1
|
Togashi T, Baatartsogt N, Nagao Y, Kashiwakura Y, Hayakawa M, Hiramoto T, Fujiwara T, Morishita E, Nureki O, Ohmori T. Cure of Congenital Purpura Fulminans via Expression of Engineered Protein C Through Neonatal Genome Editing in Mice. Arterioscler Thromb Vasc Biol 2024. [PMID: 39508105 DOI: 10.1161/atvbaha.123.319460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND PC (protein C) is a plasma anticoagulant encoded by PROC; mutation in both PROC alleles results in neonatal purpura fulminans-a fatal systemic thrombotic disorder. In the present study, we aimed to develop a genome editing treatment to cure congenital PC deficiency. METHODS We generated an engineered APC (activated PC) to insert a furin-cleaving peptide sequence between light and heavy chains. The engineered PC was expressed in the liver of mice using an adeno-associated virus vector or CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-mediated genome editing using an adeno-associated virus vector in vivo. RESULTS The engineered PC could be released in its activated form and significantly prolonged the plasma coagulation time independent of the cofactor activity of PS (protein S) in vitro. The adeno-associated virus vector-mediated expression of the engineered PC, but not wild-type PC, prolonged coagulation time owing to the inhibition of activated coagulation FV (factor V) in a dose-dependent manner and abolished pathological thrombus formation in vivo in C57BL/6J mice. The insertion of EGFP sequence conjugated with self-cleaving peptide sequence at Alb locus via neonatal in vivo genome editing using adeno-associated virus vector resulted in the expression of EGFP in 7% of liver cells, mainly via homology-directed repair, in mice. Finally, we succeeded in improving the survival of PC-deficient mice by expressing the engineered PC via neonatal genome editing in vivo. CONCLUSIONS These results suggest that the expression of engineered PC via neonatal genome editing is a potential cure for severe congenital PC deficiency.
Collapse
Affiliation(s)
- Tomoki Togashi
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Nemekhbayar Baatartsogt
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan. (Y.N.)
| | - Yuji Kashiwakura
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan. (Y.K., M.H., T.O.)
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan. (Y.K., M.H., T.O.)
| | - Takafumi Hiramoto
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
| | - Takayuki Fujiwara
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan (T.F.)
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (T.F.)
| | - Eriko Morishita
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan (T.T., E.M.)
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan (O.N.)
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan (T.T., N.B., Y.K., M.H., T.H., T.O.)
- Center for Gene Therapy Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan. (Y.K., M.H., T.O.)
| |
Collapse
|
2
|
Aliyeva N, Akgönüllü S, Erdem A, Denizli A. Specific DNA aptamer-immobilized cryogel membranes as novel bioaffinity supports and their potential for the purification of activated protein C. Biomed Chromatogr 2024; 38:e5995. [PMID: 39189513 DOI: 10.1002/bmc.5995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Activated protein C (APC), a serine protease produced from zymogen protein C (PC), is the key enzyme of the protein C pathway. APC has anticoagulant, anti-inflammatory, and cytoprotective features. APC has recently been shown to significantly reduce coagulation as well as mortality in patients with severe sepsis. Herein, we aimed to develop an affinity support material that allows the purification of plasma APC for the first time. In this research, a novel APC-specific DNA aptamer-based poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) (poly(HEMA-GMA/DNA-Apt)) macroporous cryogel membrane at different molar ratios was prepared using affinity binding method and their potential for purification and identification of APC was investigated. The DNA aptamer-immobilized cryogels were characterized to examine their structural and morphological properties. The effect of pH, initial concentration, temperature, ionic strength difference, and flow rate changes was examined. Selectivity studies were performed in the presence of APC and competitive proteins, and cryogel support materials were shown to have a very high affinity for APC. Adsorption capacity was found to be 89.02 mg/g. Finally, NaCl revealed efficiency for APC desorption and the reuse of cryogels was successfully tested for ten cycles.
Collapse
Affiliation(s)
- Nilufer Aliyeva
- Bioengineering Division, Hacettepe University, Ankara, 06800, Turkey
| | - Semra Akgönüllü
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, 06800, Turkey
| | - Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Adil Denizli
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, 06800, Turkey
| |
Collapse
|
3
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
4
|
Park S, Park JK. Back to basics: the coagulation pathway. Blood Res 2024; 59:35. [PMID: 39466528 PMCID: PMC11519239 DOI: 10.1007/s44313-024-00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
The classic coagulation cascade model of intrinsic and extrinsic coagulation pathways, i.e. contact activation pathway and tissue factor pathway, has been widely modified. The cascade can be categorized as follows: 1) initiation by tissue factor (TF), 2) amplification by the intrinsic tenase complex, and 3) propagation on activated platelets. TF-FVIIa forms an extrinsic tenase complex and activates FX to FXa and FIX to FIXa. FXa-FVa forms a prothrombinase complex that converts prothrombin into thrombin. At this initial stage of coagulation, only small amounts of thrombin are generated owing to the low circulating levels of FVa. The generated thrombin, although in minor quantities, is sufficient to prime the subsequent coagulation reactions. Platelets and in turn FV, FVIII, and FXI are activated. Subsequently, FVIIIa binds to FIXa to form the intrinsic tenase complex, which is aided by a cofactor, FVIIIa, and activates FX at a rate 50-times higher than that of the extrinsic tenase complex, thereby amplifying thrombin generation. Thrombin cleaves fibrinogen into one fibrin monomer and two fibrinopeptides. Fibrin monomers aggregate, crosslink, and branch into an insoluble fibrin network structure. The contact activation system is initiated by FXII, which is activated upon exposure to negatively charged surfaces. Coagulation is driven by FXIIa-mediated FXI cleavage. FXIa activates FIX, which forms an intrinsic tenase complex, eventually leading to thrombin formation. The contact activation system is considered to contribute to thrombosis but is not required for hemostasis in vivo.
Collapse
Affiliation(s)
- Seonyang Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, 875 Haeundae-Ro, Haeundae-Gu, Busan, 48108, Korea.
| | - Joo Kyung Park
- Daisy Hill Hospital, 5 Hospital Road, Newry, BT35 8DR, UK
| |
Collapse
|
5
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
6
|
Slotabec L, Seale B, Wang H, Wen C, Filho F, Rouhi N, Adenawoola MI, Li J. Platelets at the intersection of inflammation and coagulation in the APC-mediated response to myocardial ischemia/reperfusion injury. FASEB J 2024; 38:e23890. [PMID: 39143722 PMCID: PMC11373610 DOI: 10.1096/fj.202401128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Thromboinflammation is a complex pathology associated with inflammation and coagulation. In cases of cardiovascular disease, in particular ischemia-reperfusion injury, thromboinflammation is a common complication. Increased understanding of thromboinflammation depends on an improved concept of the mechanisms of cells and proteins at the axis of coagulation and inflammation. Among these elements are activated protein C and platelets. This review summarizes the complex interactions of activated protein C and platelets regulating thromboinflammation in cardiovascular disease. By unraveling the pathways of platelets and APC in the inflammatory and coagulation cascades, this review summarizes the role of these vital mediators in the development and perpetuation of heart disease and the thromboinflammation-driven complications of cardiovascular disease. Furthermore, this review emphasizes the significance of the counteracting effects of platelets and APC and their combined role in disease states.
Collapse
Affiliation(s)
- Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
7
|
Zhou S, Li F, Lai Z, Wu X, Yuan J, Wu W, Ding Q, Wang X, Dai J, Xu Q, Lu Y. Met343Val mutation disrupts the shuttling of Trp380 leading to a low-activity conformer of activated protein C and causes thrombosis. J Thromb Haemost 2024; 22:2270-2280. [PMID: 38788977 DOI: 10.1016/j.jtha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin complex and subsequent inactivation of the activated factor (F)V (FVa) and FVIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified 2 unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p.Met343Val (M343V), in PROC gene. This mutation had not been previously reported. OBJECTIVES To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS Our findings demonstrated that while activation of mutant zymogen by thrombin-thrombomodulin complex was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V toward FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity and ultimately leading to thrombosis.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Lai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Zhang X, Mai Z, Gao Y, Zhao X, Zhang Y. Selecting potential biomarkers of plasma proteins in mares with endometritis. Equine Vet J 2024; 56:660-669. [PMID: 38616335 DOI: 10.1111/evj.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Endometritis is a common condition in mares that causes significant economic loss. Lacking obvious clinical signs, the clinical diagnosis of endometritis in mares relies on case-by-case clinical examinations, which can be particularly inefficient in large-scale farms. Therefore, the identification of potential biomarkers can serve as a non-invasive and efficient screening technique for endometritis in mares. OBJECTIVES To compare the blood proteome between fertile mares and mares with endometritis to identify biomarkers potentially associated with the development of endometritis and validate their predictive potential. STUDY DESIGN Observational and experimental study. METHODS Differentially expressed proteins were identified via Data Independent Acquisition (DIA) proteomic profiling in a screening cohort composed of eight healthy mares and eight mares with endometritis. Subsequently, enzyme-linked immunosorbent assay was employed that included a validation cohort of 40 healthy mares and 40 mares with endometritis to verify the accuracy and sensitivity of the identified proteins, thereby establishing a diagnostic threshold. RESULTS In the screening cohort, 12 proteins were significantly differentially expressed between endometritis mares and healthy controls (p < 0.05, outside the 1/1.2 to 1.2-fold). In the validation experiment, all six screened proteins were assessed with area under the curve (AUC) >0.8. MAIN LIMITATIONS The samples displayed certain levels of individual heterogeneity, and the number of samples analysed was limited. Additionally, the identified biomarkers were primarily associated with generalised inflammation, which potentially limited their specificity for endometritis. CONCLUSION Levels of plasma proteins are sensitive indicators of equine endometritis and potential tools for endometritis screening. In plasma, fetuin B, von Willebrand factor, vitamin K-dependent protein C, insulin-like growth factor binding protein 3, interleukin 1 receptor accessory protein, and type II cell cytoskeleton showed great predictive ability, with fetuin B being the best predictor (AUC = 0.93, 95% CI: 0.89-0.98), which performs better when combined with all six detected proteins (AUC = 1, 95% CI: 0.99-1.00).
