1
|
Cloesmeijer ME, Sjögren E, Koopman SF, Lenting PJ, Cnossen MH, Mathôt RAA. PBPK modeling of recombinant factor IX Fc fusion protein (rFIXFc) and rFIX to characterize the binding to type 4 collagen in the extravascular space. CPT Pharmacometrics Syst Pharmacol 2024; 13:1630-1640. [PMID: 39285704 PMCID: PMC11494894 DOI: 10.1002/psp4.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 10/23/2024] Open
Abstract
Patients with severe and sometimes moderate hemophilia B are prophylactically treated with factor IX concentrates to prevent bleeding. For some time now, various extended terminal half-life (EHL) recombinant factor IX concentrates are available allowing less frequent administration during prophylaxis in comparison to standard half-life recombinant FIX (rFIX). Especially, recombinant FIX-Fc fusion protein (rFIXFc; Alprolix®) exhibits a rapid distribution phase, potentially due to binding to type IV collagen (Col4) in the extravascular space. Studies suggest that the presence of extravascular rFIXFc is protective against bleeding as without measurable FIX activity in plasma, and no extra bleeding seems to occur. The physiologically based pharmacokinetic (PBPK) model for rFIXFc which we describe in this study, is able to accurately predict the observed concentration-time profiles of rFIXFc in plasma and is able to quantify the binding of rFIXFc to Col4 in the extravascular space after an intravenous dose of 50 IU/kg rFIXFc in a male population. Our model predicts that the total AUC of rFIXFc bound to Col4 in the extravascular space is approximately 19 times higher compared to the AUC of rFIXFc in plasma. This suggests that rFIXFc present in the extravascular compartment may play an important role in achieving hemostasis after rFIXFc administration. Further studies on extravascular distribution of rFIXFc and the distribution profile of other EHL-FIX concentrates are needed to evaluate the predictions of our PBPK model and to investigate its clinical relevance.
Collapse
Affiliation(s)
- Michael E. Cloesmeijer
- Department of Hospital Pharmacy‐Clinical PharmacologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Erik Sjögren
- Department of Pharmaceutical Biosciences, Translational Drug Discovery and DevelopmentUppsala UniversityUppsalaSweden
- PharmetheusUppsalaSweden
| | - Sjoerd F. Koopman
- Department of Hospital Pharmacy‐Clinical PharmacologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | - Peter. J. Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis, Unité Mixed de Recherche (UMR)‐1176, Institut National de la Santé et de la Recherche Médicale (Inserm)Université Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Marjon H. Cnossen
- Department of Pediatric Hematology and OncologyErasmus MC – Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - Ron A. A. Mathôt
- Department of Hospital Pharmacy‐Clinical PharmacologyAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
| | | |
Collapse
|
2
|
Leuci A, Enjolras N, Marano M, Daniel M, Brevet M, Connes P, Dargaud Y. Extravascular factor IX pool fed by prophylaxis is a true hemostatic barrier against bleeding. J Thromb Haemost 2024; 22:700-708. [PMID: 38072379 DOI: 10.1016/j.jtha.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Factor (F)IX can bind to type IV collagen in the endothelial basement membrane and diffuse into extravascular spaces. Previous studies in rodents have reported a large biodistribution of FIX. OBJECTIVES The aim of the study was to evaluate the potential hemostatic activity of extravascular FIX and its role in protecting against joint bleeds. METHODS The capacity of 4 different FIX molecules (plasma-derived and recombinant) to bind type I and type IV collagen was studied here. FIX molecules were also administered intravenously at doses of 50 to 3000 IU/kg in FIX knockout mice. RESULTS A specific FIX signal was detected in immunohistochemistry in the liver as well as in muscles and knee joints with recombinant FIX molecules injected at 1000 and 3000 IU/kg but not at the usual clinical doses of 50 to 100 IU/kg, while plasma-derived FIX generated a FIX signal at all doses, including 50 IU/kg. Such a signal was also detected after five 100 IU/kg daily infusions of recombinant FIX, suggesting that FIX can accumulate in the extravascular space during prophylaxis. The extravascular procoagulant activity of FIX, assessed in saphenous vein bleeding assays, was significantly higher in hemophilia B mice after these 5 days of prophylaxis compared to a single infusion of 100 IU/kg of FIX and assessment of FIX activity 7 days later. CONCLUSION Taken together, these results show that in individuals with severe hemophilia B receiving regular prophylaxis with FIX, extravascular accumulation of FIX over time may have a significant impact on the coagulation capacity and protection toward bleeding.
Collapse
Affiliation(s)
- Alexandre Leuci
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Nathalie Enjolras
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Muriel Marano
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Melanie Daniel
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Yesim Dargaud
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France; Centre de Référence de l'Hémophilie, Unité d'Hémostase Clinique, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
3
|
Shaked I, Foo C, Mächler P, Liu R, Cui Y, Ji X, Broggini T, Kaminski T, Suryakant Jadhav S, Sundd P, Firer M, Devor A, Friedman B, Kleinfeld D. A lone spike in blood glucose can enhance the thrombo-inflammatory response in cortical venules. J Cereb Blood Flow Metab 2024; 44:252-271. [PMID: 37737093 PMCID: PMC10993879 DOI: 10.1177/0271678x231203023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
How transient hyperglycemia contributes to cerebro-vascular disease has been a challenge to study under controlled physiological conditions. We use amplified, ultrashort laser-pulses to physically disrupt brain-venule endothelium at targeted locations. This vessel disruption is performed in conjunction with transient hyperglycemia from a single injection of metabolically active D-glucose into healthy mice. The observed real-time responses to laser-induced disruption include rapid serum extravasation, platelet aggregation, and neutrophil recruitment. Thrombo-inflammation is pharmacologically ameliorated by a platelet inhibitor, by a scavenger of reactive oxygen species, and by a nitric oxide donor. As a control, vessel thrombo-inflammation is significantly reduced in mice injected with metabolically inert L-glucose. Venules in mice with diabetes show a similar response to laser-induced disruption and damage is reduced by restoration of normo-glycemia. Our approach provides a controlled method to probe synergies between transient metabolic and physical vascular perturbations and can reveal new aspects of brain pathophysiology.
