1
|
Zabik NL, Blackford JU. Sex and sobriety: Human brain structure and function in AUD abstinence. Alcohol 2024; 121:33-44. [PMID: 39069211 PMCID: PMC11637899 DOI: 10.1016/j.alcohol.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Women are drinking alcohol as much as men for the first time in history. Women experience more health-related consequences from alcohol use disorder (AUD), like increased prevalence of alcohol-related cancers, faster progression of alcohol-related liver disease, and greater risk for relapse compared to men. Thus, sex differences in chronic alcohol use pose a substantial public health problem. Despite these evident sex differences, our understanding of how these differences present during alcohol abstinence is limited. Investigations of brain structure and function are therefore critical for disentangling factors that lead to sex differences in AUD abstinence. This review will discuss current human neuroimaging data on sex differences in alcohol abstinence, focusing on structural and functional brain measures. Current structural imaging literature reveals that abstinent men have smaller gray and white matter volume and weaker structural connectivity compared to control men. Interestingly, abstinent women do not show differences in brain structure when compared to controls; instead, abstinent women show a relation between alcohol use and decreased measures of brain structure. Current functional brain studies reveal that abstinent men exhibit greater brain activation and stronger task-based functional connectivity to aversive stimuli than control men, while abstinent women exhibit lesser brain activation and weaker task-based functional connectivity than control women. Together, the current literature suggests that sex differences persist well into alcohol abstinence and impact brain structure and function differently. Understanding how men and women differ during alcohol abstinence can improve our understanding of sex-specific effects of alcohol, which will be critical to augment treatment methods to better serve women.
Collapse
Affiliation(s)
- Nicole L Zabik
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer Urbano Blackford
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Goyal A, Cabrera JR, Blaha CD, Lee KH, Shin H, Oh Y. Ventral tegmental area deep brain stimulation reverses ethanol-induced dopamine increase in the rat nucleus accumbens. Biomed Eng Lett 2024; 14:1347-1354. [PMID: 39465114 PMCID: PMC11502691 DOI: 10.1007/s13534-024-00408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/09/2024] [Accepted: 06/30/2024] [Indexed: 10/29/2024] Open
Abstract
The neurophysiology of alcohol use disorder (AUD) is complex, but a major contributor to addictive phenotypes is the tendency for drugs of abuse to increase tonic extracellular dopamine (DA) levels in the nucleus accumbens (NAc). Repeated exposure to substances of abuse such as ethanol results in the overstimulation of the mesolimbic pathway, causing an excessive release of DA from the ventral tegmental area (VTA) to target regions such as the NAc. This heightened DA signaling is associated with the reinforcing effects of substances, leading to a strong desire for continued use. Recent work has postulated that high frequency deep brain stimulation (DBS) of the ventral tegmental area may reduce dopamine transmission to the nucleus accumbens following acute drug of abuse exposure, thereby mitigating the drug's addictive potential. We first demonstrate ethanol's ability to decrease phasic DA release over time and to increase tonic extracellular DA concentrations in the nucleus accumbens. Next, we demonstrate the capability for high frequency VTA DBS to reverse this ethanol-associated surge in tonic DA concentrations in the nucleus accumbens to levels not significantly different from baseline. This study suggests a promising new avenue for investigating the mechanisms of alcohol use disorder.
Collapse
Affiliation(s)
- Abhinav Goyal
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905 USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Juan Rojas Cabrera
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905 USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
3
|
Morrow AL, McFarland MH, O'Buckley TK, Robinson DL. Emerging evidence for pregnane steroid therapeutics for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:59-96. [PMID: 39523063 DOI: 10.1016/bs.irn.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Many lines of research have suggested that the neuroactive pregnane steroids, including pregnenolone, progesterone, and allopregnanolone ([3α,5α]-3-hydroxypregnan-20-one, 3α,5α-THP), have therapeutic potential for treatment of alcohol use disorders (AUDs). In this chapter, we systematically address the preclinical and clinical evidence that supports this approach for AUD treatment, describe the underlying neurobiology of AUDs that are targeted by these treatments, and delineate how pregnane steroids may address various components of the disease. This review updates the theoretical framework for understanding how endogenous steroids that modulate the effects of alcohol, stress, excitatory/inhibitory and dopamine transmission, and the innate immune system appear to play a key role in the prevention and mitigation of AUDs. We further discuss newly discovered limitations of pregnane steroid therapies as well as the challenges that are inherent to development of endogenous compounds for therapeutics. We argue that overcoming these challenges presents the opportunity to help millions who suffer from AUDs across the world.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States.
| | - Minna H McFarland
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Doyle MA, Taylor A, Winder DG. Neural Circuitries and Alcohol Use Disorder: Cutting Corners in the Cycle. Curr Top Behav Neurosci 2023. [PMID: 38082108 DOI: 10.1007/7854_2023_454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An implicit tenet of the alcohol use disorder (AUD) research field is that knowledge of how alcohol interacts with the brain is critical to the development of an understanding of vulnerability to AUD and treatment approaches. Gaining this understanding requires the mapping of brain function critical to specific components of this heterogeneous disorder. Early approaches in humans and animal models focused on the determination of specific brain regions sensitive to alcohol action and their participation in AUD-relevant behaviors. Broadly speaking, this research has focused on three domains, Binge/Intoxication, Negative Affect/Withdrawal, and Preoccupation/Anticipation, with a number of regions identified as participating in each. With the generational advances in technologies that the field of neuroscience has undergone over the last two decades, this focus has shifted to a circuit-based analysis. A wealth of new data has sharpened the field's focus on the specific roles of the interconnectivity of multiple brain regions in AUD and AUD-relevant behaviors, as well as demonstrating that the three major domains described above have much fuzzier edges than originally thought.In this chapter, we very briefly review brain regions previously implicated in aspects of AUD-relevant behavior from animal model research. Next, we move to a more in-depth overview of circuit-based approaches, and the utilization of these approaches in current AUD research.
Collapse
Affiliation(s)
- Marie A Doyle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anne Taylor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Sauton P, Jeanblanc J, Benzerouk F, Gierski F, Naassila M. Sex-specific decision-making impairments and striatal dopaminergic changes after binge drinking history in rats. Front Pharmacol 2023; 14:1076465. [PMID: 36726581 PMCID: PMC9885167 DOI: 10.3389/fphar.2023.1076465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Binge drinking (BD) is a harmful behavior for health and is a predictive factor for the development of alcohol addiction. Weak decision-making (DM) capacities could play a role in the vulnerability to BD which in turn would lead to DM impairments, thus perpetuating BD. Longitudinal preclinical studies are however lacking and necessary to understand this complex relationship. Both DM and BD are influenced by sex and involve dopamine release in the core of the nucleus accumbens, a central mechanism regulated by dopamine D2/3 autoreceptors. In this context, we used an operant self-administration procedure of BD in male and female rats, and longitudinally assessed DM capacity, memory and anxiety-like behavior. To better understand the mechanisms potentially involved in the relationship between DM and BD, ex vivo dopamine transmission was assessed short term after the end of the binge exposure in the core of the nucleus accumbens (NAc) using the fast-scan cyclic voltammetry (FSCV) technique and the D2/3 agonist quinpirole. We found important basal sex differences in DM, with female rats showing better performances at baseline. Choice processes were impaired exclusively in males after BD history, associated with a decrease in impulse control in both sexes, while memory and anxiety-like behavior were not affected. Our neurobiological results demonstrate that BD did not affect basal dopamine signaling in the NAc core, regardless of the sex, but reveal changes in the sensitivity to the inhibitory effects of quinpirole in females. DM impairments were neither associated with changes in basal dopamine signaling nor pre-synaptic D2 activity. Overall, our findings show that BD affects both DM processes and dopamine transmission in the core of the NAc in a sex-related manner, further suggesting that these effects may play a role in the vicious cycle leading to BD perpetuation and the early onset of AUD. Our results may inform novel strategies for therapeutic and prevention interventions.