Collapse
Affiliation(s)
- Xijun Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
9
|
Lee S. Cardiovascular Disease and miRNAs: Possible Oxidative Stress-Regulating Roles of miRNAs. Antioxidants (Basel) 2024; 13:656. [PMID: 38929095 PMCID: PMC11200533 DOI: 10.3390/antiox13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) have been highlighted as key players in numerous diseases, and accumulating evidence indicates that pathological expressions of miRNAs contribute to both the development and progression of cardiovascular diseases (CVD), as well. Another important factor affecting the development and progression of CVD is reactive oxygen species (ROS), as well as the oxidative stress they may impose on the cells. Considering miRNAs are involved in virtually every biological process, it is not unreasonable to assume that miRNAs also play critical roles in the regulation of oxidative stress. This narrative review aims to provide mechanistic insights on possible oxidative stress-regulating roles of miRNAs in cardiovascular diseases based on differentially expressed miRNAs reported in various cardiovascular diseases and their empirically validated targets that have been implicated in the regulation of oxidative stress.
Collapse
Affiliation(s)
- Seahyoung Lee
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
10
|
Bindal P, Kumar V, Kapil L, Singh C, Singh A. Therapeutic management of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2651-2679. [PMID: 37966570 DOI: 10.1007/s00210-023-02804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Stroke is the third leading cause of years lost due to disability and the second-largest cause of mortality worldwide. Most occurrences of stroke are brought on by the sudden occlusion of an artery (ischemic stroke), but sometimes they are brought on by bleeding into brain tissue after a blood vessel has ruptured (hemorrhagic stroke). Alteplase is the only therapy the American Food and Drug Administration has approved for ischemic stroke under the thrombolysis category. Current views as well as relevant clinical research on the diagnosis, assessment, and management of stroke are reviewed to suggest appropriate treatment strategies. We searched PubMed and Google Scholar for the available therapeutic regimes in the past, present, and future. With the advent of endovascular therapy in 2015 and intravenous thrombolysis in 1995, the therapeutic options for ischemic stroke have expanded significantly. A novel approach such as vagus nerve stimulation could be life-changing for many stroke patients. Therapeutic hypothermia, the process of cooling the body or brain to preserve organ integrity, is one of the most potent neuroprotectants in both clinical and preclinical contexts. The rapid intervention has been linked to more favorable clinical results. This study focuses on the pathogenesis of stroke, as well as its recent advancements, future prospects, and potential therapeutic targets in stroke therapy.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
11
|
Zhou S, Wu X, Song Y, Li L, Shi C, Lai Z, Ding Q, Wu W, Dai J, Wang X, Lu Y. Ser252Asn Mutation Introduces a New N-Linked Glycosylation Site and Causes Type IIb Protein C Deficiency. Thromb Haemost 2024; 124:459-470. [PMID: 38011863 DOI: 10.1055/s-0043-1777133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Protein C (PC) is a vitamin K-dependent anticoagulant serine protease zymogen which upon activation by the thrombin-thrombomodulin (TM) complex downregulates the coagulation cascade by degrading cofactors Va and VIIIa by limited proteolysis. We identified a thrombosis patient who carried a heterozygous mutation c.881G > A, p.Ser252Asn (S252N) in PROC. This mutation was originally described in a report of novel mutations in patients presenting with defective PC anticoagulant activity in Paris. The research identified PC-S252N (the "Paris" mutation) in a propositus and her family members and highlighted the critical role of Ser252 in the anticoagulation process of activated PC (APC). MATERIAL AND METHODS We expressed the PC-S252N mutant in mammalian cells and characterized the properties in coagulation assays to decipher the molecular basis of anticoagulant defect of this mutation. RESULTS We demonstrated that PC-S252N had a diminished ability to TM binding, which resulted in its impaired activation by the thrombin-TM complex. However, APC-S252N exhibited a slightly stronger cleavage capacity for the chromogenic substrate. Meanwhile, the catalytic activity of APC-S252N toward FVa was significantly reduced. Sequence analysis revealed that Ser252 to Asn substitution introduced a new potential N-linked glycosylation site (252NTT254) in the catalytic domain of PC, which adversely affected both the activation process of PC and anticoagulant activity of APC. CONCLUSION The new N-glycosylation site (252NTT254) resulting from the mutation of Ser252 to Asn252 in PROC affects the overall structure of the protease, thereby adversely affecting the anticoagulant function of protein C. This modification has a negative impact on both TM-promoted activation of protein C and APC cleavage of FVa, ultimately leading to thrombosis in the patient.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Song
- Department of Clinical Hematology and osology, Shanghai Center of Clinical Laboratory, Shanghai, China
| | - Lei Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunli Shi
- Department of Molecular Biology, Shanghai Center of Clinical Laboratory, Shanghai, China
| | - Zhe Lai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Peyvandi F, Seidizadeh O, Mohsenian S, Garagiola I. Exploring nonreplacement therapies' impact on hemophilia and other rare bleeding disorders. Res Pract Thromb Haemost 2024; 8:102434. [PMID: 38873363 PMCID: PMC11169453 DOI: 10.1016/j.rpth.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
The management of hemophilia, von Willebrand disease (VWD), and rare coagulation disorders traditionally relied on replacement therapies, such as factor concentrates, to address clotting factor deficiencies. However, in recent years, the emergence of nonreplacement therapies has shown promise as an adjunctive approach, especially in hemophilia, and also for patients with VWD and rare bleeding disorders. This review article offers an overview of nonreplacement therapies, such as FVIII-mimicking agents and drugs aimed at rebalancing hemostasis by inhibiting natural anticoagulants, particularly in the management of hemophilia. The utilization of nonreplacement therapies in VWD and rare bleeding disorders has recently attracted attention, as evidenced by presentations at the International Society on Thrombosis and Haemostasis 2023 Congress. Nonreplacement therapies provide alternative methods for preventing bleeding episodes and enhancing patients' quality of life, as many of them are administered subcutaneously and allow longer infusion intervals, resulting in improved quality of life and comfort for patients.
Collapse
Affiliation(s)
- Flora Peyvandi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Omid Seidizadeh
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Samin Mohsenian
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Isabella Garagiola
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
13
|
Mehic D, Schramm T, Forstner-Bergauer B, Haslacher H, Ay C, Pabinger I, Gebhart J. Activated protein C and free protein S in patients with mild to moderate bleeding disorders. Thromb Res 2024; 235:98-106. [PMID: 38324941 DOI: 10.1016/j.thromres.2024.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Underlying mechanisms for bleeding and impaired thrombin generation (TG) and plasma clot formation (PCF) in patients with mild to moderate bleeding disorders (MBDs) are still to be elucidated, especially in bleeding disorder of unknown cause (BDUC). The role of the natural anticoagulants activated protein C (APC) and free protein S (PS) has not yet been investigated in this patient population. AIMS To analyze antigen levels of APC and PS in patients with MBDs and BDUC and investigate associations to clinical bleeding phenotype and severity as well as and hemostatic capacity. METHODS Antigen levels of APC and free PS were measured in 262 patients from the Vienna Bleeding Biobank (VIBB), a single-center cohort study, by ELISA and compared to 61 healthy controls (HC). RESULTS Antigen levels of APC were higher in MBD patients than in HC when adjusted for age, sex and BMI (median (IQR) 33.1 (20.6-52.6) and 28.6 (16.4-47.2) ng/mL). This was most pronounced in patients with BDUC (35.3 (21.7-54.3) ng/mL). No differences in PS antigen levels between patients and HC were seen overall, or according to specific diagnoses. Further, no association between APC or PS and bleeding severity or global tests of hemostasis or TG were identified, while paradoxically APC weakly correlated with shorter lag time and time to peak of PCF in BDUC. CONCLUSION Our data demonstrate increased antigen levels of APC in BDUC, which might contribute to the bleeding tendency in some patients and could be a future therapeutic target in BDUC.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Theresa Schramm
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Birgit Forstner-Bergauer
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Fatmi MK, Wang H, Slotabec L, Wen C, Seale B, Zhao B, Li J. Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer's disease by activated protein C. Aging (Albany NY) 2024; 16:3137-3159. [PMID: 38385967 PMCID: PMC10929801 DOI: 10.18632/aging.205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Single-Cell RNA sequencing reveals changes in cell population in Alzheimer's disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice. The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.
