1
|
Nelson CA, Brundage JN, Williams BM, Baldridge JK, Stockard AL, Bassett CH, Burger BJ, Gunter BT, Payne AJ, Yorgason JT, Steffensen SC, Bills KB. Voluntary Exercise Ameliorates Chronic Ethanol Withdrawal-Induced Adaptations of Opioid Receptor Expression in the Nucleus Accumbens, Dopamine Release, and Ethanol Consumption. Biomedicines 2024; 12:1593. [PMID: 39062166 PMCID: PMC11274624 DOI: 10.3390/biomedicines12071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.
Collapse
Affiliation(s)
- Christina A. Nelson
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - James N. Brundage
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Benjamin M. Williams
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Jared K. Baldridge
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Alyssa L. Stockard
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Charlton H. Bassett
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Brandon J. Burger
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Bridger T. Gunter
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Andrew J. Payne
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| | - Jordan T. Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Scott C. Steffensen
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
- Department of Psychology/Neuroscience, Brigham Young University, Provo, UT 84602, USA (J.K.B.); (A.L.S.)
| | - Kyle B. Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA; (C.A.N.); (K.B.B.)
| |
Collapse
|
2
|
Jones GC, Small CA, Otteson DZ, Hafen CW, Breinholt JT, Flora PD, Burris MD, Sant DW, Ruchti TR, Yorgason JT, Steffensen SC, Bills KB. Whole-Body Vibration Prevents Neuronal, Neurochemical, and Behavioral Effects of Morphine Withdrawal in a Rat Model. Int J Mol Sci 2023; 24:14147. [PMID: 37762450 PMCID: PMC10532581 DOI: 10.3390/ijms241814147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Peripheral mechanoreceptor-based treatments such as acupuncture and chiropractic manipulation have shown success in modulating the mesolimbic dopamine (DA) system originating in the ventral tegmental area (VTA) of the midbrain and projecting to the nucleus accumbens (NAc) of the striatum. We have previously shown that mechanoreceptor activation via whole-body vibration (WBV) ameliorates neuronal and behavioral effects of chronic ethanol exposure. In this study, we employ a similar paradigm to assess the efficacy of WBV as a preventative measure of neuronal and behavioral effects of morphine withdrawal in a Wistar rat model. We demonstrate that concurrent administration of WBV at 80 Hz with morphine over a 5-day period significantly reduced adaptations in VTA GABA neuronal activity and NAc DA release and modulated expression of δ-opioid receptors (DORs) on NAc cholinergic interneurons (CINs) during withdrawal. We also observed a reduction in behavior typically associated with opioid withdrawal. WBV represents a promising adjunct to current intervention for opioid use disorder (OUD) and should be examined translationally in humans.
Collapse
Affiliation(s)
- Gavin C. Jones
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | | | - Caylor W. Hafen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - Paul D. Flora
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - David W. Sant
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Tysum R. Ruchti
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | | | - Scott C. Steffensen
- Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Kyle B. Bills
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
3
|
Nufer TM, Wu BJ, Boyce Z, Steffensen SC, Edwards JG. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacology 2023; 48:1396-1408. [PMID: 36899030 PMCID: PMC10354227 DOI: 10.1038/s41386-023-01554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Collapse
Affiliation(s)
- Teresa M Nufer
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | - Bridget J Wu
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA
| | - Zachary Boyce
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | | | - Jeffrey G Edwards
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA.
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA.
| |
Collapse
|
4
|
Zhang H, Xu L, Xiong J, Li X, Yang Y, Liu Y, Zhang C, Wang Q, Wang J, Wang P, Wu X, Wang X, Zhu X, Guan Y. Role of KCC2 in the Regulation of Brain-Derived Neurotrophic Factor on Ethanol Consumption in Rats. Mol Neurobiol 2023; 60:1040-1049. [PMID: 36401060 DOI: 10.1007/s12035-022-03126-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022]
Abstract
Alcohol use disorder (AUD) is a common and complex disorder resulting from repetitive alcohol drinking. The mesocorticolimbic dopamine (DA) system, originating from the ventral tegmental area (VTA) in the midbrain, is involved in the rewarding effect of ethanol. The γ-aminobutyric acid (GABA) neurons in VTA appear to be key substrates of acute and chronic ethanol, which regulates DA neurotransmission indirectly in the mesocorticolimbic system. Despite significant research on the relationship between brain-derived neurotrophic factor (BDNF) and reduced alcohol consumption in male rats involving tropomyosin-related kinase B (TrkB), the mechanisms of BDNF-TrkB regulating alcohol behavior remain scarce. K+-Cl- cotransporter 2 (KCC2) plays a crucial role in synaptic function in GABAergic neurons by modulating intracellular chlorine homeostasis. Here, we found that 4-week intermittent alcohol exposure impaired the function of KCC2 in VTA, evidenced by a lower expression level of phosphorylated KCC2 and decreased ratio of phosphorylated KCC2 to total KCC2, especially 72 h after withdrawal from 4-week ethanol exposure in male rats. CLP290 (a KCC2 activator) reduced excessive alcohol consumption after alcohol withdrawal, whereas VU0240551 (a specific KCC2 inhibitor) further enhanced alcohol intake. Importantly, VU0240551 reversed the attenuating effects of BDNF and 7,8-dihydroxyflavone (7,8-DHF) on alcohol consumption after withdrawal. Moreover, intraperitoneal injection of 7,8-DHF upregulated KCC2 expression and phosphorylated KCC2 in VTA 72 h after withdrawal from ethanol exposure in male rats. Collectively, our data indicate that KCC2 may be critical in the regulating action of BDNF-TrkB on ethanol consumption in AUD.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Lulu Xu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junwei Xiong
