1
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Nemkov T, Isiksacan Z, William N, Senturk R, Boudreau LE, Yarmush ML, Acker JP, D'Alessandro A, Usta OB. Supercooled storage of red blood cells slows down the metabolic storage lesion. RESEARCH SQUARE 2025:rs.3.rs-5256734. [PMID: 40060052 PMCID: PMC11888543 DOI: 10.21203/rs.3.rs-5256734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Red blood cell (RBC) transfusion, a life-saving intervention, is limited by reduced RBC potency over time. Cold storage at +4 °C for up to 42 days can reduce transfusion efficacy due to alterations termed the "storage lesion." Strategies to mitigate the storage lesion include alkaline additive solutions and supercooled storage to extend storage by reducing metabolic stresses. However, RBC metabolism during supercooled storage in standard or alkaline additives remains unstudied. This study, thus, investigated the impact of storage additives (alkaline E-Sol5 and standard SAGM) and temperatures (+4 °C, -4 °C, -8 °C) on RBC metabolism during 21- and 42-days storage using high-throughput metabolomics. RBCs stored with E-Sol5 showed increased glycolysis and higher ratios of reduced to oxidized glutathione compared to SAGM. Supercooled storage at -4 °C showed markedly lower hemolysis than -8°C, preserved adenylate pools, decreased glucose consumption, and reduced lactate accumulation and pentose phosphate pathway activation. The combination of supercooled storage and E-Sol5 helped to preserve ATP and 2,3-DPG reservoirs, while preventing catabolism and free fatty acid accumulation. While supercooled storage with E-Sol5 offers a promising alternative to standard storage, preserving RBC metabolic and functional quality, further research is necessary to validate and improve on these foundational findings.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 5612 AZ
| | - Luke E Boudreau
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA, 08854
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| |
Collapse
|
3
|
Hwang JH, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Extracellular vesicles in fresh frozen plasma and cryoprecipitate: Impact on in vitro endothelial cell viability. Transfusion 2024; 64:1709-1718. [PMID: 39021332 DOI: 10.1111/trf.17959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) remains a major contributor to transfusion-associated mortality. While the pathogenesis of TRALI remains unclear, there is evidence of a role for blood components. We therefore investigated the potential effects of fresh frozen plasma (FFP), cryoprecipitate, and extracellular vesicles (EVs) derived from these blood components, on the viability of human lung microvascular endothelial cells (HLMVECs) in vitro. METHODS EVs were isolated from FFP and cryoprecipitate using size-exclusion chromatography and characterized by nanoparticle tracking analysis, western blotting, and transmission electron microscopy. The potential effects of these blood components and their EVs on HLMVEC viability (determined by trypan blue exclusion) were examined in the presence and absence of neutrophils, either with or without prior treatment of HLMVECs with LPS. RESULTS EVs isolated from FFP and cryoprecipitate displayed morphological and biochemical properties conforming to latest international criteria. While FFP, cryoprecipitate, and EVs derived from FFP, each reduced HLMVEC viability, no effect was observed for EVs derived from cryoprecipitate. CONCLUSION Our findings demonstrate clear differences in the effects of FFP, cryoprecipitate, and their respective EVs on HLMVEC viability in vitro. Examination of the mechanisms underlying these differences may lead to an improved understanding of the factors that promote development of TRALI.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Strategy and Growth, Australian Red Cross Lifeblood, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Abou Daher L, Heppell O, Lopez-Plaza I, Guerra-Londono CE. Perioperative Blood Transfusions and Cancer Progression: A Narrative Review. Curr Oncol Rep 2024; 26:880-889. [PMID: 38847973 DOI: 10.1007/s11912-024-01552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE OF REVIEW To examine the most recent evidence about known controversies on the effect of perioperative transfusion on cancer progression. RECENT FINDINGS Laboratory evidence suggests that transfusion-related immunomodulation can be modified by blood management and storage practices, but it is likely of less intensity than the effect of the surgical stress response. Clinical evidence has questioned the independent effect of blood transfusion on cancer progression for some cancers but supported it for others. Despite major changes in surgery and anesthesia, cancer surgery remains a major player in perioperative blood product utilization. Prospective data is still required to strengthen or refute existing associations. Transfusion-related immunomodulation in cancer surgery is well-documented, but the extent to which it affects cancer progression is unclear. Associations between transfusion and cancer progression are disease-specific. Increasing evidence shows autologous blood transfusion may be safe in cancer surgery.
Collapse
Affiliation(s)
- Layal Abou Daher
- Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | | | - Ileana Lopez-Plaza
- Department of Pathology and Blood Bank, Henry Ford Health, Detroit, MI, USA
| | - Carlos E Guerra-Londono
- Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
5
|
Green SM, Padula MP, Dodgen TM, Batarseh A, Marks DC, Johnson L. Lipidomic changes occurring in platelets during extended cold storage. Transfus Med 2024; 34:189-199. [PMID: 38679572 DOI: 10.1111/tme.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/25/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVES Cold storage is being implemented as an alternative to conventional room-temperature storage for extending the shelf-life of platelet components beyond 5-7 days. The aim of this study was to characterise the lipid profile of platelets stored under standard room-temperature or cold (refrigerated) conditions. METHODS Matched apheresis derived platelet components in 60% PAS-E/40% plasma (n = 8) were stored at room-temperature (20-24°C with agitation) or in the cold (2-6°C without agitation). Platelets were sampled on day 1, 5 and 14. The lipidome was assessed by ultra-pressure liquid chromatography ion mobility quadrupole time of flight mass spectrometry (UPLC IMS QToF). Changes in bioactive lipid mediators were measured by ELISA. RESULTS The total phospholipid and sphingolipid content of the platelets and supernatant were 44 544 ± 2915 μg/mL and 38 990 ± 10 880 μg/mL, respectively, and was similar over 14 days, regardless of storage temperature. The proportion of the procoagulant lipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), increased by 2.7% and 12.2%, respectively, during extended cold storage. Cold storage for 14 days increased sphingomyelin (SM) by 4.1% and decreased ceramide by 1.6% compared to day 1. Further, lysophosphatidylcholine (LPC) species remained unchanged during cold storage for 14 days. The concentration of 12- and 15-hydroxyeicosatetraenoic acid (HETE) were lower in the supernatant of cold-stored platelets than room-temperature controls stored for 14 days. CONCLUSION The lipid profile of platelets was relatively unchanged during storage for 5 days, regardless of temperature. However, during extended cold storage (14 days) the proportion of the procoagulant lipids, PS and PE, increased, while LPC and bioactive lipids were stable.
Collapse
Affiliation(s)
- Sarah M Green
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Tyren M Dodgen
- Application Support, Waters Corporation, Rydalmere, New South Wales, Australia
| | - Amani Batarseh
- BCAL Dx, National Innovation Centre, Eveleigh, New South Wales, Australia
| | - Denese C Marks
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research & Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Bünger V, Hunsicker O, Krannich A, Balzer F, Spies CD, Kuebler WM, Weber-Carstens S, Menk M, Graw JA. Potential of cell-free hemoglobin and haptoglobin as prognostic markers in patients with ARDS and treatment with veno-venous ECMO. J Intensive Care 2023; 11:15. [PMID: 37081577 PMCID: PMC10116665 DOI: 10.1186/s40560-023-00664-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Hemolysis is associated with increased mortality in patients with sepsis, ARDS, or therapy with extracorporeal membrane oxygenation (ECMO). To quantify a critical threshold of hemolysis in patients with ARDS and treatment with veno-venous ECMO, we aimed to identify cutoff values for cell-free hemoglobin (CFH) and haptoglobin (Hp) plasma concentrations associated with a significant increase in ICU mortality. METHODS Patients with ARDS admitted to a tertiary ARDS referral center between 01/2007 and 12/2018 and treatment with veno-venous ECMO were included. Cutoff values for mean CFH (mCFH) and mean Hp (mHp) plasma concentrations dividing the cohort into groups with significantly different ICU mortalities were calculated and patient characteristics were compared. A multiple logistic regression model with stepwise backward variable selection was included. In addition, cutoff values for vulnerable relative timespans for the respective CFH and Hp concentrations were calculated. RESULTS A quantitative cutoff value of 11 mg/dl for mCFH separated the cohort (n = 442) regarding ICU mortality (mCFH ≤ 11 mg/dl: 38%, [95%-CI: 32.22-43.93] (n = 277) vs. mCFH > 11 mg/dl: 70%, [61.99-76.47] (n = 165), p < 0.001). Analogously, a mHp cutoff value ≤ 0.39 g/l was associated with a significant increase in ICU mortality (mHp ≤ 0.39 g/l: 68.7%, [60.91-75.61] (n = 163) vs. mHp > 0.39 g/l: 38.7%, [33.01-44.72] (n = 279), p < 0.001). The independent association of ICU mortality with CFH and Hp cutoff values was confirmed by logistic regression adjusting for confounders (CFH Grouping: OR 3.77, [2.51-5.72], p < 0.001; Hp Grouping: OR 0.29, [0.19-0.43], p < 0.001). A significant increase in ICU mortality was observed when CFH plasma concentration exceeded the limit of 11 mg/dl on 13.3% of therapy days (≤ 13.3% of days with CFH > 11 mg/dl: 33%; [26.81-40.54] (n = 192) vs. > 13.3% of days with CFH > 11 mg/dl: 62%; [56.05-68.36] (n = 250), p < 0.001). Analogously, a mortality increase was detected when Hp plasma concentration remained ≤ 0.39 g/l for > 18.2% of therapy days (≤ 18.2% days with Hp ≤ 0.39 g/l: 27%; [19.80-35.14] (n = 138) vs. > 18.2% days with Hp ≤ 0.39 g/l: 60%; [54.43-65.70] (n = 304), p < 0.001). CONCLUSIONS Moderate hemolysis with mCFH-levels as low as 11 mg/dl impacts mortality in patients with ARDS and therapy with veno-venous ECMO. Furthermore, a cumulative dose effect should be considered indicated by the relative therapy days with CFH-concentrations > 11 mg/dl. In addition, also Hp plasma concentrations need consideration when the injurious effect of elevated CFH is evaluated.