Collapse
Affiliation(s)
- Iftach Shaked
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Philipp Mächler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Rui Liu
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Yingying Cui
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Thomas Broggini
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Tomasz Kaminski
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Prithu Sundd
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Firer
- The Adelson Medical School, Ariel University, Ariel, Israel
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Beth Friedman
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, USA
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
van der Flier A, Hong V, Liu Z, Piepenhagen P, Ulinski G, Dumont JA, Orcutt KD, Goel A, Peters R, Salas J. Biodistribution of recombinant factor IX, extended half-life recombinant factor IX Fc fusion protein, and glycoPEGylated recombinant factor IX in hemophilia B mice. Blood Coagul Fibrinolysis 2023; 34:353-363. [PMID: 37577860 PMCID: PMC10481914 DOI: 10.1097/mbc.0000000000001230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 03/01/2023] [Accepted: 04/26/2023] [Indexed: 08/15/2023]
Abstract
Extended half-life recombinant FIX (rFIX) molecules have been generated to reduce the dosing burden and increase the protection of patients with hemophilia B. Clinical pharmacology studies with recombinant factor IX Fc fusion protein (rFIXFc) report a similar initial peak plasma recovery to that of rFIX, but with a larger volume of distribution. Although the pegylation of N9-GP results in a larger plasma recovery, there is a smaller volume of distribution, suggesting less extravasation of the latter drug. In this study, we set out to compare the biodistribution and tissue localization of rFIX, rFIXFc, and glycoPEGylated rFIX in a hemophilia B mouse model. Radiolabeled rFIX, rFIXFc, and rFIX-GP were employed in in vivo single-photon emission computed tomography imaging (SPECT/CT), microautoradiography (MARG), and histology to assess the distribution of FIX reagents over time. Immediately following injection, vascularized tissues demonstrated intense signal irrespective of FIX reagent. rFIX and rFIXFc were retained in joint and muscle areas through 5 half-lives, unlike rFIX-GP (assessed by SPECT). MARG and immunohistochemistry showed FIX agents localized at blood vessels among tissues, including liver, spleen, and kidney. Microautoradiographs, as well as fluorescent-labeled images of knee joint areas, demonstrated retention over time of FIX signal at the trabecular area of bone. Data indicate that rFIXFc is similar to rFIX in that it distributes outside the plasma compartment and is retained in certain tissues over time, while also retained at higher plasma levels. Overall, data suggest that Fc fusion does not impede the extravascular distribution of FIX.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kelly D. Orcutt
- Invicro LLC, A Konica Minolta Company, Boston, Massachusetts, USA
| | - Apollina Goel
- Invicro LLC, A Konica Minolta Company, Boston, Massachusetts, USA
| | | | | |
Collapse
|
5
|
Machado SK, Peil H, Kraushaar T, Claar P, Mischnik M, Lind H, Herzog E, Bacher M, Nolte MW, Bielohuby M, Pestel S, Ponnuswamy P. Modulation of Extravascular Binding of Recombinant Factor IX Impacts the Duration of Efficacy in Mouse Models. Thromb Haemost 2023; 123:751-762. [PMID: 37164314 PMCID: PMC10365885 DOI: 10.1055/a-2090-9739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/11/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND There is an emerging concept that in addition to circulating coagulation factor IX (FIX), extravascular FIX contributes to hemostasis. OBJECTIVE Our objective was to evaluate the efficacy of extravascular FIX using animal models of tail clip bleeding and ferric chloride-induced thrombosis. METHODS Mutant rFIX proteins with described enhanced (rFIXK5R) or reduced (rFIXK5A) binding to extracellular matrix were generated and characterized using in vitro aPTT, one-stage clotting, and modified FX assays. Using hemophilia B mice, pharmacokinetic (PK) parameters and in vivo efficacy of these proteins were compared against rFIX wild-type protein (rFIXWT) in a tail clip bleeding and FeCl3-induced thrombosis model. Respective tissue disposition of FIX was evaluated using immunofluorescence. RESULTS In vitro characterization demonstrated comparable clotting activity of rFIX proteins. The PK profile showed that rFIXK5A displayed the highest plasma exposure compared to rFIXWT and rFIXK5R. Immunofluorescence evaluation of liver tissue showed that rFIXK5R was detectable up to 24 hours, whereas rFIXWT and rFIXK5A were detectable only up to 15 minutes. In the tail clip bleeding model, rFIXK5R displayed significant hemostatic protection against bleeding incidence for up to 72 hours postintravenous administration of 50 IU/kg, whereas the efficacy of rFIXK5A was already reduced at 24 hours. Similarly, in the mesenteric artery thrombus model, rFIXK5R and rFIXWT demonstrated prolonged efficacy compared to rFIXK5A. CONCLUSION Using two different in vivo models of hemostasis and thrombosis, we demonstrate that mutated rFIX protein with enhanced binding (rFIXK5R) to extravascular space confers prolonged hemostatic efficacy in vivo despite lower plasma exposure, whereas rFIXK5A rapidly lost its efficacy despite higher plasma exposure.
Collapse
Affiliation(s)
| | | | | | | | | | - Holger Lind
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Eva Herzog
- CSL Behring LLC, King of Prussia, Pennsylvania, United States
| | - Michael Bacher
- Institute of Immunology—Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Tardy B, Lambert T, Chamouni P, Montmartin A, Trossaert M, Claeyssens S, Berger C, Ardillon L, Gay V, Delavenne X, Harroche A, Chelle P. Revised terminal half-life of nonacog alfa as derived from extended sampling data: A real-world study involving 64 haemophilia B patients on nonacog alfa regular prophylaxis. Haemophilia 2022; 28:542-547. [PMID: 35420242 DOI: 10.1111/hae.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Nonacog alfa, a standard half-life recombinant factor IX (FIX), is used as a prophylactic treatment in severe haemophilia B (SHB) patients. Its half-life determined in clinical studies involving a limited sampling (72 h) was shown to be rather short. In our clinical practice, we suspected that its half-life could have been underestimated. OBJECTIVES We aimed to evaluate nonacog alfa pharmacokinetics in real world clinical practice based on FIX levels in patients receiving prophylaxis. METHODS We retrospectively collected data on patients with SHB receiving prophylaxis from eight centres across France. The terminal half-life (THL), time to reach 5-2 IU/dl and FIX activity at 48, 72 and 96 h were derived by Bayesian estimations using NONMEM analysis. RESULTS AND CONCLUSIONS Infusion data (n = 455) were collected from 64 patients with SHB. The median THL measured in 92 pharmacokinetic (PK) studies was 43.4 h. In 26 patients ≤12 years of age, 51 PK studies showed a median time to reach 5 IU/dl of FIX of 70.5 h and a median time to reach 2 IU/dl of 121.5 h. In 38 patients 13-75 years of age, 41 PK studies showed a median time to reach 5 IU/dl of FIX of 92.0 h and a median time to reach 2 IU/dl of 167.5 h. Extending the sampling beyond 72 h makes it possible to observe a plateau, with FIX remaining between 2 and 5 IU/dl for several days and shows that the THL of nonacog alfa might be longer than previously described. ESSENTIALS Nonacog alfa terminal half-life (THL) in patients receiving regular prophylaxis was evaluated in clinical practice. The median THL was estimated to be 36.9 h for patients aged .8-12 years. The median THL was estimated to be 49.9 h for patients aged 13-75 years. For patients aged ≤12 and >12 years, the median times to reach 5 IU/dl were 70.5 and 92 h, respectively; to reach 3 IU/dl, 95.5 and 131.5 h, respectively; to reach 2 IU/dl, 121.5 and 167.5 h, respectively. We suggest that the half-life of nonacog alfa might be longer than previously described in both younger and older patients.
Collapse
Affiliation(s)
- Brigitte Tardy
- Centre de Ressources et de Compétence Maladies hémorragiques, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne, France.,Sainbiose, Inserm, U1059, Université Lyon, Saint-Etienne, France.,Inserm, CIC 1408, CHU Saint-Etienne Hôpital Nord, Saint-Etienne, France
| | - Thierry Lambert
- Centre de Référence Maladies hémorragiques CHU Paris Sud-Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Pierre Chamouni
- Laboratoire d'Hématologie, Institut de Biologie Clinique, CHU de Rouen, Rouen, France
| | | | - Marc Trossaert
- Centre de Ressources et de Compétence Maladies hémorragiques, CHU de Nantes, Nantes, France
| | - Ségolène Claeyssens
- Centre de Ressources et de Compétence Maladies hémorragiques, CHU Toulouse-Hôpital Purpan, Toulouse, France
| | - Claire Berger
- Centre de Ressources et de Compétence Maladies hémorragiques, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne, France
| | - Laurent Ardillon
- Centre de Ressources et de Compétence Maladies hémorragiques, CHU Tours-Hôpital Trousseau, Tours, France
| | - Valérie Gay
- Centre de Ressources et de Compétence Maladies hémorragiques, Centre hospitalier Métropole Savoie, Chambéry, France
| | - Xavier Delavenne
- Sainbiose, Inserm, U1059, Université Lyon, Saint-Etienne, France
| | - Annie Harroche
- Centre de Référence Maladies hémorragiques, Hôpital Necker Enfants-Malades, Université Paris Descartes, Paris, France
| | - Pierre Chelle
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
7
|
Abstract
The biology of factor IX deficiency leading to hemophilia B has important distinctions from factor VIII deficiency that leads to hemophilia A. In this article, the authors explore the unique biology of factor IX in hemostasis, including the importance of FIX distribution to the extravascular space and the implications on dosing of factor concentrates. The authors review basic treatment principles of hemophilia B, including extended half-life products, and highlight areas of ongoing therapeutic innovation for hemophilia B prophylaxis.
