1
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020; 32:863-871. [PMID: 33356720 DOI: 10.1080/09537104.2020.1859103] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)β isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.
Collapse
Affiliation(s)
- Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
|
4
|
Ilkan Z, Watson S, Watson SP, Mahaut-Smith MP. P2X1 Receptors Amplify FcγRIIa-Induced Ca2+ Increases and Functional Responses in Human Platelets. Thromb Haemost 2018; 118:369-380. [PMID: 29443373 PMCID: PMC6260114 DOI: 10.1160/th17-07-0530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelets express key receptors of the innate immune system such as FcγRIIa and Toll-like receptors (TLR). P2X1 cation channels amplify the platelet responses to several major platelet stimuli, particularly glycoprotein (GP)VI and TLR2/1, whereas their contribution to Src tyrosine kinase-dependent FcγRIIa receptors remains unknown. We investigated the role of P2X1 receptors during activation of FcγRIIa in human platelets, following stimulation by cross-linking of an anti-FcγRIIa monoclonal antibody (mAb) IV.3, or bacterial stimulation with
Streptococcus sanguinis
. Activation was assessed in washed platelet suspensions via measurement of intracellular Ca
2+
([Ca
2+
]
i
) increases, ATP release and aggregation. P2X1 activity was abolished by pre-addition of α,β-meATP, exclusion of apyrase or the antagonist NF449. FcγRIIa activation evoked a robust increase in [Ca
2+
]
i
(441 ± 33 nM at 30 μg/mL mAb), which was reduced to a similar extent (to 66–70% of control) by NF449, pre-exposure to α,β-meATP or apyrase omission, demonstrating a significant P2X1 receptor contribution. FcγRIIa activation-dependent P2X1 responses were partially resistant to nitric oxide (NO), but abrogated by 500 nM prostacyclin (PGI
2
). Aggregation responses to bacteria and FcγRIIa activation were also inhibited by P2X1 receptor desensitization (to 66 and 42% of control, respectively). However, FcγRIIa-mediated tyrosine phosphorylation and ATP release were not significantly altered by the loss of P2X1 activity. In conclusion, we show that P2X1 receptors enhance platelet FcγRIIa receptor-evoked aggregation through an increase in [Ca
2+
]
i
downstream of the initial tyrosine phosphorylation events and early dense granule release. This represents a further route whereby ATP-gated cation channels can contribute to platelet-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Zeki Ilkan
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Begandt D, Good ME, Keller AS, DeLalio LJ, Rowley C, Isakson BE, Figueroa XF. Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 2017; 18:2. [PMID: 28124621 PMCID: PMC5267334 DOI: 10.1186/s12860-016-0119-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Control of blood flow distribution and tissue homeostasis depend on the tight regulation of and coordination between the microvascular network and circulating blood cells. Channels formed by connexins or pannexins that connect the intra- and extracellular compartments allow the release of paracrine signals, such as ATP and prostaglandins, and thus play a central role in achieving fine regulation and coordination of vascular function. This review focuses on vascular connexin hemichannels and pannexin channels. We review their expression pattern within the arterial and venous system with a special emphasis on how post-translational modifications by phosphorylation and S-nitrosylation of these channels modulate their function and contribute to vascular homeostasis. Furthermore, we highlight the contribution of these channels in smooth muscle cells and endothelial cells in the regulation of vasomotor tone as well as how these channels in endothelial cells regulate inflammatory responses such as during ischemic and hypoxic conditions. In addition, this review will touch on recent evidence implicating a role for these proteins in regulating red blood cell and platelet function.
Collapse
Affiliation(s)
- Daniela Begandt
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alex S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Carol Rowley
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
7
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
8
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
9
|
Zhou J, Wu Y, Wang L, Rauova L, Hayes VM, Poncz M, Essex DW. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. J Clin Invest 2015; 125:4391-406. [PMID: 26529254 DOI: 10.1172/jci80319] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/28/2015] [Indexed: 11/17/2022] Open
Abstract
Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation.
Collapse
|
10
|
Ruepp MD, Brozik JA, de Esch IJP, Farndale RW, Murrell-Lagnado RD, Thompson AJ. A fluorescent approach for identifying P2X1 ligands. Neuropharmacology 2015; 98:13-21. [PMID: 26026951 PMCID: PMC4728187 DOI: 10.1016/j.neuropharm.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology’. A novel fluorescence-based screening approach for identifying P2X1 receptor ligand candidates. Fragment-based drug discovery applied to ligand-gated ion channels. The use of confocal microscopy to determine the kinetics and affinity of Alexa-647-ATP binding to P2X1 receptors. Alexa-647-ATP for imaging P2X1 receptors on live cells.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - James A Brozik
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Iwan J P de Esch
- Medicinal Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Andrew J Thompson
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
11
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
12
|
Purinergic control of inflammation and thrombosis: Role of P2X1 receptors. Comput Struct Biotechnol J 2014; 13:106-10. [PMID: 25709760 PMCID: PMC4334884 DOI: 10.1016/j.csbj.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.
Collapse
|
13
|
Shaturnyĭ VI, Shakhidzhanov SS, Sveshnikova AN, Panteleev MA. [Activators, receptors and signal transduction pathways of blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2014; 60:182-200. [PMID: 24837309 DOI: 10.18097/pbmc20146002182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet participation in hemostatic plug formation requires transition into an activated state (or, rather, variety of states) upon action of agonists like ADP, thromboxane A , collagen, thrombin, and others. The mechanisms of action for different agonists, their receptors and signaling pathways associated with them, as well as the mechanisms of platelet response inhibition are the subject of the present review. Collagen exposed upon vessel wall damage induced initial platelet attachment and start of thrombus formation, which involves numerous processes such as aggregation, activation of integrins, granule secretion and increase of intracellular Ca2+. Thrombin, ADP, thromboxane A , and ATP activated platelets that were not initially in contact with the wall and induce additional secretion of activating substances. Vascular endothelium and secretory organs also affect platelet activation, producing both positive (adrenaline) an d negative (prostacyclin, nitric oxide) regulators, thereby determining the relation of activation and inhibition signals, which plays a significant role in the formation of platelet aggregate under normal and pathological conditions. The pathways of platelet signaling are still incompletely understood, and their exploration presents an important objective both for basic cell biology and for the development of new drugs, the methods of diagnostics and of treatment of hemostasis disorders.