Collapse
Affiliation(s)
- Pierre Sauton
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Farid Benzerouk
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Fabien Gierski
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Mickael Naassila
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,*Correspondence: Mickael Naassila,
| |
Collapse
|
6
|
Early-life low-level lead exposure alters anxiety-like behavior, voluntary alcohol consumption and AC5 protein content in adult male and female C57BL/6 J mice. Neurotoxicol Teratol 2023; 95:107149. [PMID: 36539102 DOI: 10.1016/j.ntt.2022.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Despite efforts to eradicate sources of environmental lead (Pb), children, predominately in lower socioeconomic areas, are still frequently exposed to unsafe levels of Pb from soils, dust, and water. Human studies suggest that Pb exposure is associated with altered drug consumption in adults; however, there is limited research at comparable exposure levels (blood Pb levels <10 μg/dL). To model how early-life, low-level Pb exposure affects alcohol consumption in adulthood, we exposed postnatal day (PND) 21 C57Bl/6 J mice to either 30 ppm or 0 ppm Lead (IV) Acetate in distilled water until PND 42, and testing began in adulthood. We predicted that mice with early-life Pb exposure would exhibit greater anxiety-like behavior and consume more alcohol in a three-week Drinking-in-the-Dark procedure (20% v/v) and a 24-h two-bottle choice procedure (10% v/v). We also predicted that Pb exposure would decrease whole-brain content of Adenylate Cyclase-5 (AC5), a protein linked to anxiety-like behaviors and alcohol drinking. There was no difference in limited-access binge-like consumption between exposure groups; however, Pb-exposed mice displayed higher two-bottle choice alcohol intake and preference. Furthermore, Pb-exposed mice exhibited greater anxiety-like behaviors in experiments conducted before an alcohol drinking history but not after. Finally, Pb-exposed mice exhibited an upregulation of whole-brain AC5 protein content. However, this difference was not found in the nucleus accumbens, dorsomedial or dorsolateral striatum. These findings conclude that early-life Pb exposure alters voluntary alcohol consumption and whole-brain AC5 protein content in adulthood. Future studies are necessary to further understand the mechanism behind how Pb exposure alters alcohol intake.
Collapse
|
7
|
Obray JD, Jang EY, Klomp AM, Small CA, Richardson AP, LeBaron JJ, Lee JG, Yorgason JT, Yang CH, Steffensen SC. The peripheral dopamine 2 receptor antagonist domperidone attenuates ethanol enhancement of dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 2022; 46:396-409. [PMID: 35040146 PMCID: PMC8920780 DOI: 10.1111/acer.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine neuron firing in the ventral tegmental area (VTA) and dopamine release in the nucleus accumbens have been implicated in reward learning. Ethanol is known to increase both dopamine neuron firing in the VTA and dopamine levels in the nucleus accumbens. Despite this, some discrepancies exist between the dose of ethanol required to enhance firing in vivo and ex vivo. In the present study we investigated the effects of peripheral dopamine 2 subtype receptor antagonism on ethanol's effects on dopamine neurotransmission. METHODS Plasma catecholamine levels were assessed following ethanol administration across four different doses of EtOH. Microdialysis and voltammetry were used to assess the effects of domperidone pretreatment on ethanol-mediated increases in dopamine release in the nucleus accumbens. A place conditioning paradigm was used to assess conditioned preference for ethanol and whether domperidone pretreatment altered this preference. Open-field and loss-of-righting reflex paradigms were used to assess the effects of domperidone on ethanol-induced sedation. A rotarod apparatus was used to assess the effects of domperidone on ethanol-induced motor impairment. RESULTS Domperidone attenuated ethanol's enhancement of mesolimbic dopamine release under non-physiological conditions at intermediate (1.0 and 2.0 g/kg) doses of ethanol. Domperidone also decreased EtOH-induced sedation at 2.0 g/kg. Domperidone did not alter ethanol conditioned place preference nor did it affect ethanol-induced motor impairment. CONCLUSIONS These results show that peripheral dopamine 2 receptors mediate some of the effects of ethanol on nonphysiological dopamine neurotransmission, although these effects are not related to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- James Daniel Obray
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eun Young Jang
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anneke M. Klomp
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Christina A. Small
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Aaron P. Richardson
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Joshua J. LeBaron
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Scott C. Steffensen
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
8
|
Grinevich VP, Krupitsky EM, Gainetdinov RR, Budygin EA. Linking Ethanol-Addictive Behaviors With Brain Catecholamines: Release Pattern Matters. Front Behav Neurosci 2022; 15:795030. [PMID: 34975429 PMCID: PMC8716449 DOI: 10.3389/fnbeh.2021.795030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
Using a variety of animal models that simulate key features of the alcohol use disorder (AUD), remarkable progress has been made in identifying neurochemical targets that may contribute to the development of alcohol addiction. In this search, the dopamine (DA) and norepinephrine (NE) systems have been long thought to play a leading role in comparison with other brain systems. However, just recent development and application of optogenetic approaches into the alcohol research field provided opportunity to identify neuronal circuits and specific patterns of neurotransmission that govern the key components of ethanol-addictive behaviors. This critical review summarizes earlier findings, which initially disclosed catecholamine substrates of ethanol actions in the brain and shows how the latest methodologies help us to reveal the significance of DA and NE release changes. Specifically, we focused on recent optogenetic investigations aimed to reveal cause-effect relationships between ethanol-drinking (seeking and taking) behaviors and catecholamine dynamics in distinct brain pathways. These studies gain the knowledge that is needed for the better understanding addiction mechanisms and, therefore, for development of more effective AUD treatments. Based on the reviewed findings, new messages for researches were indicated, which may have broad applications beyond the field of alcohol addiction.
Collapse
Affiliation(s)
- Vladimir P Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| | - Evgeny M Krupitsky
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Laboratory of Clinical Psychopharmacology of Addictions, St.-Petersburg First Pavlov State Medical University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia.,Institute of Translational Biomedicine and St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| | - Evgeny A Budygin
- Department of Neurobiology, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
9
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
10
|
Ghin F, Beste C, Stock AK. Neurobiological mechanisms of control in alcohol use disorder - moving towards mechanism-based non-invasive brain stimulation treatments. Neurosci Biobehav Rev 2021; 133:104508. [PMID: 34942268 DOI: 10.1016/j.neubiorev.2021.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is characterized by excessive habitual drinking and loss of control over alcohol intake despite negative consequences. Both of these aspects foster uncontrolled drinking and high relapse rates in AUD patients. Yet, common interventions mostly focus on the phenomenological level, and prioritize the reduction of craving and withdrawal symptoms. Our review provides a mechanistic understanding of AUD and suggests alternative therapeutic approaches targeting the mechanisms underlying dysfunctional alcohol-related behaviours. Specifically, we explain how repeated drinking fosters the development of rigid drinking habits and is associated with diminished cognitive control. These behavioural and cognitive effects are then functionally related to the neurobiochemical effects of alcohol abuse. We further explain how alterations in fronto-striatal network activity may constitute the neurobiological correlates of these alcohol-related dysfunctions. Finally, we discuss limitations in current pharmacological AUD therapies and suggest non-invasive brain stimulation (like TMS and tDCS interventions) as a potential addition/alternative for modulating the activation of both cortical and subcortical areas to help re-establish the functional balance between controlled and automatic behaviour.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Biopsychology, Faculty of Psychology, TU Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Tezcan K, Yananli HR, Demirkapu MJ, Gören MZ, Sakalli HE, Colombo G, Gülhan R. The effect of telmisartan, an angiotensin receptor blocker, on alcohol consumption and alcohol-induced dopamine release in the nucleus accumbens. Alcohol 2021; 96:73-81. [PMID: 34419631 DOI: 10.1016/j.alcohol.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Alcohol use disorder remains a major health problem. The mesocorticolimbic dopaminergic system, including the nucleus accumbens region and multiple neural circuits, is involved in its complex underlying mechanism. For instance, alcohol intake stimulates the central and peripheral renin-angiotensin system and increases angiotensin II levels, which predominantly affect angiotensin 1 receptors both in the periphery and in the brain. In this study, we aimed to investigate the effects of the intracerebroventricularly-administered angiotensin 1 receptor blocker telmisartan on the alcohol consumption of male Sardinian alcohol-preferring (sP) rats and on the alcohol-induced dopamine levels in the nucleus accumbens region in Wistar rats. Acute intracerebroventricular administration of telmisartan (100 nM) reduced the alcohol intake for 24 hours without affecting food and water consumption in sP rats. Acute intracerebroventricular injection of the opioid receptor antagonist naloxone (75 nM), tested as a reference compound, also reduced the alcohol consumption in sP rats; however, naloxone's effect lasted only for 30 minutes. In microdialysis experiments, telmisartan administered intracerebroventricularly did not change dopamine levels in the nucleus accumbens that had been induced by acute intraperitoneal alcohol administration in Wistar rats. According to these results, further studies are needed to elucidate the role of the renin-angiotensin system on alcohol use disorder pathophysiology.