Collapse
Affiliation(s)
- Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
15
|
Thielen O, Mitra S, Debot M, Schaid T, Hallas W, Gallagher LT, Erickson C, Cralley A, Stafford P, Silliman C, D'Alessandro A, Hansen K, Sauaia A, Moore E, Mosnier L, Griffin J, Cohen M. Mitigation of trauma-induced endotheliopathy by activated protein C: A potential therapeutic for postinjury thromboinflammation. J Trauma Acute Care Surg 2024; 96:116-122. [PMID: 37733304 PMCID: PMC10841096 DOI: 10.1097/ta.0000000000004142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Activated Protein C (aPC) plays dual roles after injury, driving both trauma-induced coagulopathy (TIC) by cleaving, and thus inactivating, factors Va and VIIIa and depressing fibrinolysis while also mediating an inflammomodulatory milieu via protease activated receptor-1 (PAR-1) cytoprotective signaling. Because of this dual role, it represents and ideal target for study and therapeutics after trauma. A known aPC variant, 3K3A-aPC, has been engineered to preserve cytoprotective activity while retaining minimal anticoagulant activity rendering it potentially ideal as a cytoprotective therapeutic after trauma. We hypothesized that 3K3A-aPC would mitigate the endotheliopathy of trauma by protecting against endothelial permeability. METHODS We used electric cell-substrate impedance sensing to measure permeability changes in real time in primary endothelial cells. These were cultured, grown to confluence, and treated with a 2 μg/mL solution of 3K3A-aPC at 180 minutes, 120 minutes, 60 minutes, 30 minutes prior to stimulation with ex vivo plasma taken from severely injured trauma patients (Injury Severity Score > 15 and BD < -6) (trauma plasma [TP]). Cells treated with thrombin and untreated cells were included in this study as control groups. Permeability changes were recorded in real time via electric cell-substrate impedance sensing for 30 minutes after treatment with TP. We quantified permeability changes in the control and treatment groups as area under the curve (AUC). Rac1/RhoA activity was also compared between these groups. Statistical significance was determined by one-way ANOVA followed by a post hoc analysis using Tukey's multiple comparison's test. RESULTS Treatment with aPC mitigated endothelial permeability induced by ex vivo trauma plasma at all pre-treatment time points. The AUC of the 30-minute 3K3A-aPC pretreatment group was higher than TP alone (mean diff. 22.12 95% CI [13.75, 30.49], p < 0.0001) (Figure). Moreover, the AUC of the 60-minute, 120-minute, and 180-minute pretreatment groups was also higher than TP alone (mean diff., 16.30; 95% confidence interval [CI], 7.93-24.67; 19.43; 95% CI, 11.06-27.80, and 18.65; 95% CI, 10.28-27.02;, all p < 0.0001, respectively). Rac1/RhoA activity was higher in the aPC pretreatment group when compared with all other groups ( p < 0.01). CONCLUSION Pretreatment with 3K3A-aPC, which retains its cytoprotective function but has only ~5% of its anticoagulant function, abrogates the effects of trauma-induced endotheliopathy. This represents a potential therapeutic treatment for dysregulated thromboinflammation for injured patients by minimizing aPC's role in trauma-induced coagulopathy while concurrently amplifying its essential cytoprotective function. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level III.
Collapse
Affiliation(s)
- Otto Thielen
- From the Department of Gastrointestinal, Trauma, and Endocrine Surgery (O.T., S.M., M.D., T.S., W.H., L.T.G., C.E., A.C., P.S., C.S., A.D'A., K.H., A.S., E.M., M.C.), University of Colorado, Denver, Colorado; Department of Surgery (A.S., E.M.), Denver Health Medical Center, Denver, Colorado; and Department of Molecular Medicine (L.M., J.G.), Scripps Research, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Strubchevska K, Rachkovska A, Krenytska D, Karbovskyy V, Kozyk M, Secor B, Raksha N, Vovk T, Savchuk O, Falalyeyeva T, Kaminsky R, Ostapchenko L. Coagulation Parameters in Post-Covid-19 Condition in Relation to Various Titers of Anti-SARS-CoV-2 IgG in Blood Plasma. Int J Gen Med 2023; 16:6127-6135. [PMID: 38156079 PMCID: PMC10754419 DOI: 10.2147/ijgm.s425496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Background and Objectives Post-COVID-19 condition is thought to affect 10-20% of people at least 3 months after a diagnosis of COVID-19 and two months of symptoms. Post-COVID-19 condition presents itself with many clinical effects with varying degrees of severity ranging from a mild cough to a life-threatening coagulopathy. Our study aimed to identify a relationship between the titers of anti-SARS-CoV-2 IgG and anticoagulation parameters: antithrombin III (ATIII), protein C (PC) and thrombomodulin (TM). Materials and Methods Blood plasma was collected from healthy donors aged 25-45 who had recovered from COVID-19 3-6 months ago and their titers of anti-SARS-CoV-2 IgG and ATIII, PC, and TM were measured. Results We found that concentrations and activities of key anticoagulation parameters (ATIII, PC, and TM) measured in donor plasma during the post-COVID-19 varied in relation to the titers of anti-SARS-CoV-2 IgG. Conclusion While we identified a dysfunction of anticoagulation parameters in patients with post-COVID-19, we aim to explore the subpopulation antibody IgG fraction directly using in vivo and in vitro experiments with the possibility to contribute to the development of treatment options for post-COVID-19 conditions.
Collapse
Affiliation(s)
- Kateryna Strubchevska
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI, USA
| | - Antonina Rachkovska
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Daryna Krenytska
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Marko Kozyk
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI, USA
| | - Benjamin Secor
- Department of Internal Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, MI, USA
| | - Nataliia Raksha
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetiana Vovk
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olexii Savchuk
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Rostyslav Kaminsky
- Department Educational-Scientific Center ”Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Liudmyla Ostapchenko
- Department of Internal Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
17
|
Ke B, Shen W, Liao Y, Hu J, Tu W, Fang X. APC ameliorates idiopathic membranous nephropathy by affecting podocyte apoptosis through the ERK1/2/YB-1/PLA2R1 axis. Mol Cell Biochem 2023; 478:1999-2011. [PMID: 36588134 PMCID: PMC10359206 DOI: 10.1007/s11010-022-04650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Idiopathic membranous nephropathy (IMN) belongs to an important pathogenic category of adult nephrotic syndrome. PLA2R1 exposure is critical for triggering the pathogenesis of PLA2R1-related IMN. However, the pathogenesis of IMN and the molecular mechanism of treatment remain to be further clarified. The expression changes of activated protein C (APC) and PLA2R1 in IMN patients were quantified by qPCR. A zymosan activated serum (ZAS)-induced IMN podocyte model was established in vitro. Podocyte apoptosis was detected via flow cytometry and caspase‑3 assay. The expression levels of APC, p-ERK1/2, ERK1/2, YB-1 and PLA2R1 were detected by western blotting. The regulation relationship between YB-1 and PLA2R1 was detected by dual fluorescent reporter system. In IMN patients, the expression level of PLA2R1 was increased, whereas the expression level of APC was decreased. When APC was added to podocytes in vitro, the phosphorylation of ERK1/2 was increased, which could promote the translocation of YB-1 to the nucleus that reduces the expression of PLA2R1 at the cellular transcriptional level, thereby inhibiting podocyte apoptosis. Our study is the first to report that APC can improve membranous nephropathy by affecting podocyte apoptosis through the ERK1/2/YB-1/PLA2R1 axis. This study will provide a new targeted therapy for IMN patients with high PLA2R1 expression.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital to Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yunfei Liao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jing Hu
- Department of Anesthesia, The Third Hospital of Nanchang, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
18
|
Ou W, Lei K, Wang H, Ma H, Deng X, He P, Zhao L, Lv Y, Tang G, Zhang B, Li J. Development of a blood proteins-based model for bronchopulmonary dysplasia prediction in premature infants. BMC Pediatr 2023; 23:304. [PMID: 37330491 PMCID: PMC10276448 DOI: 10.1186/s12887-023-04065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/10/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common chronic pulmonary disease in premature infants. Blood proteins may be early predictors of the development of this disease. METHODS In this study, protein expression profiles (blood samples during their first week of life) and clinical data of the GSE121097 was downloaded from the Gene Expression Omnibus. Weighted gene co-expression network analysis (WGCNA) and differential protein analysis were carried out for variable dimensionality reduction and feature selection. Least absolute shrinkage and selection operator (LASSO) were conducted for BPD prediction model development. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve. RESULTS The results showed that black module, magenta module and turquoise module, which included 270 proteins, were significantly correlated with the occurrence of BPD. 59 proteins overlapped between differential analysis results and above three modules. These proteins were significantly enriched in 253 GO terms and 11 KEGG signaling pathways. Then, 59 proteins were reduced to 8 proteins by LASSO analysis in the training cohort. The proteins model showed good BPD predictive performance, with an AUC of 1.00 (95% CI 0.99-1.00) and 0.96 (95% CI 0.90-1.00) in training cohort and test cohort, respectively. CONCLUSION Our study established a reliable blood-protein based model for early prediction of BPD in premature infants. This may help elucidate pathways to target in lessening the burden or severity of BPD.
