1
|
Pedard M, Prevost L, Carpena C, Holleran B, Desrues L, Dubois M, Nicola C, Gruel R, Godefroy D, Deffieux T, Tanter M, Ali C, Leduc R, Prézeau L, Gandolfo P, Morin F, Wurtz O, Bonnard T, Vivien D, Castel H. The urotensin II receptor triggers an early meningeal response and a delayed macrophage-dependent vasospasm after subarachnoid hemorrhage in male mice. Nat Commun 2024; 15:8430. [PMID: 39341842 PMCID: PMC11439053 DOI: 10.1038/s41467-024-52654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice. Few days post-SAH, UT expression is triggered by blood or hemoglobin in the leptomeningeal compartment. UT contributes to perimeningeal glia limitans astrocyte reactivity, microvascular alterations and neuroinflammation independent of CNS-associated macrophages (CAMs). Later, CAM-dependent vascular inflammation and subsequent CVS develop, leading to cognitive dysfunction. In an SAH model using humanized UTh+/h+ male mice, we show that post-SAH CVS and behavioral deficits, mediated by UT through Gq/PLC/Ca2+ signaling, are prevented by UT antagonists. These results highlight the potential of targeting UT pathways to reduce early meningeal response and delayed cerebral ischemia in SAH patients.
Collapse
Affiliation(s)
- Martin Pedard
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Lucie Prevost
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Camille Carpena
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Brian Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Desrues
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Martine Dubois
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Celeste Nicola
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Roxane Gruel
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - David Godefroy
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NorDiC UMR 1239, Rouen, France
| | - Thomas Deffieux
- Institute Physics for Medicine, Inserm U1273, CNRS UMR 8631, ESPCI Paris, Paris Sciences et Lettres PSL University, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine, Inserm U1273, CNRS UMR 8631, ESPCI Paris, Paris Sciences et Lettres PSL University, Paris, France
| | - Carine Ali
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Pierrick Gandolfo
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Fabrice Morin
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Olivier Wurtz
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Thomas Bonnard
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
| | - Denis Vivien
- Normandie Université, UNICAEN, INSERM U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Caen, France
- Centre Hospitalier Universitaire Caen, Department of Clinical Research, Caen, France
| | - Hélène Castel
- Univ Rouen Normandie, Inserm, Normandie Univ, CBG UMR 1245, Rouen, France.
- Institute of Research and Innovation in Biomedicine (IRIB), Rouen, France.
| |
Collapse
|
2
|
Rex DAB, Suchitha GP, Palollathil A, Kanichery A, Prasad TSK, Dagamajalu S. The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2022; 16:601-608. [PMID: 35174439 PMCID: PMC9733756 DOI: 10.1007/s12079-022-00672-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Akhina Palollathil
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Anagha Kanichery
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| |
Collapse
|
3
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|
4
|
Urantide Improves Cardiac Function, Modulates Systemic Cytokine Response, and Increases Survival in A Murine Model of Endotoxic Shock. Shock 2021; 54:574-582. [PMID: 31568223 DOI: 10.1097/shk.0000000000001448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Urotensin II is a potent vasoactive peptide activating the the G protein-coupled urotensin II receptor UT, and is involved in systemic inflammation and cardiovascular functions. The aim of our work was to study the impact of the UT antagonist urantide on survival, systemic inflammation, and cardiac function during endotoxic shock. METHODS C57Bl/6 mice were intraperitoneally injected with lipopolysaccharide (LPS) and then randomized to be injected either by urantide or NaCl 0.9% 3, 6, and 9 h (H3, H6, H9) after LPS. The effect of urantide on the survival rate, the levels of cytokines in plasma at H6, H9, H12, the expression level of nuclear factor-kappa B (NF-κB-p65) in liver and kidney (at H12), and the cardiac function by trans-thoracic echocardiography from H0 to H9 was evaluated. RESULTS Urantide treatment improved survival (88.9% vs. 30% on day 6, P < 0.05). This was associated with changes in cytokine expression: a decrease in IL-6 (2,485 [2,280-2,751] pg/mL vs. 3,330 [3,119-3,680] pg/mL, P < 0.01) at H6, in IL-3 (1.0 [0.40-2.0] pg/mL vs. 5.8 [3.0-7.7] pg/mL, P < 0.01), and IL-1β (651 [491-1,135] pg/mL vs. 1,601 [906-3,010] pg/mL, P < 0.05) at H12 after LPS administration. Urantide decreased the proportion of cytosolic NF-κB-p65 in liver (1.3 [0.9-1.9] vs. 3.2 [2.3-4], P < 0.01) and kidney (0.3 [0.3-0.4] vs. 0.6 [0.5-1.1], P < 0.01). Urantide improved cardiac function (left ventricular fractional shortening: 24.8 [21.5-38.9] vs. 12.0 [8.7-17.6] %, P < 0.01 and cardiac output: 30.3 [25.9-39.8] vs. 15.1 [13.0-16.9] mL/min, P < 0.0001). CONCLUSION These results show a beneficial curative role of UT antagonism on cytokine response (especially IL-3), cardiac dysfunction, and survival during endotoxic shock in mice, highlighting a potential new therapeutic target for septic patients.
Collapse
|
5
|
Wang T, Xie L, Bi H, Li Y, Li Y, Zhao J. Urantide alleviates the symptoms of atherosclerotic rats in vivo and in vitro models through the JAK2/STAT3 signaling pathway. Eur J Pharmacol 2021; 902:174037. [PMID: 33891969 DOI: 10.1016/j.ejphar.2021.174037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is the leading cause of human death, and its occurrence and development are related to the urotensin II (UII) and UII receptor (UT) system and the biological function of vascular smooth muscle cells (VSMCs). During atherosclerosis, impaired biological function VSMCs may promote atherosclerotic plaque formation. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway is an important mediator of signal transduction; however, the role of this signaling pathway in atherosclerosis and VSMCs remains unknown. This study aimed to investigate the effects of urantide on the JAK2/STAT3 signaling pathway in atherosclerosis. We examined the effect of urantide on the UII/UT system and the JAK2/STAT3 signaling pathway in a high fat diet induced atherosclerosis rat model and studied the effect and mechanism of urantide on the phenotypic transformation of VSMCs. We found that the UII/UT system and JAK2/STAT3 signaling pathway were highly activated in the thoracic aorta in atherosclerotic rats and in ox-LDL- and UII-induced VSMCs. After urantide treatment, the pathological changes in atherosclerotic rats were effectively improved, and the activities of the UII/UT system and JAK2/STAT3 signaling pathway were inhibited. Moreover, urantide effectively inhibited proliferation and migration and reversed the phenotypic transformation of VSMCs. These results demonstrated that urantide may control the JAK2/STAT3 signaling pathway by antagonizing the UII/UT system, thereby maintaining the biological function of VSMCs and potentially preventing and curing atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/pathology
- Atherosclerosis/chemically induced
- Atherosclerosis/drug therapy
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Janus Kinase 2/genetics
- Janus Kinase 2/metabolism
- Lipoproteins, LDL/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Primary Cell Culture
- Rats, Wistar
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Urotensins/antagonists & inhibitors
- Urotensins/metabolism
- Urotensins/pharmacology
- Urotensins/therapeutic use
- Urotensins/toxicity
- Rats
Collapse
Affiliation(s)
- Tu Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Lide Xie
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Hongdong Bi
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei, 067000, China.
| |
Collapse
|
6
|
Le Joncour V, Guichet PO, Dembélé KP, Mutel A, Campisi D, Perzo N, Desrues L, Modzelewski R, Couraud PO, Honnorat J, Ferracci FX, Marguet F, Laquerrière A, Vera P, Bohn P, Langlois O, Morin F, Gandolfo P, Castel H. Targeting the Urotensin II/UT G Protein-Coupled Receptor to Counteract Angiogenesis and Mesenchymal Hypoxia/Necrosis in Glioblastoma. Front Cell Dev Biol 2021; 9:652544. [PMID: 33937253 PMCID: PMC8079989 DOI: 10.3389/fcell.2021.652544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a “tortuous” vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvβ3 were confirmed by in vivo99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.