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xinxin Li
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yindong Yang
- Department of Neurology, the Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Yong Liu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Chunfeng Zhang
- Institute of Vocational and Technical Education, Heilongjiang Agricultural Economy Vocational College, Mudanjiang, 157011, China
| | - Qiyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jiajia Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Pengyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaobin Wu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xue Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaofeng Zhu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Yanzhong Guan
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
| |
Collapse
|
5
|
Behera CK, Joshi A, Wang DH, Sharp T, Wong-Lin K. Degeneracy and stability in neural circuits of dopamine and serotonin neuromodulators: A theoretical consideration. Front Comput Neurosci 2023; 16:950489. [PMID: 36761394 PMCID: PMC9905743 DOI: 10.3389/fncom.2022.950489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Degenerate neural circuits perform the same function despite being structurally different. However, it is unclear whether neural circuits with interacting neuromodulator sources can themselves degenerate while maintaining the same neuromodulatory function. Here, we address this by computationally modeling the neural circuits of neuromodulators serotonin and dopamine, local glutamatergic and GABAergic interneurons, and their possible interactions, under reward/punishment-based conditioning tasks. The neural modeling is constrained by relevant experimental studies of the VTA or DRN system using, e.g., electrophysiology, optogenetics, and voltammetry. We first show that a single parsimonious, sparsely connected neural circuit model can recapitulate several separate experimental findings that indicated diverse, heterogeneous, distributed, and mixed DRNVTA neuronal signaling in reward and punishment tasks. The inability of this model to recapitulate all observed neuronal signaling suggests potentially multiple circuits acting in parallel. Then using computational simulations and dynamical systems analysis, we demonstrate that several different stable circuit architectures can produce the same observed network activity profile, hence demonstrating degeneracy. Due to the extensive D2-mediated connections in the investigated circuits, we simulate the D2 receptor agonist by increasing the connection strengths emanating from the VTA DA neurons. We found that the simulated D2 agonist can distinguish among sub-groups of the degenerate neural circuits based on substantial deviations in specific neural populations' activities in reward and punishment conditions. This forms a testable model prediction using pharmacological means. Overall, this theoretical work suggests the plausibility of degeneracy within neuromodulator circuitry and has important implications for the stable and robust maintenance of neuromodulatory functions.
Collapse
Affiliation(s)
- Chandan K. Behera
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom,*Correspondence: Chandan K. Behera,
| | - Alok Joshi
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom
| | - Da-Hui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China,School of Systems Science, Beijing Normal University, Beijing, China
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Derry∼Londonderry, United Kingdom,KongFatt Wong-Lin,
| |
Collapse
|
6
|
Mechanical Stimulation Alters Chronic Ethanol-Induced Changes to VTA GABA Neurons, NAc DA Release and Measures of Withdrawal. Int J Mol Sci 2022; 23:ijms232012630. [PMID: 36293482 PMCID: PMC9604215 DOI: 10.3390/ijms232012630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
Therapeutic activation of mechanoreceptors (MStim) in osteopathy, chiropractic and acupuncture has been in use for hundreds of years with a myriad of positive outcomes. It has been previously shown to modulate the firing rate of neurons in the ventral tegmental area (VTA) and dopamine (DA) release in the nucleus accumbens (NAc), an area of interest in alcohol-use disorder (AUD). In this study, we examined the effects of MStim on VTA GABA neuron firing rate, DA release in the NAc, and behavior during withdrawal from chronic EtOH exposure in a rat model. We demonstrate that concurrent administration of MStim and EtOH significantly reduced adaptations in VTA GABA neurons and DA release in response to a reinstatement dose of EtOH (2.5 g/kg). Behavioral indices of EtOH withdrawal (rearing, open-field crosses, tail stiffness, gait, and anxiety) were substantively ameliorated with concurrent application of MStim. Additionally, MStim significantly increased the overall frequency of ultrasonic vocalizations, suggesting an increased positive affective state.