Collapse
|
8
|
von Willebrand factor binding to myosin assists in coagulation. Blood Adv 2021; 4:174-180. [PMID: 31935285 DOI: 10.1182/bloodadvances.2019000533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
von Willebrand factor (VWF) binds to platelets and collagen as a means of facilitating coagulation at sites of injury. Recent evidence has shown that myosin can serve as a surface for thrombin generation and binds to activated factor V and factor X. We studied whether VWF can also bind myosin as a means of bringing factor VIII (FVIII) to sites of clot formation. A myosin-binding assay was developed using skeletal muscle myosin to measure VWF binding, and plasma-derived and recombinant VWF containing molecular disruptions at key VWF sites were tested. Competition assays were performed using anti-VWF antibodies. FVIII binding to myosin was measured using a chromogenic FVIII substrate. Thrombin generation was measured using a fluorogenic substrate with and without myosin. Wild-type recombinant VWF and human plasma VWF from healthy controls bound myosin, whereas plasma lacking VWF exhibited no detectable myosin binding. Binding was multimer dependent and blocked by anti-VWF A1 domain antibodies or A1 domain VWF variants. The specific residues involved in myosin binding were similar, but not identical, to those required for collagen IV binding. FVIII did not bind myosin directly, but FVIII activity was detected when VWF and FVIII were bound to myosin. Myosin enhanced thrombin generation in platelet-poor plasma, although no difference was detected with the addition of myosin to platelet-rich plasma. Myosin may help to facilitate delivery of FVIII to sites of injury and indirectly accelerate thrombin generation by providing a surface for VWF binding in the setting of trauma and myosin exposure.
Collapse
|
9
|
Sidonio RF, Batsuli G. Plasma factor IX: The tip of the iceberg? Haemophilia 2021; 27:329-331. [PMID: 33964097 DOI: 10.1111/hae.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Robert F Sidonio
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Glaivy Batsuli
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Mann DM, Stafford KA, Poon MC, Matino D, Stafford DW. The Function of extravascular coagulation factor IX in haemostasis. Haemophilia 2021; 27:332-339. [PMID: 33780107 DOI: 10.1111/hae.14300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The majority of clotting factor IX (FIX) resides extravascularly, in the subendothelial basement membrane, where it is important for haemostasis. AIM We summarize preclinical studies demonstrating extravascular FIX and its role in haemostasis and discuss clinical observations supporting this. We compare the in vivo binding of BeneFIX® and the extended half-life FIX, Alprolix® , to extravascular type IV collagen (Col4). METHODS Three mouse models of haemophilia were used: the FIX knockout as the CRM- model and two knock-in mice, representing a CRM+ model of a commonly occurring patient mutation (FIXR333Q ) or a mutation that binds poorly to Col4 (FIXK5A ). The murine saphenous vein bleeding model was used to assess haemostatic competency. Clinical publications were reviewed for relevance to extravascular FIX. RESULTS CRM status affects recovery and prophylactic efficacy. Prophylactic protection decreases ~5X faster in CRM+ animals. Extravascular haemostasis can explain unexpected breakthrough bleeding in patients treated with some EHL-FIX therapeutics. In mice, both Alprolix® and BeneFIX® bind Col4 with similar affinities (Kd~20-40 nM) and show dose-dependent recoveries. As expected, the concentration of binding sites in the mouse calculated for Alprolix® (574 nM) was greater than for BeneFIX® (405 nM), due to Alprolix® binding to both Col4 and the endothelial cell neonatal Fc receptor. CONCLUSION Preclinical and clinical results support the interpretation that FIX plays a role in haemostasis from its extravascular location. We believe that knowing the CRM status of haemophilia B patients is important for optimizing prophylactic dosing with less trial and error, thereby decreasing clinical morbidity.
Collapse
Affiliation(s)
| | | | - Man-Chiu Poon
- University of Calgary Foothills Medical Center, Calgary, AB, Canada
| | - Davide Matino
- McMaster University Medical Center, Hamilton, ON, Canada
| | | |
Collapse
|
11
|
Lillicrap D. Evaluating the potential benefits of the extravascular pool of factor IX. Blood Coagul Fibrinolysis 2021; 32:68-69. [PMID: 33170819 PMCID: PMC7810412 DOI: 10.1097/mbc.0000000000000969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 11/26/2022]
Affiliation(s)
- David Lillicrap
- Richardson Laboratory, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Herrmann S, Doerr B, May F, Kuehnemuth B, Cherpokova D, Herzog E, Dickneite G, Nolte MW. Tissue distribution of rIX-FP after intravenous application to rodents. J Thromb Haemost 2020; 18:3194-3202. [PMID: 32810892 DOI: 10.1111/jth.15069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hemophilia B is caused by coagulation factor IX (FIX) deficiency. Recombinant fusion protein linking coagulation FIX with recombinant albumin (rIX-FP; Idelvion® ) is used for replacement therapy with an extended half-life. A previous quantitative whole-body autoradiography (QWBA) study investigating the biodistribution of rIX-FP indicated equal biodistribution, but more prolonged tissue retention compared with a marketed recombinant FIX product. OBJECTIVES To complete and confirm the QWBA study data by directly measuring rIX-FP protein and activity levels in tissues following intravenous (i.v.) administration to normal rats and FIX-deficient (hemophilia B) mice. METHODS After i.v. administration of rIX-FP at a dose of 2000 IU/kg, animals were euthanized at specific time points up to 72 hours postdosing. Subsequently, plasma and various tissues, which were selected based on the previous QWBA results, were harvested and analyzed for FIX antigen levels using an ELISA (both species) or an immunohistochemistry method (mice only), as well as for FIX activity levels (mice only) using a chromogenic assay. RESULTS In rats, rIX-FP distributed extravascularly into all tissues analyzed (ie, liver, kidney, skin and knee) with peak antigen levels reached between 1 and 7 hours postdosing. In hemophilia B mice, rIX-FP tissue distribution was comparable to rats. FIX antigen levels correlated well with FIX activity readouts. CONCLUSIONS Our results confirm QWBA data showing that rIX-FP distributes into relevant target tissues. Importantly, it was demonstrated that rIX-FP available in tissues retains its functional activity and can thus facilitate its therapeutic activity at sites of potential injury.
Collapse
Affiliation(s)
| | - Baerbel Doerr
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | - Frauke May
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | | | | | - Eva Herzog
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | | | - Marc W Nolte
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| |
Collapse
|
13
|
Pasi KJ, Fischer K, Ragni M, Kulkarni R, Ozelo MC, Mahlangu J, Shapiro A, P'Ng S, Chambost H, Nolan B, Bennett C, Matsushita T, Winding B, Fruebis J, Yuan H, Rudin D, Oldenburg J. Long-term safety and sustained efficacy for up to 5 years of treatment with recombinant factor IX Fc fusion protein in subjects with haemophilia B: Results from the B-YOND extension study. Haemophilia 2020; 26:e262-e271. [PMID: 32497409 DOI: 10.1111/hae.14036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/07/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Recombinant factor IX Fc fusion protein (rFIXFc) has demonstrated efficacy for treatment of haemophilia B in the Phase 3 B-LONG and Kids B-LONG studies. However, long-term rFIXFc safety and efficacy data have not yet been reported. AIM To report long-term rFIXFc safety and efficacy in subjects with haemophilia B. METHODS B-YOND (NCT01425723) was an open-label extension for eligibl previously treated subjects who completed B-LONG or Kids B-LONG. Subjects received ≥1 treatment regimen: weekly prophylaxis (WP), individualized interval prophylaxis (IP), modified prophylaxis or episodic treatment. Subjects could switch regimens at any time. The primary endpoint was inhibitor development. RESULTS Ninety-three subjects from B-LONG and 27 from Kids B-LONG (aged 3-63 years) were enrolled. Most subjects received WP (B-LONG: n = 51; Kids B-LONG: n = 23). For subjects from B-LONG, median (range) treatment duration was 4.0 (0.3-5.4) years and median (range) number of exposure days (EDs) was 146 (8-462) EDs. Corresponding values for paediatric subjects were 2.6 (0.2-3.9) years and 132 (50-256) EDs. No inhibitors were observed (0 per 1000 subject-years; 95% confidence interval, 0-8.9) and the overall rFIXFc safety profile was consistent with prior studies. Annualized bleed rates remained low and extended-dosing intervals were maintained for most subjects. Median dosing interval for the IP group was approximately 14 days for adults and adolescents (n = 31) and 10 days for paediatric subjects (n = 5). CONCLUSIONS B-YOND results confirm the long-term (up to 5 years, with cumulative duration up to 6.5 years) well-characterized safety and efficacy of rFIXFc treatment for haemophilia B.