Collapse
|
12
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
13
|
Danielsson K, Stomberg R, Adermark L, Ericson M, Söderpalm B. Differential dopamine release by psychosis-generating and non-psychosis-generating addictive substances in the nucleus accumbens and dorsomedial striatum. Transl Psychiatry 2021; 11:472. [PMID: 34518523 PMCID: PMC8438030 DOI: 10.1038/s41398-021-01589-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia is associated with three main categories of symptoms; positive, negative and cognitive. Of these, only the positive symptoms respond well to treatment with antipsychotics. Due to the lack of effect of antipsychotics on negative symptoms, it has been suggested that while the positive symptoms are related to a hyperdopaminergic state in associative striatum, the negative symptoms may be a result of a reduced dopamine (DA) activity in the nucleus accumbens (nAc). Drug abuse is common in schizophrenia, supposedly alleviating negative symptomatology. Some, but not all, drugs aggravate psychosis, tentatively due to differential effects on DA activity in striatal regions. Here this hypothesis was tested in rats by using a double-probe microdialysis technique to simultaneously assess DA release in the nAc and associative striatum (dorsomedial striatum; DMS) following administration of the psychosis-generating substances amphetamine (0.5 mg/kg), cocaine (15 mg/kg) and Δ9-tetrahydrocannabinol (THC, 3 mg/kg), and the generally non-psychosis-generating substances ethanol (2.5 g/kg), nicotine (0.36 mg/kg) and morphine (5 mg/kg). The data show that amphetamine and cocaine produce identical DA elevations both in the nAc and DMS, whereas nicotine increases DA in nAc only. Ethanol and morphine both increased DMS DA, but weaker and in a qualitatively different way than in nAc, suggesting that the manner in which DA is increased might be important to the triggering of psychosis. THC elevated DA in neither region, indicating that the pro-psychotic effects of THC are not related to DA release. We conclude that psychosis-generating substances affect striatal DA release differently than non-psychosis-generating substances.
Collapse
Affiliation(s)
- Klara Danielsson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.8761.80000 0000 9919 9582Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
14
|
Post MR, Sulzer D. The chemical tools for imaging dopamine release. Cell Chem Biol 2021; 28:748-764. [PMID: 33894160 PMCID: PMC8532025 DOI: 10.1016/j.chembiol.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Dopamine is a modulatory neurotransmitter involved in learning, motor functions, and reward. Many neuropsychiatric disorders, including Parkinson's disease, autism, and schizophrenia, are associated with imbalances or dysfunction in the dopaminergic system. Yet, our understanding of these pervasive public health issues is limited by our ability to effectively image dopamine in humans, which has long been a goal for chemists and neuroscientists. The last two decades have witnessed the development of many molecules used to trace dopamine. We review the small molecules, nanoparticles, and protein sensors used with fluorescent microscopy/photometry, MRI, and PET that shape dopamine research today. None of these tools observe dopamine itself, but instead harness the biology of the dopamine system-its synthetic and metabolic pathways, synaptic vesicle cycle, and receptors-in elegant ways. Their advantages and weaknesses are covered here, along with recent examples and the chemistry and biology that allow them to function.
Collapse
Affiliation(s)
- Michael R Post
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - David Sulzer
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
15
|
Doyon WM, Ostroumov A, Ontiveros T, Gonzales RA, Dani JA. Ethanol produces multiple electrophysiological effects on ventral tegmental area neurons in freely moving rats. Addict Biol 2021; 26:e12899. [PMID: 32255261 DOI: 10.1111/adb.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
Although alcohol (i.e., ethanol) is a major drug of abuse, the acute functional effects of ethanol on the reward circuitry are not well defined in vivo. In freely moving rats, we examined the effect of intravenous ethanol administration on neuronal unit activity in the posterior ventral tegmental area (VTA), a central component of the mesolimbic reward system. VTA units were classified as putative dopamine (DA) neurons, fast-firing GABA neurons, and unidentified neurons based on a combination of electrophysiological properties and DA D2 receptor pharmacological responses. A gradual infusion of ethanol significantly altered the firing rate of DA neurons in a concentration-dependent manner. The majority of DA neurons were stimulated by ethanol and showed enhanced burst firing activity, but a minority was inhibited. Ethanol also increased the proportion of DA neurons that exhibited pacemaker-like firing patterns. In contrast, ethanol mediated a variety of effects in GABA and other unidentified neurons that were distinct from DA neurons, including a nonlinear increase in firing rate, delayed inhibition, and more biphasic activity. These results provide evidence of discrete electrophysiological effects of ethanol on DA neurons compared with other VTA cell types, suggesting a complex role of the VTA in alcohol-induced responses in freely moving animals.
Collapse
Affiliation(s)
- William M. Doyon
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Alexey Ostroumov
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Tiahna Ontiveros
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - Rueben A. Gonzales
- Department of Pharmacology and Toxicology University of Texas Austin Texas USA
| | - John A. Dani
- Department of Neuroscience, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
16
|
Dornellas APS, Macedo GC, McFarland MH, Gómez-A A, O'Buckley TK, Da Cunha C, Morrow AL, Robinson DL. Allopregnanolone Decreases Evoked Dopamine Release Differently in Rats by Sex and Estrous Stage. Front Pharmacol 2021; 11:608887. [PMID: 33519475 PMCID: PMC7840599 DOI: 10.3389/fphar.2020.608887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Mesolimbic dopamine transmission is dysregulated in multiple psychiatric disorders, including addiction. Previous studies found that the endogenous GABAergic steroid (3α,5α)-3-hydroxy-5-pregnan-20-one (allopregnanolone) modulates dopamine levels in the nucleus accumbens and prefrontal cortex. As allopregnanolone is a potent positive allosteric modulator of GABAA receptors, and GABAA receptors can regulate dopamine release, we hypothesized that allopregnanolone would reduce phasic fluctuations in mesolimbic dopamine release that are important in learning and reward processing. We used fast-scan cyclic voltammetry in anesthetized female and male rats to measure dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area, before and after administration of allopregnanolone. Allopregnanolone (7.5–25 mg/kg, IP) reduced evoked dopamine release in both male and female rats, compared to β-cyclodextrin vehicle. In males, all doses of allopregnanolone decreased dopamine transmission, with stronger effects at 15 and 25 mg/kg allopregnanolone. In females, 15 and 25 mg/kg allopregnanolone reduced dopamine release, while 7.5 mg/kg allopregnanolone was no different from vehicle. Since allopregnanolone is derived from progesterone, we hypothesized that high endogenous progesterone levels would result in lower sensitivity to allopregnanolone. Consistent with this, females in proestrus (high progesterone levels) were less responsive to allopregnanolone than females in other estrous cycle stages. Furthermore, 30 mg/kg progesterone reduced evoked dopamine release in males, similar to allopregnanolone. Our findings confirm that allopregnanolone reduces evoked dopamine release in both male and female rats. Moreover, sex and the estrous cycle modulated this effect of allopregnanolone. These results extend our knowledge about the pharmacological effects of neurosteroids on dopamine transmission, which may contribute to their therapeutic effects.