Collapse
Affiliation(s)
- Victoria Bünger
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Oliver Hunsicker
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Krannich
- Clinical Trial Office, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department Analytics, TCC GmbH, Hamburg, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Menk
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital "Carl Gustav Carus", Technische Universität Dresden, Dresden, Germany
| | - Jan A Graw
- Department of Anesthesiology and Intensive Care Medicine CCM / CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- ARDS/ECMO Centrum Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Ulm, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Acker SN, Nolan MM, Prendergast C, Lyttle B, Fares S, Bensard DD, Partrick DA. Blood Transfusion is Associated With Adverse Outcomes in Pediatric Solid Tumor Oncology Patients Following Tumor Resection. J Pediatr Hematol Oncol 2023; 45:137-142. [PMID: 36031190 DOI: 10.1097/mph.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Packed red blood cell (PRBC) transfusion is a lifesaving intervention that also has proinflammatory and immunosuppressive effects. Adults with a malignancy who receive PRBC transfusion have increased rates of infection, tumor recurrence, and decreased survival. The effect of PRBC transfusion among children with solid tumors is unknown. METHODS We performed a retrospective review of all children who underwent operative resection of a solid tumor malignancy. Data collected included demographic information, location of operation, nadir hemoglobin, and any PRBC transfusion within 30 days of tumor resection. RESULTS Three hundred sixty children underwent tumor resection at our institution between 2002 and 2013; 194 (54%) received a perioperative blood transfusion. After adjusting for stage at diagnosis, tumor location, preoperative chemotherapy and nadir hemoglobin, blood transfusion was associated with a higher rate of postoperative infectious complications, shorter disease-free interval, and a higher rate of tumor recurrence. Each additional transfused unit increased the risk of postoperative infection (odds ratio 3.83; 95% confidence interval 1.21, 14.22, P =0.031). CONCLUSIONS Among children with solid tumor malignancies, PRBC transfusion within 30 days of operation is associated with higher rates of postoperative infection. If transfusion becomes necessary, single unit increments should be transfused. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Shannon N Acker
- Division of Pediatric Surgery, Children's Hospital Colorado
- The Surgical Oncology Program at Children's Hospital Colorado
| | - Margo M Nolan
- Division of Pediatric Surgery, Children's Hospital Colorado
| | | | - Bailey Lyttle
- Division of Pediatric Surgery, Children's Hospital Colorado
| | - Souha Fares
- Biostatistics and Informatics, Colorado School of Public Health, University of Colorado School of Medicine, Aurora
| | - Denis D Bensard
- Biostatistics and Informatics, Colorado School of Public Health, University of Colorado School of Medicine, Aurora
- Department of Surgery, Denver Health Medical Center, Denver, CO
| | - David A Partrick
- Division of Pediatric Surgery, Children's Hospital Colorado
- The Surgical Oncology Program at Children's Hospital Colorado
| |
Collapse
|
9
|
Raeven P, Hagn G, Niederstaetter L, Brugger J, Bayer-Blauensteiner S, Domenig C, Hoetzenecker K, Posch M, Leitner G, Gerner C, Baron DM. Red blood cell transfusion-related eicosanoid profiles in intensive care patients—A prospective, observational feasibility study. Front Physiol 2023; 14:1164926. [PMID: 37008004 PMCID: PMC10060532 DOI: 10.3389/fphys.2023.1164926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Eicosanoids are bioactive lipids present in packed red blood cells (PRBCs), and might play a role in transfusion-related immunomodulation (TRIM). We tested the feasibility of analyzing eicosanoid profiles in PRBC supernatant and in plasma samples of postoperative intensive care unit (ICU) patients transfused with one unit of PRBCs.Methods: We conducted a prospective, observational feasibility study enrolling postoperative ICU patients: 1) patients treated with acetylsalicylic acid following abdominal aortic surgery (Aorta); 2) patients on immunosuppressants after bilateral lung transplantation (LuTx); and 3) patients undergoing other types of major surgery (Comparison). Abundances of arachidonic acid (AA) and seven pre-defined eicosanoids were assessed by liquid chromatography and tandem mass spectrometry. PRBC supernatant was sampled directly from the unit immediately prior to transfusion. Spearman’s correlations between eicosanoid abundance in PRBCs and storage duration were assessed. Patient plasma was collected at 30-min intervals: Three times each before and after transfusion. To investigate temporal changes in eicosanoid abundances, we fitted linear mixed models.Results: Of 128 patients screened, 21 were included in the final analysis (Aorta n = 4, LuTx n = 8, Comparison n = 9). In total, 21 PRBC and 125 plasma samples were analyzed. Except for 20-hydroxyeicosatetraenoic acid (HETE), all analyzed eicosanoids were detectable in PRBCs, and their abundance positively correlated with storage duration of PRBCs. While 5-HETE, 12-HETE/8-HETE, 15-HETE, 20-HETE, and AA were detectable in virtually all plasma samples, 9-HETE and 11-HETE were detectable in only 57% and 23% of plasma samples, respectively.Conclusions: Recruitment of ICU patients into this transfusion study was challenging but feasible. Eicosanoid abundances increased in PRBC supernatants during storage. In plasma of ICU patients, eicosanoid abundances were ubiquitously detectable and showed limited fluctuations over time prior to transfusion. Taken together, larger clinical studies seem warranted and feasible to further investigate the role of PRBC-derived eicosanoids in TRIM.
Collapse
Affiliation(s)
- Pierre Raeven
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jonas Brugger
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Sophia Bayer-Blauensteiner
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Christoph Domenig
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Posch
- Center for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Gerda Leitner
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - David M. Baron
- Division of General Anesthesia and Intensive Care, Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria
- *Correspondence: David M. Baron,
| |
Collapse
|
10
|
Pandey S, Mahato M, Srinath P, Bhutani U, Goap TJ, Ravipati P, Vemula PK. Intermittent scavenging of storage lesion from stored red blood cells by electrospun nanofibrous sheets enhances their quality and shelf-life. Nat Commun 2022; 13:7394. [PMID: 36450757 PMCID: PMC9712616 DOI: 10.1038/s41467-022-35269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Transfusion of healthy red blood cells (RBCs) is a lifesaving process. However, upon storing RBCs, a wide range of damage-associate molecular patterns (DAMPs), such as cell-free DNA, nucleosomes, free-hemoglobin, and poly-unsaturated-fatty-acids are generated. DAMPs can further damage RBCs; thus, the quality of stored RBCs declines during the storage and limits their shelf-life. Since these DAMPs consist of either positive or negative charged species, we developed taurine and acridine containing electrospun-nanofibrous-sheets (Tau-AcrNFS), featuring anionic, cationic charges and an DNA intercalating group on their surfaces. We show that Tau-AcrNFS are efficient in scavenging DAMPs from stored human and mice RBCs ex vivo. We find that intermittent scavenging of DAMPs by Tau-AcrNFS during the storage reduces the loss of RBC membrane integrity and reduces discocytes-to-spheroechinocytes transformation in stored-old-RBCs. We perform RBC-transfusion studies in mice to reveal that intermittent removal of DAMPs enhances the quality of stored-old-RBCs equivalent to freshly collected RBCs, and increases their shelf-life by ~22%. Such prophylactic technology may lead to the development of novel blood bags or medical device, and may therefore impact healthcare by reducing transfusion-related adverse effects.
