1
|
Li H, Tan X, Li J, Zhang Q. New Progress in the Study of Pathogenesis of Alcoholic Pancreatitis. Digestion 2025:1-15. [PMID: 39827866 DOI: 10.1159/000542548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alcoholic pancreatitis is a progressive condition characterized by susceptibility to recurrence, progression to chronic pancreatitis, complications, and high morbidity. SUMMARY The main causes include long-term alcoholism, excessive drinking, the toxic effects of alcohol metabolites, interactions with biliary diseases, and genetic factors. Alcohol is the second leading cause of acute pancreatitis (AP) in the USA, accounting for one-third of all AP cases. A follow-up study on readmission revealed that the readmission rate of alcoholic acute pancreatitis (AAP) patients within 11 months was 43.1%, of which men dominated the admissions and readmissions of AAP. Among this population, 82.3% have alcohol use disorder, over half have tobacco use disorders, 6.7% have tobacco use disorder, 4.5% have opioid use disorder, and 18.5% of patients exhibit signs of potential alcoholic chronic pancreatitis. Numerous animal and clinical studies suggest that alcohol alone does not cause pancreatitis; rather, additional factors such as smoking, endotoxin lipopolysaccharide (LPS), genetic mutations, or other genetic predispositions - are necessary for the disease's progression. KEY MESSAGES Given the high rates of admission and readmission for alcoholic pancreatitis, it is essential to further investigate its pathogenesis and pathological processes to develop more effective treatment strategies. Therefore, this paper summarizes the current understanding of the pathogenesis and treatment status of alcoholic pancreatitis, drawing on recently published literature and data to provide insights and references for future research and treatment efforts.
Collapse
Affiliation(s)
- Hanhui Li
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China,
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China,
- Clinical medical college, Yangtze University, Jingzhou, China,
| | - Xiaoping Tan
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
- Jingzhou Hospital of Traditional Chinese Medicine, The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jie Li
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
| | - Qing Zhang
- Department of Gastroenterology, First Hospital of Yangtze University, Jingzhou, China
- Digestive Disease Research Institution of Yangtze University, Jingzhou, China
- Clinical medical college, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Zhang J, Li C, Duan M, Qu Z, Wang Y, Dong Y, Wu Y, Fang S, Gu S. The Improvement Effects of Weizmannia coagulans BC99 on Liver Function and Gut Microbiota of Long-Term Alcohol Drinkers: A Randomized Double-Blind Clinical Trial. Nutrients 2025; 17:320. [PMID: 39861457 PMCID: PMC11769147 DOI: 10.3390/nu17020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES With the improvement of living standards, alcoholic liver disease caused by long-term drinking has been a common multiple disease. Probiotic interventions may help mitigate liver damage caused by alcohol intake, but the mechanisms need more investigation. METHODS This study involved 70 long-term alcohol drinkers (18-65 years old, alcohol consumption ≥20 g/day, lasting for more than one year) who were randomly assigned to either the BC99 group or the placebo group. Two groups were given BC99 (3 g/day, 1 × 1010 CFU) or placebo (3 g/day) for 60 days, respectively. Before and after the intervention, blood routine indicators, liver function, renal function, inflammatory factors and intestinal flora were evaluated. RESULTS The results showed that intervention with Weizmannia coagulans BC99 reduced the levels of alanine aminotransferase, aspartate aminotransferase, glutamyl transpeptidase, serum total bilirubin, blood urea nitrogen, uric acid and 'blood urea nitrogen/creatinine'. Weizmannia coagulans BC99 also reduced the levels of pro-inflammatory factors TNF-α and IL-6 and increased the levels of anti-inflammatory factor IL-10. The results of intestinal flora analysis showed that Weizmannia coagulans BC99 regulated the imbalance of intestinal flora, increased the beneficial bacteria abundance (Prevotella, Faecalibacterium and Roseburia) and reduced the conditionally pathogenic bacteria abundance (Escherichia-Shigella and Klebsiella). Both LEfSe analysis and random forest analysis indicated that the increase in the abundance of Muribaculaceae induced by BC99 was a key factor in alleviating alcohol-induced liver damage. CONCLUSIONS These findings demonstrate that Weizmannia coagulans BC99 has the potential to alleviate alcoholic liver injury and provide an effective strategy for liver protection in long-term drinkers.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Cheng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhen Qu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yi Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuguang Fang
- Department of Research and Development, Wecare Probiotics Co., Ltd., Suzhou 215200, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
- Henan Engineering Research Center of Food Material, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471000, China
| |
Collapse
|
3
|