Collapse
Affiliation(s)
- Ana Paula S Dornellas
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States.,Laboratório de Fisiologia e Farmacologia do Paraná, Departments of Pharmacology and Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - Giovana C Macedo
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States.,Department of Psychobiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Minna H McFarland
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Claudio Da Cunha
- Laboratório de Fisiologia e Farmacologia do Paraná, Departments of Pharmacology and Biochemistry, Universidade Federal do Paraná, Curitiba, Brazil
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States.,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
19
|
Vena AA, Zandy SL, Cofresí RU, Gonzales RA. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol Ther 2020; 212:107573. [PMID: 32437827 PMCID: PMC7580704 DOI: 10.1016/j.pharmthera.2020.107573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder has multiple characteristics including excessive ethanol consumption, impaired control over drinking behaviors, craving and withdrawal symptoms, compulsive seeking behaviors, and is considered a chronic condition. Relapse is common. Determining the neurobiological targets of ethanol and the adaptations induced by chronic ethanol exposure is critical to understanding the clinical manifestation of alcohol use disorders, the mechanisms underlying the various features of the disorder, and for informing medication development. In the present review, we discuss ethanol's interactions with a variety of neurotransmitter systems, summarizing findings from preclinical and translational studies to highlight recent progress in the field. We then describe animal models of ethanol self-administration, emphasizing the value, limitations, and validity of commonly used models. Lastly, we summarize the behavioral changes induced by chronic ethanol self-administration, with an emphasis on cue-elicited behavior, the role of ethanol-related memories, and the emergence of habitual ethanol seeking behavior.
Collapse
Affiliation(s)
- Ashley A Vena
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | | | - Roberto U Cofresí
- Psychological Sciences, University of Missouri, United States of America
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy and Institute for Neuroscience, The University of Texas at Austin, United States of America.
| |
Collapse
|
20
|
Gómez-A A, Shnitko TA, Caref KL, Nicola SM, Robinson DL. Stimuli predicting high-calorie reward increase dopamine release and drive approach to food in the absence of homeostatic need. Nutr Neurosci 2020; 25:593-602. [PMID: 32578521 DOI: 10.1080/1028415x.2020.1782613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Animals and humans are motivated to consume high-fat, high-calorie foods by cues predicting such foods. The neural mechanisms underlying this effect are not well understood.Objective: We tested the hypothesis that cues paired with a food reward, as compared to explicitly unpaired cues, increase rats' food-seeking behavior by potentiating dopamine release in the nucleus accumbens, and that this effect would be less evident under satiety.Methods: We used a simple discriminative stimulus task and electrochemical recordings of dopamine release in freely moving rats.Results: We found that both food-predictive cue and hunger increased conditioned approaches to the receptacle (food-seeking behavior indicated by movement to the food receptacle). In addition, we observed dopamine release when the food-predictive cue (but not the unpaired cue) was presented, independent of hunger or satiety. Finally, we found a positive correlation between dopamine release amplitude and the number of conditioned approaches to the food receptacle in the sated condition, but not in the hungry condition.Discussion: Our results suggest that dopamine could drive seeking behavior for calorie-dense food in absence of homeostatic need, a core aspect of binge eating disorders.
Collapse
Affiliation(s)
- Alexander Gómez-A
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Tatiana A Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin L Caref
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saleem M Nicola
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar Modulation of Mesolimbic Dopamine Transmission Is Functionally Asymmetrical. THE CEREBELLUM 2020; 18:922-931. [PMID: 31478166 DOI: 10.1007/s12311-019-01074-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.
Collapse
Affiliation(s)
- Zade R Holloway
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Nick B Paige
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Josiah F Comstock
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Hunter G Nolen
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Helen J Sable
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA
| | - Deranda B Lester
- Department of Psychology, University of Memphis, Memphis, TN, 38152-3520, USA.
| |
Collapse
|
22
|
Waeiss RA, Knight CP, Engleman EA, Hauser SR, Rodd ZA. Co-administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naïve Wistar rats. J Neurochem 2020; 152:556-569. [PMID: 31721205 PMCID: PMC10826843 DOI: 10.1111/jnc.14914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Alcohol use disorder most commonly presents as a polydrug disorder where greater than 85% are estimated to smoke. EtOH and nicotine (NIC) co-abuse or exposure results in unique neuroadaptations that are linked to behaviors that promote drug use. The current experiments aimed to identify neuroadaptations within the mesolimbic pathway produced by concurrent EtOH and NIC exposure. The experiments used four overall groups of male Wistar rats consisting of vehicle, EtOH or NIC alone, and EtOH+NIC. Drug exposure through direct infusion into the posterior ventral tegmental area (pVTA) stimulated release of glutamate and dopamine in the nucleus accumbens (NAc) shell, which was quantified through high-performance liquid chromatography. Additionally, brain-derived neurotrophic factor (BDNF) protein levels were measured via enzyme-linked immunosorbent assay (ELISA). A second experiment investigated the effects of drug pretreatment within the pVTA on the reinforcing properties of EtOH within the NAc shell through intracranial self-administration (ICSA). The concluding experiment evaluated the effect of NAc shell pretreatment with BDNF on EtOH reward utilizing ICSA within that region. The data indicated that only EtOH+NIC administration into the pVTA simultaneously increased glutamate, dopamine, and BDNF in the NAc shell. Moreover, only pVTA pretreatment with EtOH+NIC enhanced the reinforcing properties of EtOH in the NAc shell. BDNF pretreatment in the NAc shell was also sufficient to enhance the reinforcing properties of EtOH in the NAc shell. The collected data suggest that concurrent EtOH+NIC exposure results in a distinct neurochemical response and neuroadaptations within the mesolimbic pathway that alter EtOH reward.
Collapse
Affiliation(s)
- Robert A Waeiss
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher P Knight
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Cofresí RU, Bartholow BD, Piasecki TM. Evidence for incentive salience sensitization as a pathway to alcohol use disorder. Neurosci Biobehav Rev 2019; 107:897-926. [PMID: 31672617 PMCID: PMC6878895 DOI: 10.1016/j.neubiorev.2019.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive cues and its sensitization in humans and non-human animals. We point out gaps in the literature and how these might be addressed. We also highlight how individuals with different alcohol subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, we discuss important implications of this neuropsychological mechanism in AUD for psychological and pharmacological interventions attempting to attenuate alcohol craving and cue reactivity.
Collapse
Affiliation(s)
- Roberto U Cofresí
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States.
| | - Bruce D Bartholow
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| | - Thomas M Piasecki
- University of Missouri, Department of Psychological Sciences, Columbia, MO 65211, United States
| |
Collapse
|
24
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Yang PP, Yeh TK, Loh HH, Law PY, Wang Y, Tao PL. Delta-opioid receptor antagonist naltrindole reduces oxycodone addiction and constipation in mice. Eur J Pharmacol 2019; 852:265-273. [PMID: 30959048 DOI: 10.1016/j.ejphar.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Oxycodone, a widely prescribed and very potent oral opioid analgesic agent, is highly addictive and has many side effects, including troublesome constipation. Our studies in mice indicated that pretreatment of naltrindole did not significantly affect the analgesic efficacy of oxycodone but attenuated the tolerance and withdrawal induced by chronic oxycodone administration. Naltrindole also attenuated the oxycodone-induced rewarding and re-instatement behaviors, as shown by the conditioned place preference test. Further, oxycodone-induced decrease in intestinal transit (i.e., constipation) was reduced by naltrindole. However, naltrindole did not block the respiratory depression produced by oxycodone. Taken together, these data suggest that naltrindole can attenuate some major side effects while retaining the analgesic efficacy of oxycodone in mice. Naltrindole and oxycodone may have the potential to be a potent analgesic combination with much lower levels of oxycodone's side effects of addictive liability and constipation.