Collapse
|
14
|
Mindukshev I, Gambaryan S, Kehrer L, Schuetz C, Kobsar A, Rukoyatkina N, Nikolaev VO, Krivchenko A, Watson SP, Walter U, Geiger J. Low angle light scattering analysis: a novel quantitative method for functional characterization of human and murine platelet receptors. Clin Chem Lab Med 2014; 50:1253-62. [PMID: 22149738 DOI: 10.1515/cclm.2011.817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Determinations of platelet receptor functions are indispensable diagnostic indicators of cardiovascular and hemostatic diseases including hereditary and acquired receptor defects and receptor responses to drugs. However, presently available techniques for assessing platelet function have some disadvantages, such as low sensitivity and the requirement of large sample sizes and unphysiologically high agonist concentrations. Our goal was to develop and initially characterize a new technique designed to quantitatively analyze platelet receptor activation and platelet function on the basis of measuring changes in low angle light scattering. METHODS We developed a novel technique based on low angle light scattering registering changes in light scattering at a range of different angles in platelet suspensions during activation. RESULTS The method proved to be highly sensitive for simultaneous real time detection of changes in size and shape of platelets during activation. Unlike commonly-used methods, the light scattering method could detect platelet shape change and aggregation in response to nanomolar concentrations of extracellular nucleotides. Furthermore, our results demonstrate that the advantages of the light scattering method make it a choice method for platelet receptor monitoring and for investigation of both murine and human platelets in disease models. CONCLUSIONS Our data demonstrate the suitability and superiority of this new low angle light scattering method for comprehensive analyses of platelet receptors and functions. This highly sensitive, quantitative, and online detection of essential physiological, pathophysiological and pharmacological-response properties of human and mouse platelets is a significant improvement over conventional techniques.
Collapse
Affiliation(s)
- Igor Mindukshev
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jones S, Evans RJ, Mahaut-Smith MP. Ca2+ influx through P2X1 receptors amplifies P2Y1 receptor-evoked Ca2+ signaling and ADP-evoked platelet aggregation. Mol Pharmacol 2014; 86:243-51. [PMID: 24923466 DOI: 10.1124/mol.114.092528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many cells express both P2X cation channels and P2Y G-protein-coupled receptors that are costimulated by nucleotides released during physiologic or pathophysiologic responses. For example, during hemostasis and thrombosis, ATP-gated P2X1 channels and ADP-stimulated P2Y1 and P2Y12 G-protein coupled receptors play important roles in platelet activation. It has previously been reported that P2X1 receptors amplify P2Y1-evoked Ca(2+) responses in platelets, but the underlying mechanism and influence on function is unknown. In human platelets, we show that maximally activated P2X1 receptors failed to stimulate significant aggregation but could amplify the aggregation response to a submaximal concentration of ADP. Costimulation of P2X1 and P2Y1 receptors generated a superadditive Ca(2+) increase in both human platelets and human embryonic kidney 293 (HEK293) cells via a mechanism dependent on Ca(2+) influx rather than Na(+) influx or membrane depolarization. The potentiation, due to an enhanced P2Y1 response, was observed if ADP was added up to 60 seconds after P2X1 activation. P2X1 receptors also enhanced Ca(2+) responses when costimulated with type 1 protease activated and M1 muscarinic acetylcholine receptors. The P2X1-dependent amplification of Gq-coupled [Ca(2+)]i increase was mimicked by ionomycin and was not affected by inhibition of protein kinase C, Rho-kinase, or extracellular signal-regulated protein kinase 1/2, which suggests that it results from potentiation of inositol 1,4,5-trisphosphate receptors and/or phospholipase C. We conclude that Ca(2+) influx through P2X1 receptors amplifies Ca(2+) signaling through P2Y1 and other Gq-coupled receptors. This represents a general form of co-incidence detection of ATP and coreleased agonists, such as ADP at sites of vascular injury or synaptic transmitters acting at metabotropic Gq-coupled receptors.
Collapse
Affiliation(s)
- Sarah Jones
- University of Leicester, Department of Cell Physiology and Pharmacology, Leicester, United Kingdom
| | - Richard J Evans
- University of Leicester, Department of Cell Physiology and Pharmacology, Leicester, United Kingdom
| | - Martyn P Mahaut-Smith
- University of Leicester, Department of Cell Physiology and Pharmacology, Leicester, United Kingdom
| |
Collapse
|
16
|
Taylor KA, Wright JR, Vial C, Evans RJ, Mahaut-Smith MP. Amplification of human platelet activation by surface pannexin-1 channels. J Thromb Haemost 2014; 12:987-98. [PMID: 24655807 PMCID: PMC4238786 DOI: 10.1111/jth.12566] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/04/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pannexin-1 (Panx1) forms an anion-selective channel with a permeability up to ~1 kDa and represents a non-lytic, non-vesicular ATP release pathway in erythrocytes, leukocytes and neurons. Related connexin gap junction proteins have been reported in platelets; however, the expression and function of the pannexins remain unknown. OBJECTIVE To determine the expression and function of pannexins in human plate-lets, using molecular, cellular and functional techniques. METHODS Panx1 expression in human platelets was det-ermined using qPCR and antibody-based techniques. Contributions of Panx1 to agonist-evoked efflux of cytoplasmic calcein, Ca(2+) influx, ATP release and aggregation were assessed in washed platelets under conditions where the P2X1 receptor response was preserved (0.32 U mL(-1) apyrase). Thrombus formation in whole blood was assessed in vitro using a shear chamber assay. Two structurally unrelated and widely used Panx1 inhibitors, probenecid and carbenoxolone, were used throughout this study, at concentrations that do not affect connexin channels. RESULTS PANX1, but not PANX2 or PANX3, mRNA was detected in human platelets. Furthermore, Panx1 protein is glycosylated and present on the plasma membrane of platelets, and displays weak physical association with P2X1 receptors. Panx1 inhibition blocked thrombin-evoked efflux of calcein, and reduced Ca(2+) influx, ATP release, platelet aggregation and thrombus formation under arterial shear rates in vitro. The Panx1-dependent contribution was not additive to that of P2X1 receptors. CONCLUSIONS Panx1 is expressed on human platelets and amplifies Ca(2+) influx, ATP release and aggregation through the secondary activation of P2X1 receptors. We propose that Panx1 represents a novel target for the management of arterial thrombosis.