Collapse
|
7
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
8
|
Martin TA, Smith HR, Luessen DJ, Chen R, Porrino LJ. Functional brain activity is globally elevated by dopamine D2 receptor knockdown in the ventral tegmental area. Brain Res 2020; 1727:146552. [PMID: 31726041 PMCID: PMC6941665 DOI: 10.1016/j.brainres.2019.146552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
Abstract
The mesocorticolimbic system is comprised of dopaminergic neurons in the ventral tegmental area (VTA) and their projection targets in the ventral striatum, amygdala, prefrontal cortex, and hippocampus, among others. Regulation of dopamine transmission within this system is achieved in part through a negative feedback mechanism via dopamine D2 autoreceptors located on somatodendrites and terminals of VTA dopaminergic neurons. Dysregulation of this mechanism has been implicated in addiction and other psychiatric disorders, although the biological bases for these associations are unclear. In order to elucidate the functional consequences of VTA D2 receptor dysregulation, this study investigated alterations in local cerebral glucose utilization throughout the brain following Drd2 knockdown in the VTA. Male Sprague-Dawley rats received bilateral injections of lentivirus encoding shRNAs against the rat dopamine D2 receptor, scrambled shRNA or phosphate buffered saline. The autoradiographic 2-[14C]deoxyglucose metabolic mapping procedure was conducted 22 days post-infection. Brains were sectioned for autoradiography and glucose utilization was measured across distinct regions throughout the brain. Local cerebral glucose utilization was found to be elevated in the Drd2 knockdown group as compared to control groups. These greater levels of metabolic activity following Drd2 knockdown in the VTA were observed not only in the mesocorticolimbic system and associated dopamine pathways, but also in a global pattern that included many areas with far less concentrated VTA dopamine inputs. This suggests that even a partial Drd2 deletion in the VTA can have widespread consequences and impact information flow in diverse networks that process sensory, cognitive, motor and emotional information.
Collapse
Affiliation(s)
- Tamriage A Martin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Hilary R Smith
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
9
|
Bills KB, Obray JD, Clarke T, Parsons M, Brundage J, Yang CH, Kim HY, Yorgason JT, Blotter JD, Steffensen SC. Mechanical stimulation of cervical vertebrae modulates the discharge activity of ventral tegmental area neurons and dopamine release in the nucleus accumbens. Brain Stimul 2019; 13:403-411. [PMID: 31866493 PMCID: PMC7676385 DOI: 10.1016/j.brs.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Growing evidence suggests that mechanical stimulation modulates substrates in the supraspinal central nervous system (CNS) outside the canonical somatosensory circuits. Objective/Methods: We evaluate mechanical stimulation applied to the cervical spine at the C7-T1 level (termed “MStim”) on neurons and neurotransmitter release in the mesolimbic dopamine (DA) system, an area implicated in reward and motivation, utilizing electrophysiological, pharmacological, neurochemical and immunohistochemical techniques in Wistar rats. Results: Low frequency (45–80 Hz), but not higher frequency (115 Hz), MStim inhibited the firing rate of ventral tegmental area (VTA) GABA neurons (52.8% baseline; 450 s) while increasing the firing rate of VTA DA neurons (248% baseline; 500 s). Inactivation of the nucleus accumbens (NAc), or systemic or in situ antagonism of delta opioid receptors (DORs), blocked MStim inhibition of VTA GABA neuron firing rate. MStim enhanced both basal (178.4% peak increase at 60 min) and evoked DA release in NAc (135.0% peak increase at 40 min), which was blocked by antagonism of DORs or acetylcholine release in the NAc. MStim enhanced c-FOS expression in the NAc, but inhibited total expression in the VTA, and induced translocation of DORs to neuronal membranes in the NAc. Conclusion: These findings demonstrate that MStim modulates neuron firing and DA release in the mesolimbic DA system through endogenous opioids and acetylcholine in the NAc. These findings demonstrate the need to explore more broadly the extra-somatosensory effects of peripheral mechanoreceptor activation and the specific role for mechanoreceptor-based therapies in the treatment of substance abuse.
Collapse
Affiliation(s)
- Kyle B Bills
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - J Daniel Obray
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - Travis Clarke
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - Mandy Parsons
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - James Brundage
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Hee Young Kim
- College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Jordan T Yorgason
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA
| | - Jonathan D Blotter
- Brigham Young University, Department of Engineering, Provo, Utah, 84602, USA
| | - Scott C Steffensen
- Brigham Young University, Department of Psychology/Neuroscience, Provo, Utah, 84602, USA.
| |
Collapse
|
10
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Williams SB, Yorgason JT, Nelson AC, Lewis N, Nufer TM, Edwards JG, Steffensen SC. Glutamate Transmission to Ventral Tegmental Area GABA Neurons Is Altered by Acute and Chronic Ethanol. Alcohol Clin Exp Res 2018; 42:2186-2195. [PMID: 30204234 DOI: 10.1111/acer.13883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ventral tegmental area (VTA) GABA neurons have been heavily implicated in alcohol reinforcement and reward. In animals that self-administer alcohol, VTA GABA neurons exhibit increased excitability that may contribute to alcohol's rewarding effects. The present study investigated the effects of acute and chronic ethanol exposure on glutamate (GLU) synaptic transmission to VTA GABA neurons. METHODS Whole-cell recordings of evoked, spontaneous, and miniature excitatory postsynaptic currents (eEPSCs, sEPSCs, and mEPSCs, respectively) were performed on identified GABA neurons in the VTA of GAD67-GFP+ transgenic mice. Three ethanol exposure paradigms were used: acute ethanol superfusion; a single ethanol injection; and chronic vapor exposure. RESULTS Acute ethanol superfusion increased the frequency of EPSCs but inhibited mEPSC frequency and amplitude. During withdrawal from a single injection of ethanol, the frequency of sEPSCs was lower than saline controls. There was no difference in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate (NMDA) ratio between neurons following withdrawal from a single exposure to ethanol. However, following withdrawal from chronic ethanol, sEPSCs and mEPSCs had a greater frequency than air controls. There was no difference in AMPA/NMDA ratio following chronic ethanol. CONCLUSIONS These results suggest that presynaptic mechanisms involving local circuit GLU neurons, and not GLU receptors, contribute to adaptations in VTA GABA neuron excitability that accrue to ethanol exposure, which may contribute to the rewarding properties of alcohol via their regulation of mesolimbic dopamine transmission.