Collapse
Affiliation(s)
- Wanting Ou
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - KeJing Lei
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Huanhuan Wang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Hongmei Ma
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Xiaojuan Deng
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Pengcheng He
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Liping Zhao
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Youdao Lv
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Guohong Tang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Benjin Zhang
- Department of Pediatrics, Dazhou Central Hospital, Dazhou, Sichuan, China.
| | - Jie Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan, China.
| |
Collapse
|
19
|
Verbout NG, Su W, Pham P, Jordan K, Kohs TC, Tucker EI, McCarty OJ, Sherman LS. E-WE thrombin, a protein C activator, reduces disease severity and spinal cord inflammation in relapsing-remitting murine experimental autoimmune encephalomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2802415. [PMID: 37131631 PMCID: PMC10153372 DOI: 10.21203/rs.3.rs-2802415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective Relapses in patients with relapsing-remitting multiple sclerosis (RRMS) are typically treated with high-dose corticosteroids including methylprednisolone. However, high-dose corticosteroids are associated with significant adverse effects, can increase the risk for other morbidities, and often do not impact disease course. Multiple mechanisms are proposed to contribute to acute relapses in RRMS patients, including neuroinflammation, fibrin formation and compromised blood vessel barrier function. The protein C activator, E-WE thrombin is a recombinant therapeutic in clinical development for its antithrombotic and cytoprotective properties, including protection of endothelial cell barrier function. In mice, treatment with E-WE thrombin reduced neuroinflammation and extracellular fibrin formation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). We therefore tested the hypothesis that E-WE thrombin could reduce disease severity in a relapsing-remitting model of EAE. Methods Female SJL mice were inoculated with proteolipid protein (PLP) peptide and treated with E-WE thrombin (25 μg/kg; iv) or vehicle at onset of detectable disease. In other experiments, E-WE thrombin was compared to methylprednisolone (100 mg/kg; iv) or the combination of both. Results Compared to vehicle, administration of E-WE thrombin significantly improved disease severity of the initial attack and relapse and delayed onset of relapse as effectively as methylprednisolone. Both methylprednisolone and E-WE thrombin reduced demyelination and immune cell recruitment, and the combination of both treatments had an additive effect. Conclusion The data presented herein demonstrate that E-WE thrombin is protective in mice with relapsing-remitting EAE, a widely used model of MS. Our data indicate that E-WE thrombin is as effective as high-dose methylprednisolone in improving disease score and may exert additional benefit when administered in combination. Taken together, these data suggest that E-WE thrombin may be an effective alternative to high-dose methylprednisolone for managing acute MS attacks.
Collapse
Affiliation(s)
| | - Weiping Su
- Oregon National Primate Research Center, Oregon Health & Science University
| | - Peter Pham
- Oregon National Primate Research Center, Oregon Health & Science University
| | | | | | | | | | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University
| |
Collapse
|
20
|
Maral M, Erdem A. Carbon Nanofiber-Ionic Liquid Nanocomposite Modified Aptasensors Developed for Electrochemical Investigation of Interaction of Aptamer/Aptamer-Antisense Pair with Activated Protein C. BIOSENSORS 2023; 13:bios13040458. [PMID: 37185533 PMCID: PMC10136435 DOI: 10.3390/bios13040458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Selective and sensitive detection of human activated protein C (APC) was performed herein by using carbon nanofiber (CNF) and ionic liquid (IL) composite modified pencil graphite electrode (PGE) and electrochemical impedance spectroscopy (EIS) technique. A carbon nanomaterial-based electrochemical aptasensor was designed and implemented for the first time in this study for the solution-phase interaction of DNA-Apt with its cognate protein APC as well as APC inhibitor aptamer-antidote pair. The applicability of this assay developed for the determination of APC in fetal bovine serum (FBS) and its selectivity against different proteins (protein C, thrombin, bovine serum albumin) was also examined. CNF-IL modified aptasensor specific to APC provided the detection limit as 0.23 μg/mL (equal to 3.83 nM) in buffer medium and 0.11 μg/mL (equal to 1.83 nM) in FBS. The duration of the proposed assay from the point of electrode modification to the detection of APC was completed within only 55 min.
Collapse
Affiliation(s)
- Meltem Maral
- Department of Material Science and Engineering, The Institute of Natural and Applied Sciences, Ege University, Bornova, 35100 Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Turkey
| | - Arzum Erdem
- Department of Material Science and Engineering, The Institute of Natural and Applied Sciences, Ege University, Bornova, 35100 Izmir, Turkey
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
21
|
Bansal S, Bansal S, Fish BL, Li Y, Xu X, Fernandez JA, Griffin JH, Himburg HA, Boerma M, Medhora M, Cheema AK. Analysis of the urinary metabolic profiles in irradiated rats treated with Activated Protein C (APC), a potential mitigator of radiation toxicity. Int J Radiat Biol 2023; 99:1109-1118. [PMID: 36827630 PMCID: PMC10330346 DOI: 10.1080/09553002.2023.2182001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations. MATERIALS AND METHODS Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling. Sub-cohorts of rats were treated with three variants of recombinant APC namely, rat wildtype (WT) APC, rat 3K3A mutant form of APC, and human WT APC as two bolus injections at 24 and 48 hours post IR. RESULTS Radiation induced robust changes in the urinary profiles leading to oxidative stress, severe dyslipidemia, and altered biosynthesis of PUFAs, glycerophospholipids, sphingolipids, and steroids. Alterations were observed in multiple metabolic pathways related to energy metabolism, nucleotide biosynthesis and metabolism that were indicative of disrupted mitochondrial function and DNA damage. On the other hand, sub-cohorts of rats that were treated with rat wildtype-APC showed alleviation of radiation toxicities, in part, at the 90-day time point, while rat 3K3A-APC showed partial alleviation of radiation induced metabolic alterations 14 days after irradiation. CONCLUSIONS Taken together, these results show that augmenting the Protein C pathway and activity via administration of recombinant APC may be an effective approach for mitigation of radiation induced normal tissue toxicity.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Sunil Bansal
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yaoxiang Li
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
| | - Xiao Xu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Jose A Fernandez
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - John H Griffin
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
22
|
Enhanced thrombin generation detected with ST-Genesia analyzer in patients with newly diagnosed multiple myeloma. J Thromb Thrombolysis 2023; 55:464-473. [PMID: 36630029 DOI: 10.1007/s11239-022-02765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
The issue of how to identify newly diagnosed multiple myeloma (NDMM) patients requiring thromboprophylaxis remains unsolved. Several changes in thrombin generation (TG)-derived parameters have been described in multiple myeloma (MM) patients recently. Assessment of prothrombotic risk with a fully automated TG analyzer could reduce interlaboratory variability. Our objective was to determine whether ST-Genesia® could reveal a hypercoagulable state in NDMM compared to healthy controls. We conducted a multicenter observational study of NDMM requiring initial treatment to compare TG parameters obtained with ST-Genesia® analyzer and ST-ThromboScreen® reagent with a control group. Clinical data were obtained from medical records and blood samples were collected before initial anti-myeloma therapy. A thrombophilia panel was performed in all patients. Compared to age- and sex-matched controls (n = 83), NDMM patients (n = 83) had significantly higher peak height, higher velocity index, shorter time-to-peak and lower percentage of endogenous thrombin potential (ETP) inhibition after adding thrombomodulin (TM) (ETP%inh). NDMM on prophylactic low molecular weight heparin (LMWH) showed reduced both peak height and velocity index compared to NDMM who had not yet started VTE prophylaxis, similar to that of controls. Moreover, partial correction of ETP%inh was observed in MM patients on LMWH. The presence of a thrombophilia did not modify the TG phenotype. Untreated NDMM patients showed an enhanced TG, regardless of their thrombophilia status. They generate a higher peak of thrombin, take less time to produce it, and exhibit resistance to TM inhibition. Our findings suggest that standard prophylactic dose of LMWH may reduce TG at levels of healthy controls.
Collapse
|
23
|
Badimon JJ, Escolar G, Zafar MU. Factor XI/XIa Inhibition: The Arsenal in Development for a New Therapeutic Target in Cardio- and Cerebrovascular Disease. J Cardiovasc Dev Dis 2022; 9:437. [PMID: 36547434 PMCID: PMC9781521 DOI: 10.3390/jcdd9120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite major advancements in the development of safer and more effective anticoagulant agents, bleeding complications remain a significant concern in the treatment of thromboembolic diseases. Improvements in our understanding of the coagulation pathways highlights the notion that the contact pathway-specifically factor XI (FXI)-has a greater role in the etiopathogenesis of thrombosis than in physiological hemostasis. As a result, a number of drugs targeting FXI are currently in different stages of testing and development. This article aims to review the different strategies directed towards FXI-inhibition with a brief summation of the agents in clinical development, and to comment on the therapeutic areas that could be explored for potential indications. Therapeutics targeting FXI/FXIa inhibition have the potential to usher in a new era of anticoagulation therapy.