Collapse
Affiliation(s)
- Subhashini Pandey
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Manohar Mahato
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Preethem Srinath
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Utkarsh Bhutani
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Tanu Jain Goap
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India ,grid.502290.c0000 0004 7649 3040The University of Trans-Disciplinary Health Sciences and Technology, Attur (post), Yelahanka, Bangalore, 560064 Karnataka India
| | - Priusha Ravipati
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| | - Praveen Kumar Vemula
- grid.475408.a0000 0004 4905 7710Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, 560065 Karnataka India
| |
Collapse
|
11
|
Transfusion-related acute lung injury (TRALI): a retrospective review of reported cases in Queensland, Australia over 20 years. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2022; 20:454-464. [PMID: 35969142 PMCID: PMC9726622 DOI: 10.2450/2022.0020-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is a rare but potentially fatal transfusion reaction. An effective haemovigilance programme is important in implementing successful and targeted risk reduction strategies. We aim to provide a summary of TRALI cases referred for investigation in Queensland (QLD) Australia from 1999 to 2019, describing the epidemiological and laboratory features of local TRALI cases. MATERIALS AND METHODS A retrospective audit evaluated all cases reported to the QLD Australian Red Cross Lifeblood over the 20-year study period. Cases were categorised according to the 2004 Canadian consensus criteria. RESULTS Of the 91 cases referred for investigation, expert review confirmed 30 of TRALI and 18 of possible TRALI. A total of 238 donors and 110 blood products were assessed in confirmed cases. TRALI affected patients of all ages. Most patients had underlying haematological malignancies (25%), surgery (15%) or liver disease (13%). TRALI incidence was measured at 1 in 130,000 per issued product in QLD. Red cells were transfused in 32 cases, platelets in 18 and plasma products in 21, with 16 cases involving multiple products. Following laboratory assessment, 23% of cases had findings supportive of antibody mediated TRALI and 21% as likely non-antibody mediated. Possible TRALI was identified in 37.5% of cases of which 25% were antibody mediated and 12.5% non-antibody mediated. Nine (18.5%) cases were uncategorised due to insufficient immunologic investigations. DISCUSSION Rates of TRALI incidence measured are lower than those seen in many international studies. A reduction in confirmed cases has been noted over recent years, supporting the implementation of risk-reduction strategies. We report a relatively higher proportion of non-antibody mediated TRALI and possible TRALI cases in more recent years, suggesting the need to further understand the role of product age and biological risk modifiers.
Collapse
|
12
|
Graw JA, Bünger V, Materne LA, Krannich A, Balzer F, Francis RCE, Pruß A, Spies CD, Kuebler WM, Weber-Carstens S, Menk M, Hunsicker O. Age of Red Cells for Transfusion and Outcomes in Patients with ARDS. J Clin Med 2022; 11:jcm11010245. [PMID: 35011986 PMCID: PMC8745782 DOI: 10.3390/jcm11010245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Packed red blood cells (PRBCs), stored for prolonged intervals, might contribute to adverse clinical outcomes in critically ill patients. In this study, short-term outcome after transfusion of PRBCs of two storage duration periods was analyzed in patients with Acute Respiratory Distress Syndrome (ARDS). Patients who received transfusions of PRBCs were identified from a cohort of 1044 ARDS patients. Patients were grouped according to the mean storage age of all transfused units. Patients transfused with PRBCs of a mean storage age ≤ 28 days were compared to patients transfused with PRBCs of a mean storage age > 28 days. The primary endpoint was 28-day mortality. Secondary endpoints included failure-free days composites. Two hundred and eighty-three patients were eligible for analysis. Patients in the short-term storage group had similar baseline characteristics and received a similar amount of PRBC units compared with patients in the long-term storage group (five units (IQR, 3-10) vs. four units (2-8), p = 0.14). The mean storage age in the short-term storage group was 20 (±5.4) days compared with 32 (±3.1) days in the long-term storage group (mean difference 12 days (95%-CI, 11-13)). There was no difference in 28-day mortality between the short-term storage group compared with the long-term storage group (hazard ratio, 1.36 (95%-CI, 0.84-2.21), p = 0.21). While there were no differences in ventilator-free, sedation-free, and vasopressor-free days composites, patients in the long-term storage group compared with patients in the short-term storage group had a 75% lower chance for successful weaning from renal replacement therapy (RRT) within 28 days after ARDS onset (subdistribution hazard ratio, 0.24 (95%-CI, 0.1-0.55), p < 0.001). Further analysis indicated that even a single PRBC unit stored for more than 28 days decreased the chance for successful weaning from RRT. Prolonged storage of PRBCs was not associated with a higher mortality in adults with ARDS. However, transfusion of long-term stored PRBCs was associated with prolonged dependence of RRT in critically ill patients with an ARDS.
Collapse
Affiliation(s)
- Jan A. Graw
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| | - Victoria Bünger
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
| | - Lorenz A. Materne
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
| | - Alexander Krannich
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Felix Balzer
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany;
| | - Roland C. E. Francis
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Claudia D. Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Mario Menk
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Oliver Hunsicker
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (V.B.); (L.A.M.); (R.C.E.F.); (C.D.S.); (S.W.-C.); (M.M.); (O.H.)
- ARDS/ECMO Centrum Charité, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
13
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
14
|
Kim CY, Johnson H, Peltier S, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Stone EF, Gordy DE, Fu X, Zimring JC, Amireault P, Buehler PW, Wilson RB, D'Alessandro A, Shchepinov MS, Thomas T. Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage. Front Physiol 2022; 13:868578. [PMID: 35557972 PMCID: PMC9086239 DOI: 10.3389/fphys.2022.868578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.
Collapse
Affiliation(s)
- Christopher Y Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Hannah Johnson
- Bloodworks Research Institute, Seattle, WA, United States
| | - Sandy Peltier
- Institut National de la Transfusion Sanguine, Paris, France
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Elizabeth F Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Dominique E Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, United States
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pascal Amireault
- Institut National de la Transfusion Sanguine, Paris, France.,X U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Paul W Buehler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
15
|
Coll AC, Ross MK, Williams ML, Wills RW, Mackin AJ, Thomason JM. Effect of washing units of canine red blood cells on storage lesions. J Vet Intern Med 2021; 36:66-77. [PMID: 34939231 PMCID: PMC8783348 DOI: 10.1111/jvim.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background In humans, washing stored blood products before transfusion reduces storage lesions and incidence of transfusion reactions, but the effectiveness of washing canine blood is unknown. Objectives The objective was to determine if manually washing units of stored blood would reduce storage lesions without adversely affecting erythrocytes. We hypothesized that washing stored units would reduce concentrations of storage lesions and cause minimal erythrocyte damage. Animals Eight healthy research dogs. Methods Repeated measure cohort study. Units of whole blood were stored for 28 days and washed 3 times with 0.9% NaCl. Blood samples were collected before and after storage, after each wash, and after being held at a simulated transfusion temperature. Variables measured included CBC variables, blood gas analysis, erythrocyte morphology, mean corpuscular fragility (MCF), and eicosanoid concentrations. A Friedman's test was used to evaluate changes in variables (P < .05 was considered significant). Results After the first wash, compared to values after storage, there was a significant decrease in potassium (4.3 mmol/L [4.0‐4.7] to 1.2 mmol/L [1‐1.6]; P < .0001, median [range]), lactate (1.45 mmol/L [1.07‐1.79] to 0.69 mmol/L [0.39‐0.93]; P = .002), and partial pressure carbon dioxide (102 mm Hg [80.2‐119.2] to 33.7 mm Hg [24.5‐44.5]; P < .0001), and increase in MCV (69.3 fL [65.7‐72.3] to 74 fL [69.6‐79.5]; P = .0003), and MCF (0.444 fL [0.279‐0.527] to 0.491 fL [0.43‐0.616]; P = .0006). Conclusions and Clinical Importance A single wash of stored whole blood significantly reduces most extracellular storage lesions, and additional washing might cause hemolysis.
Collapse
Affiliation(s)
- Ashley C Coll
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Matthew L Williams
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert W Wills
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrew J Mackin
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John M Thomason
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
16
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Flatman LK, Fergusson DA, Lacroix J, Ducruet T, Papenburg J, Fontela PS. Association between the length of storage of transfused leukoreduced red blood cell units and hospital-acquired infections in critically ill children: A secondary analysis of the TRIPICU study. Transfus Med 2021; 31:467-473. [PMID: 34585466 DOI: 10.1111/tme.12824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Evaluate the association between leukoreduced red blood cell (RBC) storage length and hospital-acquired infection (HAI) incidence rate in critically ill children. BACKGROUND RBC transfusions are common in critically ill children. Despite their benefits, observational studies suggest an association between them and HAIs. One possible mechanism for increased HAI is transfusion-related immunomodulation due to bioactive substances' release as transfused blood ages. METHODS In this secondary analysis of the 'Transfusion Requirement in Paediatric Intensive Care Units' (TRIPICU) study, we analysed a subset of 257 participants that received only one pre-storage leukoreduced RBC transfusion. RBC storage length was classified as 1) transfusion of 'fresh' RBCs (≤10 days), 2) transfusion of 'stored' RBCs (21-34 days), and 3) transfusion of 'long-stored' RBCs (≥35 days). All were compared to a 'golden' period (11-20 days), representing the time between 'fresh' and 'stored'. We used quasi-Poisson multivariable regression models to estimate the HAI incidence rate ratio (IRR) and corresponding 95% confidence interval (CI). RESULTS We found that the association between the length of storage time of leukoreduced RBCs and HAIs was not significant in the 'fresh' group (IRR 1.23; 95% CI 0.55, 2.78) and the 'stored' group (IRR 1.61; 95% CI 0.63, 4.13) when compared to the 'golden' period. However, we observed a statistically significant association between the 'long-stored' group and an increase in the HAI incidence rate (IRR 3.66; 95% CI 1.22, 10.98). CONCLUSION Transfusion of leukoreduced RBC units stored for ≥35 days is associated with increased HAI incidence rate in haemodynamically stable, critically ill children.