Collapse
Affiliation(s)
- Pao-Pao Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC; Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Pao-Luh Tao
- Department of Pharmacology, National Defense Medical Center, Taipei City, 11490, Taiwan, ROC; Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC.
| |
Collapse
|
26
|
Modeling drug addiction in females: how internal state and environmental context facilitate vulnerability. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Fiorenza AM, Shnitko TA, Sullivan KM, Vemuru SR, Gomez-A A, Esaki JY, Boettiger CA, Da Cunha C, Robinson DL. Ethanol Exposure History and Alcoholic Reward Differentially Alter Dopamine Release in the Nucleus Accumbens to a Reward-Predictive Cue. Alcohol Clin Exp Res 2018; 42:1051-1061. [PMID: 29602178 DOI: 10.1111/acer.13636] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/18/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Conditioned stimuli (CS) that predict reward delivery acquire the ability to induce phasic dopamine release in the nucleus accumbens (NAc). This dopamine release may facilitate conditioned approach behavior, which often manifests as approach to the site of reward delivery (called "goal-tracking") or to the CS itself (called "sign-tracking"). Previous research has linked sign-tracking in particular to impulsivity and drug self-administration, and addictive drugs may promote the expression of sign-tracking. Ethanol (EtOH) acutely promotes phasic release of dopamine in the accumbens, but it is unknown whether an alcoholic reward alters dopamine release to a CS. We hypothesized that Pavlovian conditioning with an alcoholic reward would increase dopamine release triggered by the CS and subsequent sign-tracking behavior. Moreover, we predicted that chronic intermittent EtOH (CIE) exposure would promote sign-tracking while acute administration of naltrexone (NTX) would reduce it. METHODS Rats received 14 doses of EtOH (3 to 5 g/kg, intragastric) or water followed by 6 days of Pavlovian conditioning training. Rewards were a chocolate solution with or without 10% (w/v) alcohol. We used fast-scan cyclic voltammetry to measure phasic dopamine release in the NAc core in response to the CS and the rewards. We also determined the effect of NTX (1 mg/kg, subcutaneous) on conditioned approach. RESULTS Both CIE and alcoholic reward, individually but not together, associated with greater dopamine to the CS than control conditions. However, this increase in dopamine release was not linked to greater sign-tracking, as both CIE and alcoholic reward shifted conditioned approach from sign-tracking behavior to goal-tracking behavior. However, they both also increased sensitivity to NTX, which reduced goal-tracking behavior. CONCLUSIONS While a history of EtOH exposure or alcoholic reward enhanced dopamine release to a CS, they did not promote sign-tracking under the current conditions. These findings are consistent with the interpretation that EtOH can stimulate conditioned approach, but indicate that the conditioned response may manifest as goal-tracking.
Collapse
Affiliation(s)
- Amanda M Fiorenza
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Tatiana A Shnitko
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Kaitlin M Sullivan
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Sudheer R Vemuru
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander Gomez-A
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Julie Y Esaki
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Charlotte A Boettiger
- Department of Psychology & Neuroscience, Bowles Center for Alcohol Studies and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - Claudio Da Cunha
- Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Donita L Robinson
- Department of Psychiatry and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Deal AL, Konstantopoulos JK, Weiner JL, Budygin EA. Exploring the consequences of social defeat stress and intermittent ethanol drinking on dopamine dynamics in the rat nucleus accumbens. Sci Rep 2018; 8:332. [PMID: 29321525 PMCID: PMC5762836 DOI: 10.1038/s41598-017-18706-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
The current study aimed to explore how presynaptic dopamine (DA) function is altered following brief stress episodes and chronic ethanol self-administration and whether these neuroadaptations modify the acute effects of ethanol on DA dynamics. We used fast-scan cyclic voltammetry to evaluate changes in DA release and uptake parameters in rat nucleus accumbens brain slices by analyzing DA transients evoked through single pulse electrical stimulation. Adult male rats were divided into four groups: ethanol-naïve or ethanol drinking (six week intermittent two-bottle choice) and stressed (mild social defeat) or nonstressed. Results revealed that the mild stress significantly increased DA release and uptake in ethanol-naïve subjects, compared to nonstressed controls. Chronic ethanol self-administration increased the DA uptake rate and occluded the effects of stress on DA release dynamics. Bath-applied ethanol decreased stimulated DA efflux in a concentration-dependent manner in all groups; however, the magnitude of this effect was blunted by either stress or chronic ethanol, or by a combination of both procedures. Together, these findings suggest that stress and ethanol drinking may promote similar adaptive changes in accumbal presynaptic DA release measures and that these changes may contribute to the escalation in ethanol intake that occurs during the development of alcohol use disorder.
Collapse
Affiliation(s)
- Alex L Deal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Evgeny A Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
29
|
Schelp SA, Brodnik ZD, Rakowski DR, Pultorak KJ, Sambells AT, España RA, Oleson EB. Diazepam Concurrently Increases the Frequency and Decreases the Amplitude of Transient Dopamine Release Events in the Nucleus Accumbens. J Pharmacol Exp Ther 2018; 364:145-155. [PMID: 29054857 PMCID: PMC5741045 DOI: 10.1124/jpet.117.241802] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023] Open
Abstract
Benzodiazepines are commonly prescribed anxiolytics that pose abuse liability in susceptible individuals. Although it is well established that all drugs of abuse increase brain dopamine levels, and benzodiazepines are allosteric modulators of the GABAA receptor, it remains unclear how they alter dopamine release. Using in vivo fast-scan cyclic voltammetry, we measured diazepam-induced changes in the frequency and amplitude of transient dopamine release events. We found that diazepam concurrently increases the frequency and decreases the amplitude of transient dopamine release events in the awake and freely moving rat. The time course during which diazepam altered the frequency and amplitude of dopamine release events diverged, with the decreased amplitude effect being shorter lived than the increase in frequency, but both showing similar rates of onset. We conclude that diazepam increases the frequency of accumbal dopamine release events by disinhibiting dopamine neurons, but also decreases their amplitude. We speculate that the modest abuse liability of benzodiazepines is due to their ability to decrease the amplitude of dopamine release events in addition to increasing their frequency.
Collapse
Affiliation(s)
- Scott A Schelp
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Zachary D Brodnik
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Dylan R Rakowski
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Katherine J Pultorak
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Asha T Sambells
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Rodrigo A España
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| | - Erik B Oleson
- University of Colorado Denver, Department of Psychology, Denver, Colorado (S.A.S., D.R.R., K.J.P., A.T.S., E.B.O.) and Drexel University College of Medicine, Department of Neurobiology and Anatomy, Philadelphia, Pennsylvania (Z.D.R., R.A.E.)
| |
Collapse
|
30
|
Melchior JR, Jones SR. Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 2017; 85:93-104. [PMID: 28942046 PMCID: PMC5698100 DOI: 10.1016/j.mcn.2017.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 01/07/2023] Open
Abstract
Dopamine signaling encodes reward learning and motivated behavior through modulation of synaptic signaling in the nucleus accumbens, and aberrations in these processes are thought to underlie obsessive behaviors associated with alcohol abuse. The nucleus accumbens is divided into core and shell sub-regions with overlapping but also divergent contributions to behavior. Here we optogenetically targeted dopamine projections to the accumbens allowing us to isolate stimulation of dopamine terminals ex vivo. We applied 5 pulse (phasic) light stimulations to probe intrinsic differences in dopamine release parameters across regions. Also, we exposed animals to 4weeks of chronic intermittent ethanol vapor and measured phasic release. We found that initial release probability, uptake rate and autoreceptor inhibition were greater in the accumbens core compared to the shell, yet the shell showed greater phasic release ratios. Following chronic ethanol, uptake rates were increased in the core but not the shell, suggesting region-specific neuronal adaptations. Conversely, kappa opioid receptor function was upregulated in both regions to a similar extent, suggesting a local mechanism of kappa opioid receptor regulation that is generalized across the nucleus accumbens. These data suggest that dopamine axons in the nucleus accumbens core and shell display differences in intrinsic release parameters, and that ethanol-induced adaptations to dopamine neuron terminal fields may not be homogeneous. Also, chronic ethanol exposure induces an upregulation in kappa opioid receptor function, providing a mechanism for potential over-inhibition of accumbens dopamine signaling which may negatively impact downstream synaptic function and ultimately bias choice towards previously reinforced alcohol use behaviors.