Collapse
Affiliation(s)
- K A Taylor
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
17
|
Huang Z, Liu P, Zhu L, Li N, Hu H. P2X1-initiated p38 signalling enhances thromboxane A2-induced platelet secretion and aggregation. Thromb Haemost 2014; 112:142-50. [PMID: 24633352 DOI: 10.1160/th13-09-0726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/14/2014] [Indexed: 11/05/2022]
Abstract
ATP released by activated platelets can serve as a positive feedback machinery to amplify platelet responses by activating P2X1 receptors. It has, however, not been defined how P2X1 activities influence thromboxane A2 (TXA2)-stimulated platelet functional responses. Our aim was to elaborate the molecular mechanisms of P2X1 engagements in TXA2-induced platelet secretion and aggregation. P2X1 inhibition by 1 µM NF449 inhibited platelet P-selectin expression induced by a low concentration of the TXA2 analogue U46619 (0.3 µM) (32.0 ± 2.0% vs 43.4 ± 3.0%; n=5; p<0.05). p38 inhibition by SB203580, but not ERK inhibition by U0126, elicited a similar inhibition by NF499. The combination of NF449 and SB203580 provided, however, no additive effects. U46619-induced platelet aggregation was similarly decreased by NF449 and SB203580 alone or in combination, and by P2X1 pre-desensitisation with α,β-Me-ATP. U46619 caused rapid and reversible P2X1-dependent p38 phosphorylation. However, the P2X1-p38 pathway mainly enhanced mild platelet activation by U46619, because α,β-Me-ATP supplementation or p38 blockade had no effect on intense platelet activation induced by a higher concentration of U46619 (3 µM). In conclusion, P2X1 activation, via p38 signalling, potentiates platelet activation initiated by low doses of U46619. Hence, the P2X1-induced p38 signalling promotes more robust platelet activation in response to mild platelet stimuli.
Collapse
Affiliation(s)
| | | | | | - N Li
- Nailin Li, MD, PhD, FAHA, Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Unit, Karolinska University Hospital-Solna, SE-171 76 Stockholm, SWEDEN, E-mail:
| | - H Hu
- Hu Hu, MD, PhD, Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China, E-mail:
| |
Collapse
|
18
|
|
19
|
Sage SO, Pugh N, Farndale RW, Harper AGS. Pericellular Ca(2+) recycling potentiates thrombin-evoked Ca(2+) signals in human platelets. Physiol Rep 2013; 1:e00085. [PMID: 24303163 PMCID: PMC3841026 DOI: 10.1002/phy2.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/16/2023] Open
Abstract
We have previously demonstrated that Na(+)/Ca(2+) exchangers (NCXs) potentiate Ca(2+) signaling evoked by thapsigargin in human platelets, via their ability to modulate the secretion of autocoids from dense granules. This link was confirmed in platelets stimulated with the physiological agonist, thrombin, and experiments were performed to examine how Ca(2+) removal by the NCX modulates platelet dense granule secretion. In cells loaded with the near-membrane indicator FFP-18, thrombin stimulation was observed to elicit an NCX-dependent accumulation of Ca(2+) in a pericellular region around the platelets. To test whether this pericellular Ca(2+) accumulation might be responsible for the influence of NCXs over platelet function, platelets were exposed to fast Ca(2+) chelators or had their glycocalyx removed. Both manipulations of the pericellular Ca(2+) rise reduced thrombin-evoked Ca(2+) signals and dense granule secretion. Blocking Ca(2+)-permeable ion channels had a similar effect, suggesting that Ca(2+) exported into the pericellular region is able to recycle back into the platelet cytosol. Single cell imaging with extracellular Fluo-4 indicated that thrombin-evoked rises in extracellular [Ca(2+)] occurred within the boundary described by the cell surface, suggesting their presence within the open canalicular system (OCS). FFP-18 fluorescence was similarly distributed. These data suggest that upon thrombin stimulation, NCX activity creates a rise in [Ca(2+)] within the pericellular region of the platelet from where it recycles back into the platelet cytosol, acting to both accelerate dense granule secretion and maintain the initial rise in cytosolic [Ca(2+)].