Collapse
Affiliation(s)
- K John Pasi
- Royal London Haemophilia Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Margaret Ragni
- Hemophilia Center of Western Pennsylvania, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Johnny Mahlangu
- Haemophilia Comprehensive Care Centre, Faculty of Health Sciences, University of the Witwatersrand, and Charlotte Maxeke Johannesburg Academic Hospital and National Health Laboratory Service, Johannesburg, South Africa
| | - Amy Shapiro
- Indiana Hemophilia & Thrombosis Center, Inc., Indianapolis, IN, USA
| | - Stephanie P'Ng
- The Haemophilia and Haemostasis Centre, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Hervé Chambost
- Children's Hospital La Timone, and Aix Marseille University, INSERM, INRA, C2VN, Marseille, France
| | | | - Carolyn Bennett
- Emory University School of Medicine, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA, USA
| | | | | | | | | | - Dan Rudin
- Bioverativ, a Sanofi company, Waltham, MA, USA
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
14
|
Sommer JM, Sadeghi-Khomami A, Barnowski C, Wikén M, Willemze AJ. Real-world assay variability between laboratories in monitoring of recombinant factor IX Fc fusion protein activity in plasma samples. Int J Lab Hematol 2020; 42:350-358. [PMID: 32202380 PMCID: PMC7318191 DOI: 10.1111/ijlh.13189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Introduction Monitoring of factor IX (FIX) replacement therapy in haemophilia B relies on accurate coagulation assays. However, considerable interlaboratory variability has been reported for one‐stage clotting (OSC) assays. This study aimed to evaluate the real‐world, interlaboratory variability of routine FIX activity assays used in clinical haemostasis laboratories for the measurement of recombinant FIX Fc fusion protein (rFIXFc) activity. Methods Human FIX‐depleted plasma was spiked with rFIXFc at 0.80, 0.20 or 0.05 IU/mL based on label potency. Participating laboratories tested samples using their own routine OSC or chromogenic substrate (CS) assay protocols, reagents and FIX plasma standards. Laboratories could perform more than one measurement and method, and were not fully blinded to nominal activity values. Results A total of 142 laboratories contributed OSC results from 175 sample kits using 11 different activated partial thromboplastin time (aPTT) reagents. The median recovered FIX activity for the 0.80, 0.20 and 0.05 IU/mL samples was 0.72 IU/mL, 0.21 IU/mL and 0.060 IU/mL, respectively. Across all OSC reagents, interlaboratory variability (% CV) per aPTT reagent ranged from 9.4% to 32.1%, 8.2% to 32.6% and 12.2% to 42.0% at the 0.80, 0.20 and 0.05 IU/mL levels, respectively. CS results showed excellent median recoveries at all nominal levels (87.5% to 115.0%; n = 11) with low interlaboratory variability (CV 3.6% to 15.4%). Conclusion This large, real‐world data set indicates that rFIXFc activity in plasma samples can be accurately measured with the majority of routine OSC and CS assay methods. Given the variation in FIX assay procedures between sites, it is important that individual laboratories qualify their in‐house methods for monitoring of rFIXFc activity.
Collapse
|
15
|
Malec LM, Croteau SE, Callaghan MU, Sidonio RF. Spontaneous bleeding and poor bleeding response with extended half-life factor IX products: A survey of select US haemophilia treatment centres. Haemophilia 2020; 26:e128-e129. [PMID: 32142196 DOI: 10.1111/hae.13943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Lynn M Malec
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
16
|
Absence of functional compensation between coagulation factor VIII and plasminogen in double-knockout mice. Blood Adv 2019; 2:3126-3136. [PMID: 30459211 DOI: 10.1182/bloodadvances.2018024851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Plasminogen deficiency is associated with severely compromised fibrinolysis and extravascular deposition of fibrin. In contrast, coagulation factor VIII (FVIII) deficiency leads to prolonged and excessive bleeding. Based on opposing biological functions of plasminogen and FVIII deficiencies, we hypothesized that genetic elimination of FVIII would alleviate the systemic formation of fibrin deposits associated with plasminogen deficiency and, in turn, elimination of plasminogen would limit bleeding symptoms associated with FVIII deficiency. Mice with single and combined deficiencies of FVIII (F8-/-) and plasminogen (Plg-/-) were evaluated for phenotypic characteristics of plasminogen deficiency, including wasting disease, shortened lifespan, rectal prolapse, and multiorgan fibrin deposition. Conversely, to specifically examine the role of plasmin-mediated fibrinolysis on bleeding caused by FVIII deficiency, F8-/- and F8-/-/Plg-/- mice were subjected to a bleeding challenge. Mice with a combined deficiency in FVIII and plasminogen displayed no phenotypic differences relative to mice with single FVIII or plasminogen deficiency. Plg-/- and F8-/-/Plg-/- mice exhibited the same penetrance and severity of wasting disease, rectal prolapse, extravascular fibrin deposits, and reduced viability. Furthermore, following a tail vein-bleeding challenge, no significant differences in bleeding times or total blood loss could be detected between F8-/- and F8-/-/Plg-/- mice. Moreover, F8-/- and F8-/-/Plg-/- mice responded similarly to recombinant FVIII (rFVIII) therapy. In summary, the pathological phenotype of Plg-/- mice developed independently of FVIII-dependent coagulation, and elimination of plasmin-driven fibrinolysis did not play a significant role in a nonmucosal bleeding model in hemophilia A mice.
Collapse
|
17
|
Mohammed BM, Cheng Q, Matafonov A, Verhamme IM, Emsley J, McCrae KR, McCarty OJT, Gruber A, Gailani D. A non-circulating pool of factor XI associated with glycosaminoglycans in mice. J Thromb Haemost 2019; 17:1449-1460. [PMID: 31125187 PMCID: PMC6768408 DOI: 10.1111/jth.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The homologous plasma proteins prekallikrein and factor XI (FXI) circulate as complexes with high molecular weight kininogen. Although evidence supports an interaction between the prekallikrein-kininogen complexes and vascular endothelium, there is conflicting information regarding FXI binding to endothelium. OBJECTIVE To study the interaction between FXI and blood vessels in mice. METHODS C57Bl/6 wild-type or F11-/- mice in which variants of FXI were expressed by hydrodynamic tail vein injection, received intravenous infusions of saline, heparin, polyphosphates, protamine, or enzymes that digest glycosaminoglycans (GAGs). Blood was collected after infusion and plasma was analyzed by western blot for FXI. RESULTS AND CONCLUSIONS Plasma FXI increased 5- to 10-fold in wild-type mice after infusion of heparin, polyphosphates, protamine, or GAG-digesting enzymes, but not saline. Similar treatments resulted in a much smaller change in plasma FXI levels in rats, and infusions of large boluses of heparin did not change FXI levels appreciably in baboons or humans. The releasable FXI fraction was reconstituted in F11-/- mice by expressing murine FXI, but not human FXI. We identified a cluster of basic residues on the apple 4 domain of mouse FXI that is not present in other species. Replacing the basic residues with alanine prevented the interaction of mouse FXI with blood vessels, whereas introducing the basic residues into human FXI allowed it to bind to blood vessels. Most FXI in mice is noncovalently associated with GAGs on blood vessel endothelium and does not circulate in plasma.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
- Department of Clinical Pharmacy, School of Pharmacy, Cairo University, Cairo, Egypt
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Anton Matafonov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Ingrid M. Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jonas Emsley
- Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Keith R. McCrae
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Division of Hematology/ Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Andras Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Division of Hematology/ Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Castaman G, Matino D. Hemophilia A and B: molecular and clinical similarities and differences. Haematologica 2019; 104:1702-1709. [PMID: 31399527 PMCID: PMC6717582 DOI: 10.3324/haematol.2019.221093] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Davide Matino
- Department of Medicine, McMaster University and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Tjärnlund‐Wolf A, Lassila R. Phenotypic characterization of haemophilia B – Understanding the underlying biology of coagulation factor IX. Haemophilia 2019; 25:567-574. [DOI: 10.1111/hae.13804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Tjärnlund‐Wolf
- CSL Behring AB Danderyd Sweden
- Institute of Neuroscience and Physiology The Sahlgrenska Academy at University of Gothenburg Gothenburg Sweden
| | - Riitta Lassila
- Coagulation Disorders Unit, EHCCC, Hematology and Comprehensive Cancer Center and HUSLAB Helsinki University Hospital University of Helsinki, Research Program Unit in Systems Oncology Helsinki Finland
| |
Collapse
|
20
|
Dysfunctional endogenous FIX impairs prophylaxis in a mouse hemophilia B model. Blood 2019; 133:2445-2451. [PMID: 30992271 DOI: 10.1182/blood.2018884015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Factor IX (FIX) binds to collagen IV (Col4) in the subendothelial basement membrane. In hemophilia B, this FIX-Col4 interaction reduces the plasma recovery of infused FIX and plays a role in hemostasis. Studies examining the recovery of infused BeneFix (FIXWT) in null (cross-reactive material negative, CRM-) hemophilia B mice suggest the concentration of Col4 readily available for binding FIX is ∼405 nM with a 95% confidence interval of 374 to 436 nM. Thus, the vascular cache of FIX bound to Col4 is several-fold the FIX level measured in plasma. In a mouse model of prophylactic therapy (testing hemostasis by saphenous vein bleeding 7 days after infusion of 150 IU/kg FIX), FIXWT and the increased half-life FIXs Alprolix (FIXFC) and Idelvion (FIXAlb) produce comparable hemostatic results in CRM- mice. In bleeding CRM- hemophilia B mice, the times to first clot at a saphenous vein injury site after the infusions of the FIX agents are significantly different, at FIXWT < FIXFC < FIXAlb Dysfunctional forms of FIX, however, circulate in the majority of patients with hemophilia B (CRM+). In the mouse prophylactic therapy model, none of the FIX products improves hemostasis in CRM+ mice expressing a dysfunctional FIX, FIXR333Q, that nevertheless competes with infused FIX for Col4 binding and potentially other processes involving FIX. The results in this mouse model of CRM+ hemophilia B demonstrate that the endogenous expression of a dysfunctional FIX can deleteriously affect the hemostatic response to prophylactic therapy.