Collapse
Affiliation(s)
- Vadim Le Joncour
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierre-Olivier Guichet
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Kleouforo-Paul Dembélé
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Alexandre Mutel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Daniele Campisi
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Nicolas Perzo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Laurence Desrues
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Romain Modzelewski
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | | | - Jérôme Honnorat
- Neuro-Oncology Department, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France.,Institute NeuroMyoGéne, INSERM U1217/CNRS UMR 5310, Lyon, France.,University Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - François-Xavier Ferracci
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Florent Marguet
- Anathomocytopathology Service, Rouen CHU Hospital, Rouen, France
| | | | - Pierre Vera
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Bohn
- EA 4108, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), University of Rouen, Mont-Saint-Aignan, France
| | - Olivier Langlois
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France.,Neurosurgery Service, Rouen CHU Hospital, Rouen, France
| | - Fabrice Morin
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Pierrick Gandolfo
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| | - Hélène Castel
- UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Rouen Université, Rouen, France
| |
Collapse
|
7
|
Napoli R, Ruvolo A, Triggianese P, Prevete N, Schiattarella GG, Nigro C, Miele C, Magliulo F, Grassi S, Pecoraro A, Cittadini A, Esposito G, de Paulis A, Spadaro G. Immunoglobulins G modulate endothelial function and affect insulin sensitivity in humans. Nutr Metab Cardiovasc Dis 2020; 30:2085-2092. [PMID: 32807637 DOI: 10.1016/j.numecd.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Data from animals suggest that immunoglobulins G (IgG) play a mechanistic role in atherosclerosis and diabetes through endothelial dysfunction and insulin resistance. Patients with common variable immunodeficiency (CVID), who have low circulating levels of IgG and are treated with intravenous polyclonal IgG (IVIgG), may provide an ideal model to clarify whether circulating IgG modulate endothelial function and affect insulin sensitivity in humans. METHODS AND RESULTS We studied 24 patients with CVID and 17 matched healthy controls (HC). Endothelial function was evaluated as flow mediated dilation (FMD) of the brachial artery at baseline and 1, 7, 14, and 21 days after IVIgG infusion in the CVID patients. We measured also plasma glucose, insulin, and calculated the HOMA-IR index. We also investigated the role of human IgG on the production of Nitric Oxide (NO) in vitro in Human Coronary Artery Endothelial Cells (HCAEC). Compared to HC, FMD of CVID patients was significantly impaired at baseline (9.4 ± 0.9 and 7.6 ± 0.6% respectively, p < 0.05) but rose above normal levels 1 and 7 days after IVIgG infusion to return at baseline at 14 and 21 days. Serum insulin concentration and HOMA-IR index dropped by 50% in CVID patients after IVIgG (p < 0.002 vs. baseline). In vitro IgG stimulated NO production in HCAEC. CONCLUSIONS Reduced IgG levels are associated with endothelial dysfunction and IVIgG stimulates endothelial function directly while improving insulin sensitivity. The current findings may suggest an anti-atherogenic role of human IgG.
Collapse
Affiliation(s)
- Raffaele Napoli
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy.
| | - Antonio Ruvolo
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Paola Triggianese
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Nella Prevete
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Gabriele G Schiattarella
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Cecilia Nigro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Claudia Miele
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Fabio Magliulo
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Simona Grassi
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Federico II University School of Medicine, Naples, Italy
| |
Collapse
|
8
|
Cimmino G, Morello A, Conte S, Pellegrino G, Marra L, Golino P, Cirillo P. Vitamin D inhibits Tissue Factor and CAMs expression in oxidized low-density lipoproteins-treated human endothelial cells by modulating NF-κB pathway. Eur J Pharmacol 2020; 885:173422. [PMID: 32755551 DOI: 10.1016/j.ejphar.2020.173422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Epidemiologic studies have clearly demonstrated the correlation existing between Vitamin D (Vit. D) deficiency and increased risk of developing cardiovascular disease, suggesting that it might have a protective role in this clinical setting. Although many experimental studies have investigated the molecular mechanisms by which Vit. D might exert these effects, its potential role in protecting against athero-thrombosis is still partially unknown. We have investigated whether Vit. D might exert anti athero-thombotic effects by preventing expression of adhesion molecules (CAMs) and Tissue Factor (TF), molecules involved in atherothrombotic pathophysiology, in oxLDL stimulated endothelial cells (HUVEC). Moreover, we have investigated whether Vit. D effects might be due to the NF-kB modulation. HUVEC cultivated in medium enriched with Vit. D (10 nM) were stimulated with oxLDL (50 μg/ml). TF gene (RT-PCR), protein (Western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. Similarly, CAMs gene (RT-PCR), surface expression (FACS) and soluble values (ELISA) were measured. NF-kB translocation was also investigated. Vit. D significantly reduced TF gene as well protein expression and procoagulant activity in oxLDL-treated HUVEC. Similar effects were observed for CAMs. These effects were associated with Vit. D modulation of NF-κB pathway. This study, although in vitro, indicate that Vit. D has protective effect on endothelial cells by inhibiting expression of TF and CAMs, proteins involved in atherothrombotic pathophysiology. Further studies will be necessary to translate these findings to a clinical scenario to better define the potential therapeutical role of Vit. D supplementation in the management of cardiovascular disease in patients with Vit. D deficiency.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Morello
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples "Federico II", Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Pellegrino
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples "Federico II", Naples, Italy
| | - Laura Marra
- SC Cell Biology and Biotherapy, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
9
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
10
|
Yu QQ, Cheng DX, Xu LR, Li YK, Zheng XY, Liu Y, Li YF, Liu HL, Bai L, Wang R, Fan JL, Liu EQ, Zhao SH. Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits. Acta Pharmacol Sin 2020; 41:546-553. [PMID: 31685976 PMCID: PMC7468446 DOI: 10.1038/s41401-019-0315-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
Increasing levels of plasma urotensin II (UII) are positively associated with atherosclerosis. In this study we investigated the role of macrophage-secreted UII in atherosclerosis progression, and evaluated the therapeutic value of urantide, a potent competitive UII receptor antagonist, in atherosclerosis treatment. Macrophage-specific human UII-transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet for 16 weeks to induce atherosclerosis. Immunohistochemical staining of the cellular components (macrophages and smooth muscle cells) of aortic atherosclerotic lesions revealed a significant increase (52%) in the macrophage-positive area in only male transgenic rabbits compared with that in the nontransgenic littermates. However, both male and female transgenic rabbits showed a significant decrease (45% in males and 31% in females) in the smooth muscle cell-positive area compared with that of their control littermates. The effects of macrophage-secreted UII on the plaque cellular components were independent of plasma lipid level. Meanwhile the wild-type rabbits were continuously subcutaneously infused with urantide (5.4 µg· kg-1· h-1) using osmotic mini-pumps. Infusion of urantide exerted effects opposite to those caused by UII, as it significantly decreased the macrophage-positive area in male wild-type rabbits compared with that of control rabbits. In cultured human umbilical vein endothelial cells, treatment with UII dose-dependently increased the expression of the adhesion molecules VCAM-1 and ICAM-1, and this effect was partially reversed by urantide. The current study provides direct evidence that macrophage-secreted UII plays a key role in atherogenesis. Targeting UII with urantide may promote plaque stability by decreasing macrophage-derived foam cell formation, which is an indicator of unstable plaque.