Collapse
Affiliation(s)
- James R Melchior
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
31
|
Shnitko TA, Mace KD, Sullivan KM, Martin WK, Andersen EH, Williams Avram SK, Johns JM, Robinson DL. Use of fast-scan cyclic voltammetry to assess phasic dopamine release in rat models of early postpartum maternal behavior and neglect. Behav Pharmacol 2017; 28:648-660. [PMID: 29068793 PMCID: PMC5680131 DOI: 10.1097/fbp.0000000000000347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Kyla D. Mace
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Kaitlin M. Sullivan
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - W. Kyle Martin
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Josephine M. Johns
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Cross-talk between the epigenome and neural circuits in drug addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:19-63. [PMID: 29054289 DOI: 10.1016/bs.pbr.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected.
Collapse
|
33
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
34
|
Fox ME, Wightman RM. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective. Pharmacol Rev 2017; 69:12-32. [PMID: 28267676 DOI: 10.1124/pr.116.012948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| | - R Mark Wightman
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
35
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
36
|
Madayag AC, Stringfield SJ, Reissner KJ, Boettiger CA, Robinson DL. Sex and Adolescent Ethanol Exposure Influence Pavlovian Conditioned Approach. Alcohol Clin Exp Res 2017; 41:846-856. [PMID: 28196273 DOI: 10.1111/acer.13354] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol use among adolescents is widespread and a growing concern due to long-term behavioral deficits, including altered Pavlovian behavior, that potentially contribute to addiction vulnerability. We tested the hypothesis that adolescent intermittent ethanol (AIE) exposure alters Pavlovian behavior in males and females as measured by a shift from goal-tracking to sign-tracking. Additionally, we investigated GLT-1, an astrocytic glutamate transporter, as a potential contributor to a sign-tracking phenotype. METHODS Male and female Sprague-Dawley rats were exposed to AIE (5 g/kg, intragastric) or water intermittently 2 days on and 2 days off from postnatal day (P) 25 to 54. Around P70, animals began 20 daily sessions of Pavlovian conditioned approach (PCA), where they learned that a cue predicted noncontingent reward delivery. Lever pressing indicated interaction with the cue, or sign-tracking, and receptacle entries indicated approach to the reward delivery location, or goal-tracking. To test for effects of AIE on nucleus accumbens (NAcc) excitatory signaling, we isolated membrane subfractions and measured protein levels of the glutamate transporter GLT-1 after animals completed behavior as a measure of glutamate homeostasis. RESULTS Females exhibited elevated sign-tracking compared to males with significantly more lever presses, faster latency to first lever press, and greater probability to lever press in a trial. AIE significantly increased lever pressing while blunting goal-tracking, as indicated by fewer cue-evoked receptacle entries, slower latency to receptacle entry, and lower probability to enter the receptacle in a trial. No significant sex-by-exposure interactions were observed in sign- or goal-tracking metrics. Moreover, we found no significant effects of sex or exposure on membrane GLT-1 expression in the NAcc. CONCLUSIONS Females exhibited enhanced sign-tracking compared to males, while AIE decreased goal-tracking compared to control exposure. Our findings support the hypothesis that adolescent binge ethanol can shift conditioned behavior from goal- to cue-directed in PCA, especially in females.
Collapse
Affiliation(s)
- Aric C Madayag
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Kathryn J Reissner
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina.,Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Morozova EO, Zakharov D, Gutkin BS, Lapish CC, Kuznetsov A. Dopamine Neurons Change the Type of Excitability in Response to Stimuli. PLoS Comput Biol 2016; 12:e1005233. [PMID: 27930673 PMCID: PMC5145155 DOI: 10.1371/journal.pcbi.1005233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
The dynamics of neuronal excitability determine the neuron's response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency "balanced" state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation.
Collapse
Affiliation(s)
- Ekaterina O. Morozova
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
- Department of Mathematical sciences, Indiana University - Purdue University, Indianapolis, Indiana, United States of America
- * E-mail:
| | | | - Boris S. Gutkin
- Group of Neural Theory, INSERM U960 LNC, IEC, Ecole Normale Superieure PSL University, Paris
- Center for Cognition and Decision Making, NRU HSE, Moscow, Russia
| | - Christopher C. Lapish
- Addiction Neuroscience Program, Indiana University - Purdue University, Indianapolis, Indiana, United States of America
| | - Alexey Kuznetsov
- Department of Mathematical sciences, Indiana University - Purdue University, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Vena AA, Mangieri R, Gonzales RA. Regional Analysis of the Pharmacological Effects of Acute Ethanol on Extracellular Striatal Dopamine Activity. Alcohol Clin Exp Res 2016; 40:2528-2536. [PMID: 27785807 PMCID: PMC5133149 DOI: 10.1111/acer.13246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 09/20/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND The objective of this study was to characterize the acute pharmacological effects of ethanol (EtOH) on extracellular dopamine in the dorsomedial and dorsolateral striata. This is the first study to quantify and directly compare the effects of acute EtOH on dopamine in these subregions. Therefore, we also tested the nucleus accumbens as a positive control. We hypothesized that while EtOH may increase extracellular dopamine in the dorsomedial striatum and dorsolateral striatum, the magnitude of this increase and the temporal profiles of extracellular dopamine concentrations would differ among the dorsomedial striatum, dorsolateral striatum, and nucleus accumbens. METHODS We performed in vivo microdialysis in adult, male Long Evans rats as they received a single (experiment 1) or repeated (experiment 2) doses of EtOH. RESULTS The results of our positive control study validate earlier work by our laboratory demonstrating that acute intravenous EtOH immediately and robustly increases extracellular dopamine in the nucleus accumbens (Howard et al., ). In contrast, a single 1-g/kg dose of intravenous EtOH did not significantly affect extracellular dopamine in the dorsomedial striatum or the dorsolateral striatum. However, following a cumulative EtOH dosing protocol, we observed a ramping up of tonic dopamine activity in both the dorsomedial striatum and dorsolateral striatum over the course of the experiment, but this effect was more robust in the dorsomedial striatum. CONCLUSIONS These results suggest that distinct mechanisms underlie the stimulating effects of acute EtOH on extracellular dopamine in striatal subregions. Additionally, our findings suggest a role for the dorsomedial striatum and minimal-to-no role for the dorsolateral striatum in mediating the intoxicating effects of acute moderate to high doses of EtOH.
