - Boris Tabakoff
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| |
Collapse
|
8
|
Jaholkowski P, Mierzejewski P, Zatorski P, Scinska A, Sienkiewicz-Jarosz H, Kaczmarek L, Samochowiec J, Filipkowski RK, Bienkowski P. Increased ethanol intake and preference in cyclin D2 knockout mice. GENES BRAIN AND BEHAVIOR 2011; 10:551-6. [PMID: 21429093 DOI: 10.1111/j.1601-183x.2011.00692.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitory effects of passive ethanol exposure on brain neurogenesis have been extensively documented in animal models. In contrast, a role of brain neurogenesis in ethanol self-administration has not been addressed, as yet. The aim of this study was to assess intake of, and preference for, ethanol solutions [2-16% (v/v)] in a mouse model of adult neurogenesis deficiency based on permanent knockout (KO) of cyclin D2 (Ccnd2). Wild type (WT) and Ccnd2 KO mice did not differ in 2% and 4% ethanol intake. The KO group consumed significantly more ethanol in g/kg when offered with 8% or 16% ethanol as compared with the WT controls. The WT and KO mice did not differ in 2% ethanol preference, but the KO group showed a significantly higher preference for 4-16% ethanol. Animal and human studies have suggested that the low level of response to the sedative/hypnotic effects of alcohol is genetically associated with enhanced alcohol consumption. However, in this study, there were no between-genotype differences in ethanol-induced loss of righting reflex. Previous reports have also suggested that high ethanol intake is genetically associated with the avidity for sweets and better acceptance of bitter solutions. However, the KO and WT mice consumed similar amounts of saccharin solutions and the KOs consumed less quinine (i.e. bitter) solutions as compared with the WTs. In conclusion, these results may indicate that Ccnd2 and, possibly, brain neurogenesis are involved in central regulation of ethanol intake in mice.
Collapse
Affiliation(s)
- P Jaholkowski
- Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bice PJ, Lai D, Zhang L, Foroud T. Fine mapping quantitative trait loci that influence alcohol preference behavior in the High and Low Alcohol Preferring (HAP and LAP) mice. Behav Genet 2010; 41:565-70. [PMID: 21184168 DOI: 10.1007/s10519-010-9414-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/27/2010] [Indexed: 12/24/2022]
Abstract
The High Alcohol Preferring (HAP1) and Low Alcohol Preferring (LAP1) mouse lines were selectively bred for differences in alcohol intake. The HAP1 and LAP1 mice are essentially non-inbred lines that originated from an outbred colony of HS/Ibg mice, a heterogeneous stock developed from intercrossing 8 inbred strains of mice. In a former genomewide SNP association study, we identified quantitative trait loci (QTL) on chromosomes 1, 3, 5, and 9 (Bice et al. 2009). Provisional QTL were also identified on chromosomes 8 and X. In the present study, using the same F2 DNA samples, we placed a much denser set of SNPs within each of those QTL regions. Using the same analytical approach employed previously, which utilizes ancestral recombination to fine map the QLT interval, we obtained significant LOD scores on chromosomes 1, 3, and 9, only. Our results using a dense set of SNP markers suggest that there are multiple loci contributing to alcohol preference on those three chromosomes.
Collapse
Affiliation(s)
- Paula J Bice
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
10
|
Derivation and characterization of replicate high- and low-alcohol preferring lines of mice and a high-drinking crossed HAP line. Behav Genet 2010; 41:288-302. [PMID: 20853157 DOI: 10.1007/s10519-010-9394-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/02/2010] [Indexed: 01/12/2023]
Abstract
Selectively breeding lines of mice and rats to differ in alcohol intake has proven useful for defining which traits correlate with high alcohol drinking behavior, as well as for creating animal models of alcoholism. This study reports the derivation of two novel sets of selected lines, High Alcohol Preferring (HAP) and Low Alcohol Preferring (LAP) replicate 2 and 3 lines. Mice were mass-selected using the same procedure as in the replicate 1 lines: using HS/Ibg as a progenitor, mice were selected for differences in 2-bottle choice intake of 10% alcohol during a 4-week testing period. In addition, another high-drinking line, the crossed HAP (cHAP) line was selectively bred from a progenitors that were a cross of replicate 1 (S27) × replicate 2 (S21) HAP lines. All lines were characterized for saccharin intake. Overall, the response to selection of the HAP and LAP replicate 2 and 3 lines was quite similar. As anticipated, following selection, the cHAP line drank more than either parent HAP line (consuming 26.0 g/kg per day of alcohol by S11), suggesting that this method of crossing replicate lines and selecting from that cross captures more alleles than any single selected line, as well as producing a line with exceptionally high voluntary alcohol intake. As expected, saccharin consumption was highly associated with alcohol consumption; data from 7 lines (HAP 1, 2, and 3, LAP 1, 2, and 3, and cHAP) indicated a genetic correlation between 10% alcohol and 0.32% saccharin intake of 0.91. Overall, these findings show the practicality of developing replicate lines divergent in alcohol preference, and validate a novel procedure for generating very high-drinking mouse populations.