Collapse
Affiliation(s)
- Leah K Flatman
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jacques Lacroix
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Thierry Ducruet
- Unité de recherche clinique appliquée (URCA), Université de Montréal, Centre de Recherche, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jesse Papenburg
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.,Division of Pediatric Infectious Diseases, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Patricia S Fontela
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.,Division of Pediatric Critical Care Medicine, Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Livshits L, Barshtein G, Arbell D, Gural A, Levin C, Guizouarn H. Do We Store Packed Red Blood Cells under "Quasi-Diabetic" Conditions? Biomolecules 2021; 11:biom11070992. [PMID: 34356616 PMCID: PMC8301930 DOI: 10.3390/biom11070992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Red blood cell (RBC) transfusion is one of the most common therapeutic procedures in modern medicine. Although frequently lifesaving, it often has deleterious side effects. RBC quality is one of the critical factors for transfusion efficacy and safety. The role of various factors in the cells’ ability to maintain their functionality during storage is widely discussed in professional literature. Thus, the extra- and intracellular factors inducing an accelerated RBC aging need to be identified and therapeutically modified. Despite the extensively studied in vivo effect of chronic hyperglycemia on RBC hemodynamic and metabolic properties, as well as on their lifespan, only limited attention has been directed at the high sugar concentration in RBCs storage media, a possible cause of damage to red blood cells. This mini-review aims to compare the biophysical and biochemical changes observed in the red blood cells during cold storage and in patients with non-insulin-dependent diabetes mellitus (NIDDM). Given the well-described corresponding RBC alterations in NIDDM and during cold storage, we may regard the stored (especially long-stored) RBCs as “quasi-diabetic”. Keeping in mind that these RBC modifications may be crucial for the initial steps of microvascular pathogenesis, suitable preventive care for the transfused patients should be considered. We hope that our hypothesis will stimulate targeted experimental research to establish a relationship between a high sugar concentration in a storage medium and a deterioration in cells’ functional properties during storage.
Collapse
Affiliation(s)
- Leonid Livshits
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, CH-8057 Zurich, Switzerland;
| | - Gregory Barshtein
- Biochemistry Department, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
- Correspondence: ; Tel.: +972-2-6758309
| | - Dan Arbell
- Pediatric Surgery Department, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Alexander Gural
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula 1834111, Israel;
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Hélène Guizouarn
- Institut de Biologie Valrose, Université Côte d’Azur, CNRS, Inserm, 28 Av. Valrose, 06100 Nice, France;
| |
Collapse
|
19
|
Medved J, Knott BM, Tarrah SN, Li AN, Shah N, Moscovich TC, Boscia AR, Salazar JE, Santhanakrishnan M, Hendrickson JE, Fu X, Zimring JC, Luckey CJ. The lysophospholipid-binding molecule CD1D is not required for the alloimmunization response to fresh or stored RBCs in mice despite RBC storage driving alterations in lysophospholipids. Transfusion 2021; 61:2169-2178. [PMID: 34181769 DOI: 10.1111/trf.16554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the significant adverse clinical consequences of RBC alloimmunization, our understanding of the signals that induce immune responses to transfused RBCs remains incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular signals leading to immune activation in this system remain unclear. Given that the nonclassical major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these altered lipids mediates storage-induced alloimmunization responses. STUDY DESIGN AND METHODS We used a mass spectrometry-based approach to analyze the changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout (CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure the impact of CD1D deficiency on RBC alloimmunization. RESULTS RBC storage results in alterations in multiple lysophospholipid species known to bind to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD IgG. CONCLUSION Although storage of RBCs leads to alteration of several lysophospholipids known to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not impacted by recipient CD1D deficiency.
Collapse
Affiliation(s)
- Jelena Medved
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Brittney M Knott
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Soraya N Tarrah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Andria N Li
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Neha Shah
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Tamara C Moscovich
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexis R Boscia
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Juan E Salazar
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Jeanne E Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale University, New Haven, Connecticut, USA
| | - Xiaoyun Fu
- Bloodworks NW Research Institute, and Department of Internal Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington, USA
| | - James C Zimring
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Vigneron C, Baudel J, Pras-Landre V, Joffre J, Marjot F, Ait-Oufella H, Bige N, Maury E, Guidet B, Fain O, Mekinian A. Transfusion-related acute lung injury (TRALI) après immunoglobulines intraveineuses : étude multicentrique et revue de la littérature. Rev Med Interne 2020. [DOI: 10.1016/j.revmed.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Simonova G, Wellburn R, Fung YL, Fraser JF, Tung JP. Ovine red cell concentrates for transfusion research - is the storage lesion comparable to human red cell concentrates? Vox Sang 2020; 116:524-532. [PMID: 33107065 DOI: 10.1111/vox.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Sheep are increasingly being used as a large in vivo animal model of blood transfusion because they provide several advantages over small animals. Understanding the effects of storage duration on ovine (ov) red cell concentrates (RCCs) and how these changes compare with stored human (hu) RCCs is necessary to facilitate clinical translation of research findings. MATERIALS AND METHODS OvRCCs (n = 5) collected and processed in standard human blood collection packs, and equivalent huRCCs provided by Australian Red Cross Lifeblood (n = 5), were stored at 2-6°C for 42 days, with samples collected weekly. Haemolysis index was determined by measuring supernatant haemoglobin concentration. Biochemical parameters were evaluated using a blood gas analyser. Energy metabolites and biologically active lipids were measured using commercial assays. Osmotic fragility was determined by lysis in various saline concentrations. Extracellular vesicles were characterized by nanoparticle tracking analysis. RESULTS Ovine red blood cells (RBCs) are double in number, smaller in size and more fragile than human RBCs. Haematological values were unchanged throughout storage. In contrast, biochemical and metabolic values, and haemolysis index in three of the five ovRCCs exceeded huRCCs licensing criteria by day 42. Accumulation of extracellular vesicles and biologically active lipids was comparable between huRCCs and ovRCCs. CONCLUSION This study documents similarities and differences in the storage lesion of ovRCCs and huRCCs. This new information will guide the design of ovine transfusion models to enhance translation of findings to human transfusion settings.
Collapse
Affiliation(s)
- Gabriela Simonova
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Rebecca Wellburn
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia
| | - Yoke Lin Fung
- School of Health and Sports Sciences, University of Sunshine Coast, Sunshine Coast, QLD, Australia
| | - John F Fraser
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John-Paul Tung
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Critical Care Research Group, The University of Queensland and The Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
22
|
McQuinn ER, Smith SA, Viall AK, Wang C, LeVine DN. Neutrophil extracellular traps in stored canine red blood cell units. J Vet Intern Med 2020; 34:1894-1902. [PMID: 32881076 PMCID: PMC7517510 DOI: 10.1111/jvim.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs), webs of DNA and citrullinated histones extruded from activated neutrophils cause transfusion‐related acute lung injury. Supernatants of stored red blood cell (RBC) units might promote NETosis in neutrophils from the units or from transfusion recipients. Hypotheses (1) NETs form during storage of canine RBC, (2) leukoreduction (LR) before storage of RBC reduces NETosis, and (3) supernatant from stored, nonleukoreduced (NLR) RBC units induces NETosis in healthy canine neutrophils modeling transfusion recipients. Animals Six healthy purpose‐bred research dogs were utilized for blood donation. Methods Prospective controlled study. RBC units were collected from each dog, aseptically divided into 2 equal subunits, 1 of which was leukoreduced, and stored for 42 days. Stored units were sampled biweekly for quantification of NET markers citrullinated histone H3 (Western blot) and cell‐free DNA (cfDNA) (DNA dye binding). Unit supernatants were applied ex vivo to canine neutrophils and extracellular DNA release representing NETosis was assessed. Results Markers of NETs increased during RBC storage (cfDNA P < .0001 and citrullinated H3 P = .0002) and were higher in NLR than LR units (day 42 LR cfDNA 0.34 ± 0.82 ng/mL vs day 42 NLR 1361.07 ± 741.00 ng/mL, P < .0001; day 42 LR citrullinated H3 0.19 ± 0.13 AU vs NLR 0.57 ± 0.34 AU, P = .007). Isolated neutrophils did not form NETs when exposed to stored canine RBC supernatant. Conclusions and Clinical Importance NETosis occurs in stored canine NLR RBC units, and is attenuated by LR before storage. NETs might be mediators of transfusion reactions.