Collapse
|
21
|
Slobodianuk TL, Kochelek C, Foeckler J, Kalloway S, Weiler H, Flood VH. Defective collagen binding and increased bleeding in a murine model of von Willebrand disease affecting collagen IV binding. J Thromb Haemost 2019; 17:63-71. [PMID: 30565388 PMCID: PMC6743498 DOI: 10.1111/jth.14341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/02/2018] [Indexed: 02/05/2023]
Abstract
Essentials Defective binding to collagen IV has been seen in von Willebrand factor (VWF) A1 domain variants. We developed a murine model of defective VWF-collagen IV interactions with VWF variant p.R1399H. p.1399HH homozygous mice had decreased binding to collagen IV and increased bleeding times. p.1399HH homozygous mice had increased time to thrombosis and decreased platelet adhesion. SUMMARY: Background von Willebrand factor (VWF) binding to type IV collagen occurs via the VWF A1 domain, with p.R1399H being the most common VWF variant affecting this interaction. Objectives We generated a murine model of 1399H VWF to investigate its in vivo effects. Methods Mice expressing the murine 1399H variant were generated via gene targeting in embryonic stem cells. VWF antigen and VWF collagen binding were measured with ELISA. Tail bleeding time assays were performed by clipping a 3-mm segment. Ferric chloride-induced thrombosis was measured via ultrasound in the carotid artery. Platelet aggregation in response to collagens I and IV was measured. VWF-dependent platelet adhesion to collagen IV was measured under flow. Results Breeding of heterozygous p.R1399H and homozygous p.1399HH mice was observed to follow normal Mendelian ratios. No spontaneous bleeding was observed for any of the offspring. VWF expression was normal, but VWF binding to collagen IV was decreased in both heterozygous and homozygous offspring. Blood loss following tail resection was increased for p.1399HH mice, and occlusion times following ferric chloride-induced thrombosis were prolonged. Platelet aggregation was unaffected, but platelet adhesion to collagen IV under flow was diminished for p.1399HH mice. Conclusions These results show that a decrease in the ability of 1399H VWF to bind collagen IV under static conditions corresponds to a decrease in binding under flow conditions, an increased bleeding time, and a prolonged time to thrombosis. This study supports the potential for a bleeding phenotype in patients with aberrant VWF-collagen IV binding.
Collapse
Affiliation(s)
- Tricia L. Slobodianuk
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
| | - Caroline Kochelek
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
| | - Jamie Foeckler
- Transgenic Core, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Shawn Kalloway
- Transgenic Core, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
| | - Veronica H. Flood
- Blood Research Institute, BloodCenter of Wisconsin, 8727 Watertown Plank Rd, Milwaukee, WI 53226
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, WI 53226
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
22
|
Dolan G, Benson G, Duffy A, Hermans C, Jiménez-Yuste V, Lambert T, Ljung R, Morfini M, Zupančić Šalek S. Haemophilia B: Where are we now and what does the future hold? Blood Rev 2018; 32:52-60. [DOI: 10.1016/j.blre.2017.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
23
|
Mohammed BM, Matafonov A, Ivanov I, Sun MF, Cheng Q, Dickeson SK, Li C, Sun D, Verhamme IM, Emsley J, Gailani D. An update on factor XI structure and function. Thromb Res 2018; 161:94-105. [PMID: 29223926 PMCID: PMC5776729 DOI: 10.1016/j.thromres.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Factor XI (FXI) is the zymogen of a plasma protease, factor XIa (FXIa), that contributes to thrombin generation during blood coagulation by proteolytic activation of several coagulation factors, most notably factor IX (FIX). FXI is a homolog of prekallikrein (PK), a component of the plasma kallikrein-kinin system. While sharing structural and functional features with PK, FXI has undergone adaptive changes that allow it to contribute to blood coagulation. Here we review current understanding of the biology and enzymology of FXI, with an emphasis on structural features of the protein as they relate to protease function.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; School of Pharmacy, Department of Clinical Pharmacy, Cairo University, Cairo, Egypt
| | - Anton Matafonov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan Ivanov
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mao-Fu Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Kent Dickeson
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chan Li
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Sun
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ingrid M Verhamme
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonas Emsley
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - David Gailani
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
24
|
Hou Y, Zhou H, Wang Y, Marshall A, Liang C, Dai X, Li BX, Vanhoorelbeke K, Lei X, Reheman A, Ni H. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost 2017; 111:279-89. [DOI: 10.1160/th13-06-0490] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/25/2013] [Indexed: 01/01/2023]
Abstract
SummaryPlatelet adhesion and aggregation at the sites of vascular injury are key events for thrombosis and haemostasis. It has been well demonstrated that interaction between glycoprotein (GP) Ib and von Willebrand factor (VWF) initiates platelet adhesion and contributes to platelet aggregation, particularly at high shear. GPIb has long been suggested as a desirable antithrombotic target, but anti-GPIb therapy has never been successfully developed. Here, we evaluated the antithrombotic potential of Anfibatide, a novel snake venom-derived GPIb antagonist. We found Anfibatide inhibited washed murine platelet aggregation induced by ristocetin and recombinant murine VWF. It also blocked botrocetin-induced binding of murine plasma VWF to recombinant human GPIb . Interestingly, Anfibatide did not inhibit botrocetin- induced aggregation of platelet-rich plasma, indicating that its binding site may differ from other snake venom-derived GPIb antagonists. Anfibatide strongly inhibited platelet adhesion, aggregation, and thrombus formation in perfusion chambers at high shear conditions and efficiently dissolved preformed thrombi. Anfibatide also inhibited thrombus growth at low shear conditions, though less than at high shear. Using intravital microscopy, we found that Anfibatide markedly inhibited thrombosis in laser-injured cremaster vessels and prevented vessel occlusion in FeCl3-injured mesenteric vessels. Importantly, Anfibatide further inhibited residual thrombosis in VWF-deficient mice, suggesting that Anfibatide has additional antithrombotic effect beyond its inhibitory role in GPIb-VWF interaction. Anfibatide did not significantly cause platelet activation, prolong tail bleeding time, or cause bleeding diathesis in mice. Thus, consistent with the data from an ongoing clinical trial, the data from this study suggests that Anfibatide is a potent and safe antithrombotic agent.