Collapse
Affiliation(s)
- Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, U.K
| | | | | | | |
Collapse
|
20
|
Burzaco J, Conde M, Parada LA, Zugaza JL, Dehaye JP, Marino A. ATP antagonizes thrombin-induced signal transduction through 12(S)-HETE and cAMP. PLoS One 2013; 8:e67117. [PMID: 23826207 PMCID: PMC3691129 DOI: 10.1371/journal.pone.0067117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
In this study we have investigated the role of extracellular ATP on thrombin induced-platelet aggregation (TIPA) in washed human platelets. ATP inhibited TIPA in a dose-dependent manner and this inhibition was abolished by apyrase but not by adenosine deaminase (ADA) and it was reversed by extracellular magnesium. Antagonists of P2Y1 and P2Y12 receptors had no effect on this inhibition suggesting that a P2X receptor controlled ATP-mediated TIPA inhibition. ATP also blocked inositol phosphates (IP1, IP2, IP3) generation and [Ca(2+)]i mobilization induced by thrombin. Thrombin reduced cAMP levels which were restored in the presence of ATP. SQ-22536, an adenylate cyclase (AC) inhibitor, partially reduced the inhibition exerted by ATP on TIPA. 12-lipoxygenase (12-LO) inhibitors, nordihidroguaretic acid (NDGA) and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE), strongly prevented ATP-mediated TIPA inhibition. Additionally, ATP inhibited the increase of 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE) induced by thrombin. Pretreatment with both SQ-22536 and NDGA almost completely abolished ATP-mediated TIPA inhibition. Our results describe for the first time that ATP implicates both AC and 12-LO pathways in the inhibition of human platelets aggregation in response to agonists.
Collapse
Affiliation(s)
- Jaione Burzaco
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Manuel Conde
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - Luis A. Parada
- Instituto de Patología Experimental, Universidad Nacional de Salta, Salta, Argentina
| | - José L. Zugaza
- Department Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jean-Paul Dehaye
- Biochemistry and Cellular Biology Laboratory, Institute of Pharmacy C.P. 205/3, Université Libre de Bruxelles, Brussels, Belgium
| | - Aida Marino
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| |
Collapse
|
21
|
Abstract
Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.
Collapse
Affiliation(s)
- M P Mahaut-Smith
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
22
|
Lalo U, Jones S, Roberts JA, Mahaut-Smith MP, Evans RJ. Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness. J Biol Chem 2012; 287:32747-54. [PMID: 22851178 PMCID: PMC3463321 DOI: 10.1074/jbc.m112.376566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Vaiyapuri S, Jones CI, Sasikumar P, Moraes LA, Munger SJ, Wright JR, Ali MS, Sage T, Kaiser WJ, Tucker KL, Stain CJ, Bye AP, Jones S, Oviedo-Orta E, Simon AM, Mahaut-Smith MP, Gibbins JM. Gap junctions and connexin hemichannels underpin hemostasis and thrombosis. Circulation 2012; 125:2479-91. [PMID: 22528526 PMCID: PMC3378664 DOI: 10.1161/circulationaha.112.101246] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Connexins are a widespread family of membrane proteins that assemble into hexameric hemichannels, also known as connexons. Connexons regulate membrane permeability in individual cells or couple between adjacent cells to form gap junctions and thereby provide a pathway for regulated intercellular communication. We have examined the role of connexins in platelets, blood cells that circulate in isolation but on tissue injury adhere to each other and the vessel wall to prevent blood loss and to facilitate wound repair. METHODS AND RESULTS We report the presence of connexins in platelets, notably connexin37, and that the formation of gap junctions within platelet thrombi is required for the control of clot retraction. Inhibition of connexin function modulated a range of platelet functional responses before platelet-platelet contact and reduced laser-induced thrombosis in vivo in mice. Deletion of the Cx37 gene (Gja4) in transgenic mice reduced platelet aggregation, fibrinogen binding, granule secretion, and clot retraction, indicating an important role for connexin37 hemichannels and gap junctions in platelet thrombus function. CONCLUSIONS Together, these data demonstrate that platelet gap junctions and hemichannels underpin the control of hemostasis and thrombosis and represent potential therapeutic targets.
Collapse
Affiliation(s)
- Sakthivel Vaiyapuri
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Chris I. Jones
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Parvathy Sasikumar
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Leonardo A. Moraes
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Joy R. Wright
- Dept of Cell Physiology & Pharmacology, University of Leicester, Leicester
| | - Marfoua S. Ali
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Tanya Sage
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - William J. Kaiser
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Katherine L. Tucker
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alexander P. Bye
- Dept of Cell Physiology & Pharmacology, University of Leicester, Leicester
| | - Sarah Jones
- Dept of Cell Physiology & Pharmacology, University of Leicester, Leicester
| | - Ernesto Oviedo-Orta
- Cardiovascular Biology Research, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | - Jonathan M. Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
24
|
Ramanathan G, Gupta S, Thielmann I, Pleines I, Varga-Szabo D, May F, Mannhalter C, Dietrich A, Nieswandt B, Braun A. Defective diacylglycerol-induced Ca2+ entry but normal agonist-induced activation responses in TRPC6-deficient mouse platelets. J Thromb Haemost 2012; 10:419-29. [PMID: 22176814 DOI: 10.1111/j.1538-7836.2011.04596.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Platelet adhesion, activation and aggregation at sites of vascular injury are essential processes for primary hemostasis. Elevation of the intracellular Ca(2+) concentration is a central event in platelet activation but the underlying mechanisms are not fully understood. Store-operated calcium entry (SOCE) through Orai1 was shown to be the main Ca(2+) influx pathway in murine platelets, but there are additional non-store-operated Ca(2+) (non-SOC) and receptor operated Ca(2+) (ROC) channels expressed in the platelet plasma membrane. OBJECTIVE Canonical transient receptor potential (TRPC) channel 6 is found both in human and murine platelets and has been proposed to mediate diacylglycerol (DAG) activated ROCE but also a role in the regulation of SOCE has been suggested. METHODS To investigate the function of TRPC6 in platelet Ca(2+) signaling and activation, we analyzed platelets from mice deficient in TRPC6 using a wide range of in vitro and in vivo assays. RESULTS In the mutant platelets, DAG activated Ca(2+) influx was found to be abolished. However, this did not significantly affect SOCE or agonist induced Ca(2+) responses. Platelet function in vitro and in vivo was also unaltered in the absence of TRPC6. CONCLUSION Our results indicate that DAG activated ROCE is mediated exclusively by TRPC6 in murine platelets, but this Ca(2+) influx has no major functional relevance for hemostasis and thrombosis. Further, in contrast to previous suggestions, based on studies with human platelets, TRPC6 appears to play an insignificant role in the regulation of SOCE in murine platelets.