Collapse
|
11
|
Tseng CH, Chung WJ, Li CY, Tsai TH, Lee CH, Hsueh SK, Wu CC, Cheng CI. Statins reduce new-onset atrial fibrillation after acute myocardial infarction: A nationwide study. Medicine (Baltimore) 2020; 99:e18517. [PMID: 31914024 PMCID: PMC6959943 DOI: 10.1097/md.0000000000018517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Atrial fibrillation (AF) is an important complication of acute myocardial infarction (AMI). The association between AF and serum lipid profile is unclear and statin use for lowering the incidence of new-onset AF remains controversial. The objective of this study was to investigate whether statins confer a beneficial effect on AF after AMI.Data available in the Taiwan National Health Insurance Research Database on 32886 AMI patients between 2008 and 2011 were retrospectively analyzed. Total 27553 (83.8%) had complete 1-yr follow-up data. Cardiovascular outcomes were analyzed based on the baseline characteristics and AF type (existing, new-onset, or non-AF). AF groups had significantly higher incidence of heart failure (HF), stroke, all-cause death, and major adverse cardiac and cerebrovascular event (MACCE) after index AMI (all P < .05). In contrast, myocardial re-infarction (re-MI) was not significantly different among the three groups (P = .95). Statin use tended to be associated with lower risk of new-onset AF after AMI (HR: 0.935; 95% confidence interval (CI): 0.877-0.998; P = .0427).Existing AF and new-onset AF subgroups had similar cardiovascular outcomes after AMI and were both inferior to the non-AF group. Statin tended to reduce new-onset AF after AMI.
Collapse
Affiliation(s)
- Chien-Hao Tseng
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Wen-Jung Chung
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Chen-Yu Li
- Clinical Informatics and Medical Statistics Research Center, Taiwan, ROC
- Foreign Language and International Trade School, Wenzhou Business College, Wenzhou, China
| | - Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Chien-Ho Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Shu-Kai Hsueh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Chia-Chen Wu
- Division of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung
- Chang Gung University College of Medicine, Guishan District, Taoyuan City, Taiwan, ROC
| |
Collapse
|
12
|
Clavier T, Mutel A, Desrues L, Lefevre-Scelles A, Gastaldi G, El Amki M, Dubois M, Melot A, Wurtz V, Curey S, Gérardin E, Proust F, Compère V, Castel H. Association between vasoactive peptide urotensin II in plasma and cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a potential therapeutic target. J Neurosurg 2019; 131:1278-1288. [PMID: 30497195 DOI: 10.3171/2018.4.jns172313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cerebral vasospasm (VS) is a severe complication of aneurysmal subarachnoid hemorrhage (SAH). Urotensin II (UII) is a potent vasoactive peptide activating the urotensin (UT) receptor, potentially involved in brain vascular pathologies. The authors hypothesized that UII/UT system antagonism with the UT receptor antagonist/biased ligand urantide may be associated with post-SAH VS. The objectives of this study were 2-fold: 1) to leverage an experimental mouse model of SAH with VS in order to study the effect of urotensinergic system antagonism on neurological outcome, and 2) to investigate the association between plasma UII level and symptomatic VS after SAH in human patients. METHODS A mouse model of SAH was used to study the impacts of UII and the UT receptor antagonist/biased ligand urantide on VS and neurological outcome. Then a clinical study was conducted in the setting of a neurosurgical intensive care unit. Plasma UII levels were measured in SAH patients daily for 9 days, starting on the 1st day of hospitalization, and were compared with plasma UII levels in healthy volunteers. RESULTS In the mouse model, urantide prevented VS as well as SAH-related fine motor coordination impairment. Seventeen patients with SAH and external ventricular drainage were included in the clinical study. The median plasma UII level was 43 pg/ml (IQR 14-80 pg/ml). There was no significant variation in the daily median plasma UII level (median value for the 17 patients) from day 0 to day 8. The median level of plasma UII during the 9 first days post-SAH was higher in patients with symptomatic VS than in patients without VS (77 pg/ml [IQR 33.5-111.5 pg/ml] vs 37 pg/ml [IQR 21-46 pg/ml], p < 0.05). Concerning daily measures of plasma UII levels in VS, non-VS patients, and healthy volunteers, we found a significant difference between SAH patients with VS (median 66 pg/ml [IQR 30-110 pg/ml]) and SAH patients without VS (27 pg/ml [IQR 15-46 pg/ml], p < 0.001) but no significant difference between VS patients and healthy volunteers (44 pg/ml [IQR 27-51 pg/ml]) or between non-VS patients and healthy volunteers. CONCLUSIONS The results of this study suggest that UT receptor antagonism with urantide prevents VS and improves neurological outcome after SAH in mice and that an increase in plasma UII is associated with cerebral VS subsequent to SAH in humans. The causality link between circulating UII and VS after SAH remains to be established, but according to our data the UT receptor is a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Thomas Clavier
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- Departments of3Anesthesiology and Critical Care
| | - Alexandre Mutel
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
| | - Laurence Desrues
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
| | - Antoine Lefevre-Scelles
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- Departments of3Anesthesiology and Critical Care
| | | | - Mohamad El Amki
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
| | - Martine Dubois
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
| | - Anthony Melot
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
- 4Neurosurgery, and
| | - Véronique Wurtz
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- Departments of3Anesthesiology and Critical Care
| | | | - Emmanuel Gérardin
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
- 5Radiology, Rouen University Hospital, Rouen, France
| | - François Proust
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
- 4Neurosurgery, and
| | - Vincent Compère
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- Departments of3Anesthesiology and Critical Care
| | - Hélène Castel
- 1Normandie Université, UNIROUEN, INSERM, DC2N
- 2Institute for Research and Innovation in Biomedicine; and
| |
Collapse
|
13
|
Pereira-Castro J, Brás-Silva C, Fontes-Sousa AP. Novel insights into the role of urotensin II in cardiovascular disease. Drug Discov Today 2019; 24:2170-2180. [PMID: 31430542 DOI: 10.1016/j.drudis.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
Urotensin II (UII) is a vasoactive peptide that interacts with a specific receptor called the UT receptor. UII has been implicated in cardiovascular regulation, with promising therapeutic applications based on UT receptor antagonism. The endogenous ligands of the UT receptor: UII and urotensin-related peptide (URP), differentially bind and activate this receptor. Also, the receptor localization is not restricted to the plasma membrane, possibly inducing different physiological responses that could support its inconsistent, but potent, vasoactive activity. These properties could explain the disappointing outcomes in clinical studies, in contrast to the positive preclinical results regarding heart failure, pulmonary hypertension, atherosclerosis and diabetes mellitus. These aspects should be considered in future investigations to a better comprehension of the role of UII as a potential therapeutic target.