Collapse
Affiliation(s)
- Juan J. Badimon
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gines Escolar
- Department of Hematopathology, Hospital Clinic, 08036 Barcelona, Spain
| | - M. Urooj Zafar
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
24
|
Cheng S, Wu D, Liu H, Xu X, Zhu B, Du M. A comprehensive method to explore inhibitory kinetics and mechanisms of an anticoagulant peptide derived from Crassostrea gigas. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
26
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
27
|
Gao L, Li L, Hu J, Li G, Zhang Y, Dai X, De Z, Xu F. Metformin inhibits multiple myeloma serum-induced endothelial cell thrombosis by down-regulating miR-532. Ann Vasc Surg 2022; 85:347-357.e2. [PMID: 35561893 DOI: 10.1016/j.avsg.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Thrombotic complications in multiple myeloma (MM) impairs the quality of life of patients. Metformin has a certain effect on anti-thrombosis, but its role and mechanism in MM-induced thrombosis are still uncovered. Therefore, this study evaluated the effect of metformin on MM-induced thrombosis. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to normal serum (15%), MM serum (15%), metformin (0.01 mmol/L), or MM serum and metformin simultaneously. The expression of tissue factor (TF) in HUVECs was detected by flow cytometry and quantitative real-time PCR (qRT-PCR). QRT-PCR was also used to determine the expressions of endothelial protein C receptor (EPCR) and miR-532. The generation of thrombin and activated protein C was measured by thrombin generation and protein C activation assays. And EPCR, extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathway related protein expressions were detected by western blot. RESULT MM serum increased the expressions of TF, EPCR and miR-532, and induced thrombin generation and protein C activation in HUVECs. Based on the MM serum treatment, metformin decreased these expressions and inhibited the thrombin generation and protein C activation in HUVECs. However, miR-532 mimic reversed the effect of metformin and promoted the levels of thrombosis related indicators in HUVECs. Moreover, metformin activated the EPCR, ERK 1/2, p38 MAPK and NF-κB pathways but miR-532 mimic suppressed the activation of pathways. CONCLUSION Metformin played an inhibitory effect on MM serum-induced HUVEC thrombosis, suggesting that metformin could serve as a novel antithrombotic approach for MM patients.
Collapse
Affiliation(s)
- Lixia Gao
- Department of Hematology, Karamay Central Hospital
| | - Li Li
- Department of Hematology, Karamay Central Hospital
| | - Jun Hu
- Department of Hematology, Karamay Central Hospital
| | - Guiyuan Li
- Oncology Department, Tongji Hospital Affiliated to Shanghai, Tongji University
| | - Yizhi Zhang
- Department of Hematology, Karamay Central Hospital
| | - Xiangjun Dai
- Science Education Department, Karamay Central Hospital
| | - Zhenyi De
- Department of Pathology, Karamay Central Hospital
| | - Fenglei Xu
- Department of Neurology, Karamay Central Hospital.
| |
Collapse
|
28
|
Hamedani NS, Happich FL, Klein EM, Rühl H, Mayer G, Oldenburg J, Müller J, Pötzsch B. Aptamer loaded superparamagnetic beads for selective capturing and gentle release of activated protein C. Sci Rep 2022; 12:7091. [PMID: 35490167 PMCID: PMC9056527 DOI: 10.1038/s41598-022-11198-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Activated protein C (APC) is a serine protease with anticoagulant and cytoprotective activities which make it an attractive target for diagnostic and therapeutic applications. In this work, we present one-step activation of APC from a commercial source of protein C (PC, Ceprotin) followed by rapid and efficient purification using an APC-specific aptamer, HS02-52G, loaded on MyOne superparamagnetic beads. Due to the Ca2+-dependent binding of APC to HS02-52G, an efficient capturing of APC was applied in the presence of Ca2+ ions, while a gentle release of captured APC was achieved in the elution buffer containing low EDTA concentration (5 mM). The captured and eluted APC showed more than 95% purity according to SDS-PAGE gel analysis and an enzyme-linked fluorescent assay (VIDAS Protein C). The purification yield of 45% was calculated when 4.2 µg APC was used, however this yield reduced to 21% if the starting amount of APC increased to 28.5 µg. Altogether, this method is recommended for rapid and efficient PC activation and APC purification. The purified APC can be used directly for downstream processes where high concentration of pure and active APC is needed.
Collapse
Affiliation(s)
- Nasim Shahidi Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| | - Felix Lucian Happich
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Eva-Maria Klein
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Günter Mayer
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127, Bonn, Germany
| |
Collapse
|
29
|
Temiz Artmann A, Kurulgan Demirci E, Fırat IS, Oflaz H, Artmann GM. Recombinant Activated Protein C (rhAPC) Affects Lipopolysaccharide-Induced Mechanical Compliance Changes and Beat Frequency of mESC-Derived Cardiomyocyte Monolayers. Shock 2022; 57:544-552. [PMID: 34416756 PMCID: PMC8906254 DOI: 10.1097/shk.0000000000001845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 12/07/2022]
Abstract
BACKGROUND Septic cardiomyopathy increases mortality by 70% to 90% and results in mechanical dysfunction of cells. METHODS Here, we created a LPS-induced in-vitro sepsis model with mouse embryonic stem cell-derived cardiomyocytes (mESC-CM) using the CellDrum technology which simultaneously measures mechanical compliance and beat frequency of mESCs. Visualization of reactive oxygen species (ROS), actin stress fibers, and mRNA quantification of endothelial protein C receptor (EPCR) and protease-activated receptor 1 (PAR1) before/after LPS incubation were used for method validation. Since activated protein C (APC) has cardioprotective effects, samples were treated with human recombinant APC (rhAPC) with/-out LPS predamage to demonstrate the application in therapeutic studies. RESULTS Twelve hours LPS treatment (5 μg/mL) increased ROS and decreased actin stress fiber density and significantly downregulated EPCR and PAR1 compared to control samples (0.26, 0.39-fold respectively). rhAPC application (5 μg/mL, 12 h) decreased ROS and recovered actin density, EPCR, and PAR1 levels were significantly upregulated compared to LPS predamaged samples (4.79, 3.49-fold respectively). The beat frequencies were significantly decreased after 6- (86%) and 12 h (73%) of LPS application. Mechanical compliance of monolayers significantly increased in a time-dependent manner, up to eight times upon 12-h LPS incubation compared to controls. rhAPC incubation increased the beat frequency by 127% (6h-LPS) and 123% (12h-LPS) and decreased mechanical compliance by 68% (12h-LPS) compared to LPS predamaged samples. CONCLUSION LPS-induced contraction dysfunction and the reversal effects of rhAPC were successfully assessed by the mechanical properties of mESC-CMs. The CellDrum technology proved a decent tool to simulate sepsis in-vitro.
Collapse
Affiliation(s)
- Aysegül Temiz Artmann
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| | - Eylem Kurulgan Demirci
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, Campus Gulbahce, URLA, Izmir, Turkey
| | - Ipek Seda Fırat
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| | - Hakan Oflaz
- Bioengineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Gerhard M. Artmann
- Institute for Bioengineering, University of Applied Sciences Aachen/Campus Juelich, Juelich, Germany
| |
Collapse
|
30
|
Ren D, Fedorova J, Davitt K, Van Le TN, Griffin JH, Liaw PC, Esmon CT, Rezaie AR, Li J. Activated Protein C Strengthens Cardiac Tolerance to Ischemic Insults in Aging. Circ Res 2022; 130:252-272. [PMID: 34930019 PMCID: PMC8882057 DOI: 10.1161/circresaha.121.319044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND APC (activated protein C) is a plasma serine protease with anticoagulant and anti-inflammatory activities. EPCR (Endothelial protein C receptor) is associated with APC's activity and mediates its downstream signaling events. APC exerts cardioprotective effects during ischemia and reperfusion (I/R). This study aims to characterize the role of the APC-EPCR axis in ischemic insults in aging. METHODS Young (3-4 months) and aged (24-26 months) wild-type C57BL/6J mice, as well as EPCR point mutation (EPCRR84A/R84A) knockin C57BL/6J mice incapable of interaction with APC and its wild type of littermate C57BL/6J mice, were subjected to I/R. Wild-type APC, signaling-selective APC-2Cys, or anticoagulant-selective APC-E170A were administrated before reperfusion. RESULTS The results demonstrated that cardiac I/R reduces APC activity, and the APC activity was impaired in the aged versus young hearts possibly attributable to the declined EPCR level with aging. Serum EPCR measurement showed that I/R triggered the shedding of membrane EPCR into circulation, while administration of APC attenuated the I/R-induced EPCR shedding in both young and aged hearts. Subsequent echocardiography showed that APC and APC-2Cys but not APC-E170A ameliorated cardiac dysfunction during I/R in both young and aged mice. Importantly, APC elevated the resistance of the aged heart to ischemic insults through stabilizing EPCR. However, all these cardioprotective effects of APC were blunted in the EPCRR84A/R84A mice versus its wild-type littermates. The ex vivo working heart and metabolomics results demonstrated that AMPK (AMP-activated protein kinase) mediates acute adaptive response while AKT (protein kinase B) is involved in chronic metabolic programming in the hearts with APC treatment. CONCLUSIONS I/R stress causes shedding of the membrane EPCR in the heart, and administration of APC prevents I/R-induced cardiac EPCR shedding that is critical for limiting cardiac damage in aging.