Collapse
Affiliation(s)
- G Ramanathan
- Chair of Vascular Medicine, DFG Research Center for Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park JY, Oh WJ, Kim MJ, Kim TH, Cho JY, Park HJ, Lee IK, Kim S, Kim GS, Kim SK, Seo GS, Yun BS, Rhee MH. Mechanism of anti-platelet activity of Oligoporus tephroleucus oligoporin A: involvement of extracellular signal-regulated kinase phosphorylation and cyclic nucleotide elevation. Platelets 2012; 23:376-85. [PMID: 22309049 DOI: 10.3109/09537104.2011.629309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the inhibitory effects of oligoporin A on platelet aggregation and the mechanism of its action on downstream signaling molecules. Oligoporin A was isolated from the fruiting bodies of Oligoporus tephroleucus (Polyporaceae). The anti-platelet activities of oligoporin A were studied using rat platelets. The effects of oligoporin A on intracellular Ca(2+) mobilization, ATP release, production of the cyclic nucleotides cAMP and cGMP, extracellular signal-regulated kinase (ERK) 2 phosphorylation, and fibrinogen binding to active integrin α(II)(b)β(3) were assessed. Oligoporin A, but not oligoporins B and C, inhibited collagen-induced platelet aggregation in a concentration-dependent manner. Interestingly, oligoporin A did not affect ADP- and thrombin-induced platelet aggregations, which act on different types of membrane receptors. Granule secretion analysis demonstrated that oligoporin A significantly and dose-dependently reduced collagen-induced ATP release and intracellular Ca(2+) mobilization. Additionally, oligoporin A induced the dynamic increase in cAMP and cGMP. Increased cGMP production was further confirmed by the simultaneous production of nitric oxide. Pretreatment with oligoporin A significantly blocked collagen-induced ERK2 phosphorylation. Finally, oligoporin A vaguely diminished the binding of fibrinogen to its cognate receptor, integrin α(II)(b)β(3). The results indicate that oligoporin A inhibits only collagen-induced platelet aggregation mediated through the modulation of downstream signaling molecules. Oligoporin A may be beneficial against cardiovascular disease provoked by aberrant platelet activation.
Collapse
Affiliation(s)
- Ji Young Park
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Platelet Ca(2+) responses coupled to glycoprotein VI and Toll-like receptors persist in the presence of endothelial-derived inhibitors: roles for secondary activation of P2X1 receptors and release from intracellular Ca(2+) stores. Blood 2012; 119:3613-21. [PMID: 22228626 DOI: 10.1182/blood-2011-10-386052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inhibition of Ca(2+) mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca(2+) response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam(3)Cys-Ser-(Lys)(4) (Pam(3)CSK(4)), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca(2+) response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C-coupled secretory pathway requiring both protein kinase C and cytosolic Ca(2+) elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca(2+) release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca(2+) influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca(2+) responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca(2+) mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.
Collapse
|
27
|
Mahaut-Smith MP, Jones S, Evans RJ. The P2X1 receptor and platelet function. Purinergic Signal 2011; 7:341-56. [PMID: 21484087 PMCID: PMC3166991 DOI: 10.1007/s11302-011-9224-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/22/2011] [Indexed: 12/17/2022] Open
Abstract
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca(2+), leading to shape change, movement of secretory granules and low levels of α(IIb)β(3) integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, UK,
| | | | | |
Collapse
|
28
|
Schinner E, Salb K, Schlossmann J. Signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation. Platelets 2011; 22:217-27. [PMID: 21244222 DOI: 10.3109/09537104.2010.544151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Platelet activation is strongly affected by nitric oxide/cyclic GMP (NO/cGMP) signaling involving cGMP-dependent protein kinase I (cGKI). Previously it was shown that interaction of the cGKI substrate IRAG with InsP(3)RI is essential for NO/cguanosine monophosphate (GMP)-dependent inhibition of platelet aggregation in vitro and in vivo. However, the role of Inositol-trisphosphate receptor associated cGMP kinase substrate (IRAG) for platelet adhesion or granule secretion was unknown. Here, we analysed the functional role of IRAG for platelet activation. Murine IRAG-deficient platelets displayed enhanced aggregability towards several agonists (collagen, thrombin and TxA2). NO- or cGMP-dependent inhibition of agonist induced ATP- or 5-HT secretion from dense granules, and P-selectin secretion from alpha granules was severely affected in IRAG-deficient platelets. Concomitantly, the effect of NO/cGMP on platelet aggregation was strongly reduced in IRAG-deficient platelets. Furthermore, GPIIb/IIIa-mediated adhesion of platelets to fibrinogen could only weakly be inhibited in IRAG-deficient mice contrary to wild-type (WT) mice. Our results suggest that signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation regarding granule secretion, aggregation and adhesion. This platelet disorder might cause that the bleeding time of IRAG-deficient mice was reduced.