Collapse
Affiliation(s)
- Ashley A Vena
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas
| | - Regina Mangieri
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas
| | - Rueben A Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas
| |
Collapse
|
39
|
Crews FT, Vetreno RP, Broadwater MA, Robinson DL. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior. Pharmacol Rev 2016; 68:1074-1109. [PMID: 27677720 PMCID: PMC5050442 DOI: 10.1124/pr.115.012138] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative-motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity to alcohol into adulthood. Together, these findings support the hypothesis that adolescent binge drinking leads to long-lasting changes in the adult brain that increase risks of adult psychopathology, particularly for alcohol dependence.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Margaret A Broadwater
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies (F.T.C., R.P.V., M.A.B., D.L.R.), Department of Psychiatry (F.T.C., D.L.R.), and Department of Pharmacology (F.T.C.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
40
|
Gessa GL. The long pursued Holy Grail of the true “alcoholic” rat. Brain Res 2016; 1645:55-7. [DOI: 10.1016/j.brainres.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 12/21/2022]
|
41
|
Shnitko TA, Taylor SC, Stringfield SJ, Zandy SL, Cofresí RU, Doherty JM, Lynch WB, Boettiger CA, Gonzales RA, Robinson DL. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain. Psychopharmacology (Berl) 2016; 233:2045-2054. [PMID: 26944052 PMCID: PMC4864125 DOI: 10.1007/s00213-016-4259-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
RATIONALE Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. OBJECTIVES We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. METHODS Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. RESULTS Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. CONCLUSIONS These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah C. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Sierra J. Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Shannon L. Zandy
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Roberto U. Cofresí
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - James M. Doherty
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - William B. Lynch
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Rueben A. Gonzales
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Pereira DB, Schmitz Y, Mészáros J, Merchant P, Hu G, Li S, Henke A, Lizardi-Ortiz JE, Karpowicz RJ, Morgenstern TJ, Sonders MS, Kanter E, Rodriguez PC, Mosharov EV, Sames D, Sulzer D. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat Neurosci 2016; 19:578-86. [PMID: 26900925 PMCID: PMC4853199 DOI: 10.1038/nn.4252] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/15/2016] [Indexed: 12/16/2022]
Abstract
Neurotransmission at dopaminergic synapses has been studied with techniques that provide high temporal resolution, but cannot resolve individual synapses. To elucidate the spatial dynamics and heterogeneity of individual dopamine boutons, we developed fluorescent false neurotransmitter 200 (FFN200), a vesicular monoamine transporter 2 (VMAT2) substrate that selectively traces monoamine exocytosis in both neuronal cell culture and brain tissue. By monitoring electrically evoked Ca(2+) transients with GCaMP3 and FFN200 release simultaneously, we found that only a small fraction of dopamine boutons that exhibited Ca(2+) influx engaged in exocytosis, a result confirmed with activity-dependent loading of the endocytic probe FM1-43. Thus, only a low fraction of striatal dopamine axonal sites with uptake-competent VMAT2 vesicles are capable of transmitter release. This is consistent with the presence of functionally 'silent' dopamine vesicle clusters and represents, to the best of our knowledge, the first report suggestive of presynaptically silent neuromodulatory synapses.
Collapse
Affiliation(s)
- Daniela B. Pereira
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Yvonne Schmitz
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - József Mészáros
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | | | - Gang Hu
- Department of Chemistry, Columbia University, New York, NY
| | - Shu Li
- Department of Chemistry, Columbia University, New York, NY
| | - Adam Henke
- Department of Chemistry, Columbia University, New York, NY
| | | | | | | | - Mark S. Sonders
- Department of Neurology, Columbia University Medical Center, New York, NY
- Department of Psychiatry, Columbia University Medical Center, New York, NY
| | - Ellen Kanter
- Department of Neurology, Columbia University Medical Center, New York, NY
| | | | - Eugene V. Mosharov
- Department of Neurology, Columbia University Medical Center, New York, NY
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY
| | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY
- Department of Psychiatry, Columbia University Medical Center, New York, NY
- Department of Pharmacology, Columbia University Medical Center, New York, NY
- Department of Neuroscience, New York Psychiatric Institute, New York, NY
| |
Collapse
|
43
|
McKim TH, Shnitko TA, Robinson DL, Boettiger CA. Translational Research on Habit and Alcohol. CURRENT ADDICTION REPORTS 2016; 3:37-49. [PMID: 26925365 DOI: 10.1007/s40429-016-0089-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Habitual actions enable efficient daily living, but they can also contribute to pathological behaviors that resistant change, such as alcoholism. Habitual behaviors are learned actions that appear goal-directed but are in fact no longer under the control of the action's outcome. Instead, these actions are triggered by stimuli, which may be exogenous or interoceptive, discrete or contextual. A major hallmark characteristic of alcoholism is continued alcohol use despite serious negative consequences. In essence, although the outcome of alcohol seeking and drinking is dramatically devalued, these actions persist, often triggered by environmental cues associated with alcohol use. Thus, alcoholism meets the definition of an initially goal-directed behavior that converts to a habit-based process. Habit and alcohol have been well investigated in rodent models, with comparatively less research in non-human primates and people. This review focuses on translational research on habit and alcohol with an emphasis on cross-species methodology and neural circuitry.
Collapse
Affiliation(s)
- Theresa H McKim
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, Davie Hall, CB #3270, Chapel Hill, NC 27599
| | - Tatiana A Shnitko
- University of North Carolina at Chapel Hill, Bowles Center for Alcohol Studies, CB #7178, Chapel Hill, NC 27599
| | - Donita L Robinson
- University of North Carolina at Chapel Hill, Department of Psychiatry, Bowles Center for Alcohol Studies, CB #7178, Chapel Hill, NC 27599
| | - Charlotte A Boettiger
- Biomedical Research Imaging Center, Bowles Center for Alcohol Studies, Davie Hall, CB #3270, Chapel Hill, NC 27599
| |
Collapse
|
44
|
Shnitko TA, Spear LP, Robinson DL. Adolescent binge-like alcohol alters sensitivity to acute alcohol effects on dopamine release in the nucleus accumbens of adult rats. Psychopharmacology (Berl) 2016; 233:361-71. [PMID: 26487039 PMCID: PMC4840100 DOI: 10.1007/s00213-015-4106-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED Rationale: Early onset of alcohol drinking has been associated with alcohol abuse in adulthood. The neurobiology of this phenomenon is unclear, but mesolimbic dopamine pathways, which are dynamic during adolescence, may play a role. OBJECTIVES We investigated the impact of adolescent binge-like alcohol on phasic dopaminergic neurotransmission during adulthood. METHODS Rats received intermittent intragastric ethanol, water, or nothing during adolescence. In adulthood, electrically evoked dopamine release and subsequent uptake were measured in the nucleus accumbens core at baseline and after acute challenge of ethanol or saline. RESULTS Adolescent ethanol exposure did not alter basal measures of evoked dopamine release or uptake. Ethanol challenge dose-dependently decreased the amplitude of evoked dopamine release in rats by 30–50 % in control groups, as previously reported, but did not alter evoked release in ethanol-exposed animals. To address the mechanism by which ethanol altered dopamine signaling, the evoked signals were modeled to estimate dopamine efflux per impulse and the velocity of the dopamine transporter. Dopamine uptake was slower in all exposure groups after ethanol challenge compared to saline, while dopamine efflux per pulse of electrical stimulation was reduced by ethanol only in ethanol-naive rats. CONCLUSIONS The results demonstrate that exposure to binge levels of ethanol during adolescence blunts the effect of ethanol challenge to reduce the amplitude of phasic dopamine release in adulthood. Large dopamine transients may result in more extracellular dopamine after alcohol challenge in adolescent-exposed rats and may be one mechanism by which alcohol is more reinforcing in people who initiated drinking at an early age.
Collapse
Affiliation(s)
- Tatiana A. Shnitko
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Linda P. Spear
- Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Corresponding author: Donita L. Robinson, PhD, Bowles Center for Alcohol Studies, CB #7178, University of North Carolina, Chapel Hill, NC 27599–7178; ; Phone: 919–966–9178; Fax: 919–966–5679
| |
Collapse
|
45
|
Marballi K, Genabai NK, Blednov YA, Harris RA, Ponomarev I. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. GENES BRAIN AND BEHAVIOR 2015; 15:318-26. [PMID: 26482798 DOI: 10.1111/gbb.12266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction.