Collapse
Affiliation(s)
- Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Julia Fedorova
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Kayla Davitt
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Tran Ngoc Van Le
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Patricia C. Liaw
- Thrombosis and Atherosclerosis Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
31
|
Xu QY, Yang LL, Xie HX, Jin YH, Li XL, Zhou XX, Liu MN, Wang MS. [Clinical phenotype and gene mutation analysis of 12 patients with hereditary protein C deficiency in different families]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:35-40. [PMID: 35231991 PMCID: PMC8980666 DOI: 10.3760/cma.j.issn.0253-2727.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/10/2022]
Abstract
Objective: To investigate the molecular pathogenesis and clinical features of unrelated 12 patients with inherited coagulation protein C (PC) deficiency in Chinese population. Methods: The PC activity (PC:A) and PC antigen (PC:Ag) were detected by chromogenic substrate and enzyme linked immunosorbent assay, respectively. The nine exons and flanking sequences of the protein C (PROC) gene were amplified by polymerase chain reaction with direct sequencing, and the suspected mutations were validated by reverse sequencing (clone sequencing for deletion mutations) . Results: The PC:A of the 12 probands decreased significantly, ranging from 18% to 55%, and the PC:Ag of the 10 probands decreased significantly. Eleven mutations were found, out of which four mutations [c.383G>A (p.Gly128Asp) , c.997G>A (p.Ala291Thr) , c.1318C>T (p.Arg398Cys) , and c.532G>C (p.Leu278Pro) ] were discovered for the first time. Six mutations were in the serine protease domain, four mutations were located in epidermal growth factor (EGF) -like domains, and one mutation was located in activation peptide. There were two deletion mutations (p.Met364Trp fsX15 and p.Lys192del) , and the rest were missense mutations. Mutations p.Phe181Val and p.Arg189Trp were identified in three unrelated families. All mutations may be inherited, and consanguineous marriages were reported in two families. Among the probands, nine cases had venous thrombosis, two cases had poor pregnancy manifestations, and one case had purpura. Conclusion: Patients with PC deficiency caused by PROC gene defects are prone to venous thrombosis, especially when there are other thrombotic factors present at the same time.
Collapse
Affiliation(s)
- Q Y Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - L L Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - H X Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Y H Jin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - X L Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - X X Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - M N Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - M S Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
32
|
Xu Q, Wang M, Jin Y, Liu S, Luo S, Yang L. Two heterozygous mutations associated with type I protein C deficiency in two Chinese independent families. Blood Coagul Fibrinolysis 2021; 32:596-602. [PMID: 34261859 DOI: 10.1097/mbc.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To explore the pathogenesis of protein C (PC) deficiency in two independent families by mutations detection and bioinformatics analysis. The PC activity (PC:A) and PC antigen (PC:Ag) were detected by chromogenic substrate and ELISA, respectively. The PROC sequencing was performed to identify the mutational sites. The molecular pathogenesis of the mutations were studied by the conservation, bioinformatics and model analysis. The PC:A and PC:Ag of the proband 1 were observably reduced at 35 and 44%, respectively. Gene sequencing analysis revealed the p.Leu278Pro derived from a heterozygous c.833T>C point mutations in exon 9 of PROC gene. For proband 2, the PC:A and PC:Ag were decreased to 40 and 51%, respectively, caused p.Ala178Pro missense mutation by a heterozygous point mismatch of c.532G>C in exon 5 of PROC gene. Bioinformatics and model analysis indicated that it was the Leu278Pro and Ala178Pro that caused clinical PC deficiency (PCD). The heterozygous mutations Leu278Pro and Ala178Pro were observed in two independent families. The Leu278Pro mutation in the PROC gene has not been described elsewhere. The two mutations can both lead to the type I hereditary PCD, and probably be the major causes of PCD in the families.
Collapse
Affiliation(s)
- Qiyu Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
33
|
Reda S, Rühl H, Witkowski J, Müller J, Pavlova A, Oldenburg J, Pötzsch B. PC Deficiency Testing: Thrombin-Thrombomodulin as PC Activator and Aptamer-Based Enzyme Capturing Increase Diagnostic Accuracy. Front Cardiovasc Med 2021; 8:755281. [PMID: 34708097 PMCID: PMC8542722 DOI: 10.3389/fcvm.2021.755281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022] Open
Abstract
Protein C (PC) activity tests are routinely performed in a thrombophilia workup to screen for PC deficiency. Currently used tests combine conversion of PC to activated PC (APC) by the snake venom Protac with subsequent APC detection through hydrolysis of a chromogenic peptide substrate or prolongation of a clotting time. In this prospective cohort study, we analyzed how different modes of PC activation and subsequent APC determination influence the diagnostic accuracy of PC activity testing in a cohort of 31 patients with genetically confirmed PC deficiency. In addition to chromogenic and clot-based measurement, an oligonucleotide-based enzyme capture assay utilizing a basic exosite-targeting aptamer was used for APC detection. To study the influence of the PC activation step on diagnostic sensitivity, PC activation through Protac and through the thrombin-thrombomodulin (TM) complex were compared. Twenty-six (84%) and 24 (77%) PC deficient patients were identified as true-positive using the chromogenic and the clot-based PC activity assay, respectively. True-positive results increased to 27 (87%) when the basic exosite-targeting aptamer approach was used for APC measurement. Additional replacement of the PC activator Protac by thrombin-TM gave true-positive results in all patients. These data indicate that the mode of PC activation is crucial in determining the accuracy of PC activity testing and that diagnostic sensitivity can be significantly improved by replacing the PC activator Protac with thrombin-TM. APC detection using a basic exosite-targeting aptamer achieves high sensitivity toward mutations outside the active center while being less subject to interfering factors than clot-based PC activity assays.
Collapse
Affiliation(s)
- Sara Reda
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jana Witkowski
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
34
|
Festoff BW, Dockendorff C. The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules 2021; 11:1558. [PMID: 34827556 PMCID: PMC8615608 DOI: 10.3390/biom11111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Interest in the role of coagulation and fibrinolysis in the nervous system was active in several laboratories dating back before cloning of the functional thrombin receptor in 1991. As one of those, our attention was initially on thrombin and plasminogen activators in synapse formation and elimination in the neuromuscular system, with orientation towards diseases such as amyotrophic lateral sclerosis (ALS) and how clotting and fibrinolytic pathways fit into its pathogenesis. This perspective is on neuro-thromboinflammation, emphasizing this emerging concept from studies and reports over more than three decades. It underscores how it may lead to novel therapeutic approaches to treat the ravages of neurotrauma and neurodegenerative diseases, with a focus on PAR1, ALS, and parmodulins.