Collapse
Affiliation(s)
- Erin R McQuinn
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa, USA
| | - Stephanie A Smith
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Austin K Viall
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, USA
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Dana N LeVine
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
23
|
Investigation of Changes in Exosomes Profile During Storage Period of Erythrocyte Suspensions. Indian J Hematol Blood Transfus 2020. [DOI: 10.1007/s12288-020-01336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Lu M, Shevkoplyas SS. Dynamics of shape recovery by stored red blood cells during washing at the single cell level. Transfusion 2020; 60:2370-2378. [PMID: 32748970 DOI: 10.1111/trf.15979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hypothermic storage transforms red blood cells (RBC) from smooth biconcave discocytes into increasingly spherical spiculated echinocytes and, ultimately, fragile spherocytes (S). Individual cells undergo this transformation at different rates, producing a heterogeneous mixture of RBCs at all stages of echinocytosis in each unit of stored blood. Here we investigated how washing (known to positively affect RBC properties) changes morphology of individual RBCs at the single-cell level. STUDY DESIGN AND METHODS We tracked the change in shape of individual RBCs (n = 2870; drawn from six 4- to 6-week-old RBC units) that were confined in an array of microfluidic wells during washing in saline (n = 1095), 1% human serum albumin (1% HSA) solution (n = 999), and the autologous storage supernatant (control, n = 776). RESULTS Shape recovery proceeded through the disappearance of spicules followed by the progressive smoothening of the RBC contour, with the majority of changes occurring within the initial 10 minutes of being exposed to the washing solution. Approximately 57% of all echinocytes recovered by at least one morphologic class when washed in 1% HSA (36% for normal saline), with 3% of cells in late-stage echinocytosis restoring their discoid shape completely. Approximately one-third of all spherocytic cells were lysed in either washing solution. Cells washed in their autologous storage supernatant continued to deteriorate during washing. CONCLUSION Our findings suggest that the replacement of storage supernatant with a washing solution during washing induces actual shape recovery for RBCs in all stages of echinocytosis, except for S that undergo lysis instead.
Collapse
Affiliation(s)
- Madeleine Lu
- Department of Biomedical Engineering, University of Houston, Houston, Texas
| | | |
Collapse
|
25
|
Fisher AD, Dunn J, Pickett JR, Garza J, Miles EA, Diep V, Escott M. Implementation of a low titer group O whole blood program for a law enforcement tactical team. Transfusion 2020; 60 Suppl 3:S36-S44. [DOI: 10.1111/trf.15625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Andrew D. Fisher
- Medical Command, Texas Army National Guard Austin Texas
- Texas A&M College of Medicine Temple Texas
- Prehospital Research in Military and Expeditionary Environments (PRIME2) San Antonio Texas
| | - John Dunn
- Texas Department of Public Safety Austin Texas
| | - Jason R. Pickett
- Texas Department of Public Safety Austin Texas
- Austin‐Travis County Office of the Medical Director Austin Texas
| | | | | | | | - Mark Escott
- Texas Department of Public Safety Austin Texas
- Austin‐Travis County Office of the Medical Director Austin Texas
| |
Collapse
|
26
|
The Contribution of Storage Medium and Membranes in the Microwave Dielectric Response of Packed Red Blood Cells Suspension. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During cold storage, packed red blood cells (PRBCs) undergo slow detrimental changes that are collectively termed storage lesion. The aging of the cells causes alterations in the composition of the storage-medium in the PRBC unit. In this paper, we present the comparison of the dielectric response of water in the primary (fresh) storage medium (citrate phosphate dextrose adenine solution, CPDA-1) versus the storage medium from three expired units of PRBCs. Dielectric response of the water molecules has been characterized by dielectric spectroscopy technique in the microwave frequency band (0.5–40 GHz). The dominant phenomenon is the significant increase of the dielectric strength and decrease the relaxation time τ for the samples of the stored medium in comparison with the fresh medium CPDA-1. Furthermore, we demonstrated that removing the ghosts from PRBC hemolysate did not cause the alteration of the dielectric spectrum of water. Thus, the contribution associated with water located near the cell membrane can be neglected in microwave dielectric measurements.
Collapse
|
27
|
Kim J, Nguyen TTT, Li Y, Zhang CO, Cha B, Ke Y, Mazzeffi MA, Tanaka KA, Birukova AA, Birukov KG. Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L533-L548. [PMID: 31913681 DOI: 10.1152/ajplung.00025.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfusion of red blood cells (RBCs) is a common life-saving clinical practice in severely anemic or hemorrhagic patients; however, it may result in serious pathological complications such as transfusion-related acute lung injury. The factors mediating the deleterious effects of RBC transfusion remain unclear. In this study, we tested the effects of washed long-term (RBC-O; >28 days) versus short-term (RBC-F; <14 days) stored RBCs and their supernatants on lung endothelial (EC) permeability under control and inflammatory conditions. RBCs enhanced basal EC barrier function as evidenced by an increase in transendothelial electrical resistance and decrease in permeability for macromolecules. RBCs also attenuated EC hyperpermeability and suppressed secretion of EC adhesion molecule ICAM-1 and proinflammatory cytokine IL-8 in response to LPS or TNF-α. In both settings, RBC-F had slightly higher barrier protective effects as compared with RBC-O. In contrast, supernatants from both RBC-F and RBC-O disrupted the EC barrier. The early phase of EC permeability response caused by RBC supernatants was partially suppressed by antioxidant N-acetyl cysteine and inhibitor of Src kinase family PP2, while addition of heme blocker and inhibition of NOD-like receptor family pyrin domain containing protein 3 (NLRP3), stress MAP kinases, receptor for advanced glycation end-products (RAGE), or Toll-like receptor-4 (TLR4) signaling were without effect. Morphological analysis revealed that RBC supernatants increased LPS- and TNF-α-induced breakdown of intercellular junctions and formation of paracellular gaps. RBC supernatants augmented LPS- and TNF-α-induced EC inflammation reflected by increased production of IL-6, IL-8, and soluble ICAM-1. These findings demonstrate the deleterious effects of RBC supernatants on EC function, which may have a major impact in pathological consequences associated with RBC transfusion.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trang T T Nguyen
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael A Mazzeffi
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A Birukova
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Baudel JL, Vigneron C, Pras-Landre V, Joffre J, Marjot F, Ait-Oufella H, Bigé N, Maury E, Guidet B, Fain O, Mekinian A. Transfusion-related acute lung injury (TRALI) after intravenous immunoglobulins: French multicentre study and literature review. Clin Rheumatol 2019; 39:541-546. [PMID: 31760541 DOI: 10.1007/s10067-019-04832-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
Abstract
Transfusion-related acute lung injury (TRALI), defined as the onset of acute respiratory distress after blood transfusion, is a rare complication which is a leading cause of transfusion related-mortality. In this retrospective study, we report the French nationwide experience of intravenous immunoglobulin (IVIG)-related TRALI, with a literature review and analysis of management and outcome of this rare condition. With the pharmacovigilance services, we conducted a retrospective multicenter study in the French network of intensive care units with TRALI concomitant to IVIG use and pooled with data from a literature review. Overall, 17 cases have been included in this case-series, our case report, seven personal cases and nine cases from the literature review. The median age was 55 years [2-79] with 10/17 (59%) male subjects. The underlying diseases motivating IVIG infusion were neurologic diseases in 35% of cases (Guillain Barre syndrome = 2, peripheral neuropathy = 2, neurolupus = 1, myasthenia = 1), multiple myeloma with hypogammaglobulinemia (n = 2; 12%), primary hypogammaglobulinemia (n = 2; 12%), autoimmune cytopenias (n = 2; 12%), graft versus host cutaneous disease after allogeneic hematopoietic stem cell transplantation for acute myeloid leukaemia (n = 1), anti-HLA antibodies after lung transplant (n = 1), cancer-associated thrombotic thrombocytopenic purpura-haemolytic uremic syndrome (n = 1), Kawasaki disease (n = 1) and in experimental essay (n = 1). TRALI symptoms begin either after the start or during the infusion (n = 7; 41%), or after the infusion (n = 10; 59%, 10 min to 24 h). Besides respiratory distress, it was also noted shock (33%), fever (18 %), cough (18%), nausea/vomiting (18 %), chills (12%) and agitation (12%). The X-ray showed mainly bilateral alveolar opacities (n = 15; 88%). Mechanical ventilation was needed in nine cases (53%), with median 1-day duration [1-4]. Four patients (24%) died during hospitalisation in the intensive care unit. Given the increasing use of intravenous immunoglobulins, TRALI must now be discussed in cases of respiratory distress occurring during or immediately following the infusion even if this side effect remains rare.Key Points• TRALI must now be discussed in cases of respiratory distress occurring during or immediately following an infusion of intravenous immunoglobulins.