Collapse
|
25
|
Djambas Khayat C. Once-weekly prophylactic dosing of recombinant factor IX improves adherence in hemophilia B. J Blood Med 2016; 7:275-282. [PMID: 27942241 PMCID: PMC5138045 DOI: 10.2147/jbm.s84597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Regular prophylactic treatment in severe hemophilia should be considered an optimal treatment. There is no general agreement on the optimal prophylaxis regimen, and adherence to prophylaxis is a main challenge due to medical, psychosocial, and cost controversies. Improved approaches in prophylaxis regimen of hemophilia B are needed to make patients’ lives easier. There is some evidence to support the efficacy of once-weekly prophylaxis. Longer sampling schedules are required for the determination of pharmacokinetic (PK) properties of factor IX (FIX). The half-life of FIX seems to be longer than previously described and is expected to be 34 hours. The clinical significance of maintaining a 1% trough level is widely debated in hemophilia B. The overall relationship between factor concentrate levels and incidence of joint bleeding was found to be very weak. Data also indicate that the distribution of FIX into an extravascular FIX compartment may contribute to hemostasis independently of circulating plasma FIX levels. Clinical assessment of the frequency and severity of bleeds remain an important measure of the efficacy of treatment. Role of PK-guided therapy remains to be established. Two prospective randomized studies had evaluated the efficacy and safety of 100 IU/kg once-weekly prophylaxis with nonacog alfa, and this prophylaxis regimen was found to be associated with lower annual bleeding rate compared with on-demand treatment in adolescents and adults with moderately severe-to-severe hemophilia B. Secondary prophylaxis therapy with 100 IU/kg nonacog alfa once weekly reduced annual bleeding rate by 89.4% relative to on-demand treatment. Residual FIX may be supportive of effectiveness. Once-weekly prophylaxis was well tolerated in the two studies, with a safety profile similar to that reported during the on-demand treatment period. To individually tailor treatment to clinical response and to minimize costs of factor concentrate, it would be of interest to investigate the efficacy of lower doses of the drug administered once a week.
Collapse
|
26
|
Abstract
This review summarizes the evidence that collagen IV binding is physiologically important, and that the extravascular compartment of FIX is composed of type IV collagen. As we have previously demonstrated, 7 days post-infusion, FIXWT (BeneFIX) is able to control bleeding as well as the same dosage of Alprolix in hemophilia B mice, tested using the saphenous vein bleeding model (Alprolix is a chimeric FIX molecule joined at its C terminus to a Fc domain). Furthermore, we have shown that in hemophilia B mice, doses of BeneFIX or Alprolix (up to a dose of 150 IU/kg) have increased bleeding-control effectiveness in proportion to the dose up to a certain limit: higher doses are no more effective than the 150 IU/kg dose. These studies suggest that in hemophilia B mice, tested using the saphenous vein bleeding model, three things are true: first, extravascular FIX is at least as important for coagulation as is circulating FIX; second, measuring circulating levels of FIX may not be the best criterion for designing new “longer lasting” FIX molecules; and third, trough levels are less diagnostic for FIX therapy than they are for FVIII therapy.
Collapse
Affiliation(s)
- Darrel W Stafford
- Biology and Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 USA
| |
Collapse
|
27
|
Abstract
Hemophilia is the most well-known hereditary bleeding disorder, with an incidence of one in every 5000 to 30,000 males worldwide. The disease is treated by infusion of protein products on demand and as prophylaxis. Although these therapies have been very successful, some challenging and unresolved tasks remain, such as reducing bleeding rates, presence of target joints and/or established joint damage, eliminating the development of inhibitors, and increasing the success rate of immune-tolerance induction (ITI). Many preclinical trials are carried out on animal models for hemophilia generated by the hemophilia research community, which in turn enable prospective clinical trials aiming to tackle these challenges. Suitable animal models are needed for greater advances in treating hemophilia, such as the development of better models for evaluation of the efficacy and safety of long-acting products, more powerful gene therapy vectors than are currently available, and successful ITI strategies. Mice, dogs, and pigs are the most commonly used animal models for hemophilia. With the advent of the nuclease method for genome editing, namely the CRISPR/Cas9 system, it is now possible to create animal models for hemophilia other than mice in a short period of time. This review presents currently available animal models for hemophilia, and discusses the importance of animal models for the development of better treatment options for hemophilia.
Collapse
Affiliation(s)
- Ching-Tzu Yen
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ni Fan
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan ; Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Chou
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan ; Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan ; Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
28
|
DeRosa F, Guild B, Karve S, Smith L, Love K, Dorkin JR, Kauffman KJ, Zhang J, Yahalom B, Anderson DG, Heartlein MW. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther 2016; 23:699-707. [PMID: 27356951 PMCID: PMC5059749 DOI: 10.1038/gt.2016.46] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
DNA-based gene therapy has considerable therapeutic potential, but the challenges associated with delivery continue to limit progress. Messenger RNA (mRNA) has the potential to provide for transient production of therapeutic proteins, without the need for nuclear delivery and without the risk of insertional mutagenesis. Here we describe the sustained delivery of therapeutic proteins in vivo in both rodents and non-human primates via nanoparticle-formulated mRNA. Nanoparticles formulated with lipids and lipid-like materials were developed for delivery of two separate mRNA transcripts encoding either human erythropoietin (hEPO) or factor IX (hFIX) protein. Dose-dependent protein production was observed for each mRNA construct. Upon delivery of hEPO mRNA in mice, serum EPO protein levels reached several orders of magnitude (>125 000-fold) over normal physiological values. Further, an increase in hematocrit (Hct) was established, demonstrating that the exogenous mRNA-derived protein maintained normal activity. The capacity of producing EPO in non-human primates via delivery of formulated mRNA was also demonstrated as elevated EPO protein levels were observed over a 72-h time course. Exemplifying the possible broad utility of mRNA drugs, therapeutically relevant amounts of human FIX (hFIX) protein were achieved upon a single intravenous dose of hFIX mRNA-loaded lipid nanoparticles in mice. In addition, therapeutic value was established within a hemophilia B (FIX knockout (KO)) mouse model by demonstrating a marked reduction in Hct loss following injury (incision) to FIX KO mice.