Collapse
Affiliation(s)
- Stephanie B Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Jordan T Yorgason
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Ashley C Nelson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Natalie Lewis
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Teresa M Nufer
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Jeff G Edwards
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah
| |
Collapse
|
12
|
You C, Vandegrift BJ, Zhang H, Lasek AW, Pandey SC, Brodie MS. Histone Deacetylase Inhibitor Suberanilohydroxamic Acid Treatment Reverses Hyposensitivity to γ-Aminobutyric Acid in the Ventral Tegmental Area During Ethanol Withdrawal. Alcohol Clin Exp Res 2018; 42:2160-2171. [PMID: 30103280 PMCID: PMC6214766 DOI: 10.1111/acer.13870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/08/2018] [Indexed: 12/24/2022]
Abstract
Background The ventral tegmental area (VTA) is important for alcohol‐related reward and reinforcement. Mouse VTA neurons are hyposensitive to γ‐aminobutyric acid (GABA) during ethanol (EtOH) withdrawal, and GABA responsiveness is normalized by in vitro treatment with histone deacetylase inhibitors (HDACi). The present study examined the effect of a systemically administered HDACi, suberanilohydroxamic acid (SAHA) on GABA sensitivity, and related molecular changes in VTA neurons during withdrawal after chronic EtOH intake in rats. Methods Sprague Dawley male adult rats were fed with Lieber‐DeCarli diet (9% EtOH or control diet) for 16 days. Experimental groups included control diet‐fed and EtOH diet‐fed (0‐ or 24‐hour withdrawal) rats treated with either SAHA or vehicle injection. Single‐unit recordings were used to measure the response of VTA neurons to GABA. Immunohistochemistry was performed to examine levels of HDAC2, acetylated histone H3 lysine 9 (acH3K9), and GABAA receptor α1 and α5 subunits in the VTA; quantitative polymerase chain reaction was performed to examine the mRNA levels of HDAC2 and GABAA receptor subunits. Results VTA neurons from the withdrawal group exhibited GABA hyposensitivity. In vivo SAHA treatment 2 hours before sacrifice normalized the sensitivity of VTA neurons to GABA. EtOH withdrawal was associated with increased HDAC2 and decreased acH3K9 protein levels; SAHA treatment normalized acH3K9 levels. Interestingly, no significant change was observed in the mRNA levels of HDAC2. The mRNA levels, but not protein levels, of GABAA receptor α1 and α5 subunits were increased during withdrawal. Conclusions Withdrawal from chronic EtOH exposure results in a decrease in GABA‐mediated inhibition, and this GABA hyposensitivity is normalized by in vivo SAHA treatment. Disruption of signaling in the VTA produced by alteration of GABA neurotransmission could be 1 neuroadaptive physiological process leading to craving and relapse. These results suggest that HDACi pharmacotherapy with agents like SAHA might be an effective treatment for alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Jesse Brown VA Medical Center , Chicago, Illinois
| | - Mark S Brodie
- Department of Physiology and Biophysics , University of Illinois at Chicago, Chicago, Illinois.,Center for Alcohol Research in Epigenetics , Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Steffensen SC, Shin SI, Nelson AC, Pistorius SS, Williams SB, Woodward TJ, Park HJ, Friend L, Gao M, Gao F, Taylor DH, Foster Olive M, Edwards JG, Sudweeks SN, Buhlman LM, Michael McIntosh J, Wu J. α6 subunit-containing nicotinic receptors mediate low-dose ethanol effects on ventral tegmental area neurons and ethanol reward. Addict Biol 2018; 23:1079-1093. [PMID: 28901722 DOI: 10.1111/adb.12559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023]
Abstract
Dopamine (DA) neuron excitability is regulated by inhibitory GABAergic synaptic transmission and modulated by nicotinic acetylcholine receptors (nAChRs). The aim of this study was to evaluate the role of α6 subunit-containing nAChRs (α6*-nAChRs) in acute ethanol effects on ventral tegmental area (VTA) GABA and DA neurons. α6*-nAChRs were visualized on GABA terminals on VTA GABA neurons, and α6*-nAChR transcripts were expressed in most DA neurons, but only a minority of VTA GABA neurons from GAD67 GFP mice. Low concentrations of ethanol (1-10 mM) enhanced GABAA receptor (GABAA R)-mediated spontaneous and evoked inhibition with blockade by selective α6*-nAChR antagonist α-conotoxins (α-Ctxs) and lowered sensitivity in α6 knock-out (KO) mice. Ethanol suppression of VTA GABA neuron firing rate in wild-type mice in vivo was significantly reduced in α6 KO mice. Ethanol (5-100 mM) had no effect on optically evoked GABAA R-mediated inhibition of DA neurons, and ethanol enhancement of VTA DA neuron firing rate at high concentrations was not affected by α-Ctxs. Ethanol conditioned place preference was reduced in α6 KO mice compared with wild-type controls. Taken together, these studies indicate that relatively low concentrations of ethanol act through α6*-nAChRs on GABA terminals to enhance GABA release onto VTA GABA neurons, in turn to reduce GABA neuron firing, which may lead to VTA DA neuron disinhibition, suggesting a possible mechanism of action of alcohol and nicotine co-abuse.