Collapse
Affiliation(s)
- Jean Luc Baudel
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Clara Vigneron
- Sorbonne Université, Service de médecine interne, DHU i2B AP-HP, Hôpital Saint Antoine, 75012, Paris, France
| | - Veronique Pras-Landre
- Sorbonne Université, Service de pharmacovigilance, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Jérémie Joffre
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Frédéric Marjot
- Service de médecine intensive et réanimation, CH Saint Brieuc, Saint-Brieuc, France
| | - Hafid Ait-Oufella
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Naike Bigé
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Eric Maury
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Bertrand Guidet
- Sorbonne Université, Service de médecine intensive et réanimation, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Olivier Fain
- Sorbonne Université, Service de médecine interne, DHU i2B AP-HP, Hôpital Saint Antoine, 75012, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, Service de médecine interne, DHU i2B AP-HP, Hôpital Saint Antoine, 75012, Paris, France. .,Hôpital Saint-Antoine, AP-HP, Service de Medecine Interne, Université Paris 6, 75012, Paris, France.
| |
Collapse
|
29
|
Targeting Transfusion-Related Acute Lung Injury: The Journey From Basic Science to Novel Therapies. Crit Care Med 2019; 46:e452-e458. [PMID: 29384784 DOI: 10.1097/ccm.0000000000002989] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Transfusion-related acute lung injury is characterized by the onset of respiratory distress and acute lung injury following blood transfusion, but its pathogenesis remains poorly understood. Generally, a two-hit model is presumed to underlie transfusion-related acute lung injury with the first hit being risk factors present in the transfused patient (such as inflammation), whereas the second hit is conveyed by factors in the transfused donor blood (such as antileukocyte antibodies). At least 80% of transfusion-related acute lung injury cases are related to the presence of donor antibodies such as antihuman leukocyte or antihuman neutrophil antibodies. The remaining cases may be related to nonantibody-mediated factors such as biolipids or components related to storage and ageing of the transfused blood cells. At present, transfusion-related acute lung injury is the leading cause of transfusion-related fatalities and no specific therapy is clinically available. In this article, we critically appraise and discuss recent preclinical (bench) insights related to transfusion-related acute lung injury pathogenesis and their therapeutic potential for future use at the patients' bedside in order to combat this devastating and possibly fatal complication of transfusion. DATA SOURCES We searched the PubMed database (until August 22, 2017). STUDY SELECTION Using terms: "Transfusion-related acute lung injury," "TRALI," "TRALI and therapy," "TRALI pathogenesis." DATA EXTRACTION English-written articles focusing on transfusion-related acute lung injury pathogenesis, with potential therapeutic implications, were extracted. DATA SYNTHESIS We have identified potential therapeutic approaches based on the literature. CONCLUSIONS We propose that the most promising therapeutic strategies to explore are interleukin-10 therapy, down-modulating C-reactive protein levels, targeting reactive oxygen species, or blocking the interleukin-8 receptors; all focused on the transfused recipient. In the long-run, it may perhaps also be advantageous to explore other strategies aimed at the transfused recipient or aimed toward the blood product, but these will require more validation and confirmation first.
Collapse
|
30
|
Abstract
Abstract
Transfusion-related acute lung injury is a leading cause of death associated with the use of blood products. Transfusion-related acute lung injury is a diagnosis of exclusion which can be difficult to identify during surgery amid the various physiologic and pathophysiologic changes associated with the perioperative period. As anesthesiologists supervise delivery of a large portion of inpatient prescribed blood products, and since the incidence of transfusion-related acute lung injury in the perioperative patient is higher than in nonsurgical patients, anesthesiologists need to consider transfusion-related acute lung injury in the perioperative setting, identify at-risk patients, recognize early signs of transfusion-related acute lung injury, and have established strategies for its prevention and treatment.
Collapse
|
31
|
Kuldanek SA, Kelher M, Silliman CC. Risk factors, management and prevention of transfusion-related acute lung injury: a comprehensive update. Expert Rev Hematol 2019; 12:773-785. [PMID: 31282773 PMCID: PMC6715498 DOI: 10.1080/17474086.2019.1640599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Introduction: Despite mitigation strategies that include the exclusion of females from plasma donation or the exclusion of females with a history of pregnancy or known anti-leukocyte antibody, transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related morbidity and mortality. Areas covered: The definition of TRALI is discussed and re-aligned with the new Berlin Diagnostic Criteria for the acute respiratory distress syndrome (ARDS). The risk factors associated with TRALI are summarized as are the mitigation strategies to further reduce TRALI. The emerging basic research studies that may translate to clinical therapeutics for the prevention or treatment of TRALI are discussed. Expert opinion: At risk patients, including the genetic factors that may predispose patients to TRALI are summarized and discussed. The re-definition of TRALI employing the Berlin Criteria for ARDS will allow for increased recognition and improved research into pathophysiology and mitigation to reduce this fatal complication of hemotherapy.
Collapse
Affiliation(s)
- Susan A. Kuldanek
- The Division of Transfusion Medicine, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pathology, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Christopher C. Silliman
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, USA
| |
Collapse
|
32
|
Abstract
Transfusions of blood and blood products are live-saving, but complications may be fatal. Transfusion related lung injury (TRALI) is rare and pathophysiology not yet entirely understood. Diagnosis is difficult due to the usually life-threatening circumstances associated with transfusions and underlying diseases. In this mini-review article, we introduce two cases of TRALI to discuss the problems and controversies associated with different definitions, epidemiology, pathophysiology, blood products, diagnosis, and treatment. Future directions in the field are highlighted.
Collapse
Affiliation(s)
- Maria Theresa Voelker
- Department of Anesthesiology and Critical Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Dresden, Germany
| |
Collapse
|
33
|
Ng MSY, Suen JY, Tung JP, Fraser JF. Endothelialized flow models for blood transfusion research. Haematologica 2019; 104:428-434. [PMID: 30765473 PMCID: PMC6395319 DOI: 10.3324/haematol.2018.205203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/15/2019] [Indexed: 01/21/2023] Open
Affiliation(s)
- Monica S Y Ng
- Critical Care Research Group, Faculty of Medicine, University of Queensland, Brisbane
- Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Jacky Y Suen
- Critical Care Research Group, Faculty of Medicine, University of Queensland, Brisbane
| | - John-Paul Tung
- Critical Care Research Group, Faculty of Medicine, University of Queensland, Brisbane
- Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, Faculty of Medicine, University of Queensland, Brisbane
| |
Collapse
|
34
|
Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019; 133:1840-1853. [PMID: 30808638 DOI: 10.1182/blood-2018-10-860809] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
Transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress that occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities, and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, whereas TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology, where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac or renal impairment and positive fluid balance appear first hits, whereas suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation, whereas the second hit is assumed to be caused by antileukocyte antibodies or biological response modifiers (eg, lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms, and potential therapies. More research is required to better understand TACO and TRALI pathophysiology, and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threatening transfusion reactions.
Collapse
|
35
|
Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:27-52. [PMID: 30653459 PMCID: PMC6343598 DOI: 10.2450/2019.0217-18] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/06/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) are a specialised organ that enabled the evolution of multicellular organisms by supplying a sufficient quantity of oxygen to cells that cannot obtain oxygen directly from ambient air via diffusion, thereby fueling oxidative phosphorylation for highly efficient energy production. RBCs have evolved to optimally serve this purpose by packing high concentrations of haemoglobin in their cytosol and shedding nuclei and other organelles. During their circulatory lifetimes in humans of approximately 120 days, RBCs are poised to transport oxygen by metabolic/redox enzymes until they accumulate damage and are promptly removed by the reticuloendothelial system. These elaborate evolutionary adaptions, however, are no longer effective when RBCs are removed from the circulation and stored hypothermically in blood banks, where they develop storage-induced damages ("storage lesions") that accumulate over the shelf life of stored RBCs. This review attempts to provide a comprehensive view of the literature on the subject of RBC storage lesions and their purported clinical consequences by incorporating the recent exponential growth in available data obtained from "omics" technologies in addition to that published in more traditional literature. To summarise this vast amount of information, the subject is organised in figures with four panels: i) root causes; ii) RBC storage lesions; iii) physiological effects; and iv) reported outcomes. The driving forces for the development of the storage lesions can be roughly classified into two root causes: i) metabolite accumulation/depletion, the target of various interventions (additive solutions) developed since the inception of blood banking; and ii) oxidative damages, which have been reported for decades but not addressed systemically until recently. Downstream physiological consequences of these storage lesions, derived mainly by in vitro studies, are described, and further potential links to clinical consequences are discussed. Interventions to postpone the onset and mitigate the extent of the storage lesion development are briefly reviewed. In addition, we briefly discuss the results from recent randomised controlled trials on the age of stored blood and clinical outcomes of transfusion.
Collapse
Affiliation(s)
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Faculté de Biologie et de Médicine, Université de Lausanne, Lausanne, Switzerland
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado, Denver, CO, United States of America
| |
Collapse
|
36
|
Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:585-594. [PMID: 30570487 PMCID: PMC6324877 DOI: 10.1182/asheducation-2018.1.585] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) are the leading causes of transfusion-related morbidity and mortality. These adverse events are characterized by acute pulmonary edema within 6 hours of a blood transfusion and have historically been difficult to study due to underrecognition and nonspecific diagnostic criteria. However, in the past decade, in vivo models and clinical studies utilizing active surveillance have advanced our understanding of their epidemiology and pathogenesis. With the adoption of mitigation strategies and patient blood management, the incidence of TRALI and TACO has decreased. Continued research to prevent and treat these severe cardiopulmonary events is focused on both the blood component and the transfusion recipient.