Collapse
Affiliation(s)
- F DeRosa
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Guild
- Shire Pharmaceuticals, Lexington, MA, USA
| | - S Karve
- Shire Pharmaceuticals, Lexington, MA, USA
| | - L Smith
- Shire Pharmaceuticals, Lexington, MA, USA
| | - K Love
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Dorkin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Zhang
- Shire Pharmaceuticals, Lexington, MA, USA
| | - B Yahalom
- Biomedical Research Models, Inc., Worcester, MA, USA
| | - D G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
29
|
Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 2016; 53:409-30. [PMID: 27282765 DOI: 10.1080/10408363.2016.1200008] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelets are small anucleate blood cells generated from megakaryocytes in the bone marrow and cleared in the reticuloendothelial system. At the site of vascular injury, platelet adhesion, activation and aggregation constitute the first wave of hemostasis. Blood coagulation, which is initiated by the intrinsic or extrinsic coagulation cascades, is the second wave of hemostasis. Activated platelets can also provide negatively-charged surfaces that harbor coagulation factors and markedly potentiate cell-based thrombin generation. Recently, deposition of plasma fibronectin, and likely other plasma proteins, onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that may occur even earlier than the first wave of hemostasis, platelet accumulation. Although no experimental evidence currently exists, it is conceivable that platelets may also contribute to this protein wave of hemostasis by releasing their granule fibronectin and other proteins that may facilitate fibronectin self- and non-self-assembly on the vessel wall. Thus, platelets may contribute to all three waves of hemostasis and are central players in this critical physiological process to prevent bleeding. Low platelet counts in blood caused by enhanced platelet clearance and/or impaired platelet production are usually associated with hemorrhage. Auto- and allo-immune thrombocytopenias such as idiopathic thrombocytopenic purpura and fetal and neonatal alloimmune thrombocytopenia may cause life-threatening bleeding such as intracranial hemorrhage. When triggered under pathological conditions such as rupture of an atherosclerotic plaque, excessive platelet activation and aggregation may result in thrombosis and vessel occlusion. This may lead to myocardial infarction or ischemic stroke, the major causes of mortality and morbidity worldwide. Platelets are also involved in deep vein thrombosis and thromboembolism, another leading cause of mortality. Although fibrinogen has been documented for more than half a century as essential for platelet aggregation, recent studies demonstrated that fibrinogen-independent platelet aggregation occurs in both gene deficient animals and human patients under physiological and pathological conditions (non-anti-coagulated blood). This indicates that other unidentified platelet ligands may play important roles in thrombosis and might be novel antithrombotic targets. In addition to their critical roles in hemostasis and thrombosis, emerging evidence indicates that platelets are versatile cells involved in many other pathophysiological processes such as innate and adaptive immune responses, atherosclerosis, angiogenesis, lymphatic vessel development, liver regeneration and tumor metastasis. This review summarizes the current knowledge of platelet biology, highlights recent advances in the understanding of platelet production and clearance, molecular and cellular events of thrombosis and hemostasis, and introduces the emerging roles of platelets in the immune system, vascular biology and tumorigenesis. The clinical implications of these basic science and translational research findings will also be discussed.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Dan Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,c Department of Medicine , Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , P.R. China
| | - Brigitta Elaine Oswald
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Naadiya Carrim
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada
| | - Xiaozhong Wang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,f The Second Affiliated Hospital of Nanchang University , Nanchang , Jiangxi , P.R. China
| | - Yan Hou
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,g Jilin Provincial Center for Disease Prevention and Control , Changchun , Jilin , P.R. China
| | - Qing Zhang
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,h State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University , Guangzhou , Guangdong , P.R. China , and
| | - Christopher Lavalle
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada
| | - Thomas McKeown
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Alexandra H Marshall
- b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada
| | - Heyu Ni
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada .,b Department of Laboratory Medicine , Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Li Ka Shing Knowledge Institute , Toronto , ON , Canada .,d Canadian Blood Services , Toronto , ON , Canada .,e Department of Physiology , University of Toronto , Toronto , ON , Canada .,i Department of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
30
|
Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood 2016; 128:1870-1878. [PMID: 27421960 DOI: 10.1182/blood-2016-03-707679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022] Open
Abstract
To test the hypothesis that skeletal muscle myosins can directly influence blood coagulation and thrombosis, ex vivo studies of the effects of myosin on thrombogenesis in fresh human blood were conducted. Addition of myosin to blood augmented the thrombotic responses of human blood flowing over collagen-coated surfaces (300 s-1 shear rate). Perfusion of human blood over myosin-coated surfaces also caused fibrin and platelet deposition, evidencing myosin's thrombogenicity. Myosin markedly enhanced thrombin generation in both platelet-rich plasma and platelet-poor plasma, indicating that myosin promoted thrombin generation in plasma primarily independent of platelets. In purified reaction mixtures composed only of factor Xa, factor Va, prothrombin, and calcium ions, myosin greatly enhanced prothrombinase activity. The Gla domain of factor Xa was not required for myosin's prothrombinase enhancement. When binding of purified clotting factors to immobilized myosin was monitored using biolayer interferometry, factors Xa and Va each showed favorable binding interactions. Factor Va reduced by 100-fold the apparent Kd of myosin for factor Xa (Kd ∼0.48 nM), primarily by reducing koff, indicating formation of a stable ternary complex of myosin:Xa:Va. In studies to assess possible clinical relevance for this discovery, we found that antimyosin antibodies inhibited thrombin generation in acute trauma patient plasmas more than in control plasmas (P = .0004), implying myosin might contribute to acute trauma coagulopathy. We posit that myosin enhancement of thrombin generation could contribute either to promote hemostasis or to augment thrombosis risk with consequent implications for myosin's possible contributions to pathophysiology in the setting of acute injuries.
Collapse
|
31
|
Prophylactic efficacy of BeneFIX vs Alprolix in hemophilia B mice. Blood 2016; 128:286-92. [PMID: 27106122 DOI: 10.1182/blood-2016-01-696104] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023] Open
Abstract
FIX binds tightly to collagen IV. Furthermore, a FIX mutant, FIXK5R, which binds better than wild-type FIX to collagen IV, provides better hemostasis than wild-type FIX, long after both are undetectable in the plasma. There is also credible evidence of extravascular FIX. Here, we use the saphenous vein bleeding model to compare the efficacy of recombinant FIXFc (Alprolix) and wild-type FIX (BeneFIX) in hemophilia B mice 7 days postinfusion. Although the terminal half-life of Alprolix is significantly longer than that of BeneFIX, at equal doses Alprolix is not better at controlling bleeding 7 days postinfusion, presumably because of the extravascular FIX. Both BeneFIX and Alprolix exhibit a linear response in clotting efficacy up to 150 IU/kg, where they appear to saturate an extravascular compartment, because there is no additional prophylactic benefit from higher doses. A robust pool of extravascular FIX is clearly observed surrounding blood vessels, localized to the same region as collagen IV, in 2 representative human tissues: liver and skeletal muscle. We see no increased risk for thrombosis at 250 IU/kg FIX at 6 hours postinfusion. In summary, 7 days postinfusion into hemophilia B mice, BeneFIX and Alprolix are hemostatically indistinguishable despite the latter's increased half-life. We predict that doses of FIX ∼3 times higher than the currently recommended 40 to 50 IU/kg will, because of FIX's large extravascular compartment, efficiently prolong prophylactic hemostasis without thrombotic risk.
Collapse
|
32
|
Abstract
Hemophilia B is an X-linked genetic deficiency of coagulation factor IX (FIX) activity associated with recurrent deep tissue and joint bleeding that may lead to long-term disability. FIX replacement therapy using plasma-derived protein or recombinant protein has significantly reduced bleeding and disability from hemophilia B, particularly when used in a prophylactic fashion. Although modern factor replacement has excellent efficacy and safety, barriers to the broader use of prophylaxis remain, including the need for intravenous (IV) access, frequent dosing, variability in individual pharmacokinetics, and cost. To overcome the requirement for frequent factor dosing, novel forms of recombinant FIX have been developed that possess extended terminal half-lives. Two of these products (FIXFc and rIX-FP) represent fusion proteins with the immunoglobulin G1 (IgG1) Fc domain and albumin, respectively, resulting in proteins that are recycled in vivo by the neonatal Fc receptor. The third product has undergone site-specific PEGylation on the activation peptide of FIX, similarly resulting in a long-lived FIX form. Clinical trials in previously treated hemophilia B patients have demonstrated excellent efficacy and confirmed less-frequent dosing requirements for the extended half-life forms. However, gaps in knowledge remain with regard to the risk of inhibitor formation and allergic reactions in previously untreated patient populations, safety in elderly patients with hemophilia, effects on in vivo FIX distribution, and cost-effectiveness. Additional strategies designed to rebalance hemostasis in hemophilia patients include monoclonal-antibody-mediated inhibition of tissue factor pathway inhibitor activity and siRNA-mediated reduction in antithrombin expression by the liver. Both of these approaches are long acting and potentially involve subcutaneous administration of the drug. In this review, we will discuss the biology of FIX, the evolution of FIX replacement therapy, the emerging FIX products possessing extended half-lives, and novel “rebalancing” approaches to hemophilia therapy.
Collapse
Affiliation(s)
- Moniba Nazeef
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John P Sheehan
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|
34
|
Hou Y, Carrim N, Wang Y, Gallant RC, Marshall A, Ni H. Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis. J Biomed Res 2015; 29:437. [PMID: 26541706 PMCID: PMC4662204 DOI: 10.7555/jbr.29.20150121] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Platelets are small anucleate cells generated from megakaryocytes in the bone marrow. Although platelet generation, maturation, and clearance are still not fully understood, significant progress has been made in the last 1-2 decades. In blood circulation, platelets can quickly adhere and aggregate at sites of vascular injury, forming the platelet plug (i.e. the first wave of hemostasis). Activated platelets can also provide negatively charged phosphatidylserinerich membrane surface that enhances cell-based thrombin generation, which facilitates blood coagulation (i.e. the second wave of hemostasis). Platelets therefore play central roles in hemostasis. However, the same process of hemostasis may also cause thrombosis and vessel occlusion, which are the most common mechanisms leading to heart attack and stroke following ruptured atherosclerotic lesions. In this review, we will introduce the classical mechanisms and newly discovered pathways of platelets in hemostasis and thrombosis, including fibrinogen-independent platelet aggregation and thrombosis, and the plasma fibronectin-mediated "protein wave" of hemostasis that precedes the classical first wave of hemostasis. Furthermore, we briefly discuss the roles of platelets in inflammation and atherosclerosis and the potential strategies to control atherothrombosis.