Collapse
Affiliation(s)
- Elisabeth Schinner
- Pharmacology and Toxicology, University Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | | | | |
Collapse
|
29
|
Harper MT, Mason MJ, Sage SO, Harper AGS. Phorbol ester-evoked Ca2+ signaling in human platelets is via autocrine activation of P(2X1) receptors, not a novel non-capacitative Ca2+ entry. J Thromb Haemost 2010; 8:1604-13. [PMID: 20345709 DOI: 10.1111/j.1538-7836.2010.03867.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SUMMARY BACKGROUND Platelets are reported to possess a protein kinase C (PKC)-dependent non-capacitative Ca(2+)entry (NCCE) pathway. The phorbol ester, phorbol, 12-myristate, 13-acetate (PMA) has been suggested to stimulate platelet NCCE. Recently we demonstrated important roles in store-operated Ca(2+)entry in human platelets for Na(+)/Ca(2+) exchangers (NCXs) and autocrine signaling between platelets after dense granule secretion. As PMA evokes dense granule secretion, we have investigated the role of NCXs and autocrine signaling in PMA-evoked Ca(2+)entry. OBJECTIVES To investigate the roles of NCXs and dense granule secretion in PMA-evoked Ca(2+)signaling in human platelets. METHODS Fura-2- or sodium-binding benzofuran isophthalate (SBFI)-loaded platelets were used to monitor cytosolic Ca(2+)or Na(+) concentrations. Dense granule secretion was monitored as ATP release using luciferin-luciferase. RESULTS The NCX inhibitors KB-R7943 or SN-6, and removal of extracellular Na(+), significantly reduced PMA-evoked Ca(2+)entry. PMA-evoked dense granule secretion was almost abolished by pretreatment with the PKC inhibitor Ro-31-8220 and significantly slowed by KB-R7943. The P(2X1) antagonists Ro-0437626 or MRS-2159, or desensitization of P(2X1) receptors by prior treatment with alpha,beta-Methylene-ATP or omitting apyrase from the medium, reduced PMA-evoked Ca(2+)entry. Ro-0437626 or chelation of extracellular Ca(2+) slowed but did not abolish PMA-evoked ATP release, indicating that PMA-evoked dense granule secretion does not require P(2X1) receptor activation but is accelerated by P(2X1)-mediated Ca(2+)entry. The presence of NCX3 in human platelets was demonstrated by Western blotting. CONCLUSION PMA-evoked Ca(2+)entry results from an NCX3-dependent dense granule secretion and subsequent P(2X1) receptor activation by secreted ATP, rather than activation of a novel NCCE pathway.
Collapse
Affiliation(s)
- M T Harper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
30
|
|
31
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Karunarathne W, Ku CJ, Spence DM. The dual nature of extracellular ATP as a concentration-dependent platelet P2X1 agonist and antagonist. Integr Biol (Camb) 2009; 1:655-63. [PMID: 20027374 DOI: 10.1039/b909873a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patient groups subject to higher occurrence of stroke (e.g., people with diabetes, cystic fibrosis, pulmonary hypertension) have reduced release of ATP from their erythrocytes (ERYs) when subjected to flow-induced deformation or pharmacological stimuli. These same groups also have platelets that are more adhesive in comparison to controls. Here we show platelet aggregation, and inhibition of that aggregation, is affected by free Ca(2+) entering the platelet through the ATP-gated P2X1 receptor. The addition of ATP (10 microM) increased the platelet NO by 26.7 +/- 7.7%. This value was decreased significantly to below basal levels in the presence of NF 449 (p < 0.001), an inhibitor of the P2X1 receptor on the platelet. Aggregation profiles measured in the presence of ATP revealed that when the P2X1 receptor was blocked, or when the measurements were performed in Ca(2+) free buffer, platelet aggregation was nearly eliminated. Our findings employing standard aggregation measurements suggest that ATP behaves as a platelet inhibitor below 1.6 x 10(-19) moles ATP per platelet; however, above this value, ATP behaves as a platelet activator. These findings suggesting a dual nature of ATP with regard to platelet behavior were confirmed by passing platelets over endothelial cells that were coated in the channels of a microfluidic device. Importantly, it was determined that ERY-derived ATP release was a major determinant of platelet adhesion to the endothelium. These findings may have implications in anti-platelet drug design as most current therapies focus on the inhibition of P2Y-type receptors. Moreover, through the use of microfluidic technologies, we have provided in vitro evidence for a possible relationship between ERY properties and platelet behavior in vivo.
Collapse
|
33
|
Lim KM, Kim HH, Bae ON, Noh JY, Kim KY, Kim SH, Chung SM, Shin S, Kim HY, Chung JH. Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: Evidence for the reduced platelet activities in Parkinson's disease. Platelets 2009; 20:163-70. [PMID: 19437333 DOI: 10.1080/09537100902721746] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neuronal accumulation of 1-methyl-4-phenylpyridinium ion (MPP(+)), the metabolite of neural toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP), induces a rapid depletion of cellular ATP level and loss of neuronal cell viability which simulates human Parkinson's disease (PD). Since ATP plays an important role in the physiology and function of platelets, which share many biochemical and physiological features with neuronal cells, we examined the effect of MPP(+) on platelet aggregation and viability using freshly isolated rat platelets. While the treatment of MPP(+) to platelets did not induce cytotoxicity, it significantly attenuated agonist-induced platelet aggregation in a concentration dependent manner. The inhibition of aggregation by MPP(+) was mediated by the depletion of the cytoplasmic ATP pool and resultant decreased ATP secretion. Different from the previous reports in neuronal cells, MPP(+) did not affect intracellular levels of glutathione and cytoplasmic Ca(2+) in platelets. The combined treatment with MPP(+) and 2-deoxyglucose, a glycolysis inhibitor, showed the additive effect in the decrease of ATP secretion and intracellular content. Consistent with these findings, inhibitory effects of MPP(+) on platelet aggregation was significantly enhanced by the treatment with 2-deoxyglucose. In conclusion, these results suggested that MPP(+) can induce ATP depletion in platelets and attenuate platelet aggregation providing a new theory on the reduced platelet activities in PD patients.