Collapse
Affiliation(s)
- João Pereira-Castro
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC - Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
14
|
Sun SL, Liu LM. Urotensin II: an inflammatory cytokine. J Endocrinol 2019; 240:JOE-18-0505.R2. [PMID: 30601760 DOI: 10.1530/joe-18-0505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a polypeptide molecule with neurohormone-like activity. It has been confirmed that UII is widely distributed in numerous organs of different animal species from fish to mammals, including humans. The UII receptor is orphan G-protein coupled receptor 14, also known as UT. The tissue distribution of UII and UT is highly consistent, and their expression may be regulated by autocrine and paracrine mechanisms. In the body, UII has many physiological and pathophysiological activities, such as vasoconstrictor and vasodilatory actions, cell proliferation, pro-fibrosis, neuroendocrine activity, insulin resistance, and carcinogenic and inflammatory effects, which have been recognized only in recent years. In fact, UII is involved in the process of inflammatory injury and plays a key role in the onset and development of inflammatory diseases. In this paper, we will review the roles UII plays in inflammatory diseases.
Collapse
Affiliation(s)
- Sui-Lin Sun
- S Sun, Department of Infection, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China, Nanchang, China
| | - Liang-Ming Liu
- L Liu, Department of Infection, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| |
Collapse
|
15
|
Jian W, Li L, Wei XM, Guan JH, Yang GL, Gui C. Serum angiopoietin-2 concentrations of post-PCI are correlated with the parameters of renal function in patients with coronary artery disease. Medicine (Baltimore) 2019; 98:e13960. [PMID: 30608432 PMCID: PMC6344115 DOI: 10.1097/md.0000000000013960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Patients with coronary artery disease (CAD) frequently have comorbidity of chronic kidney disease (CKD). Their renal function may deteriorate because of the use of contrast agent after percutaneous coronary intervention (PCI). Angiopoietin-2 (Ang-2), which is highly expressed in the site of angiogenesis, plays an important role in both CAD and CKD. This study aimed to investigate the relation of serum Ang-2 concentrations with the renal function after PCI.This study enrolled 57 patients with CAD undergoing PCI. Blood samples for Ang-2 were collected in the first morning after admission and within 24 to 48 h after PCI. The parameters of renal function (serum creatinine, cystatin C and eGFR) were tested on the first day after admission and within 72 h after PCI.Overall, serum Ang-2 levels of post-PCI were significantly lower than those of pre-PCI [median, 1733 (IQR, 1100-2568) vs median, 2523 (IQR, 1702-3640) pg/mL; P < .001]. However, in patients with CKD (eGFR < 60 mL/min/1.73 m), there was no significant difference between serum Ang-2 levels of post-PCI and those of pre-PCI [median, 2851 (IQR, 1720-4286) vs. median, 2492 (IQR, 1434-4994) pg/mL; P = .925]. In addition, serum Ang-2 levels of post-PCI, but not pre-PCI, were significantly correlated with the post-PCI parameters of renal function.Serum Ang-2 concentrations of post-PCI are closely related to renal function in patients with CAD. It may have potential to be the early biomarker of contrast-induced nephropathy in the future.
Collapse
Affiliation(s)
- Wen Jian
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| | - Xiao-Min Wei
- Department of Cardiology, Gongren Hospital of Wuzhou, Wuzhou
| | - Jia-Hui Guan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Guo-Liang Yang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning
| |
Collapse
|
16
|
Jia Y, Li D, Cao Y, Cheng Y, Xiao L, Gao Y, Zhang L, Zeng Z, Wan Z, Zeng R. Inflammation-based Glasgow Prognostic Score in patients with acute ST-segment elevation myocardial infarction: A prospective cohort study. Medicine (Baltimore) 2018; 97:e13615. [PMID: 30558040 PMCID: PMC6319978 DOI: 10.1097/md.0000000000013615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023] Open
Abstract
The inflammation-based Glasgow Prognostic Score (GPS), which involves C-reactive protein and serum albumin levels, has been reported to be a strong independent predictor of mortality in many cancers. This study aimed to investigate whether the GPS is associated with mortality in patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI).In this study, 406 consecutive patients with STEMI at our emergency department (ED) who were undergoing pPCI were prospectively enrolled and assigned a GPS of 0, 1, or 2. Kaplan-Meier survival and multivariable Cox regression analyses were used to evaluate the associations between the GPS and long-term mortality.Twenty-three patients (5.7%) died at the hospital, and 37 (9.7%) died during follow-up (14.4 [9.3-17.6] months). Compared with patients with a lower GPS, those with a higher GPS had significantly higher in-hospital mortality (GPS = 0 vs GPS = 1 vs GPS = 2: 3.3% vs 6.3% vs 28.0%, P < .001), follow-up mortality (4.6% vs 14.3% vs 55.6%, P < .001), and cumulative mortality (9.6% vs 21.1% vs 71.1%, P < .001). Multivariable Cox regression analysis revealed that in patients with a GPS of 1 and 2 (versus 0), the multivariable adjusted hazard ratios (HR) for all-cause mortality were 2.068 (95% CI: 1.082-3.951, P = .028) and 8.305 (95% CI: 4.017-17.171, P < .001), respectively, after controlling for all of the confounding factors. Subgroup analysis showed that a higher GPS was associated with an increased risk of cumulative mortality in the different subgroups.The GPS on admission may be useful for stratifying the risk of adverse outcomes in patients with STEMI undergoing pPCI in the ED.