Collapse
Affiliation(s)
- K Marballi
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - N K Genabai
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin.,Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - I Ponomarev
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| |
Collapse
|
46
|
Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ. Corticostriatal circuitry and habitual ethanol seeking. Alcohol 2015; 49:817-24. [PMID: 26059221 PMCID: PMC4644517 DOI: 10.1016/j.alcohol.2015.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 01/01/2023]
Abstract
The development of alcohol-use disorders is thought to involve a transition from casual alcohol use to uncontrolled alcohol-seeking behavior. This review will highlight evidence suggesting that the shift toward inflexible alcohol seeking that occurs across the development of addiction consists, in part, of a progression from goal-directed to habitual behaviors. This shift in "response strategy" is thought to be largely regulated by corticostriatal network activity. Indeed, specific neuroanatomical substrates within the prefrontal cortex and the striatum have been identified as playing opposing roles in the expression of actions and habits. A majority of the research on the neurobiology of habitual behavior has focused on non-drug reward seeking. Here, we will highlight recent research identifying corticostriatal structures that regulate the expression of habitual alcohol seeking and a comparison will be made when possible to findings for non-drug rewards.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Laura H Corbit
- School of Psychology, University of Sydney, Sydney, Australia
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Christina M Gremel
- Department of Psychology, Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rueben A Gonzales
- Department of Pharmacology, The University of Texas at Austin, Austin, TX, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
47
|
Trantham-Davidson H, Chandler LJ. Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol 2015; 49:773-9. [PMID: 26558348 DOI: 10.1016/j.alcohol.2015.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
Long-term alcohol use leads to persistent cognitive deficits that may be associated with maladaptive changes in the neurocircuitry that mediates executive functions. Impairments caused by these changes can persist well into abstinence and have a negative impact on quality of life and job performance, and can increase the probability of relapse. Many of the changes that affect cognitive function appear to involve dysregulation of the mesocortical dopamine system. This includes changes in dopamine release and alterations in dopamine receptor expression and function in the medial prefrontal cortex (PFC). This review summarizes the cellular effects of acute and chronic ethanol exposure on dopamine release and dopamine receptor function in the PFC with the goal of providing greater understanding of the effects of alcohol-use disorders on the dopamine system and how this relates to deficits in the executive function of the PFC.
Collapse
Affiliation(s)
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
48
|
Spoelder M, Tsutsui KT, Lesscher HMB, Vanderschuren LJMJ, Clark JJ. Adolescent Alcohol Exposure Amplifies the Incentive Value of Reward-Predictive Cues Through Potentiation of Phasic Dopamine Signaling. Neuropsychopharmacology 2015; 40:2873-85. [PMID: 25971592 PMCID: PMC4864623 DOI: 10.1038/npp.2015.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 11/09/2022]
Abstract
Adolescent alcohol use remains a major public health concern due in part to well-established findings implicating the age of onset in alcohol use in the development of alcohol use disorders and persistent decision-making deficits in adults. We have previously demonstrated that moderate adolescent alcohol consumption in rats promotes suboptimal decision making and an associated perturbation in mesolimbic dopamine transmission in adulthood. Dopamine-dependent incentive learning processes are an integral component of value-based decision making and a fundamental element to many theoretical accounts of addiction. Thus we tested the hypothesis that adolescent alcohol use selectively alters incentive learning processes through perturbation of mesolimbic dopamine systems. To assess incentive learning, behavioral and neurochemical measurements were made during the acquisition, maintenance, extinction, and reacquisition of a Pavlovian conditioned approach procedure in adult rats with a history of adolescent alcohol consumption. We show that moderate adolescent alcohol consumption potentiates stimulus-evoked phasic dopamine transmission, measured in vivo by fast-scan cyclic voltammetry, in adulthood and biases individuals toward a dopamine-dependent incentive learning strategy. Moreover, we demonstrate that animals exposed to alcohol in adolescence are more sensitive to an unexpected variation in reward outcomes. This pattern of phasic dopamine signaling and the associated bias in learning may provide a mechanism for the well-documented vulnerability of individuals with early-life alcohol use for alcohol use disorders in adulthood.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Kimberly T Tsutsui
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Heidi M B Lesscher
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioral Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeremy J Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Box 356560, 1959 NW Pacific Street, Seattle, WA 98195, USA, Tel: +1 206 992 0472, Fax: +1 206 543 9520, E-mail:
| |
Collapse
|
49
|
Shnitko TA, Kennerly LC, Spear LP, Robinson DL. Ethanol reduces evoked dopamine release and slows clearance in the rat medial prefrontal cortex. Alcohol Clin Exp Res 2015; 38:2969-77. [PMID: 25581652 DOI: 10.1111/acer.12587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/18/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ethanol (EtOH) intoxication affects cognitive performance, contributing to attentional deficits and poor decision making, which may occur via actions in the medial prefrontal cortex (mPFC). mPFC function is modulated by the catecholamines dopamine and norepinephrine. In this study, we examine the acute effects of EtOH on electrically evoked dopamine release and clearance in the mPFC of anesthetized rats naïve to alcohol or chronically exposed to alcohol during adolescence. METHODS Dopamine release and clearance was evoked by electrical stimulation of the ventral tegmental area (VTA) and measured in the mPFC of anesthetized rats with fast-scan cyclic voltammetry. In Experiments 1 and 2, effects of a high dose of EtOH (4 g/kg, intraperitoneally) on dopamine neurotransmission in the mPFC of EtOH-naïve rats and rats given EtOH exposure during adolescence were investigated. Effects of cumulative dosing of EtOH (0.5 to 4 g/kg) on the dopamine release and clearance were investigated in Experiment 3. Experiment 4 studied effects of EtOH locally applied to the VTA on the dopamine neurotransmission in the mPFC of EtOH-naïve rats. RESULTS A high dose of EtOH decreased evoked dopamine release within 10 minutes of administration in EtOH-naïve rats. When tested via cumulative dosing from 0.5 to 4 g/kg, both 2 and 4 g/kg EtOH inhibited evoked dopamine release in the mPFC of EtOH-naïve rats, while 4 g/kg EtOH also slowed dopamine clearance. A similar effect on electrically evoked dopamine release in the mPFC was observed after infusion of EtOH into the VTA. Interestingly, intermittent EtOH exposure during adolescence had no effect on observed changes in mPFC dopamine release and clearance induced by acute EtOH administration. CONCLUSIONS Taken together, these data describe EtOH-induced reductions in the dynamics of VTA-evoked mPFC dopamine release and clearance, with the VTA contributing to the attenuation of evoked mPFC dopamine release induced by EtOH.
Collapse
Affiliation(s)
- Tatiana A Shnitko
- Bowles Center for Alcohol Study , University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
50
|
Mrejeru A, Martí-Prats L, Avegno EM, Harrison NL, Sulzer D. A subset of ventral tegmental area dopamine neurons responds to acute ethanol. Neuroscience 2015; 290:649-58. [PMID: 25660505 DOI: 10.1016/j.neuroscience.2014.12.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
The mechanisms by which alcohol drinking promotes addiction in humans and self-administration in rodents remain obscure, but it is well known that alcohol can enhance dopamine (DA) neurotransmission from neurons of the ventral tegmental area (VTA) and increase DA levels within the nucleus accumbens and prefrontal cortex. We recorded from identified DA neuronal cell bodies within ventral midbrain slices prepared from a transgenic mouse line (TH-GFP) using long-term stable extracellular recordings in a variety of locations and carefully mapped the responses to applied ethanol (EtOH). We identified a subset of DA neurons in the medial VTA located within the rostral linear and interfascicular nuclei that fired spontaneously and exhibited a concentration-dependent increase of firing frequency in response to EtOH, with some neurons responsive to as little as 20mM EtOH. Many of these medial VTA DA neurons were also insensitive to the D2 receptor agonist quinpirole. In contrast, DA neurons in the lateral VTA (located within the parabrachial pigmented and paranigral nuclei) were either unresponsive or responded only to 100mM EtOH. Typically, these lateral VTA DA cells had very slow firing rates, and all exhibited inhibition by quinpirole via D2 "autoreceptors". VTA non-DA cells did not show any significant response to low levels of EtOH. These findings are consistent with evidence for heterogeneity among midbrain DA neurons and provide an anatomical and pharmacological distinction between DA neuron sub-populations that will facilitate future mechanistic studies on the actions of EtOH in the VTA.
Collapse
Affiliation(s)
- A Mrejeru
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - L Martí-Prats
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Burjassot, Spain
| | - E M Avegno
- Departments of Anesthesiology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - N L Harrison
- Departments of Anesthesiology and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA.
| | - D Sulzer
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Psychiatry and Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|