Collapse
Affiliation(s)
- Scott C. Steffensen
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Samuel I. Shin
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Ashley C. Nelson
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | | | | | - Taylor J. Woodward
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Hyun Jung Park
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Lindsey Friend
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | - Fenfei Gao
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| | | | - M. Foster Olive
- School of Psychology; Arizona State University; Tempe AZ USA
| | - Jeffrey G. Edwards
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Sterling N. Sudweeks
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Lori M. Buhlman
- Biomedical Sciences Program; Midwestern University; Glendale AZ USA
| | - J. Michael McIntosh
- Departments of Psychiatry and Biology; University of Utah; Salt Lake City UT USA
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute; St. Joseph's Hospital and Medical Center; Phoenix AZ USA
| |
Collapse
|
14
|
Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20:670-686. [PMID: 29576501 DOI: 10.1016/j.jcyt.2018.02.371] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study explored the neural differentiation and therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) in a rat model of Parkinson's disease (PD). METHODS The SHED were isolated from fresh dental pulp and were induced to differentiate to neurons and dopamine neurons by inhibiting similar mothers against dpp (SMAD) signaling with Noggin and increase conversion of dopamine neurons from SHED with CHIR99021, Sonic Hedgehog (SHH) and FGF8 in vitro. The neural-primed SHED were transplanted to the striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats to evaluate their neural differentiation and functions in vivo. RESULTS These SHED were efficiently differentiated to neurons (62.7%) and dopamine neurons (42.3%) through a newly developed method. After transplantation, the neural-induced SHED significantly improved recovery of the motor deficits of the PD rats. The grafted SHED were differentiated into neurons (61%), including dopamine neurons (22.3%), and integrated into the host rat brain by forming synaptic connections. Patch clamp analysis showed that neurons derived from grafted SHED have the same membrane potential profile as dopamine neurons, indicating these cells are dopamine neuron-like cells. The potential molecular mechanism of SHED transplantation in alleviating motor deficits of the rats is likely to be mediated by neuronal replacement and immune-modulation as we detected the transplanted dopamine neurons and released immune cytokines from SHED. CONCLUSION Using neural-primed SHED to treat PD showed significant restorations of motor deficits in 6-OHDA-induced rats. These observations provide further evidence that SHED can be used for cell-based therapy of PD.
Collapse
|
15
|
Nelson AC, Williams SB, Pistorius SS, Park HJ, Woodward TJ, Payne AJ, Obray JD, Shin SI, Mabey JK, Steffensen SC. Ventral Tegmental Area GABA Neurons Are Resistant to GABA(A) Receptor-Mediated Inhibition During Ethanol Withdrawal. Front Neurosci 2018; 12:131. [PMID: 29556175 PMCID: PMC5844957 DOI: 10.3389/fnins.2018.00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/19/2018] [Indexed: 01/27/2023] Open
Abstract
The neural mechanisms underlying alcohol dependence are not well-understood. GABAergic neurons in the ventral tegmental area (VTA) are a relevant target for ethanol. They are inhibited by ethanol at physiologically-relevant levels in vivo and display marked hyperexcitability during withdrawal. In the present study, we examined the effects of the GABA(A) receptor agonist muscimol on VTA neurons ex vivo following withdrawal from acute and chronic ethanol exposure. We used standard cell-attached mode electrophysiology in the slice preparation to evaluate the effects of muscimol on VTA GABA neuron firing rate following exposure to acute and chronic ethanol in male CD-1 GAD-67 GFP mice. In the acute condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after a single in vivo dose of saline or ethanol. In the chronic condition, the effect of muscimol on VTA neurons was evaluated 24 h and 7 days after either 2 weeks of twice-daily IP ethanol or saline or following exposure to chronic intermittent ethanol (CIE) vapor or air for 3 weeks. VTA GABA neuron firing rate was more sensitive to muscimol than DA neuron firing rate. VTA GABA neurons, but not DA neurons, were resistant to the inhibitory effects of muscimol recorded 24 h after a single ethanol injection or chronic ethanol exposure. Administration of the NMDA receptor antagonist MK-801 before ethanol injection restored the sensitivity of VTA GABA neurons to muscimol inhibition. Seven days after ethanol exposure, VTA GABA neuron firing rate was again susceptible to muscimol's inhibitory effects in the acute condition, but the resistance persisted in the chronic condition. These findings suggest that VTA GABA neurons exclusively undergo a shift in GABA(A) receptor function following acute and chronic exposure. There appears to be transient GABA(A) receptor-mediated plasticity after a single exposure to ethanol that is mediated by NMDA glutamate receptors. In addition, the resistance to muscimol inhibition in VTA GABA neurons persists in the dependent condition, which may contribute to the the hyperexcitability of VTA GABA neurons and inhibition of VTA DA neurons during withdrawal as well as the motivation to seek alcohol.