Collapse
Affiliation(s)
- Yu Jia
- Department of Emergency Medicine, West China Hospital
- Disaster Medicine Center
- Laboratory of Emergency Medicine
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongze Li
- Department of Emergency Medicine, West China Hospital
- Disaster Medicine Center
- Laboratory of Emergency Medicine
| | - Yu Cao
- Department of Emergency Medicine, West China Hospital
- Disaster Medicine Center
- Laboratory of Emergency Medicine
| | - Yisong Cheng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Xiao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital
- Disaster Medicine Center
- Laboratory of Emergency Medicine
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Zhi Zeng
- Department of Emergency Medicine, West China Hospital
| | - Zhi Wan
- Department of Emergency Medicine, West China Hospital
- Disaster Medicine Center
- Laboratory of Emergency Medicine
| | - Rui Zeng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Kim YH, Her AY, Choi BG, Choi SY, Byun JK, Baek MJ, Ryu YG, Park Y, Mashaly A, Jang WY, Kim W, Choi JY, Park EJ, Na JO, Choi CU, Lim HE, Kim EJ, Park CG, Seo HS, Rha SW. Impact of left ventricular hypertrophy on long-term clinical outcomes in hypertensive patients who underwent successful percutaneous coronary intervention with drug-eluting stents. Medicine (Baltimore) 2018; 97:e12067. [PMID: 30170421 PMCID: PMC6392834 DOI: 10.1097/md.0000000000012067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is associated with increased risk for vascular events and mortality. This study investigated 8-year clinical outcomes of hypertensive patients with LVH who underwent percutaneous coronary intervention (PCI) with drug-eluting stents (DES) compared with hypertensive patients without LVH.A total of 1704 consecutive hypertensive patients who underwent PCI from 2004 to 2014 were enrolled. We classified them into either the LVH group (n = 406) or the control group (without LVH, n = 1298). LVH was defined by LV mass index > 115 g/m in men and > 95 g/m in women. After propensity score matched (PSM) analysis, 2 PSM groups (366 pairs, n = 732, c-statistic = 0.629) were generated.For up to 8 years, the LVH group showed a higher incidence of cardiac death (4.4% vs 1.2%, log-rank P = .023, hazard ratio: 3.371, 95% confidence interval: 1.109-10.25; P = .032) compared with the control group. However, there were no significant differences between the 2 groups in the incidence of total death, myocardial infarction, revascularization, and major adverse cardiac events up to 8 years.LVH in hypertensive patients who underwent successful PCI with DES was associated with higher incidence of cardiac death up to 8 years of follow-up. More careful managements and clinical follow-up are needed and treatment strategies should specifically focus to target prevention and reversal of LVH in hypertensive patients.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon
| | - Ae-Young Her
- Division of Cardiology, Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon
| | | | - Se Yeon Choi
- Department of Medicine, Korea University Graduate School
| | | | | | - Yang Gi Ryu
- Department of Thoracic and Cardiovascular Surgery
| | - Yoonjee Park
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Ahmed Mashaly
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Won Young Jang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Woohyeun Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Jah Yeon Choi
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Eun Jin Park
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Jin Oh Na
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Cheol Ung Choi
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hong Euy Lim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Eung Ju Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Chang Gyu Park
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| | - Seung-Woon Rha
- Department of Medicine, Korea University Graduate School
- Cardiovascular Center, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
18
|
Castel H, Desrues L, Joubert JE, Tonon MC, Prézeau L, Chabbert M, Morin F, Gandolfo P. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Front Endocrinol (Lausanne) 2017; 8:76. [PMID: 28487672 PMCID: PMC5403833 DOI: 10.3389/fendo.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.
Collapse
Affiliation(s)
- Hélène Castel
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- *Correspondence: Hélène Castel,
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jane-Eileen Joubert
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Christine Tonon
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Laurent Prézeau
- CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France
| | - Marie Chabbert
- UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
19
|
Liu LM, Tu WJ, Zhu T, Wang XT, Tan ZL, Zhong H, Gao DY, Liang DY. IRF3 is an important molecule in the UII/UT system and mediates immune inflammatory injury in acute liver failure. Oncotarget 2016; 7:49027-49041. [PMID: 27448985 PMCID: PMC5226488 DOI: 10.18632/oncotarget.10717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
The urotensin II/urotensin receptor (UII/UT) system can mediate inflammatory liver injury in acute liver failure (ALF); however; the related mechanism is not clear. In this study, we confirmed that lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced up-regulation of liver interferon regulatory factor 3 (IRF3) in ALF mice, whereas the UT antagonist urantide inhibited the up-regulated liver IRF3. LPS stimulation induced IRF3 transcription and nuclear translocation and promoted the secretion of interleukin-6 (IL-6), interferon (IFN)-β, and IFN-γ in Kupffer cells (KCs); these effects in LPS-stimulated KCs were inhibited by urantide. Knockdown of IRF3 using an adenovirus expressing an IRF3 shRNA inhibited IFN-β transcription and secretion as well as tumor necrosis factor (TNF)-α and IL-1β secretion from LPS-stimulated KCs; additionally, IL-10 transcription and secretion were promoted in response to LPS. However, LPS-stimulated TNF-α and IL-1β mRNA was not affected in the KCs. The IRF3 shRNA also did not have a significant effect on the NF-κB p65 subunit and p38MAPK protein phosphorylation levels in the nuclei of LPS-stimulated KCs. Therefore, IRF3 expression and activation depended on the signal transduction of the UII/UT system, and played important roles in UII/UT-mediated immune inflammatory injury in the liver but did not affect NF-κB and p38 MAPK activity.
Collapse
Affiliation(s)
- Liang-ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Wen-juan Tu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Tong Zhu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Xiao-ting Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Zhi-li Tan
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Huan Zhong
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - De-yong Gao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Dong-yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
20
|
Cadirci E, Halici Z, Yayla M, Toktay E, Bayir Y, Karakus E, Topcu A, Buyuk B, Albayrak A. Blocking of urotensin receptors as new target for treatment of carrageenan induced inflammation in rats. Peptides 2016; 82:35-43. [PMID: 27208703 DOI: 10.1016/j.peptides.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
This study investigated possible role of U-II and its receptor expression in inflammation by using UTR agonist and antagonist in carrageenan induced acute inflammation. Rats were divided into 5 groups as (1) Healthy control, (2) Carrageenan control, (3) Carrageenan +Indomethacin 20mg/kg, orally, (4) Carrageenan +AC7954 (U-II receptor agonist, intraperitoneally) 30mg/kg and (5) Carrageenan +SB657510 (UTR antagonist, intraperitoneally) 30mg/kg. 1h after drug administration, carrageenan was injected. At the 3rd hour after carrageenan injection, agonist produced no effect while antagonist 63% anti-inflammatory effect respectively. UTR and UT-II expression increased in carrageenan induced paw tissue. Antagonist administration prevented the decrease in an antioxidant system and also capable to decrease TNF-α and IL-6 mRNA expressions. This study showed the role of urotensin II receptors in the physiopathogenesis of acute inflammatory response that underlying many diseases accompanied by inflammation.
Collapse
Affiliation(s)
- Elif Cadirci
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey.
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine, 36240 Kars, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Ataturk University Faculty of Pharmacy, 25240 Erzurum, Turkey
| | - Emre Karakus
- Department of Pharmacology and Toxicology, Ataturk University Faculty of Veterinary Medicine, 25240 Erzurum, Turkey
| | - Atilla Topcu
- Department of Pharmacology, RTE University Faculty of Medicine, 53240 Rize, Turkey
| | - Basak Buyuk
- Department of Histology and Embryology, 19 Mart University, Faculty of Medicine, 25240 Çanakkale, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| |
Collapse
|
21
|
Palabiyik SS, Karakus E, Akpinar E, Halici Z, Bayir Y, Yayla M, Kose D. The Role of Urotensin Receptors in the Paracetamol-Induced Hepatotoxicity Model in Mice: Ameliorative Potential of Urotensin II Antagonist. Basic Clin Pharmacol Toxicol 2015; 118:150-9. [PMID: 26176337 DOI: 10.1111/bcpt.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Saziye S. Palabiyik
- Department of Pharmaceutical Toxicology; Faculty of Pharmacy; Ataturk University; Erzurum Turkey
| | - Emre Karakus
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Ataturk University; Erzurum Turkey
| | - Erol Akpinar
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Zekai Halici
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Yasin Bayir
- Department of Biochemistry; Faculty of Pharmacy; Ataturk University; Erzurum Turkey
| | - Muhammed Yayla
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Duygu Kose
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| |
Collapse
|
22
|
Liu LM, Liang DY, Ye CG, Tu WJ, Zhu T. The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-κB pathways in LPS-stimulated Kupffer cells. PLoS One 2015; 10:e0121383. [PMID: 25803040 PMCID: PMC4372515 DOI: 10.1371/journal.pone.0121383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/31/2015] [Indexed: 01/27/2023] Open
Abstract
The urotensin II (UII)/UII receptor (UT) system is closely related to immune inflammation. In acute liver failure (ALF), the UII/UT system can promote the production and release of proinflammatory cytokines, inducing an inflammatory injury response in liver tissue. However, the mechanism by which the hepatic UII/UT system promotes proinflammatory cytokine production and release is not clear. To solve this problem, we used primary Kupffer cells (KCs) as the model system in the current study. The results showed that after lipopolysaccharide (LPS) stimulation, KCs showed significantly increased expression and release of UII/UT and proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Pretreatment with urantide, which is a UT receptor antagonist, significantly inhibited the LPS-stimulated expression and release of UII/UT, TNF-α, and IL-1β by KCs. In addition, LPS stimulation induced nuclear p38 mitogen-activated protein kinase (MAPK) protein phosphorylation and expression of the nuclear nuclear factor κB (NF-κB) p65 subunit in KCs and enhanced the binding activity of NF-κB to DNA molecules, whereas urantide pretreatment significantly inhibited the LPS-stimulated nuclear expression and activity of these molecules in KCs. Therefore, our conclusion is that the UII/UT system mediates LPS-stimulated production and release of proinflammatory cytokine by KCs, and this mediating effect at least partially relies on the inflammatory signaling pathway molecules p38 MAPK and NF-κB.