Shen Y, Duan H, Yuan L, Asikaer A, Liu Y, Zhang R, Liu Y, Wang Y, Lin Z. Computational biology-based study of the molecular mechanism of spermidine amelioration of acute pancreatitis. Mol Divers 2024; 28:2583-2601. [PMID: 37523101 DOI: 10.1007/s11030-023-10698-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Acute pancreatitis (AP) is an acute inflammatory gastrointestinal disease, the mortality and morbility of which has been on the increase in the past years. Spermidine, a natural polyamine, has a wide range of pharmacological effects including anti-inflammation, antioxidation, anti-aging, and anti-tumorigenic. This study aimed to investigate the reliable targets and molecular mechanisms of spermidine in treating AP. By employing computational biology methods including network pharmacology, molecular docking, and molecular dynamics (MD) simulations, we explored the potential targets of spermidine in improving AP with dietary supplementation. The computational biology results revealed that spermidine had high degrees (degree: 18, betweenness: 38.91; degree: 18, betweenness: 206.41) and stable binding free energy (ΔGbind: - 12.81 ± 0.55 kcal/mol, - 15.00 ± 1.00 kcal/mol) with acetylcholinesterase (AchE) and serotonin transporter (5-HTT). Experimental validation demonstrates that spermidine treatment could reduce the necrosis and AchE activity in pancreatic acinar cells. Cellular thermal shift assay (CETSA) results revealed that spermidine could bind to and stabilize the 5-HTT protein in acinar cells. Moreover, spermidine treatment impeded the rise of the expression of 5-HTT in pancreatic tissues of caerulein induced acute pancreatitis mice. In conclusion, serotonin transporter might be a reliable target of spermidine in treating AP. This study provides new idea for the exploration of potential targets of natural compounds.
Collapse
Affiliation(s)
- Yan Shen
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Hongtao Duan
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Lu Yuan
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Aiminuer Asikaer
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Yiyuan Liu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yuanqiang Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China
| | - Zhihua Lin
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, China.
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, People's Republic of China.
| |
Collapse
|
4
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Wan J, Wang J, Wagner LE, Wang OH, Gui F, Chen J, Zhu X, Haddock AN, Edenfield BH, Haight B, Mukhopadhyay D, Wang Y, Yule DI, Bi Y, Ji B. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight 2021; 6:132585. [PMID: 34314386 PMCID: PMC8492327 DOI: 10.1172/jci.insight.132585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Hyperstimulation of the cholecystokinin 1 receptor (CCK1R), a G protein-coupled receptor (GPCR), in pancreatic acinar cells is commonly used to induce pancreatitis in rodents. Human pancreatic acinar cells lack CCK1R but express cholinergic receptor muscarinic 3 (M3R), another GPCR. To test whether M3R activation is involved in pancreatitis, a mutant M3R was conditionally expressed in pancreatic acinar cells in mice. This mutant receptor loses responsiveness to its native ligand, acetylcholine, but can be activated by an inert small molecule, clozapine-N-oxide (CNO). Intracellular calcium and amylase were elicited by CNO in pancreatic acinar cells isolated from mutant M3R mice but not WT mice. Similarly, acute pancreatitis (AP) could be induced by a single injection of CNO in the transgenic mice but not WT mice. Compared with the cerulein-induced AP, CNO caused more widespread acinar cell death and inflammation. Furthermore, chronic pancreatitis developed at 4 weeks after 3 episodes of CNO-induced AP. In contrast, in mice with 3 recurrent episodes of cerulein-included AP, pancreas histology was restored in 4 weeks. Furthermore, the M3R antagonist ameliorated the severity of cerulein-induced AP in WT mice. We conclude that M3R activation can cause the pathogenesis of pancreatitis. This model may provide an alternative approach for pancreatitis research.
Collapse
Affiliation(s)
- Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Oliver H. Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Fu Gui
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ashley N. Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Brian Haight
- Prodo Laboratories Inc., Aliso Viejo, California, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
6
|
Wang M, Gorelick FS. Ketamine and xylazine effects in murine model of acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1111-G1122. [PMID: 33881355 PMCID: PMC8285583 DOI: 10.1152/ajpgi.00023.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Ketamine and xylazine (Ket/Xyl) are anesthetic agents that target neural pathways and are commonly used in combination in mouse studies. Since neural pathways can modulate acute pancreatitis severity, we asked if Ket/Xyl affect disease severity. C57BL/6 mice were treated with six hourly injections of cerulein to induce mild acute pancreatitis. Mice were also treated with and without ketamine, xylazine, and Ket/Xyl before pancreatitis induction in vivo and in vitro. Ket/Xyl pretreatment in vivo increased selected parameters of pancreatitis severity such as trypsin activity and edema; these effects were predominantly mediated by xylazine. Ket/Xyl also changed markers of autophagy. These in vivo effects of Ket/Xyl were not attenuated by atropine. The drugs had no little to no effect on pancreatitis responses in isolated pancreatic cells or lobules. These findings suggest that Ket/Xyl administration can have substantial effect on acute pancreatitis outcomes through nonmuscarinic neural pathways. Given widespread use of this anesthetic combination in experimental animal models, future studies of inflammation and injury using Ket/Xyl should be interpreted with caution.NEW & NOTEWORTHY Ketamine and xylazine anesthetic agent administration before acute pancreatitis induction in mice lead to changes in pancreatitis responses independent of acute pancreatitis induction. Future studies should consider the potential effects of anesthesia administration when studying disease processes associated with inflammation and injury.