Collapse
Affiliation(s)
- Barry W. Festoff
- PHLOGISTIX LLC, Department of Neurology, University of Kansas Medical School, Kansas City, MO 64108, USA
| | | |
Collapse
|
35
|
Cheng S, Wu D, Liu H, Xu X, Zhu B, Du M. A novel anticoagulant peptide discovered from Crassostrea gigas by combining bioinformatics with the enzymolysis strategy: inhibitory kinetics and mechanisms. Food Funct 2021; 12:10136-10146. [PMID: 34528647 DOI: 10.1039/d1fo02148f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel anticoagulant peptide (IEELEEELEAER) derived from oyster (Crassostrea gigas) was discovered by combining the emerging bioinformatics with the classical enzymolysis approach. The anticoagulant peptide drastically reduced the extrinsic clotting activity (49% residual PT activity) and impaired the intrinsic clotting activity (77% residual PT activity). Consistent with the clotting data, the thrombin peak height reduced to 88.7 from 123.4 nM, and the thrombin generation time delayed to 5.32 from 4.42 min when an extrinsic trigger was applied. The inhibitory kinetics of FXIa, FIXa, FXa, FIIa, and APC in a purified component system rationally explained the reduction of the extrinsic clotting activity and impairment of thrombin generation. Besides the inhibition of FXa and FIIa activity, the activation processes of FX and FII by an intrinsic/extrinsic tenase complex and prothrombinase were also damaged. The anticoagulant activity in the plasma system was the result of comprehensive inhibition of various factors. The research provided a frame for anticoagulant evaluation and inhibitory mechanism of bioactive peptides from food products.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Di Wu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Hanxiong Liu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Xianbing Xu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Beiwei Zhu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ming Du
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
36
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 273] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
37
|
Komarevtsev SK, Timorshina SN, Leontieva MR, Shabunin SV, Lobakova ES, Osmolovskiy AA. Effect of Immobilization of the Micromycete Aspergillus ochraceus VKM-F4104D in Polymeric Carriers on the Production of the Fibrinolytic Protease Activator of Blood Plasma Protein C. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mehic D, Colling M, Pabinger I, Gebhart J. Natural anticoagulants: A missing link in mild to moderate bleeding tendencies. Haemophilia 2021; 27:701-709. [PMID: 34110661 PMCID: PMC8518679 DOI: 10.1111/hae.14356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Introduction There is a growing interest in natural anticoagulants as a cause of mild to moderate bleeding disorders (MBDs), particularly in patients with bleeding of unknown cause (BUC), which is defined as having a mild to moderate bleeding phenotype without a definite diagnosis despite exhaustive and repeated laboratory investigations. Recently, abnormalities in two natural anticoagulant pathways, thrombomodulin (TM), and tissue factor pathway inhibitor (TFPI), were identified in single patients or families as the underlying cause for a bleeding tendency. Aim The objective of this review is to discuss the current understanding of the role of natural anticoagulants in MBDs using available clinical and translational data. Methods A Cochrane Library and PubMed (MEDLINE) search focusing on selected natural anticoagulants and their role in MBDs was conducted. Results Data on the influence of natural anticoagulants including protein C, protein S, antithrombin, TM, and TFPI or factors with anticoagulant properties like fibrinogen gamma prime (γ’) on MBDs are scarce. Observations from sepsis treatment and from translational research highlight their importance as regulators of the haemostatic balance, especially via the activated protein C‐related pathway, and suggest a role in some MBDs. Conclusion Similar to the distinct genetic variants of natural anticoagulants linked to thrombosis, we hypothesize that novel variants may be associated with a bleeding tendency and could be identified using next generation sequencing.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meaghan Colling
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Fang XZ, Wang YX, Xu JQ, He YJ, Peng ZK, Shang Y. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Front Immunol 2021; 12:651545. [PMID: 34149692 PMCID: PMC8207198 DOI: 10.3389/fimmu.2021.651545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
COVID-19 is an acute, complex disorder that was caused by a new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on current reports, it was surprising that the characteristics of many patients with COVID-19, who fulfil the Berlin criteria for acute respiratory distress syndrome (ARDS), are not always like those of patients with typical ARDS and can change over time. While the mechanisms of COVID-19–related respiratory dysfunction in COVID-19 have not yet been fully elucidated, pulmonary microvascular thrombosis is speculated to be involved. Considering that thrombosis is highly related to other inflammatory lung diseases, immunothrombosis, a two-way process that links coagulation and inflammation, seems to be involved in the pathophysiology of COVID-19, including respiratory dysfunction. Thus, the current manuscript will describe the proinflammatory milieu in COVID-19, summarize current evidence of thrombosis in COVID-19, and discuss possible interactions between these two.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qain Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Patalakh II. L-ARGININE AND L-GLUTAMIC ACID INCREASE THE CONTENT OF PROTEIN C IN THE EARLY STAGES OF ISOLATION FROM DONOR PLASMA. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Current large-scale production of blood-derived pharmacological preparations is aimed at expanding the list of products and deeper extraction of target proteins especially at the pre-purification stage. In particular, this problem becomes critical for the isolation of proteins like protein C (PC), which is present in plasma in trace amounts. Aim. We aimed to improve the buffer composition to minimize the interaction of PC with other proteins and lipids that are inevitably present in the stock material. Methods. The content of protein C in plasma and its derivatives was assessed by the amidolytic activity to the chromogenic substrate S2366. A decrease in homologous impurities and plasma enrichment with protein C was provided by selective bulk adsorption on DEAE-cellulose. Results. Here we describe that an equimolar mixture of two amino acids (L-arginine and L-glutamic acid) essentially increased the content of protein C at the stage of cryo-depleted plasma pre-purification, including initial dilution and subsequent enrichment of plasma with protein C due to selective bulk adsorption on DEAE- cellulose. Additionally, it was revealed that solutions of these amino acids, when combined, inhibit the induced amidolytic activity of protein C and increase its solubility (in contrast to other plasma proteases). Conclusion. Pre-adding of a mixture of amino acids L-arginine and L-glutamic acid to cryo-depleted plasma significantly optimizes the pre-purification stage of protein C, providing a 5-fold increase in its yield after elution from DEAE-cellulose.
Collapse
|
41
|
Apolipoprotein A-I enhances activated protein C cytoprotective activity. Blood Adv 2021; 4:2404-2408. [PMID: 32484855 DOI: 10.1182/bloodadvances.2019001316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Key Points
High-density lipoprotein and apolipoprotein A-I enhance activated protein C cytoprotective activity. High-density lipoprotein and apolipoprotein A-I significantly increase the rate at which activated protein C degrades cytotoxic extracellular histones.
Collapse
|
42
|
Palmer CR, Blekkenhorst LC, Lewis JR, Ward NC, Schultz CJ, Hodgson JM, Croft KD, Sim M. Quantifying dietary vitamin K and its link to cardiovascular health: a narrative review. Food Funct 2021; 11:2826-2837. [PMID: 32211680 DOI: 10.1039/c9fo02321f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease is the leading cause of death and disability worldwide. Recent work suggests a link between vitamin K insufficiency and deficiency with vascular calcification, a marker of advanced atherosclerosis. Vitamin K refers to a group of fat-soluble vitamins important for blood coagulation, reducing inflammation, regulating blood calcium metabolism, as well as bone metabolism, all of which may play a role in promoting cardiovascular health. Presently, there is a lack of a comprehensive vitamin K database on individual foods, which are required to accurately calculate vitamin K1 and K2 intake for examination in epidemiological studies. This has likely contributed to ambiguity regarding the recommended daily intake of vitamin K, including whether vitamin K1 and K2 may have separate, partly overlapping functions. This review will discuss the presence of: (i) vitamin K1 and K2 in the diet; (ii) the methods of quantitating vitamin K compounds in foods; and (iii) provide an overview of the evidence for the cardiovascular health benefits of vitamin K in observational and clinical trials.
Collapse
Affiliation(s)
- Claire R Palmer
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia and School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - Lauren C Blekkenhorst
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua R Lewis
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie C Ward
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and School of Public Health & Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Carl J Schultz
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia and Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marc Sim
- School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia. and School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
43
|
Klopf J, Brostjan C, Eilenberg W, Neumayer C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int J Mol Sci 2021; 22:ijms22020559. [PMID: 33429925 PMCID: PMC7828090 DOI: 10.3390/ijms22020559] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient’s immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.
Collapse
|
44
|
Bossardi Ramos R, Adam AP. Molecular Mechanisms of Vascular Damage During Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:95-107. [PMID: 34019265 DOI: 10.1007/978-3-030-68748-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of pulmonary and systemic insults promote an inflammatory response causing increased vascular permeability, leading to the development of acute lung injury (ALI), a condition necessitating hospitalization and intensive care, or the more severe acute respiratory distress syndrome (ARDS), a disease with a high mortality rate. Further, COVID-19 pandemic-associated ARDS is now a major cause of mortality worldwide. The pathogenesis of ALI is explained by injury to both the vascular endothelium and the alveolar epithelium. The disruption of the lung endothelial and epithelial barriers occurs in response to both systemic and local production of pro-inflammatory cytokines. Studies that evaluate the association of genetic polymorphisms with disease risk did not yield many potential therapeutic targets to treat and revert lung injury. This failure is probably due in part to the phenotypic complexity of ALI/ARDS, and genetic predisposition may be obscured by the multiple environmental and behavioral risk factors. In the last decade, new research has uncovered novel epigenetic mechanisms that control ALI/ARDS pathogenesis, including histone modifications and DNA methylation. Enzyme inhibitors such as DNMTi and HDACi may offer new alternative strategies to prevent or reverse the vascular damage that occurs during lung injury. This review will focus on the latest findings on the molecular mechanisms of vascular damage in ALI/ARDS, the genetic factors that might contribute to the susceptibility for developing this disease, and the epigenetic changes observed in humans, as well as in experimental models of ALI/ADRS.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA. .,Department of Ophthalmology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