Collapse
Affiliation(s)
- Liang Ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Dong Yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Chang Gen Ye
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Wen Juan Tu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Tong Zhu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Lecointre C, Desrues L, Joubert JE, Perzo N, Guichet PO, Le Joncour V, Brulé C, Chabbert M, Leduc R, Prézeau L, Laquerrière A, Proust F, Gandolfo P, Morin F, Castel H. Signaling switch of the urotensin II vasosactive peptide GPCR: prototypic chemotaxic mechanism in glioma. Oncogene 2015; 34:5080-94. [PMID: 25597409 DOI: 10.1038/onc.2014.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Multiform glioblastomas (GBM) are the most frequent and aggressive primary brain tumors in adults. The poor prognosis is due to neo-angiogenesis and cellular invasion, processes that require complex chemotaxic mechanisms involving motility, migration and adhesion. Understanding these different cellular events implies identifying receptors and transduction pathways that lead to and promote either migration or adhesion. Here we establish that glioma express the vasoactive peptide urotensin II (UII) and its receptor UT and that UT-mediated signaling cascades are involved in glioma cell migration and adhesion. Components of the urotensinergic systems, UII and UT, are widely expressed in patient-derived GBM tissue sections, glioma cell lines and fresh biopsy explants. Interestingly, gradient concentrations of UII produced chemoattracting migratory/motility effects in glioma as well as HEK293 cells expressing human UT. These effects mainly involved the G13/Rho/rho kinase pathway while partially requiring Gi/o/PI3K components. In contrast, we observed that homogeneous concentrations of UII drastically blocked cell motility and stimulated cell-matrix adhesions through a UT/Gi/o signaling cascade, partially involving phosphatidylinositol-3 kinase. Finally, we provide evidence that, in glioma cells, homogeneous concentration of UII allowed translocation of Gα13 to the UT receptor at the plasma membrane and increased actin stress fibers, lamellipodia formation and vinculin-stained focal adhesions. UII also provoked a re-localization of UT precoupled to Gαi in filipodia and initiated integrin-stained focal points. Altogether, these findings suggest that UT behaves as a chemotaxic receptor, relaying a signaling switch between directional migration and cell adhesion under gradient or homogeneous concentrations, thereby redefining sequential mechanisms affecting tumor cells during glioma invasion. Taken together, our results allow us to propose a model in order to improve the design of compounds that demonstrate signaling bias for therapies that target specifically the Gi/o signaling pathway.
Collapse
Affiliation(s)
- C Lecointre
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - L Desrues
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - J E Joubert
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - N Perzo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - P-O Guichet
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - V Le Joncour
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - C Brulé
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - M Chabbert
- UMR CNRS 6214, Inserm 1083, Faculté de Médecine 3, Angers, France
| | - R Leduc
- Department of Pharmacology, Institut of Pharmacology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - L Prézeau
- IGF, Institut of Functional Genomic, CNRS UMR 5203, Inserm U661, University of Montpellier 1 and 2, Montpellier, France
| | - A Laquerrière
- Service of Anatomocytopathology, CHU of Rouen, ERI28 Inserm, IRIB, Rouen, France
| | - F Proust
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France.,Service of Neurosurgery, CHU of Rouen, Rouen, France
| | - P Gandolfo
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - F Morin
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| | - H Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, DC2N, Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), TC2N network, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
24
|
Park SL, Lee BK, Kim YA, Lee BH, Jung YS. Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells. Biomol Ther (Seoul) 2013; 21:277-83. [PMID: 24244812 PMCID: PMC3819900 DOI: 10.4062/biomolther.2013.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022] Open
Abstract
In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflammatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-1β and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-1β, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.
Collapse
|
25
|
Liang DY, Liu LM, Ye CG, Zhao L, Yu FP, Gao DY, Wang YY, Yang ZW, Wang YY. Inhibition of UII/UTR system relieves acute inflammation of liver through preventing activation of NF-κB pathway in ALF mice. PLoS One 2013; 8:e64895. [PMID: 23755157 PMCID: PMC3670940 DOI: 10.1371/journal.pone.0064895] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 02/06/2023] Open
Abstract
Urotensin II (UII) is implicated in immune inflammatory diseases through its specific high-affinity UT receptor (UTR). Enhanced expression of UII/UTR was recently demonstrated in the liver with acute liver failure (ALF). Here, we analysed the relationship between UII/UTR expression and ALF in lipopolysaccharide (LPS)/D-galactosamine (GalN)-challenged mice. Thereafter, we investigated the effects produced by the inhibition of UII/UTR system using urantide, a special antagonist of UTR, and the potential molecular mechanisms involved in ALF. Urantide was administered to mice treated with LPS/GalN. Expression of UII/UTR, releases of proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interferon-γ (IFN-γ), and activation of nuclear factor κB (NF-κB) signaling pathway were assessed in the lethal ALF with or without urantide pretreatment. We found that LPS/GalN-challenged mice showed high mortality and marked hepatic inflammatory infiltration and cell apoptosis as well as a significant increase of UII/UTR expression. Urantide pretreatment protected against the injury in liver following downregulation of UII/UTR expression. A close relationship between the acutely flamed hepatic injury and UII/UTR expression was observed. In addition, urantide prevented the increases of proinflammatory cytokines such as TNF-α, IL-1β and IFN-γ, and activation of NF-κB signaling pathway induced by LPS/GalN in mice. Thus, we conclude that UII/UTR system plays a role in LPS/GalN-induced ALF. Urantide has a protective effect on the acutely inflamed injury of liver in part through preventing releases of proinflammatory cytokines and activation of NF-κB pathway.