Collapse
Affiliation(s)
- Melinda Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Fred Sanford Gorelick
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
7
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Cooley MM, Thomas DDH, Deans K, Peng Y, Lugea A, Pandol SJ, Puglielli L, Groblewski GE. Deficient Endoplasmic Reticulum Acetyl-CoA Import in Pancreatic Acinar Cells Leads to Chronic Pancreatitis. Cell Mol Gastroenterol Hepatol 2020; 11:725-738. [PMID: 33080365 PMCID: PMC7841443 DOI: 10.1016/j.jcmgh.2020.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Maintaining endoplasmic reticulum (ER) proteostasis is essential for pancreatic acinar cell function. Under conditions of severe ER stress, activation of pathogenic unfolded protein response pathways plays a central role in the development and progression of pancreatitis. Less is known, however, of the consequence of perturbing ER-associated post-translational protein modifications on pancreatic outcomes. Here, we examined the role of the ER acetyl-CoA transporter AT-1 on pancreatic homeostasis. METHODS We used an AT-1S113R/+ hypomorphic mouse model, and generated an inducible, acinar-specific, AT-1 knockout mouse model, and performed histologic and biochemical analyses to probe the effect of AT-1 loss on acinar cell physiology. RESULTS We found that AT-1 expression is down-regulated significantly during both acute and chronic pancreatitis. Furthermore, acinar-specific deletion of AT-1 in acinar cells induces chronic ER stress marked by activation of both the spliced x-box binding protein 1 and protein kinase R-like ER kinase pathways, leading to spontaneous mild/moderate chronic pancreatitis evidenced by accumulation of intracellular trypsin, immune cell infiltration, and fibrosis. Induction of acute-on-chronic pancreatitis in the AT-1 model led to acinar cell loss and glad atrophy. CONCLUSIONS These results indicate a key role for AT-1 in pancreatic acinar cell homeostasis, the unfolded protein response, and that perturbations in AT-1 function leads to pancreatic disease.
Collapse
Affiliation(s)
| | | | | | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aurelia Lugea
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Pandol
- Pancreatic Research Group, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin; Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin
| | | |
Collapse
|
9
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:biom10050669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Correspondence: ; Tel.: +1-402-995-3548; Fax: +1-402-995-4600
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
10
|
Egberts JH, Raza GS, Wilgus C, Teyssen S, Kiehne K, Herzig KH. Release of Cholecystokinin from Rat Intestinal Mucosal Cells and the Enteroendocrine Cell Line STC-1 in Response to Maleic and Succinic Acid, Fermentation Products of Alcoholic Beverages. Int J Mol Sci 2020; 21:ijms21020589. [PMID: 31963306 PMCID: PMC7013850 DOI: 10.3390/ijms21020589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alcoholic beverages stimulate pancreatic enzyme secretions by inducing cholecystokinin (CCK) release. CCK is the major stimulatory hormone of pancreatic exocrine secretions, secreted from enteroendocrine I-cells of the intestine. Fermentation products of alcoholic beverages, such as maleic and succinic acids, influence gastric acid secretions. We hypothesize that maleic and succinic acids stimulate pancreatic exocrine secretions during beer and wine ingestion by increasing CCK secretions. Therefore, the effects of maleic and succinic acids on CCK release were studied in duodenal mucosal cells and the enteroendocrine cell line STC-1. Mucosal cells were perfused for 30 min with 5 min sampling intervals, STC-1 cells were studied under static incubation for 15 min, and supernatants were collected for CCK measurements. Succinate and maleate-induced CCK release were investigated. Succinate and maleate doses dependently stimulated CCK secretions from mucosal cells and STC-1 cells. Diltiazem, a calcium channel blocker, significantly inhibited succinate and maleate-induced CCK secretions from mucosal cells and STC-1 cells. Maleate and succinate did not show cytotoxicity in STC-1 cells. Our results indicate that succinate and maleate are novel CCK-releasing factors in fermented alcoholic beverages and could contribute to pancreatic exocrine secretions and their pathophysiology.
Collapse
Affiliation(s)
- Jan-Hendrik Egberts
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Ghulam Shere Raza
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
| | - Cornelia Wilgus
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | | | - Karlheinz Kiehne
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
| | - Karl-Heinz Herzig
- University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; (J.-H.E.); (C.W.); (K.K.)