Collapse
Affiliation(s)
- Ashley C Nelson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Stephanie B Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Stephanie S Pistorius
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Hyun J Park
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Taylor J Woodward
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Andrew J Payne
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - J Daniel Obray
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Samuel I Shin
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Jennifer K Mabey
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
16
|
Zuo W, Wang L, Chen L, Krnjević K, Fu R, Feng X, He W, Kang S, Shah A, Bekker A, Ye JH. Ethanol potentiates both GABAergic and glutamatergic signaling in the lateral habenula. Neuropharmacology 2016; 113:178-187. [PMID: 27678415 DOI: 10.1016/j.neuropharm.2016.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 10/21/2022]
Abstract
Ethanol's aversive property may limit it's use, but the underlying mechanisms are no well-understood. Emerging evidence suggests a critical role for the lateral habenula (LHb) in the aversive response to various drugs, including ethanol. We previously showed that ethanol enhances glutamatergic transmission and stimulates LHb neurons. GABAergic transmission, a major target of ethanol in many brain regions, also tightly regulates LHb activity. This study assessed the action of ethanol on LHb GABAergic transmission in rat brain slices. Application of ethanol accelerated spontaneous action potential firing of LHb neurons, and LHb activity was increased by the GABAA receptor antagonist gabazine, and ethanol-induced acceleration of LHb firing was further increased by gabazine. Additionally, ethanol potentiated GABAergic transmission (inhibitory postsynaptic currents, IPSCs) with an EC50 of 1.5 mM. Ethanol-induced potentiation of IPSCs was increased by a GABAB receptor antagonist; it was mimicked by dopamine, dopamine receptor agonists, and dopamine reuptake blocker, and was completely prevented by reserpine, which depletes store of catecholamine. Moreover, ethanol-induced potentiation of IPSCs involved cAMP signaling. Finally, ethanol enhanced simultaneously glutamatergic and GABAergic transmissions to the majority of LHb neurons: the potentiation of the former being greater than that of the latter, the net effect was increased firing. Since LHb excitation may contribute to aversion, ethanol-induced potentiation of GABAergic inhibition tends to reduce aversion.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Krešimir Krnjević
- Department of Physiology, McGill University, McIntyre Centre, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| | - Rao Fu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen He
- Department of Geriatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Seungwoo Kang
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Avi Shah
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
17
|
Nimitvilai S, You C, Arora DS, McElvain MA, Vandegrift BJ, Brodie MS, Woodward JJ. Differential Effects of Toluene and Ethanol on Dopaminergic Neurons of the Ventral Tegmental Area. Front Neurosci 2016; 10:434. [PMID: 27713687 PMCID: PMC5031606 DOI: 10.3389/fnins.2016.00434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse increase the activity of dopaminergic neurons of the ventral tegmental area (VTA), and output from the VTA is critical for both natural and drug-induced reward and reinforcement. Ethanol and the abused inhalant toluene both enhance VTA neuronal firing, but the mechanisms of this effect is not fully known. In this study, we used extracellular recordings to compare the actions of toluene and ethanol on DA VTA neurons. Both ethanol and toluene increased the firing rate of DA neurons, although toluene was ~100 times more potent than ethanol. The mixed ion channel blocker quinine (100 μM) blocked the increases in firing produced by ethanol and toluene, indicating some similarity in mechanisms of excitation. A mixture of antagonists of GABA and cholinergic receptors did not prevent toluene-induced or ethanol-induced excitation, and toluene-induced excitation was not altered by co-administration of ethanol, suggesting independent mechanisms of excitation for ethanol and toluene. Concurrent blockade of NMDA, AMPA, and metabotropic glutamate receptors enhanced the excitatory effect of toluene while having no significant effect on ethanol excitation. Nicotine increased firing of DA VTA neurons, and this was blocked by the nicotinic antagonist mecamylamine (1 μM). Mecamylamine did not alter ethanol or toluene excitation of firing but the muscarinic antagonist atropine (5 μM) or a combination of GABA antagonists (bicuculline and CGP35348, 10 μM each) reduced toluene-induced excitation without affecting ethanol excitation. The Ih current blocker ZD7288 abolished the excitatory effect of toluene but unlike the block of ethanol excitation, the effect of ZD7288 was not reversed by the GIRK channel blocker barium, but was reversed by GABA antagonists. These results demonstrate that the excitatory effects of ethanol and toluene have some similarity, such as block by quinine and ZD7288, but also indicate that there are important differences between these two drugs in their modulation by glutamatergic, cholinergic, and GABAergic receptors. These findings provide important information regarding the actions of abused inhalants on central reward pathways, and suggest that regulation of the activation of central dopamine pathways by ethanol and toluene partially overlap.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Devinder S Arora
- School of Pharmacy, Griffith University Southport, QLD, Australia
| | - Maureen A McElvain
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Bertha J Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
18
|