Collapse
Affiliation(s)
- Kyung-Min Lim
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fung CYE, Marcus AJ, Broekman MJ, Mahaut-Smith MP. P2X(1) receptor inhibition and soluble CD39 administration as novel approaches to widen the cardiovascular therapeutic window. Trends Cardiovasc Med 2009; 19:1-5. [PMID: 19467446 DOI: 10.1016/j.tcm.2009.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/26/2009] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
Abstract
Thrombus formation at sites of disrupted atherosclerotic plaques is a leading cause of death and disability worldwide. Although the platelet is now recognized to be a central regulator of thrombus formation, development of antiplatelet reagents that selectively target thrombosis over hemostasis represents a challenge. Existing prophylactic antiplatelet therapies are centered on the use of aspirin, an irreversible cyclooxygenase inhibitor, and a thienopyridine such as clopidogrel, which inactivates the adenosine diphosphate-stimulated P2Y(12) receptor. Although these compounds are widely used and have beneficial effects for patients, their antithrombotic benefit is complicated by an elevated bleeding risk and substantial or partial "resistance." Moreover, combination therapy with these two drugs increases the hemorrhagic risk even further. This review explores the possibility of inhibiting the platelet-surface ionotropic P2X(1) receptor and/or elevating CD39/NTPDase1 activity as new therapeutic approaches to reduce overall platelet reactivity and recruitment of surrounding platelets at prothrombotic locations. Because both proteins affect platelet activation at an early stage in the events leading to thrombosis but are less crucial in hemostasis, they provide new strategies to widen the cardiovascular therapeutic window without compromising safety.
Collapse
Affiliation(s)
- C Y E Fung
- Department of Cell Physiology and Pharmacology, University of Leicester, LE19HN Leicester, United Kingdom
| | | | | | | |
Collapse
|
35
|
Wareham K, Vial C, Wykes RCE, Bradding P, Seward EP. Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol 2009; 157:1215-24. [PMID: 19552691 DOI: 10.1111/j.1476-5381.2009.00287.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE P2X receptors are widely expressed in cells of the immune system with varying functions. This study sought to characterize P2X receptor expression in the LAD2 human mast cell line and human lung mast cells (HLMCs). EXPERIMENTAL APPROACH Reverse transcriptase polymerase chain reaction (RT-PCR) and patch clamp studies were used to characterize P2X expression in mast cells using a range of pharmacological tools. KEY RESULTS RT-PCR revealed P2X1, P2X4 and P2X7 transcripts in both cell types; mRNA for P2X6 was also detected in LAD2 cells. Under whole-cell patch clamp conditions, rapid application of ATP (1-1000 microM) to cells clamped at -60 mV consistently evoked inward currents in both types of cells. Brief application of ATP (1 s) evoked a rapidly desensitizing P2X1-like current in both cell types. This current was also elicited by alphabetamethylene ATP (10 microM, 94% cells, n= 31) and was antagonized in LAD2 cells by NF 449 (1 microM) and pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) (1-10 microM). A P2X7-like non-desensitizing current in response to high concentrations of ATP (1-5 mM) was also seen in both cell types (96% LAD2, n= 24; 54% HLMCs, n= 24) which was antagonized by AZ11645373 (1 microM). P2X7-like responses were also evoked in LAD2 cells by 2'(3')-0-(4-benzoylbenzoyl)ATP (300 microM). A P2X4-like current was evoked by 100 microM ATP (80% LAD2, n= 10; 21% HLMCs, n= 29), the amplitude and duration of which was potentiated by ivermectin (3 microM). CONCLUSION AND IMPLICATIONS Our data confirmed the presence of functional P2X1, P2X4 and P2X7 receptors in LAD2 cells and HLMCs.
Collapse
Affiliation(s)
- K Wareham
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, UK
| | | | | | | | | |
Collapse
|
36
|
Ofosu FA, Dewar L, Song Y, Cedrone AC, Hortelano G, Craven SJ. Early Intraplatelet Signaling Enhances the Release of Human Platelet PAR-1 and -4 Amino-Terminal Peptides in Response to Thrombin. Biochemistry 2009; 48:1562-72. [DOI: 10.1021/bi801399c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frederick A. Ofosu
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Lori Dewar
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Yingqi Song
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Aisha C. Cedrone
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Gonzalo Hortelano
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Sharon J. Craven
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
37
|
Sim JA, Broomhead HE, North RA. Ectodomain lysines and suramin block of P2X1 receptors. J Biol Chem 2008; 283:29841-6. [PMID: 18765669 PMCID: PMC2573084 DOI: 10.1074/jbc.m802523200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/11/2008] [Indexed: 11/22/2022] Open
Abstract
P2X(1) receptors belong to a family of cation channels gated by extracellular ATP; they are found inter alia in smooth muscle, platelets, and immune cells. Suramin has been widely used as an antagonist at P2X receptors, and its analog 4,4',4'',4'''-[carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino))] tetrakis-benzene-1,3-disulfonic acid (NF449) is selective for the P2X(1) subtype. Human and mouse P2X(1) receptors were expressed in human embryonic kidney cells, and membrane currents evoked by ATP were recorded. ATP (10 nm to 100 microm) was applied only once to each cell, to avoid the profound desensitization exhibited by P2X(1) receptors. Suramin (10 microm) and NF449 (3-300 nM) effectively blocked the human receptor. Suramin had little effect on the mouse receptor. Suramin and NF449 are polysulfonates, with six and eight negative charges, respectively. We hypothesized that species differences might result from differences in positive residues presented by the large receptor ectodomain. Four lysines in the human sequence (Lys(111), Lys(127), Lys(138), and Lys(148)) were changed individually and together to their counterparts in the mouse sequence. The substitution K138E, either alone or together with K111Q, K127Q, and K148N, reduced the sensitivity to block by both suramin and NF449. Conversely, when lysine was introduced into the mouse receptor, the sensitivity to block by suramin and NF449 was much increased for E138K, but not for Q111K, Q127K, or N148K. The results explain the marked species difference in antagonist sensitivity and identify an ectodomain lysine residue that plays a key role in the binding of both suramin and NF449 to P2X(1) receptors.