- Research Unit of Biomedicine, University of Oulu, 90014 Oulu, Finland;
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Medical Research Center Oulu and Oulu University Hospital, 90014 Oulu, Finland
- Correspondence:
| |
Collapse
|
11
|
Yuan J, Hasdemir B, Tan T, Chheda C, Rivier J, Pandol SJ, Bhargava A. Protective effects of urocortin 2 against caerulein-induced acute pancreatitis. PLoS One 2019; 14:e0217065. [PMID: 31100090 PMCID: PMC6524941 DOI: 10.1371/journal.pone.0217065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Because little is known about the role of corticotropin-releasing factor (CRF) agonists in regulating responses in pancreatitis, we evaluated the effects of urocortin 2 (UCN2) and stressin1 in caerulein-induced acute pancreatitis (AP) model in rats. Male rats were pretreated with UCN2 or stressin1 for 30 min followed by induction of AP with supraphysiologic doses of caerulein. Serum amylase and lipase activity, pancreatic tissue necrosis, immune cell infiltrate, nuclear factor (NF)-κB activity, trypsin levels, and intracellular Ca2+ ([Ca2+]i) were ascertained. UCN2, but not stressin1 attenuated the severity of AP in rats. UCN2, but not stressin1, reduced serum amylase and lipase activity, cell necrosis and inflammatory cell infiltration in AP. NF-κB activity in pancreatic nuclear extracts increased in AP and UCN2 treatment reduced caerulein-induced increases in NF-κB activity by 42%. UCN2 treatment prevented caerulein-induced degradation of IκB-α in the cytosolic fraction as well as increased levels of p65 subunit of NF-κB in the cytosolic fraction. Pancreatic UCN2 levels decreased in AP compared with saline. UCN2 evoked [Ca2+]i responses in primary acinar cells and abolished caerulein-evoked [Ca2+]i responses at 0.1nM, and decreased by ~50% at 1.0nM caerulein. UCN2 stimulation resulted in redistribution of a portion of F-actin from the apical to the basolateral pole. UCN2 prevented the massive redistribution of F-actin observed with supraphysiologic doses of caerulein. UCN2, but not stressin1 attenuated severity of an experimental pancreatitis model. The protective effects of UCN2, including anti-inflammatory and anti-necrotic effects involve activation of the CRF2 receptor, [Ca2+]i signaling, and inhibition of NF-κB activity.
Collapse
Affiliation(s)
- Jingzhen Yuan
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Burcu Hasdemir
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
| | - Tanya Tan
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Chintan Chheda
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jean Rivier
- The Salk Institute, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA, United States of America
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Aditi Bhargava
- The Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, United States of America
- Department of OB/GYN, University of California, San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Habtezion A, Gukovskaya AS, Pandol SJ. Acute Pancreatitis: A Multifaceted Set of Organelle and Cellular Interactions. Gastroenterology 2019; 156:1941-1950. [PMID: 30660726 PMCID: PMC6613790 DOI: 10.1053/j.gastro.2018.11.082] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Acute pancreatitis is an inflammatory disorder of the exocrine pancreas associated with tissue injury and necrosis. The disease can be mild, involving only the pancreas, and resolve spontaneously within days or severe, with systemic inflammatory response syndrome-associated extrapancreatic organ failure and even death. Importantly, there are no therapeutic agents currently in use that can alter the course of the disease. This article emphasizes emerging findings that stressors (environmental and genetic) that cause acute pancreatitis initially cause injury to organelles of the acinar cell (endoplasmic reticulum, mitochondria, and endolysosomal-autophagy system), and that disorders in the functions of the organelles lead to inappropriate intracellular activation of trypsinogen and inflammatory pathways. We also review emerging work on the role of damage-associated molecular patterns in mediating the local and systemic inflammatory response in addition to known cytokines and chemokine pathways. In the review, we provide considerations for correction of organelle functions in acute pancreatitis to create a discussion for clinical trial treatment and design options.