Shnitko TA, Kennerly LC, Spear LP, Robinson DL. Ethanol reduces evoked dopamine release and slows clearance in the rat medial prefrontal cortex. Alcohol Clin Exp Res 2015; 38:2969-77. [PMID: 25581652 DOI: 10.1111/acer.12587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/18/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ethanol (EtOH) intoxication affects cognitive performance, contributing to attentional deficits and poor decision making, which may occur via actions in the medial prefrontal cortex (mPFC). mPFC function is modulated by the catecholamines dopamine and norepinephrine. In this study, we examine the acute effects of EtOH on electrically evoked dopamine release and clearance in the mPFC of anesthetized rats naïve to alcohol or chronically exposed to alcohol during adolescence. METHODS Dopamine release and clearance was evoked by electrical stimulation of the ventral tegmental area (VTA) and measured in the mPFC of anesthetized rats with fast-scan cyclic voltammetry. In Experiments 1 and 2, effects of a high dose of EtOH (4 g/kg, intraperitoneally) on dopamine neurotransmission in the mPFC of EtOH-naïve rats and rats given EtOH exposure during adolescence were investigated. Effects of cumulative dosing of EtOH (0.5 to 4 g/kg) on the dopamine release and clearance were investigated in Experiment 3. Experiment 4 studied effects of EtOH locally applied to the VTA on the dopamine neurotransmission in the mPFC of EtOH-naïve rats. RESULTS A high dose of EtOH decreased evoked dopamine release within 10 minutes of administration in EtOH-naïve rats. When tested via cumulative dosing from 0.5 to 4 g/kg, both 2 and 4 g/kg EtOH inhibited evoked dopamine release in the mPFC of EtOH-naïve rats, while 4 g/kg EtOH also slowed dopamine clearance. A similar effect on electrically evoked dopamine release in the mPFC was observed after infusion of EtOH into the VTA. Interestingly, intermittent EtOH exposure during adolescence had no effect on observed changes in mPFC dopamine release and clearance induced by acute EtOH administration. CONCLUSIONS Taken together, these data describe EtOH-induced reductions in the dynamics of VTA-evoked mPFC dopamine release and clearance, with the VTA contributing to the attenuation of evoked mPFC dopamine release induced by EtOH.
Collapse
Affiliation(s)
- Tatiana A Shnitko
- Bowles Center for Alcohol Study , University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
19
|
Zuo W, Chen L, Wang L, Ye JH. Cocaine facilitates glutamatergic transmission and activates lateral habenular neurons. Neuropharmacology 2013; 70:180-9. [PMID: 23347950 DOI: 10.1016/j.neuropharm.2013.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/25/2012] [Accepted: 01/10/2013] [Indexed: 12/28/2022]
Abstract
Cocaine administration can be both rewarding and aversive. While much effort has gone to investigating the rewarding effect, the mechanisms underlying cocaine-induced aversion remain murky. There is increasing evidence that the lateral habenula (LHb), a small epithalamic structure, plays a critical role in the aversive responses of many addictive drugs including cocaine. However, the effects of cocaine on LHb neurons are not well explored. Here we show that, in acute brain slices from rats, cocaine depolarized LHb neurons and accelerated their spontaneous firing. The AMPA and NMDA glutamate receptor antagonists, 6, 7-dinitroquinoxaline-2, 3-dione, DL-2-amino-5-phosphono-valeric acid, attenuated cocaine-induced acceleration. In addition, cocaine concentration-dependently enhanced glutamatergic excitation: enhanced the amplitude but reduced the paired pulse ratio of EPSCs elicited by electrical stimulations, and increased the frequency of spontaneous EPSCs in the absence and presence of tetrodotoxin. Dopamine and the agonists of dopamine D1 (SKF 38393) and D2 (quinpirole) receptors, as well as the dopamine transporter blocker (GBR12935), mimicked the effects of cocaine. Conversely, both D1 (SKF83566) and D2 (raclopride) antagonists substantially attenuated cocaine's effects on EPSCs and firing. Together, our results provide evidence that cocaine may act primarily via an increase in dopamine levels in the LHb that activates both D1 and D2 receptors. This leads to an increase in presynaptic glutamate release probability and LHb neuron activity. This may contribute to the aversive effect of cocaine observed in vivo.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
20
|
Kruse LC, Linsenbardt DN, Boehm SL. Positive allosteric modulation of the GABA(B) receptor by GS39783 attenuates the locomotor stimulant actions of ethanol and potentiates the induction of locomotor sensitization. Alcohol 2012; 46:455-62. [PMID: 22560291 DOI: 10.1016/j.alcohol.2012.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 12/20/2022]
Abstract
Acute ethanol-induced locomotor stimulation and ethanol-induced locomotor sensitization are two behavioral assays thought to model the rewarding effects of ethanol. Recent evidence suggests that GS39783, a GABA(B) positive allosteric modulator, may be effective at reducing both the rewarding and reinforcing effects of several drugs of abuse, including ethanol. The goal of this study was to determine if GS39783 was capable of altering acute ethanol-induced stimulation, and the induction and expression of ethanol-induced locomotor sensitization, without effecting basal locomotion levels. Several doses of GS39783 (ranging from 0 to 100 mg/kg, depending on experiment) were tested on adult male DBA/2J mice in four experiments using 3-day basal locomotion and acute ethanol stimulation paradigms, and 14-day induction and expression of ethanol sensitization paradigms. The results of experiment 1 are in agreement with current literature, suggesting that 30 mg/kg doses of GS39783 and lower do not alter basal locomotor activity. In experiment 2, we found that GS39783 significantly decreased acute ethanol stimulation, but only at the 30 mg/kg dose, supporting our hypothesis and other publications suggesting that GABA(B) receptors modulate acute ethanol stimulation. Contrary to our hypothesis, GS39783 did not alter the expression of locomotor sensitization. Additionally, repeated administration of GS39783 in conjunction with ethanol unexpectedly potentiated ethanol-induced locomotor sensitization. Further study of GS39783 is warranted as it may be a more tolerable treatment for alcoholism than full agonists, due to its behavioral efficacy at doses that lack sedative side effects. Our results add to current literature suggesting that the GABA(B) receptor system is indeed involved in the modulation of ethanol-induced locomotor stimulation and sensitization.