Collapse
Affiliation(s)
- Nareg Roubinian
- Blood Systems Research Institute, San Francisco, CA; Kaiser Permanente Northern California Medical Center and Division of Research, Oakland, CA; and Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
37
|
Loi MM, Kelher M, Dzieciatkowska M, Hansen KC, Banerjee A, West FB, Stanley C, Briel M, Silliman CC. A comparison of different methods of red blood cell leukoreduction and additive solutions on the accumulation of neutrophil-priming activity during storage. Transfusion 2018; 58:2003-2012. [PMID: 30171813 DOI: 10.1111/trf.14788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/21/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Three methods of leukoreduction (LR) are used worldwide: filtration, buffy coat removal (BCR), and a combination of the previous two methods. Additionally, there are a number of additive solutions (ASs) used to preserve red blood cell (RBC) function throughout storage. During RBC storage, proinflammatory activity accumulates; thus, we hypothesize that both the method of LR and the AS affect the accumulation of proinflammatory activity. STUDY DESIGN AND METHODS Ten units of whole blood were drawn from healthy donors, the RBC units were isolated, divided in half by weight, and leukoreduced by: 1) BCR, 2) filtration, or 3) BCR and filtration (combination-LR); stored in bags containing AS-3 per AABB criteria; and sampled weekly. The supernatants were isolated and frozen (-80°C). RBC units drawn from healthy donors into AS-1-, AS-3-, or AS-5-containing bags were also stored and sampled weekly, and the supernatants were isolated and frozen. The supernatants were assayed for neutrophil (PMN)-priming activity and underwent proteomic analyses. RESULTS Filtration and combination LR decreased priming activity accumulation versus buffy coat LR, although the accumulation of priming activity was not different during storage. Combination LR increased hemolysis versus filtration via proteomic analysis. Priming activity from AS-3 units was significant later in storage versus AS-1- or AS-5-stored units. CONCLUSIONS Although both filtration and combination LR decrease the accumulation of proinflammatory activity versus buffy coat LR, combination LR is not more advantageous over filtration, has increased costs, and may cause increased hemolysis. In addition, AS-3 decreases the early accumulation of PMN-priming activity during storage versus AS-1 or AS-5.
Collapse
Affiliation(s)
- Michele M Loi
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Marguerite Kelher
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - F Bernadette West
- Connecticut, Mid-Atlantic, and Appalachian Regions, American Red Cross, Hartford, Connecticut
| | | | - Matthew Briel
- Manufacturing, Bonfils Blood Center, Denver, Colorado
| | - Christopher C Silliman
- Department of Research Laboratory, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
38
|
Gehrke S, Srinivasan AJ, Culp-Hill R, Reisz JA, Ansari A, Gray A, Landrigan M, Welsby I, D'Alessandro A. Metabolomics evaluation of early-storage red blood cell rejuvenation at 4°C and 37°C. Transfusion 2018; 58:1980-1991. [PMID: 29687892 DOI: 10.1111/trf.14623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Refrigerated red blood cell (RBC) storage results in the progressive accumulation of biochemical and morphological alterations collectively referred to as the storage lesion. Storage-induced metabolic alterations can be in part reversed by rejuvenation practices. However, rejuvenation requires an incubation step of RBCs for 1 hour at 37°C, limiting the practicality of providing "on-demand," rejuvenated RBCs. We tested the hypothesis that the addition of rejuvenation solution early in storage as an adjunct additive solution would prevent-in a time window consistent with the average age of units transfused to sickle cell recipients at Duke (15 days)-many of the adverse biochemical changes that can be reversed via standard rejuvenation, while obviating the incubation step. STUDY DESIGN AND METHODS Metabolomics analyses were performed on cells and supernatants from AS-1 RBC units (n = 4), stored for 15 days. Units were split into pediatric bag aliquots and stored at 4°C. These were untreated controls, washed with or without rejuvenation, performed under either standard (37°C) or cold (4°C) conditions. RESULTS All three treatments removed most metabolic storage by-products from RBC supernatants. However, only standard and cold rejuvenation provided significant metabolic benefits as judged by the reactivation of glycolysis and regeneration of adenosine triphosphate and 2,3-diphosphoglycerate. Improvements in energy metabolism also translated into increased capacity to restore the total glutathione pool and regenerate oxidized vitamin C in its reduced (ascorbate) form. CONCLUSION Cold and standard rejuvenation of 15-day-old RBCs primes energy and redox metabolism of stored RBCs, while providing a logistic advantage for routine blood bank processing workflows.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Ansari
- Duke University School of Medicine, Durham, North Carolina
| | - Alan Gray
- Zimmer Biomet, Braintree, Massachusetts
| | | | - Ian Welsby
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
39
|
Bal SH, Heper Y, Kumaş LT, Guvenc F, Budak F, Göral G, Oral HB. Effect of storage period of red blood cell suspensions on helper T-cell subpopulations. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 16:262-272. [PMID: 28488961 PMCID: PMC5919838 DOI: 10.2450/2017.0238-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND The aim of this study was to investigate the immunological alterations that occur during the storage of erythrocyte suspensions which may lead to transfusion-related immunomodulation following allogeneic blood transfusion. MATERIALS AND METHODS One part of the erythrocyte suspensions obtained from donors was leucoreduced while the other part was not. The leucoreduced (LR) and non-leucoreduced (NL) erythrocyte suspensions were then further divided into three equal amounts which were stored for 0, 21 or 42 days prior to measurements, by enzyme-linked immunosorbent assays, of cytokine levels in their supernatants. T-helper (Th) lymphocyte subgroups and gene expression were analysed in the NL erythrocyte suspensions by flow cytometry and real-time polymerase chain reaction, respectively. Results were compared to those of storage day 0. RESULTS By day 21, the number of Th2 cells had increased significantly and the numbers of Th1, Th22 and Treg cells had decreased significantly in the NL erythrocyte suspensions. On day 42 the numbers of Th2 and Treg cells in the NL suspensions were significantly increased while the number of Th1 cells was significantly decreased. The levels of transcription factors (TBX21, GATA3, and SPI.1) were significantly decreased on days 21 and 42, and AHR, FOXP3 and RORC2 levels were significantly increased on day 42 in NL erythrocyte suspensions. The decrease in interleukin-22 and increase in transforming growth factor-β levels found in NL erythrocyte suspensions on day 21 were statistically significant. Elevated levels of interleukin-17A were found in both LR and NL erythrocyte suspensions on day 42. DISCUSSION Our results suggest that allogeneic leucocytes and cytokines may play significant roles in the development of transfusion-related immunomodulation.