Collapse
Affiliation(s)
- Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Anna S. Gukovskaya
- Division of Gastroenterology, Department of Medicine, Department of Veterans Affairs and David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
13
|
Szklarczyk J, Kot M, Bonior J, Śliwowski Z, Tomaszewska R, Jaworek J. Comparison of left side or right side vagotomy in the rat subjected to acute pancreatitis. Adv Med Sci 2019; 64:162-168. [PMID: 30690339 DOI: 10.1016/j.advms.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE We aimed to evaluate the effects of unilateral vagotomy (right-VR or left-VL) on the severity of caerulein-induced acute pancreatitis (AP). MATERIAL AND METHODS VR or VL was done in Wistar rats 4 days before AP, except in control, sham operated group. Following 5 h administration of subcutaneous injections of caerulein, the pancreatic blood flow (PBF), serum lipase and IL-10 in caval blood samples were measured. The pancreatic specimens were taken from sacrificed rats for the assessment of MDA-4-HNE and morphology. RESULTS PBF decreased from 310 ± 20 ml/min/100 g of tissue in control rats to 130 ± 12 units in AP (p < 0.01). VR and VL alleviated this effect to 234 ± 22 and 229 ± 26 units, respectively, (p < 0.01). There was an immense increase of serum lipase in AP, from 100 ± 7 U/L up to 5220 ± 210 U/L (p < 0.01). Only VL limited this increase to 3469 ± 300 U/L (p < 0.01). Serum IL-10 increased uniformly in AP, without any effect of preceding VR or VL. VL performed in rats subjected subsequently to AP resulted in stronger reduction of histological changes, such as pancreatic edema and leukocyte infiltration, than the above parameters in AP rats with VR. MDA+4-HNE increased from 7.5 ± 0.1 pmol/g of tissue in control group to 30.6 ± 3 units in AP group (p < 0.01). Concentration of MDA+4-HNE in pancreatic tissue achieved 16.48 ± 3 pmol/g after VR and 13.84 ± 4 pmol/g following VL. CONCLUSION Our observation might suggest that protective effect of VL could be stronger than VR in the protection on AP. However changes of PBF seem to be similar in both groups of rats.
Collapse
Affiliation(s)
- Joanna Szklarczyk
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Michalina Kot
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Romana Tomaszewska
- Department of Cell Morphology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
14
|
Kavitha Y, Geetha A. Anti-inflammatory and preventive activity of white mulberry root bark extract in an experimental model of pancreatitis. J Tradit Complement Med 2018; 8:497-505. [PMID: 30302330 PMCID: PMC6174261 DOI: 10.1016/j.jtcme.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Pancreatitis is characterized by highly morbid inflammation in the pancreas. Currently, there is no specific drug available for pancreatitis except supportive medicines. The present study assessed the pancreato-protective effect of Morus alba root bark extract by using alcohol and cerulein-induced model of pancreatitis. The study also investigated the phytochemical profile through GC-MS and HPLC. Methanolic extract of Morus alba root bark extract (MEMARB) was subjected to GC-MS and HPLC studies. Male albino Wistar rats were administered ethanol (0%-36%) and cerulein (20 μg/kg b.wt. i.p.) with or without MEMARB. Serum lipase, amylase, caspase-1, lipid peroxidation products, glutathione and enzymatic antioxidants were determined. Histological changes in the pancreas were assessed. Cudraflavone B in MEMARB was quantified by HPLC. Significant amount of Cudraflavone B was detected by quantitative HPLC. Marked increase in the levels of serum amylase, lipase, caspase-1, IL-18 and IL-1β were observed in ethanol and cerulein administered rats than in MEMARB co-administered rats. In MEMARB co-administered rats, the antioxidant status was restored to near normal levels. Histological examinations showed that MEMARB significantly reduced the inflammatory and fibrotic changes. The results reveal the potent pancreato-protective effects of Morus alba root bark. The anti-inflammatory effect of Morus alba root bark extract might be due to the presence of various phytonutrients including Cudraflavone B.
Collapse
Affiliation(s)
| | - Arumugam Geetha
- Department of Biochemistry, Bharathi Women's College, Broadway, Chennai, 600 108, India
| |
Collapse
|
15
|
Lugea A, Waldron RT, Mareninova OA, Shalbueva N, Deng N, Su HY, Thomas DD, Jones EK, Messenger SW, Yang J, Hu C, Gukovsky I, Liu Z, Groblewski GE, Gukovskaya AS, Gorelick FS, Pandol SJ. Human Pancreatic Acinar Cells: Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2726-2743. [PMID: 28935577 DOI: 10.1016/j.ajpath.2017.08.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1β, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.
Collapse
Affiliation(s)
- Aurelia Lugea
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Richard T Waldron
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga A Mareninova
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Nan Deng
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsin-Yuan Su
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Diane D Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Elaina K Jones
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Scott W Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Jiayue Yang
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cheng Hu
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Zhenqiu Liu
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Fred S Gorelick
- Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Veterans Administration Connecticut Healthcare, West Haven, Connecticut
| | - Stephen J Pandol
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
16
|
|
17
|
Setiawan VW, Monroe K, Lugea A, Yadav D, Pandol S. Uniting Epidemiology and Experimental Disease Models for Alcohol-Related Pancreatic Disease. Alcohol Res 2017; 38:173-182. [PMID: 28988572 PMCID: PMC5513684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Findings from epidemiologic studies and research with experimental animal models provide insights into alcohol-related disease pathogeneses. Epidemiologic data indicate that heavy drinking and smoking are associated with high rates of pancreatic disease. Less clear is the association between lower levels of drinking and pancreatitis. Intriguingly, a very low percentage of drinkers develop clinical pancreatitis. Experimental models demonstrate that alcohol administration alone does not initiate pancreatitis but does sensitize the pancreas to disease. Understanding the effects of alcohol use on the pancreas may prove beneficial in the prevention of both pancreatitis and pancreatic cancer.