45
|
Koudriavtseva T, Stefanile A, Fiorelli M, Lapucci C, Lorenzano S, Zannino S, Conti L, D'Agosto G, Pimpinelli F, Di Domenico EG, Mandoj C, Giannarelli D, Donzelli S, Blandino G, Salvetti M, Inglese M. Coagulation/Complement Activation and Cerebral Hypoperfusion in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2020; 11:548604. [PMID: 33193314 PMCID: PMC7655134 DOI: 10.3389/fimmu.2020.548604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with an underlying immune-mediated and inflammatory pathogenesis. Innate immunity, in addition to the adaptive immune system, plays a relevant role in MS pathogenesis. It represents the immediate non-specific defense against infections through the intrinsic effector mechanism “immunothrombosis” linking inflammation and coagulation. Moreover, decreased cerebral blood volume (CBV), cerebral blood flow (CBF), and prolonged mean transit time (MTT) have been widely demonstrated by MRI in MS patients. We hypothesized that coagulation/complement and platelet activation during MS relapse, likely during viral infections, could be related to CBF decrease. Our specific aims are to evaluate whether there are differences in serum/plasma levels of coagulation/complement factors between relapsing-remitting (RR) MS patients (RRMS) in relapse and those in remission and healthy controls as well as to assess whether brain hemodynamic changes detected by MRI occur in relapse compared with remission. This will allow us to correlate coagulation status with perfusion and demographic/clinical features in MS patients. Materials and Methods This is a multi-center, prospective, controlled study. RRMS patients (1° group: 30 patients in relapse; 2° group: 30 patients in remission) and age/sex-matched controls (3° group: 30 subjects) will be enrolled in the study. Patients and controls will be tested for either coagulation/complement (C3, C4, C4a, C9, PT, aPTT, fibrinogen, factor II, VIII, and X, D-dimer, antithrombin, protein C, protein S, von-Willebrand factor), soluble markers of endothelial damage (thrombomodulin, Endothelial Protein C Receptor), antiphospholipid antibodies, lupus anticoagulant, complete blood count, viral serological assays, or microRNA microarray. Patients will undergo dynamic susceptibility contrast-enhanced MRI using a 3.0-T scanner to evaluate CBF, CBV, MTT, lesion number, and volume. Statistical Analysis ANOVA and unpaired t-tests will be used. The level of significance was set at p ≤ 0.05. Discussion Identifying a link between activation of coagulation/complement system and cerebral hypoperfusion could improve the identification of novel molecular and/or imaging biomarkers and targets, leading to the development of new effective therapeutic strategies in MS. Clinical Trial Registration Clinicaltrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, IRCC San Gallicano Institute, Rome, Italy
| | | | - Chiara Mandoj
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Diana Giannarelli
- Biostatistics, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Velasco-Rodríguez D, Laso RV, García-Raso A, Mahíllo-Fernández I, Guzmán-López K, Martín-Herrero S, Barral EJ, Vegas-Sánchez MDC, Martínez-Becerra MJ, de la Plaza R, Romero LFL, Mínguez D, Alonso-Domínguez JM, López CB, López AG, Fernández MSS, Llamas-Sillero P. Thrombin generation in subjects with lupus anticoagulant without prior thrombosis or gestational morbidities. Thromb Res 2020; 196:425-431. [PMID: 33038586 DOI: 10.1016/j.thromres.2020.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lupus anticoagulant (LA) can be a cause of thrombosis and/or pregnancy morbidities, producing antiphospholipid syndrome (APS). An increase in thrombin generation (TG) is correlated with prothrombotic status. Several changes in TG-derived parameters have been reported in APS patients. OBJECTIVES Evaluate whether the TG phenotype of APS can also be described in LA subjects without clinical manifestations of APS, and to investigate the possible influence of both LA potency and antiphospholipid (aPL) profile on it. RESULTS TG was analyzed in 153 cases of LA and 41 healthy controls. We have observed prolongation of both lag time (3.7 min vs 2.32 min, p < 0.001) and time to peak (6.48 min vs 5.27 min, p < 0.001), increased peak height (221.7 nM vs 182.7 nM, p < 0.001), slightly higher ETP (221.7 nM·min vs 182.7 nM·min, p = 0.041), and higher velocity index (100.7 nM/min vs 74.53 nM/min, p = 0.001) in LA subjects compared to controls. After adding thrombomodulin (TM), ETP%inh was significantly lower in LA group (37.90% vs 59.90%, p < 0.001) showing resistance to TM/activated protein C (APC). Significant differences were found in lag time, time to peak and ETP%inh according to the potency and aPL profile. CONCLUSIONS Previously described differences in TG-derived parameters in APS patients have been confirmed in incidental LA subjects: prolonged lag time and time to peak, slightly higher ETP, higher peak height, and less sensitivity to TM/APC. High LA potency and triple-positive aPL profile enhance differences in lag time, time to peak and, especially, increase APC resistance, but no effect in ETP was observed.
Collapse
Affiliation(s)
- Diego Velasco-Rodríguez
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain.
| | - Rosa Vidal Laso
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Aránzazu García-Raso
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | | | - Karina Guzmán-López
- Department of Immunology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Martín-Herrero
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Elena Jiménez Barral
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | | | | | - Reyes de la Plaza
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | | | - Dolores Mínguez
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | | | - Carlos Blas López
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Amanda García López
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | | | - Pilar Llamas-Sillero
- Department of Hematology, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain; Department of Hematology, Hospitales Quirón públicos, IIS-FJD, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
47
|
The protein C activator AB002 rapidly interrupts thrombus development in baboons. Blood 2020; 135:689-699. [PMID: 31977000 DOI: 10.1182/blood.2019002771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 01/01/2023] Open
Abstract
Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.
Collapse
|
48
|
Majewski MW, Gandhi DM, Holyst T, Wang Z, Hernandez I, Rosas R, Zhu J, Weiler H, Dockendorff C. Synthesis and initial pharmacology of dual-targeting ligands for putative complexes of integrin αVβ3 and PAR2. RSC Med Chem 2020; 11:940-949. [PMID: 33479689 PMCID: PMC7496306 DOI: 10.1039/d0md00098a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/21/2022] Open
Abstract
Unpublished data from our labs led us to hypothesize that activated protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and protease-activated receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized dual-targeting ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these ligands are effective binders of αVβ3 and potent agonists of PAR2. These were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins, though concurrent binding to αVβ3 and PAR2 has not yet been demonstrated.
Collapse
Affiliation(s)
- Mark W Majewski
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Disha M Gandhi
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Trudy Holyst
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Zhengli Wang
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Irene Hernandez
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
| | - Ricardo Rosas
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| | - Jieqing Zhu
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Biochemistry , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Hartmut Weiler
- Blood Research Institute , Versiti , Milwaukee , WI 53226 , USA
- Department of Physiology , Medical College of Wisconsin , Milwaukee , WI 53226 , USA
| | - Chris Dockendorff
- Department of Chemistry , Marquette University , P.O. Box 1881 , Milwaukee , WI 53201-1881 , USA . ; Tel: +1 414 288 1617
| |
Collapse
|
49
|
Duque P, Mora L, Levy JH, Schöchl H. Pathophysiological Response to Trauma-Induced Coagulopathy: A Comprehensive Review. Anesth Analg 2020; 130:654-664. [PMID: 31633501 DOI: 10.1213/ane.0000000000004478] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypercoagulability can occur after severe tissue injury, that is likely related to tissue factor exposure and impaired endothelial release of tissue plasminogen activator (tPA). In contrast, when shock and hypoperfusion occur, activation of the protein C pathway and endothelial tPA release induce a shift from a procoagulant to a hypocoagulable and hyperfibrinolytic state with a high risk of bleeding. Both thrombotic and bleeding phenotypes are associated with increased mortality and are influenced by the extent and severity of tissue injury and degree of hemorrhagic shock. Response to trauma is a complex, dynamic process in which risk can shift from bleeding to thrombosis depending on the injury pattern, hemostatic treatment, individual responses, genetic predisposition, and comorbidities. Based on this body of knowledge, we will review and consider future directions for the management of severely injured trauma patients.
Collapse
Affiliation(s)
- Patricia Duque
- From the Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain
| | - Lidia Mora
- Anesthesiology and Critical Care Department, Vall d´Hebron, Hospital, Barcelona, Spain
| | - Jerrold H Levy
- Departments of Anesthesiology and Critical Care, Duke University School of Medicine, Durham, North Carolina
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
50
|
Yamashita A, Zhang Y, Sanner MF, Griffin JH, Mosnier LO. C-terminal residues of activated protein C light chain contribute to its anticoagulant and cytoprotective activities. J Thromb Haemost 2020; 18:1027-1038. [PMID: 32017367 PMCID: PMC7380734 DOI: 10.1111/jth.14756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Activated protein C (APC) is an important homeostatic blood coagulation protease that conveys anticoagulant and cytoprotective activities. Proteolytic inactivation of factors Va and VIIIa facilitated by cofactor protein S is responsible for APC's anticoagulant effects, whereas cytoprotective effects of APC involve primarily the endothelial protein C receptor (EPCR), protease activated receptor (PAR)1 and PAR3. OBJECTIVE To date, several binding exosites in the protease domain of APC have been identified that contribute to APC's interaction with its substrates but potential contributions of the C-terminus of the light chain have not been studied in detail. METHODS Site-directed Ala-scanning mutagenesis of six positively charged residues within G142-L155 was used to characterize their contributions to APC's anticoagulant and cytoprotective activities. RESULTS AND CONCLUSIONS K151 was involved in protein S dependent-anticoagulant activity of APC with some contribution of K150. 3D structural analysis supported that these two residues were exposed in an extended protein S binding site on one face of APC. Both K150 and K151 were important for PAR1 and PAR3 cleavage by APC, suggesting that this region may also mediate interactions with PARs. Accordingly, APC's cytoprotective activity as determined by endothelial barrier protection was impaired by Ala substitutions of these residues. Thus, both K150 and K151 are involved in APC's anticoagulant and cytoprotective activities. The differential contribution of K150 relative to K151 for protein S-dependent anticoagulant activity and PAR cleavage highlights that binding exosites for protein S binding and for PAR cleavage in the C-terminal region of APC's light chain overlap.
Collapse
Affiliation(s)
- Atsuki Yamashita
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - Michel F. Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|