Collapse
Affiliation(s)
- Salih H Bal
- "Dr. Rasit Durusoy" Blood Bank, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Microbiology/Immunology, Institute of Health Sciences, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Yasemin Heper
- "Dr. Rasit Durusoy" Blood Bank, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Levent T Kumaş
- "Dr. Rasit Durusoy" Blood Bank, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Microbiology/Immunology, Institute of Health Sciences, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Furkan Guvenc
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Güher Göral
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Haluk B Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
40
|
Neutrophil extracellular traps were released during intraoperative blood salvage in posterior lumbar surgery. Transfus Apher Sci 2018; 57:259-264. [DOI: 10.1016/j.transci.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Affiliation(s)
- Y. L. Fung
- School of Health & Sports Sciences; University of Sunshine Coast; Sunshine Coast QLD Australia
| | - J.P. Tung
- Research and Development; Australian Red Cross Blood Service; Kelvin Grove QLD Australia
- Critical Care Research Group; University of Queensland and The Prince Charles Hospital; Brisbane QLD Australia
| |
Collapse
|
42
|
Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion 2018; 58:804-815. [PMID: 29383722 DOI: 10.1111/trf.14488] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell function. These interactions can lead to both proinflammatory and immunosuppressive effects. Defining clinical outcomes related to immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to complex interactions between individual blood product characteristics and patient-specific risk factors. Unpacking these complexities requires an in-depth understanding of the mechanisms of immunomodulatory effects of RBC products. In this review, we outline and classify potential mediators of RBC transfusion-related immunomodulation and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Kenneth E Remy
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jill Cholette
- Pediatric Critical Care and Cardiology, University of Rochester, Rochester, New York
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Kathleen Nicol
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Allan Doctor
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Neil Blumberg
- Transfusion Medicine/Blood Bank and Clinical Laboratories, Departments of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.,Departments of Laboratory Medicine and Medicine, University of California at San Francisco, San Francisco, California
| | - Mary K Dahmer
- Department of Pediatrics, Division of Pediatric Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | |
Collapse
|
43
|
Reisz JA, Tzounakas VL, Nemkov T, Voulgaridou AI, Papassideri IS, Kriebardis AG, D’Alessandro A, Antonelou MH. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors. Front Med (Lausanne) 2018; 4:248. [PMID: 29376053 PMCID: PMC5768619 DOI: 10.3389/fmed.2017.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE In glucose 6-phosphate dehydrogenase (G6PD) deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs) to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated. METHODS We performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data. RESULTS Other than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate) components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor-specific differences in the post-transfusion performance of G6PD-deficient RBCs. CONCLUSION The metabolic phenotypes of G6PD-deficient donors recapitulate the basic storage lesion profile that leads to loss of metabolic linkage and rewiring. Donor-related issues affect the storability of RBCs even in the narrow context of this donor subgroup in a way likely relevant to transfusion medicine.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | | | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G. Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
44
|
Yoshimatsu G, Shahbazov R, Saracino G, Lawrence MC, Kim PT, Onaca N, Beecherl EE, Naziruddin B, Levy MF. The impact of allogenic blood transfusion on the outcomes of total pancreatectomy with islet autotransplantation. Am J Surg 2017; 214:849-855. [DOI: 10.1016/j.amjsurg.2017.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023]
|
45
|
Nemkov T, Sun K, Reisz JA, Song A, Yoshida T, Dunham A, Wither MJ, Francis RO, Roach RC, Dzieciatkowska M, Rogers SC, Doctor A, Kriebardis A, Antonelou M, Papassideri I, Young CT, Thomas TA, Hansen KC, Spitalnik SL, Xia Y, Zimring JC, Hod EA, D'Alessandro A. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica 2017; 103:361-372. [PMID: 29079593 PMCID: PMC5792281 DOI: 10.3324/haematol.2017.178608] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Kaiqi Sun
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Anren Song
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | | | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Richard O Francis
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robert C Roach
- Altitude Research Center, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen C Rogers
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Greece
| | - Marianna Antonelou
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | | - Tiffany A Thomas
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yang Xia
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA .,Boettcher Investigator
| |
Collapse
|
46
|
Nemkov T, Sun K, Reisz JA, Yoshida T, Dunham A, Wen EY, Wen AQ, Roach RC, Hansen KC, Xia Y, D'Alessandro A. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage. Front Med (Lausanne) 2017; 4:175. [PMID: 29090212 PMCID: PMC5650965 DOI: 10.3389/fmed.2017.00175] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/02/2017] [Indexed: 01/14/2023] Open
Abstract
State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome), though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Kaiqi Sun
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Edward Y Wen
- University of Texas Houston - McGovern Medical School, Houston, TX, United States.,University of California Berkeley, Berkeley, CA, United States
| | - Alexander Q Wen
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Rob C Roach
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Yang Xia
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
47
|
Silliman CC, Kelher MR, Khan SY, West FB, McLaughlin NJD, Elzi DJ, England K, Bjornsen J, Kuldanek SA, Banerjee A. Supernatants and lipids from stored red blood cells activate pulmonary microvascular endothelium through the BLT2 receptor and protein kinase C activation. Transfusion 2017; 57:2690-2700. [PMID: 28880373 DOI: 10.1111/trf.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although transfusion is a lifesaving intervention, it may be associated with significant morbidity in injured patients. We hypothesize that stored red blood cells (RBCs) induce proinflammatory activation of human pulmonary microvascular endothelial cells (HMVECs) resulting in neutrophil (PMN) adhesion and predisposition to acute lung injury (ALI). STUDY DESIGN AND METHODS Ten units of RBCs were collected; 50% (by weight) were leukoreduced (LR-RBCs) and the remainder was unmodified and stored in additive solution-5 (AS-5). An additional 10 units of RBCs were collected, leukoreduced, and stored in AS-3. HMVECs were incubated with [10%-40%]FINAL of the supernatants on Day (D)1 to D42 of storage, lipid extracts, and purified lipids. Endothelial surface expression of intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-8 release, and PMN adhesion to HMVECs were measured. HMVEC signaling via the BLT2 receptor was evaluated. Supernatants and lipids were also employed as the first event in a two-event model of ALI. RESULTS The supernatants [10%-40%]FINAL from D21 LR-RBCs and D42 RBCs and LR-RBCs and the lipids from D42 stored in AS-5 induced increased ICAM-1 surface expression on endothelium, IL-8 release, and PMN adhesion. In addition, the supernatants [20%-40%]FINAL from D21 and D42 RBCs in AS-5 also increased endothelial surface expression of ICAM-1. D42 supernatants and lipids also caused coprecipitation of β-arrestin-1 with BLT2, protein kinase C (PKC)βI , and PKCδ and served as the first event in a two-event rodent model of ALI. CONCLUSION Lipids that accumulate during RBC storage activate endothelium and predispose to ALI, which may explain some of the adverse events associated with the transfusion of critically injured patients.
Collapse
Affiliation(s)
- Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Samina Y Khan
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | | | - Nathan J D McLaughlin
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - David J Elzi
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Kelly England
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Jason Bjornsen
- Research Laboratory, Bonfils Blood Center, Denver, Colorado
| | - Susan A Kuldanek
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado
| |
Collapse
|
48
|
Warner MA, Welsby IJ, Norris PJ, Silliman CC, Armour S, Wittwer ED, Santrach PJ, Meade LA, Liedl LM, Nieuwenkamp CM, Douthit B, van Buskirk CM, Schulte PJ, Carter RE, Kor DJ. Point-of-care washing of allogeneic red blood cells for the prevention of transfusion-related respiratory complications (WAR-PRC): a protocol for a multicenter randomised clinical trial in patients undergoing cardiac surgery. BMJ Open 2017; 7:e016398. [PMID: 28821525 PMCID: PMC5629697 DOI: 10.1136/bmjopen-2017-016398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The transfusion-related respiratory complications, transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO), are leading causes of transfusion-related morbidity and mortality. At present, there are no effective preventive strategies with red blood cell (RBC) transfusion. Although mechanisms remain incompletely defined, soluble biological response modifiers (BRMs) within the RBC storage solution may play an important role. Point-of-care (POC) washing of allogeneic RBCs may remove these BRMs, thereby mitigating their impact on post-transfusion respiratory complications. METHODS AND ANALYSIS This is a multicenter randomised clinical trial of standard allogeneic versus washed allogeneic RBC transfusion for adult patients undergoing cardiac surgery testing the hypothesis that POC RBC washing is feasible, safe, and efficacious and will reduce recipient immune and physiologic responses associated with transfusion-related respiratory complications. Relevant clinical outcomes will also be assessed. This investigation will enrol 170 patients at two hospitals in the USA. Simon's two-stage design will be used to assess the feasibility of POC RBC washing. The primary safety outcomes will be assessed using Wilcoxon Rank-Sum tests for continuous variables and Pearson chi-square test for categorical variables. Standard mixed modelling practices will be employed to test for changes in biomarkers of lung injury following transfusion. Linear regression will assess relationships between randomised group and post-transfusion physiologic measures. ETHICS AND DISSEMINATION Safety oversight will be conducted under the direction of an independent Data and Safety Monitoring Board (DSMB). Approval of the protocol was obtained by the DSMB as well as the institutional review boards at each institution prior to enrolling the first study participant. This study aims to provide important information regarding the feasibility of POC washing of allogeneic RBCs and its potential impact on ameliorating post-transfusion respiratory complications. Additionally, it will inform the feasibility and scientific merit of pursuing a more definitive phase II/III clinical trial. REGISTRATION ClinicalTrials.gov registration number is NCT02094118 (Pre-results).
Collapse
Affiliation(s)
- Matthew A Warner
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Ian J Welsby
- Department of Anesthesiology, Duke University Medical Center, Raleigh, North Carolina, USA
| | - Phillip J Norris
- Blood Systems Research Institute,University of California, San Francisco, California, USA
| | | | - Sarah Armour
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Erica D Wittwer
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paula J Santrach
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laurie A Meade
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lavonne M Liedl
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Chelsea M Nieuwenkamp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian Douthit
- Department of Anesthesiology, Duke University Medical Center, Raleigh, North Carolina, USA
| | | | - Phillip J Schulte
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Rickey E Carter
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Daryl J Kor
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Balance Between the Proinflammatory and Anti-Inflammatory Immune Responses with Blood Transfusion in Sepsis. Crit Care Nurs Clin North Am 2017; 29:331-340. [PMID: 28778292 DOI: 10.1016/j.cnc.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood product transfusion may exacerbate the initial immunosuppressive response of sepsis. Nurses and other patient care providers must be diligent in recognizing and managing a worsening immune status, using flow cytometry to monitor patients' immune status. This type of monitoring may be instrumental in reducing morbidity and mortality in persons with sepsis. This article discusses the recent literature on the associated inflammatory responses that occur with blood transfusion and provides an analysis of alterations in key inflammatory pathways in response to transfusion in a sepsis population.
Collapse
|
50
|
The accumulation of lipids and proteins during red blood cell storage: the roles of leucoreduction and experimental filtration. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:131-136. [PMID: 28263170 DOI: 10.2450/2017.0314-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Pre-storage leucoreduction has been universally adopted in most developed countries in Asia, Europe and the Americas. It decreases febrile transfusion reactions, alloimmunisation to HLA antigens, cytomegalovirus exposure, the accumulation of a number of pro-inflammatory mediators in the supernatant, including the accumulation of platelet-and leucocyte-derived proteins and metabolites during routine storage. This review will highlight the lipids and proteins, biological response modifiers (BRMs) that accumulate, their clinical effects in transfused hosts, and methods of mitigation.
Collapse
|