Collapse
|
18
|
Poulsen JL, Olesen SS, Drewes AM, Ye B, Li WQ, Aghdassi AA, Sendler M, Mayerle J, Lerch MM. The Pathogenesis of Chronic Pancreatitis. CHRONIC PANCREATITIS 2017:29-62. [DOI: 10.1007/978-981-10-4515-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
20
|
Liu Y, Yuan J, Tan T, Jia W, Lugea A, Mareninova O, Waldron RT, Pandol SJ. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G550-63. [PMID: 25035113 PMCID: PMC4154116 DOI: 10.1152/ajpgi.00432.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Yannan Liu
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Jingzhen Yuan
- Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Tanya Tan
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,3St. George's University School of Medicine, St. George's, Grenada; and
| | - Wenzhuo Jia
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,2Beijing Hospital, Beijing, China,
| | - Aurelia Lugea
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Olga Mareninova
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California;
| | - Richard T. Waldron
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J. Pandol
- 1Veterans Affairs Greater Los Angeles Healthcare System, University of California at Los Angeles, and South California Research Center for Alcoholic Liver and Pancreatic Diseases, California; ,4Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
21
|
Özyurt H, Özden AS, Çevik Ö, Özgen Z, Cadirci S, Elmas MA, Ercan F, Şener G, Gören MZ. Investigation into the role of the cholinergic system in radiation-induced damage in the rat liver and ileum. JOURNAL OF RADIATION RESEARCH 2014; 55:866-75. [PMID: 24914105 PMCID: PMC4202297 DOI: 10.1093/jrr/rru039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been previously shown that acetylcholine (ACh) may affect pro-inflammatory and anti-inflammatory cytokines. The role of the cholinergic system in radiation-induced inflammatory responses and tissue damage remains unclear. Therefore, the present study was designed to determine the radio-protective properties of the cholinergic system in the ileum and the liver of rats. Rats were exposed to 8-Gy single-fraction whole-abdominal irradiation and were then decapitated at either 36 h or 10 d post-irradiation. The rats were treated either with intraperitoneal physiological saline (1 ml/kg), physostigmine (80 µg/kg) or atropine (50 μg/kg) twice daily for 36 h or 10 d. Cardiac blood samples and liver and ileal tissues were obtained in which TNF-α, IL-1β and IL-10 levels were assayed using ELISA. In the liver and ileal homogenates, caspase-3 immunoblots were performed and myeloperoxidase (MPO) activity was analyzed. Plasma levels of IL-1β and TNF-α increased significantly following radiation (P < 0.01 and P < 0.001, respectively) as compared with non-irradiated controls, and physostigmine treatment prevented the increase in the pro-inflammatory cytokines (P < 0.01 and P < 0.001, respectively). Plasma IL-10 levels were not found to be significantly changed following radiation, whereas physostigmine augmented IL-10 levels during the late phase (P < 0.01). In the liver and ileum homogenates, IL-1β and TNF-α levels were also elevated following radiation, and this effect was inhibited by physostigmine treatment but not by atropine. Similarly, physostigmine also reversed the changes in MPO activity and in the caspase-3 levels in the liver and ileum. Histological examination revealed related changes. Physostigmine experiments suggested that ACh has a radio-protective effect not involving the muscarinic receptors.