Collapse
|
11
|
Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MHM, Smit AB, Hottenga JJ, Richter MM, Heath AC, Martin NG, Willemsen G, de Geus EJC, Vogelzangs N, Penninx BW, Whitfield JB, Montgomery GW, Boomsma DI, Madden PAF. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res Hum Genet 2010; 13:10-29. [PMID: 20158304 DOI: 10.1375/twin.13.1.10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10,000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10(-8)) for ND (rs964170 in ARHGAP10 on chromosome 4, p = 4.43 x 10(-8)) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10(-9)), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10(-9)) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10(-8))). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepresentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be required before the detailed causes of comorbidity between AD and ND are understood.
Collapse
Affiliation(s)
- Penelope A Lind
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gilmore CS, Malone SM, Iacono WG. Brain electrophysiological endophenotypes for externalizing psychopathology: a multivariate approach. Behav Genet 2010; 40:186-200. [PMID: 20155392 DOI: 10.1007/s10519-010-9343-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Abnormalities in electrophysiological measures of stimulus-evoked brain activity (including the P3 event-related potential (ERP) and its associated delta and theta time-frequency (TF) components), and intrinsic, resting state brain activity (including EEG in the beta frequency band) have each been associated with biological vulnerability to a variety of externalizing (EXT) spectrum disorders, such as substance use disorders, conduct disorder, and antisocial behavior. While each of these individual measures has shown promise as an endophenotype for one or more aspects of EXT, we proposed that the power to identify EXT-related genes may be enhanced by using these measures collectively. Thus, we sought to explore a multivariate approach to identifying electrophysiological endophenotypes related to EXT, using measures identified in the literature as promising individual endophenotypes for EXT. Using data from our large twin sample (634 MZ and 335 DZ, male and female same-sex pairs), and fitting multivariate biometric Cholesky models, we found that these measures (1) were heritable, (2) showed significant phenotypic and genetic correlation with a general vulnerability to EXT (which is itself highly heritable), (3) showed modest phenotypic and genetic correlation with each other, and (4) were sensitive to genetic effects that differed as a function of gender. These relationships suggest that these endophenotypes are likely tapping into neurophysiological processes and genes that are both common across them and unique to each-all of which are relevant to a biological vulnerability to EXT psychopathology.
Collapse
Affiliation(s)
- Casey S Gilmore
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Road, Minneapolis, MN, 55455, USA.
| | | | | |
Collapse
|
13
|
A Genomewide Association Study of Nicotine and Alcohol Dependence in Australian and Dutch Populations. Twin Res Hum Genet 2010. [DOI: 10.1017/s183242740002003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10, 000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10-8) for ND (rs964170 in ARHGAPlOon chromosome 4, p = 4.43 x 10”8) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10-9), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10-9) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10-8)). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepre-sentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be requirec before the detailed causes of comorbidity between AC and ND are understood.
Collapse
|
14
|
Milner LC, Buck KJ. Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:173-204. [PMID: 20813243 DOI: 10.1016/s0074-7742(10)91006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcoholism is a complex clinical disorder with genetic and environmental contributions. Although no animal model duplicates alcoholism, models for specific factors, such as the withdrawal syndrome, are useful to identify potential genetic determinants of liability in humans. Murine models have been invaluable to identify quantitative trait loci (QTLs) that influence a variety of alcohol responses. However, the QTL regions are typically large, at least initially, and contain numerous genes, making identification of the causal quantitative trait gene(s) (QTGs) challenging. Here, we present QTG identification strategies currently used in the field of alcohol genetics and discuss relevance to alcoholic human populations.
Collapse
Affiliation(s)
- Lauren C Milner
- Department of Behavioral Neuroscience, VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
15
|
Tabakoff B, Saba L, Printz M, Flodman P, Hodgkinson C, Goldman D, Koob G, Richardson HN, Kechris K, Bell RL, Hübner N, Heinig M, Pravenec M, Mangion J, Legault L, Dongier M, Conigrave KM, Whitfield JB, Saunders J, Grant B, Hoffman PL. Genetical genomic determinants of alcohol consumption in rats and humans. BMC Biol 2009; 7:70. [PMID: 19874574 PMCID: PMC2777866 DOI: 10.1186/1741-7007-7-70] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. RESULTS In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. CONCLUSION Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | - Laura Saba
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | - Morton Printz
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Pam Flodman
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Colin Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - George Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Heather N Richardson
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Department Psychology-Neuroscience, University of Massachusetts Amherst, Amherst, MA, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Richard L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan Mangion
- MRC Clinical Sciences Centre, London, UK
- Applied Biosystems, Lingley House, 120 Birchwood Blvd., Warrington, Cheshire, WA3 7QH, UK
| | - Lucie Legault
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Maurice Dongier
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Katherine M Conigrave
- Drug Health Services, Royal Prince Alfred Hospital, Sydney Medical School, University of Sydney, New South Wales, Australia
| | | | - John Saunders
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Bridget Grant
- Division of Epidemiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Paula L Hoffman
- Department of Pharmacology, University of Colorado, Denver, Aurora, CO, USA
| | | |
Collapse
|