Collapse
Affiliation(s)
- Lauren C Kruse
- Department of Psychology, Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | | |
Collapse
|
21
|
Steffensen SC, Bradley KD, Hansen DM, Wilcox JD, Wilcox RS, Allison DW, Merrill CB, Edwards JG. The role of connexin-36 gap junctions in alcohol intoxication and consumption. Synapse 2011; 65:695-707. [PMID: 21638336 PMCID: PMC3051038 DOI: 10.1002/syn.20885] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/31/2010] [Indexed: 11/06/2022]
Abstract
Ventral tegmental area (VTA) GABA neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in alcohol reward. The aim of this study was to examine the role of midbrain connexin-36 (Cx36) gap junctions (GJs) in ethanol intoxication and consumption. Using behavioral, molecular, and electrophysiological methods, we compared the effects of ethanol in mature Cx36 knockout (KO) mice and age-matched wild-type (WT) controls. Compared to WT mice, Cx36 KO mice exhibited significantly more ethanol-induced motor impairment in the open field test, but less disruption in motor coordination in the rotarod paradigm. Cx36 KO mice, and WT mice treated with the Cx36 antagonist mefloquine (MFQ), consumed significantly less ethanol than their WT controls in the drink-in-the-dark procedure. The firing rate of VTA GABA neurons in WT mice was inhibited by ethanol with an IC₅₀ of 0.25 g/kg, while VTA GABA neurons in KO mice were significantly less sensitive to ethanol. Dopamine neuron GABA-mediated sIPSC frequency was reduced by ethanol (30 mM) in WT mice, but not affected in KO mice. Cx36 KO mice evinced a significant up-regulation in DAT and D2 receptors in the VTA, as assessed by quantitative RT-PCR. These findings demonstrate the behavioral relevance of Cx36 GJ-mediated electrical coupling between GABA neurons in mature animals, and suggest that loss of coupling between VTA GABA neurons results in disinhibition of DA neurons, a hyper-DAergic state and lowered hedonic valence for ethanol consumption.
Collapse
Affiliation(s)
- Scott C Steffensen
- Department of Psychology and Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang CH, Yoon SS, Hansen DM, Wilcox JD, Blumell BR, Park JJ, Steffensen SC. Acupuncture inhibits GABA neuron activity in the ventral tegmental area and reduces ethanol self-administration. Alcohol Clin Exp Res 2010; 34:2137-46. [PMID: 20860620 DOI: 10.1111/j.1530-0277.2010.01310.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Withdrawal from chronic ethanol enhances ventral tegmental area (VTA) GABA neuron excitability and reduces mesolimbic dopamine (DA) neurotransmission, which is suppressed by acupuncture at Shenmen (HT7) points (Zhao et al., 2006). The aim of this study was to evaluate the effects of HT7 acupuncture on VTA GABA neuron excitability, ethanol inhibition of VTA GABA neuron firing rate, and ethanol self-administration. A role for opioid receptors (ORs) in ethanol and acupuncture effects is also explored. METHODS Using electrophysiological methods in mature rats, we evaluated the effects of HT7 stimulation and opioid antagonists on VTA GABA neuron firing rate. Using behavioral paradigms in rats, we evaluated the effects of HT7 stimulation and opioid antagonists on ethanol self-administration using a modification of the sucrose-fading procedure. RESULTS HT7 stimulation produced a biphasic modulation of VTA GABA neuron firing rate characterized by transient enhancement followed by inhibition and subsequent recovery in 5 minutes. HT7 inhibition of VTA GABA neuron firing rate was blocked by systemic administration of the nonselective μ-opioid receptor antagonist naloxone. HT7 stimulation significantly reduced ethanol suppression of VTA GABA neuron firing rate, which was also blocked by naloxone. HT7 acupuncture reduced ethanol self-administration without affecting sucrose consumption. Systemic administration of the δ-opioid receptor (DOR) antagonist naltrindole blocked ethanol suppression of VTA GABA neuron firing rate and significantly reduced ethanol self-administration without affecting sucrose consumption. CONCLUSIONS These findings suggest that DOR-mediated opioid modulation of VTA GABA neurons may mediate acupuncture's role in modulating mesolimbic DA release and suppressing the reinforcing effects of ethanol.
Collapse
|
23
|
Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:235-88. [PMID: 20813245 DOI: 10.1016/s0074-7742(10)91008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
Collapse
|