Collapse
Affiliation(s)
- Hazan Özyurt
- Dr Lutfi Kirdar Kartal Training and Research Hospital, Radiation Oncology, 34865 Istanbul, Turkey
| | - A Sevgi Özden
- Dr Lutfi Kirdar Kartal Training and Research Hospital, Radiation Oncology, 34865 Istanbul, Turkey
| | - Özge Çevik
- Cumhuriyet University School of Pharmacy, Department of Biochemistry, 58140 Sivas, Turkey
| | - Zerrin Özgen
- Marmara University Pendik Training and Research Hospital, Radiation Oncology, Üst Kaynarca, Istanbul, Turkey
| | - Selin Cadirci
- Marmara University School of Pharmacy, Pharmacology, 34668 Istanbul, Turkey
| | - Merve Açıkel Elmas
- Marmara University School of Medicine, Department of Histology and Embryology, Başıbüyük Health Campus, Basic Medical Sciences Building, Başıbüyük, Maltepe, 34854 Istanbul, Turkey
| | - Feriha Ercan
- Marmara University School of Medicine, Department of Histology and Embryology, Başıbüyük Health Campus, Basic Medical Sciences Building, Başıbüyük, Maltepe, 34854 Istanbul, Turkey
| | - Göksel Şener
- Marmara University School of Pharmacy, Pharmacology, 34668 Istanbul, Turkey
| | - M Z Gören
- Marmara University School of Medicine, Department of Medical Pharmacology, Başıbüyük Health Campus, Basic Medical Sciences Building, Başıbüyük, Maltepe, 34854 Istanbul, Turkey
| |
Collapse
|
22
|
Aruna R, Geetha A, Suguna P, Suganya V. Rutin rich Emblica officinalis Geart. fruit extract ameliorates inflammation in the pancreas of rats subjected to alcohol and cerulein administration. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2014; 11:9-18. [PMID: 24516008 DOI: 10.1515/jcim-2013-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/13/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND The modulating effect of methanolic extract of Emblica officinalis (MEEO) on ethanol (EtOH)- and cerulein (Cer)-induced pancreatitis in rats was investigated in this study. METHODS Male albino Wistar rats were divided into four groups. Group 1 and 2 rats served as control and fed normal diet. Group 3 and 4 rats were fed isocalorically adjusted diet containing EtOH (36% of total calories) for 5 weeks and also subjected to intraperitoneal injection of Cer 20 µg/kg b.wt. thrice weekly for the last 3 weeks of the experimental period. In addition, group 2 and 4 rats received 200 mg/kg b.wt. of MEEO from 15th day till the experimental period. Serum levels of lipase (L), amylase (A), cytokines IL-1β, IL-18, caspase-1 and oxidative stress index (OSI) were determined. Levels of fecal trypsin, total collagen, caspase-1, myeloperoxidase (MPO), antioxidants and mRNA expression of caspase-1, IL-1β and IL-18 were determined in the pancreas. RESULTS HPLC analysis showed the presence of rutin in MEEO. We observed a significant elevation in serum L/A ratio, IL-1β, IL-18, caspase-1, OSI, collagen, MPO activity and the mRNA expression of IL-1β, IL-18 and caspase-1 and significant reduction in fecal trypsin and antioxidant status in EtOH- and Cer-administered rats. The inflammatory markers were found to be reduced and the antioxidant status of pancreas was maintained in MEEO-coadministered rats. CONCLUSIONS The rutin rich nature of E. officinalis can be claimed for its anti-inflammatory and pancreato protective effects.
Collapse
|
23
|
Orabi AI, Luo Y, Ahmad MU, Shah AU, Mannan Z, Wang D, Sarwar S, Muili KA, Shugrue C, Kolodecik TR, Singh VP, Lowe ME, Thrower E, Chen J, Husain SZ. IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. PLoS One 2012. [PMID: 23185258 PMCID: PMC3504040 DOI: 10.1371/journal.pone.0048465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar cell Ca2+. These aberrant Ca2+ elevations are triggered by release of Ca2+ from apical Ca2+ pools that are gated by the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3. In this study, we examined the role of IP3R type 2 (IP3R2) using mice deficient in this Ca2+ release channel (IP3R2−/−). Using live acinar cell Ca2+ imaging we found that loss of IP3R2 reduced the amplitude of the apical Ca2+ signal and caused a delay in its initiation. This was associated with a reduction in carbachol-stimulated amylase release and an accumulation of zymogen granules (ZGs). Specifically, there was a 2-fold increase in the number of ZGs (P<0.05) and an expansion of the ZG pool area within the cell. There was also a 1.6- and 2.6-fold increase in cellular amylase and trypsinogen, respectively. However, the mice did not have evidence of pancreatic injury at baseline, other than an elevated serum amylase level. Further, pancreatitis outcomes using a mild caerulein hyperstimulation model were similar between IP3R2−/− and wild type mice. In summary, IP3R2 modulates apical acinar cell Ca2+ signals and pancreatic enzyme secretion. IP3R-deficient acinar cells accumulate ZGs, but the mice do not succumb to pancreatic damage or worse pancreatitis outcomes.
Collapse
Affiliation(s)
- Abrahim I. Orabi
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Yuhuan Luo
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Mahwish U. Ahmad
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Ahsan U. Shah
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Zahir Mannan
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Dong Wang
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Sheharyar Sarwar
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kamaldeen A. Muili
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Christine Shugrue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas R. Kolodecik
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vijay P. Singh
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Mark E. Lowe
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Edwin Thrower
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ju Chen
- Department of Molecular Pathology, University of California San Diego, San Diego, California, United States of America
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Muili KA, Ahmad M, Orabi AI, Mahmood SM, Shah AU, Molkentin JD, Husain SZ. Pharmacological and genetic inhibition of calcineurin protects against carbachol-induced pathological zymogen activation and acinar cell injury. Am J Physiol Gastrointest Liver Physiol 2012; 302:G898-905. [PMID: 22323127 PMCID: PMC3355562 DOI: 10.1152/ajpgi.00545.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 01/31/2012] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca(2+) is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca(2+) signaling is the Ca(2+)-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ-/-) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis.