Collapse
Affiliation(s)
- Joan A Sim
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
38
|
Tolhurst G, Carter RN, Amisten S, Holdich JP, Erlinge D, Mahaut-Smith MP. Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 2008; 19:308-13. [PMID: 18569867 DOI: 10.1080/09537100801935710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Store-operated Ca2+ influx represents a major route by which cytosolic Ca2+ can be elevated during platelet activation, yet its molecular identity in this cell type remains highly controversial. Using quantitative RT-PCR analysis of candidate receptor-operated cation entry pathways in human platelets, we show a >30-fold higher expression of message for the recently discovered Orai1 store-operated Ca2+ channel, and also the store Ca2+ sensor STIM1, when compared to the non-selective cation channels TRPC1, TRPC6 and TRPM2. Orai1 and STIM1 gene transcripts were also detected at higher levels than TRPC1, TRPC6 and TRPM2 in primary murine megakaryocytes and human megakaryocytic cell lines. In direct electrophysiological recordings from murine megakaryocytes, Ca2+ ionophore-induced store depletion stimulated CRAC currents, which are known to require Orai1, and these overlapped with TRPC6-like currents following P2Y receptor activation. Together with recent transgenic studies, these data provide evidence for STIM1:Orai1 as a primary pathway for agonist-evoked Ca2+ influx in the platelet and megakaryocyte.
Collapse
Affiliation(s)
- Gwen Tolhurst
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge CB23EG, UK
| | | | | | | | | | | |
Collapse
|
39
|
Grenegård M, Vretenbrant-Oberg K, Nylander M, Désilets S, Lindström EG, Larsson A, Ramström I, Ramström S, Lindahl TL. The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine. J Biol Chem 2008; 283:18493-504. [PMID: 18480058 DOI: 10.1074/jbc.m800358200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human platelets express protease-activated receptor 1 (PAR1) and PAR4 but limited data indicate for differences in signal transduction. We studied the involvement of PAR1 and PAR4 in the cross-talk between thrombin and epinephrine. The results show that epinephrine acted via alpha(2A)-adrenergic receptors to provoke aggregation, secretion, and Ca(2+) mobilization in aspirin-treated platelets pre-stimulated with subthreshold concentrations of thrombin. Incubating platelets with antibodies against PAR4 or the PAR4-specific inhibitor pepducin P4pal-i1 abolished the aggregation. Furthermore, platelets pre-exposed to the PAR4-activating peptide AYPGKF, but not to the PAR1-activating peptide SFLLRN, were aggregated by epinephrine, whereas both AYPGKF and SFLLRN synergized with epinephrine in the absence of aspirin. The roles of released ATP and ADP were elucidated by using antagonists of the purinergic receptors P2X(1), P2Y(1), and P2Y(12) (i.e. NF449, MRS2159, MRS2179, and cangrelor). Intriguingly, ATP, but not ADP, was required for the epinephrine/thrombin-induced aggregation. In Western blot analysis, a low concentration of AYPGKF, but not SFLLRN, stimulated phosphorylation of Akt on serine 473. Moreover, the phosphatidyl inositide 3-kinase inhibitor LY294002 antagonized the effect of epinephrine combined with thrombin or AYPGKF. Thus, in aspirin-treated platelets, PAR4, but not PAR1, interacts synergistically with alpha(2A)-adrenergic receptors, and the PI3-kinase/Akt pathway is involved in this cross-talk. Furthermore, in PAR4-pretreated platelets, epinephrine caused dense granule secretion, and subsequent signaling from the ATP-gated P2X(1)-receptor and the alpha(2A)-adrenergic receptor induced aggregation. These results suggest a new mechanism that has ATP as a key element and circumvents the action of aspirin on epinephrine-facilitated PAR4-mediated platelet activation.
Collapse
Affiliation(s)
- Magnus Grenegård
- Department of Medicine and Health, Division of Drug Research, Division of Clinical Chemistry, Cardiovascular Inflammation Research Center, Linköping University, Linköping SE-581 85 Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cell–collagen interactions: the use of peptide Toolkits to investigate collagen–receptor interactions. Biochem Soc Trans 2008; 36:241-50. [DOI: 10.1042/bst0360241] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fibrillar collagens provide the most fundamental platform in the vertebrate organism for the attachment of cells and matrix molecules. We have identified specific sites in collagens to which cells can attach, either directly or through protein intermediaries. Using Toolkits of triple-helical peptides, each peptide comprising 27 residues of collagen primary sequence and overlapping with its neighbours by nine amino acids, we have mapped the binding of receptors and other proteins on to collagens II or III. Integrin α2β1 binds to several GXX′GER motifs within the collagens, the affinities of which differ sufficiently to control cell adhesion and migration independently of the cellular regulation of the integrin. The platelet receptor, Gp (glycoprotein) VI binds well to GPO (where O is hydroxyproline)-containing model peptides, but to very few Toolkit peptides, suggesting that sequence in addition to GPO triplets is important in defining GpVI binding. The Toolkits have been applied to the plasma protein vWF (von Willebrand factor), which binds to only a single sequence, identified by truncation and amino acid substitution within Toolkit peptides, as GXRGQOGVMGFO in collagens II and III. Intriguingly, the receptor tyrosine kinase, DDR2 (discoidin domain receptor 2) recognizes three sites in collagen II, including its vWF-binding site, although the amino acids that support the interaction differ slightly within this motif. Furthermore, the secreted protein BM-40 (basement membrane protein 40) also binds well to this same region. Thus the availability of extracellular collagen-binding proteins may be important in regulating and facilitating direct collagen–receptor interaction.
Collapse
|
41
|
Nurden AT. Does ATP act through P2X(1) receptors to regulate platelet activation and thrombus formation? J Thromb Haemost 2007; 5:907-9. [PMID: 17461925 DOI: 10.1111/j.1538-7836.2007.02456.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A T Nurden
- Institut Fédératif No. 4 and Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Bordeaux, Pessac, France.
| |
Collapse
|