Collapse
Affiliation(s)
- Dong-yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang-ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Chang-gen Ye
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Liang Zhao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Fang-ping Yu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - De-yong Gao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- Department of Infection, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Ying-ying Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Zhi-wen Yang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Yan-yan Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Watson AMD, Olukman M, Koulis C, Tu Y, Samijono D, Yuen D, Lee C, Behm DJ, Cooper ME, Jandeleit-Dahm KAM, Calkin AC, Allen TJ. Urotensin II receptor antagonism confers vasoprotective effects in diabetes associated atherosclerosis: studies in humans and in a mouse model of diabetes. Diabetologia 2013; 56:1155-65. [PMID: 23344731 DOI: 10.1007/s00125-013-2837-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/07/2013] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The small, highly conserved vasoactive peptide urotensin II (UII) is upregulated in atherosclerosis. However, its effects in diabetes-associated atherosclerosis have not been assessed. METHODS Endothelial cells were grown in normal- and high-glucose (5 and 25 mmol/l) media with and without UII (10⁻⁸ mol/l) and/or the UII receptor antagonist, SB-657510 (10⁻⁸ mol/l). Apoe knockout (KO) mice with or without streptozotocin-induced diabetes were treated with or without SB-657510 (30 mg kg⁻¹ day⁻¹; n = 20 per group) and followed for 20 weeks. Carotid endarterectomy specimens from diabetic and non-diabetic humans were also evaluated. RESULTS In high (but not normal) glucose medium, UII significantly increased CCL2 (encodes macrophage chemoattractant protein 1 [MCP-1]) gene expression (human aortic endothelial cells) and increased monocyte adhesion (HUVECs). UII receptor antagonism in diabetic Apoe KO mice significantly attenuated diabetes-associated atherosclerosis and aortic staining for MCP-1, F4/80 (macrophage marker), cyclooxygenase-2, nitrotyrosine and UII. UII staining was significantly increased in carotid endarterectomies from diabetic compared with non-diabetic individuals, as was staining for MCP-1. CONCLUSIONS/INTERPRETATION This is the first report to demonstrate that UII is increased in diabetes-associated atherosclerosis in humans and rodents. Diabetes-associated plaque development was attenuated by UII receptor antagonism in the experimental setting. Thus UII may represent a novel therapeutic target in the treatment of diabetes-associated atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/complications
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion/drug effects
- Cells, Cultured
- Crosses, Genetic
- Diabetes Mellitus, Type 1/complications
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Pilot Projects
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Urotensins/antagonists & inhibitors
- Urotensins/biosynthesis
- Urotensins/metabolism
Collapse
Affiliation(s)
- A M D Watson
- Baker IDI Heart and Diabetes Research Institute, PO Box 6492 St Kilda Road Central, Melbourne, VIC 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhou CH, Wan YY, Chu XH, Song Z, Xing SH, Wu YQ, Yin XX. Urotensin II contributes to the formation of lung adenocarcinoma inflammatory microenvironment through the NF-κB pathway in tumor-bearing nude mice. Oncol Lett 2012; 4:1259-1263. [PMID: 23226801 DOI: 10.3892/ol.2012.932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/04/2012] [Indexed: 12/29/2022] Open
Abstract
Urotensin II (UII), a somatostatin-like cyclic peptide, was originally isolated from the fish urophysis. Our previous study showed that UII stimulates the proliferation of A549 lung adenocarcinoma cells and promotes tumor growth in a nude mouse xenograft model, suggesting that UII may contribute to the pathogenesis of lung adenocarcinoma. In this study, the underlying mechanism for UII to promote lung adenocarcinoma growth was explored by observing the effect of UII on the tumor inflammatory microenvironment in tumor-bearing nude mice. Immunohistochemical analysis showed that UII promoted the infiltration of CD68(+) tumor-associated macrophages (TAMs) in the tumor micro-environment. Enzyme-linked immunosorbent assay (ELISA) demonstrated that UII promoted the release of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-9 (MMP-9). Western blot analysis showed that UII promoted the activation of nuclear factor-κB (NF-κB). These findings suggest that the enhanced levels of IL-6, TNF-α and MMP-9 in the tumor microenvironment, which likely resulted from increased activation of NF-κB induced by UII, may be one of the important mechanisms by which UII promotes lung adenocarcinoma growth. These findings imply that antagonists of UII or urotensin II-receptor (UT-R) have potential for the prevention and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Cheng-Hua Zhou
- School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu LM, Liang DY, Zhang FF, Yu FP, Zhao L, Ye CG. Expression and role of Urotensin Ⅱ in lipopolysaccharide/D-galactosamine-induced acute liver failure in mice. Shijie Huaren Xiaohua Zazhi 2012; 20:1616-1622. [DOI: 10.11569/wcjd.v20.i18.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and role of Urotensin Ⅱ (UⅡ) in lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver failure (ALF) in mice.
METHODS: Male Balb/c mice were randomly and equally divided into four groups: normal control group (group A), pre-treatment control group (group B), ALF model group (group C), and pre-treatment model group (group D). ALF were induced in mice by intraperitoneal injection of LPS (50 μg/kg body weight)/D-GalN (800 mg/kg body weight). The pre-treatment mice were intravenously injected with Urantide (0.6 mg/kg body weight) 30 min before model induction. Serum and liver tissues were sampled 12 h after LPS/D-GalN injection. Mortality was calculated 24 h after attack. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were detected using the Reitman-Frankel method. Histopathological changes were observed by hematoxylin and eosin (HE) staining. Serum UⅡ levels were assessed by ELISA, and the expression of UⅡ and UT was detected by RT-PCR and immunohistochemistry.
RESULTS: A mortality of 66.7% was observed in group C, while all mice of groups A, B and D survived. Serum ALT and AST levels had a dramatic increase in groups C and D, but were significantly lower in group D than in group C (2 271.09 U/L ± 102.24 U/L vs 1 160.67 U/L ± 258.32 U/L, 1 569.42 U/L ± 204.04 U/L vs 1 030.31 U/L ± 108.09 U/L, both P < 0.01). Widespread destruction of liver architecture, hemorrhagic necrosis, and neutrophil infiltration were noted in group C, whereas liver architecture was completely preserved, and focal necrosis and fewer neutrophil infiltrates were observed in group D. After LPS/D-GalN challenge, serum UⅡ levels increased sharply in groups C and D, but were lower in group D than in group C (3.73 μg/L ± 0.52 μg/L vs 1.90 μg/L ± 0.27 μg/L, both P < 0.01). Overexpression of liver UⅡ and UT mRNAs and proteins was induced by the injection of LPS/D-GalN in groups C and D. Compared to group C, group D had lower levels of UⅡ and UT in the liver.
CONCLUSION: UⅡ expression and secretion can be induced by LPS/D-GalN challenge in the liver tissue of ALF mice via a positive feedback mechanism associated with promoting the expression of its receptor UT. UⅡ/UT receptor may be a vital mediator of LPS/D-GalN-induced ALF.