Collapse
Affiliation(s)
- Kamaldeen A Muili
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Orabi AI, Shah AU, Muili K, Luo Y, Mahmood SM, Ahmad A, Reed A, Husain SZ. Ethanol enhances carbachol-induced protease activation and accelerates Ca2+ waves in isolated rat pancreatic acini. J Biol Chem 2011; 286:14090-7. [PMID: 21372126 DOI: 10.1074/jbc.m110.196832] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.
Collapse
Affiliation(s)
- Abrahim I Orabi
- Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lugea A, Tischler D, Nguyen J, Gong J, Gukovsky I, French SW, Gorelick FS, Pandol SJ. Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology 2011; 140:987-97. [PMID: 21111739 PMCID: PMC3057335 DOI: 10.1053/j.gastro.2010.11.038] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress responses (collectively known the unfolded protein response [UPR]) have important roles in several human disorders, but their contribution to alcoholic pancreatitis is not known. We investigated the role of X-box binding protein 1 (XBP1), a UPR regulator, in prevention of alcohol-induced ER stress in the exocrine pancreas. METHODS Wild-type and Xbp1(+/-) mice were fed control or ethanol diets for 4 weeks. Pancreatic tissue samples were then examined by light and electron microscopy to determine pancreatic alterations; UPR regulators were analyzed biochemically. RESULTS In wild-type mice, ethanol activated a UPR, increasing pancreatic levels of XBP1 and XBP1 targets such as protein disulfide isomerase (PDI). In these mice, pancreatic damage was minor. In ethanol-fed Xbp1(+/-) mice, XBP1 and PDI levels were significantly lower than in ethanol-fed wild-type mice. The combination of XBP1 deficiency and ethanol feeding reduced expression of regulators of ER function and the up-regulation of proapoptotic signals. Moreover, ethanol feeding induced oxidation of PDI, which might compromise PDI-mediated disulfide bond formation during ER protein folding. In ethanol-fed Xbp1(+/-) mice, ER stress was associated with disorganized and dilated ER, loss of zymogen granules, accumulation of autophagic vacuoles, and increased acinar cell death. CONCLUSIONS Long-term ethanol feeding causes oxidative ER stress, which activates a UPR and increases XBP1 levels and activity. A defective UPR due to XBP1 deficiency results in ER dysfunction and acinar cell pathology.
Collapse
Affiliation(s)
- Aurelia Lugea
- Southern California Research Center for ALPD & Cirrhosis, Veterans Administration Greater Los Angeles Healthcare System/University of California, Los Angeles, California 90073, USA.
| | - David Tischler
- Southern California Research Center for ALPD & Cirrhosis, VAGLAHS/University of California, Los Angeles, CA
| | - Janie Nguyen
- Southern California Research Center for ALPD & Cirrhosis, VAGLAHS/University of California, Los Angeles, CA
| | - Jun Gong
- Southern California Research Center for ALPD & Cirrhosis, VAGLAHS/University of California, Los Angeles, CA
| | - Ilya Gukovsky
- Southern California Research Center for ALPD & Cirrhosis, VAGLAHS/University of California, Los Angeles, CA
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA
| | | | - Stephen J. Pandol
- Southern California Research Center for ALPD & Cirrhosis, VAGLAHS/University of California, Los Angeles, CA
| |
Collapse
|
27
|
Pandol SJ, Lugea A, Mareninova OA, Smoot D, Gorelick FS, Gukovskaya AS, Gukovsky I. Investigating the pathobiology of alcoholic pancreatitis. Alcohol Clin Exp Res 2011; 35:830-7. [PMID: 21284675 DOI: 10.1111/j.1530-0277.2010.01408.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol abuse is one of the most common causes of pancreatitis. The risk of developing alcohol-induced pancreatitis is related to the amount and duration of drinking. However, only a small portion of heavy drinkers develop disease, indicating that other factors (genetic, environmental, or dietary) contribute to disease initiation. Epidemiologic studies suggest roles for cigarette smoking and dietary factors in the development of alcoholic pancreatitis. The mechanisms underlying alcoholic pancreatitis are starting to be understood. Studies from animal models reveal that alcohol sensitizes the pancreas to key pathobiologic processes that are involved in pancreatitis. Current studies are focussed on the mechanisms responsible for the sensitizing effect of alcohol; recent findings reveal disordering of key cellular organelles including endoplasmic reticulum, mitochondria, and lysosomes. As our understanding of alcohol's effects continue to advance to the level of molecular mechanisms, insights into potential therapeutic strategies will emerge providing opportunities for clinical benefit.
Collapse
Affiliation(s)
- Stephen J Pandol
- Pancreatic Research Group, Department of Veterans Affairs Greater Los Angeles, University of California Los Angeles, 90073, USA.
| | | | | | | | | | | | | |
Collapse
|