Collapse
|
29
|
Zhang YG, Kuang ZJ, Mao YY, Wei RH, Bao SL, Wu LB, Li YG, Tang CS. Osteopontin is involved in urotensin II-induced migration of rat aortic adventitial fibroblasts. Peptides 2011; 32:2452-8. [PMID: 22036853 DOI: 10.1016/j.peptides.2011.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 10/15/2011] [Accepted: 10/16/2011] [Indexed: 02/05/2023]
Abstract
Recent studies suggest that both osteopontin and urotensin II (UII) play critical roles in vascular remodeling. We previously showed that UII could stimulate the migration of aortic adventitial fibroblasts. In this study, we examined whether osteopontin is involved in UII-induced migration of rat aortic adventitial fibroblasts and examined the effects and mechanisms of UII on osteopontin expression in adventitial fibroblasts. Migration of adventitial fibroblasts induced by UII could be inhibited significantly by osteopontin antisense oligonucleotide (P<0.01) but not sense or mismatch oligonucleotides (P>0.05). Moreover, UII dose- and time-dependently promoted osteopontin mRNA expression and protein secretion in the cells, with maximal effect at 10(-8)mol/l at 3h for mRNA expression or at 12h for protein secretion (both P<0.01). Furthermore, the UII effects were significantly inhibited by its receptor antagonist SB710411 (10(-6)mol/l), and Ca(2+) channel blocker nicardipine (10(-5)mol/l), protein kinase C (PKC) inhibitor H7 (10(-5)mol/l), calcineurin inhibitor cyclosporine A (10(-5)mol/l), mitogen-activated protein kinase (MAPK) inhibitor PD98059 (10(-5)mol/l) and Rho kinase inhibitor Y-27632 (10(-5)mol/l). Thus, osteopontin is involved in the UII-induced migration of adventitial fibroblasts, and UII could upregulate osteopontin gene expression and protein synthesis in rat aortic adventitial fibroblasts by activating its receptor and the Ca(2+) channel, PKC, calcineurin, MAPK and Rho kinase signal transduction pathways.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- Department of Cardiovascular Diseases, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Petrillo G, Cirillo P, D'Ascoli GL, Maresca F, Ziviello F, Chiariello M. Tissue Factor/Factor FVII Complex Inhibitors in Cardiovascular Disease. Are Things Going Well? Curr Cardiol Rev 2011; 6:325-32. [PMID: 22043208 PMCID: PMC3083813 DOI: 10.2174/157340310793566190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/17/2010] [Accepted: 06/22/2010] [Indexed: 11/22/2022] Open
Abstract
Blood coagulation is a complex biological mechanism aimed to avoid bleeding in which a highly regulated and coordinated interplay of specific proteins and cellular components respond quickly to a vascular injury. However, when this mechanisms occurs in the coronary circulation, it has not a “protective” effect, but rather, it plays a pivotal role in determining acute coronary syndromes. Coagulation recognizes Tissue Factor (TF), the main physiological initiator of the extrinsic coagulation pathway, as its starter. Since TF:VIIa complex is the critical point of the blood coagulation cascade, it is a pharmacological attractive issue for the development of agents with anti thrombotic properties that can exert their activity by inhibiting complex formation and/or its catalytic activity. In fact, it is intuitive that an antithrombotic agent able to inhibit this initial step of the coagulation pathway has several theoretical, extremely important, advantages if compared with drugs active downstream the coagulation pathway, such as FXa or thrombin. The present report gives a brief overview of TF pathophysiology, highlighting the most recent advances in the field of inhibitors of the complex TF/VIIa potentially useful in cardiovascular disease.
Collapse
Affiliation(s)
- Gianluca Petrillo
- Department of Internal Medicine, Cardiovascular and Immunological Sciences (Division of Cardiology) University of Naples "Federico II", Italy
| | | | | | | | | | | |
Collapse
|
31
|
Gruson D, Rousseau MF, Ketelslegers JM, Hermans MP. Raised plasma urotensin II in type 2 diabetes patients is associated with the metabolic syndrome phenotype. J Clin Hypertens (Greenwich) 2010; 12:653-60. [PMID: 20695946 DOI: 10.1111/j.1751-7176.2010.00336.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Urotensin II (UII) exerts multiple effects on the cardiovascular system, acts as a diabetogenic agent, and may also contribute to the development of the metabolic syndrome (MetS). The aim of this study was to determine circulating UII in patients with type 2 diabetes mellitus (T2DM) and its relationship with MetS. A total of 360 consecutive patients with T2DM were included. MetS presence/absence (MetS [+]/[-]) was defined according to American Heart Association/National Heart, Lung and Blood Institute criteria. Plasma concentrations of UII were determined by radioimmunoassay. UII levels were significantly higher in MetS (+) than in MetS (-) T2DM patients (0.97 pg/mL [0.93-1.01], n=294 vs 0.82 pg/mL [0.75-0.88] pg/mL, n=66, respectively; P<.001). Multiple logistic regression analysis showed that UII was significantly associated with MetS (+) (odds ratio, 6.41 [95% confidence interval, 1.21-16.04]; P=.02). UII plasma concentrations are significantly higher in T2DM patients presenting with MetS. Therefore, circulating UII may participate in the worsening course of some T2DM patients and may provide novel therapeutic perspectives.
Collapse
Affiliation(s)
- Damien Gruson
- Endocrinology & Nutrition Unit, Université Catholique de Louvain, Tour Claude Bernard, 54 Avenue Hippocrate, Brussels, Belgium.
| | | | | | | |
Collapse
|
32
|
Guidolin D, Albertin G, Ribatti D. Urotensin-II as an angiogenic factor. Peptides 2010; 31:1219-24. [PMID: 20346384 DOI: 10.1016/j.peptides.2010.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 02/07/2023]
Abstract
Angiogenesis, the process through which new blood vessels arise from pre-existing ones, is regulated by numerous "classic" factors and other "nonclassic" regulators of angiogenesis. Among these latter urotensin-II is a cyclic 11-amino acid (human) or 15-amino acid (rodent) peptide, originally isolated from the fish urophysis, which exerts a potent systemic vasoconstrictor and hypertensive effect. This review article summarizes the literature data concerning the involvement of urotensin-II in angiogenesis.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human, Anatomy and Physiology (Section of Anatomy), University of Padova Medical School, Via Gabelli, 65, I-35121 Padova, Italy.
| | | | | |
Collapse
|
33
|
Lv B, Wang H, Tang Y, Fan Z, Xiao X, Chen F. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thromb Haemost 2009; 102:352-9. [PMID: 19652887 DOI: 10.1160/th08-11-0759] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-mobility group box 1 protein (HMGB1), an abundant nuclear protein, was recently established as a proinflammatory mediator of experimental sepsis. Although extracellular HMGB1 has been found in atherosclerotic plaques, its potential role in the pathogenesis of atherothrombosis remains elusive. In the present study, we determined whether HMGB1 induces tissue factor (TF) expression in vascular endothelial cells (ECs) and macrophages. Our data showed that HMGB1 stimulated ECs to express TF (but not TF pathway inhibitor) mRNA and protein in a concentration- and time-dependent manner. Blockade of cell surface receptors (including TLR4, TLR2, and RAGE) with specific neutralising antibodies partially reduced HMGB1-induced TF expression. Moreover, HMGB1 increased expression of Egr-1 and nuclear translocation of NF-kappaB (c-Rel/p65) in ECs. Taken together, our data suggest that HMGB1 induces TF expression in vascular endothelial cells via cell surface receptors (TLR4, TLR2, and RAGE), and through activation of transcription factors (NF-kappaB and Egr-1).
Collapse
Affiliation(s)
- Ben Lv
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Chronic urotensin II infusion enhances macrophage foam cell formation and atherosclerosis in apolipoprotein E-knockout mice. J Hypertens 2008; 26:1955-65. [DOI: 10.1097/hjh.0b013e32830b61d8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|