Collapse
Affiliation(s)
- Yan Hou
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 130062 China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Yiming Wang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Canadian Blood Services, Toronto, Ontario M5B 1W8, Canada
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Alexandra Marshall
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Toronto Platelet Immunobiology Group, Toronto, M5B 1W8, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
35
|
Westmark PR, Tanratana P, Sheehan JP. Selective disruption of heparin and antithrombin-mediated regulation of human factor IX. J Thromb Haemost 2015; 13:1053-63. [PMID: 25851619 DOI: 10.1111/jth.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/24/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Interaction with antithrombin and heparin regulates distribution, activity, and clearance of factor IXa (FIXa). Hemophilia B prophylaxis targets plasma FIX levels > 1% but neglects extravascular FIX, which colocalizes with antithrombin-heparan sulfate. OBJECTIVE Combined mutagenesis of FIX was undertaken to selectively disrupt heparin- and antithrombin-mediated regulation of the protease. METHODS Human FIX alanine substitutions in the heparin (K126A and K132A) and antithrombin (R150A) exosites were characterized with regard to coagulant activity, plasma thrombin generation, antithrombin inhibition, and plasma half-life. RESULTS Single or combined (K126A/R150A or K132A/R150A) exosite mutations variably reduced coagulant activity relative to wild-type (WT) for FIX (27-91%) and FIXa (25-91%). Double mutation in the heparin exosite (K126A/K132A and K126A/K132A/R150A) markedly reduced coagulant activity (7-21%) and plasma TG. In contrast to coagulant activity, FIX K126A (1.8-fold), R150 (1.6-fold), and K132A/R150A (1.3-fold) supported increased tissue factor-initiated plasma TG, while FIX K132A and K126A/R150A were similar to WT. FIXa K126A/R150A and K132A/R150A (1.5-fold) demonstrated significantly increased FIXa-initiated TG, while FIXa K132A, R150A, and K126A (0.8-0.9-fold) were similar to WT. Dual mutations in the heparin exosite or combined mutations in both exosites synergistically reduced the inhibition rate for antithrombin-heparin. The half-life of FIXa WT in FIX-deficient plasma was remarkably lengthy (40.9 ±1.4 min) and further prolonged for FIXa R150A, K126A/R150A, and K132A/R150A (> 2 h). CONCLUSION Selective disruption of exosite-mediated regulation by heparin and antithrombin can be achieved with preserved or enhanced thrombin generation capacity. These proteins should demonstrate enhanced therapeutic efficacy for hemophilia B.
Collapse
Affiliation(s)
- P R Westmark
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - P Tanratana
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - J P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, Wu Z, Grieger JC, Li C, Suwanmanee T, Stafford DW, Booth CJ, Samulski JJ, Kafri T, McPhee SWJ, Samulski RJ. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther 2015; 26:69-81. [PMID: 25419787 PMCID: PMC4326268 DOI: 10.1089/hum.2014.106] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vector capsid dose-dependent inflammation of transduced liver has limited the ability of adeno-associated virus (AAV) factor IX (FIX) gene therapy vectors to reliably convert severe to mild hemophilia B in human clinical trials. These trials also identified the need to understand AAV neutralizing antibodies and empty AAV capsids regarding their impact on clinical success. To address these safety concerns, we have used a scalable manufacturing process to produce GMP-grade AAV8 expressing the FIXR338L gain-of-function variant with minimal (<10%) empty capsid and have performed comprehensive dose-response, biodistribution, and safety evaluations in clinically relevant hemophilia models. The scAAV8.FIXR338L vector produced greater than 6-fold increased FIX specific activity compared with wild-type FIX and demonstrated linear dose responses from doses that produced 2-500% FIX activity, associated with dose-dependent hemostasis in a tail transection bleeding challenge. More importantly, using a bleeding model that closely mimics the clinical morbidity of hemophilic arthropathy, mice that received the scAAV8.FIXR338L vector developed minimal histopathological findings of synovitis after hemarthrosis, when compared with mice that received identical doses of wild-type FIX vector. Hemostatically normal mice (n=20) and hemophilic mice (n=88) developed no FIX antibodies after peripheral intravenous vector delivery. No CD8(+) T cell liver infiltrates were observed, despite the marked tropism of scAAV8.FIXR338L for the liver in a comprehensive biodistribution evaluation (n=60 animals). With respect to the role of empty capsids, we demonstrated that in vivo FIXR338L expression was not influenced by the presence of empty AAV particles, either in the presence or absence of various titers of AAV8-neutralizing antibodies. Necropsy of FIX(-/-) mice 8-10 months after vector delivery revealed no microvascular or macrovascular thrombosis in mice expressing FIXR338L (plasma FIX activity, 100-500%). These preclinical studies demonstrate a safety:efficacy profile supporting an ongoing phase 1/2 human clinical trial of the scAAV8.FIXR338L vector (designated BAX335).
Collapse
Affiliation(s)
- Paul E Monahan
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, NC 27599
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Quade-Lyssy P, Milanov P, Abriss D, Ungerer C, Königs C, Seifried E, Schüttrumpf J. Oral gene therapy for hemophilia B using chitosan-formulated FIX mutants. J Thromb Haemost 2014; 12:932-42. [PMID: 24679056 DOI: 10.1111/jth.12572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oral gene delivery of non-viral vectors is an attractive strategy to achieve transgene expression. Although expected efficacy from non-viral delivery systems is relatively low, repeated vector administration is possible and may help to obtain durable transgene expression in a therapeutic range. OBJECTIVES To test the principle feasibility of using factor (F) IX variants with improved function combined with an optimized oral delivery system in hemophilia B (HB) mice. METHODS FIX modifications were introduced by site-directed mutagenesis into plasmid- or minicircle-based expression cassettes. Vectors were formulated as chitosan nanoparticles for oral delivery to HB mice. Protection of vector DNA in nanoparticle constructs and transfection efficiency were characterized. HB mice received eGFP-formulated chitosan nanoparticles to confirm gene transfer in vivo. FIX expression, phenotype correction and the potential of nanoparticles to induce immunotolerance (ITI) against exogenous FIX were evaluated after repeated oral administration. RESULTS Transfection of HEK 293T cells or livers of FIX-knockout mice with nanoparticles resulted in GFP or functional FIX expression. Oral administration of FIX mutants resulted in exclusive FIX expression in the small intestine, as confirmed by RT-PCR and fluorescence staining. HB mice demonstrated transient FIX expression reaching > 14% of normal activity and partial phenotype correction after oral delivery of FIX mutants with high specific activity and improved tissue release. CONCLUSION The feasibility of oral, non-viral delivery of FIX was established and improved by bioengineered FIX proteins and optimized vectors. Thus, these data might point the way for development of a clinically applicable oral gene transfer strategy for hemophilia B.
Collapse
Affiliation(s)
- P Quade-Lyssy
- German Red Cross Blood Donor Service Baden-Württemberg-Hessen and Institute of Transfusion Medicine and Immunohematology of the Goethe University Clinics, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Animal models of hemophilia and related diseases are important for the development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease (VWD) have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and VWD pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform preclinical assessments of standard protein replacement therapies, as well as novel gene transfer technology. The differences both between species and in underlying causative mutations must be considered in choosing the best animal for a specific scientific study.
Collapse
|
39
|
Crosstalk between Platelets and the Immune System: Old Systems with New Discoveries. Adv Hematol 2012; 2012:384685. [PMID: 23008717 PMCID: PMC3447344 DOI: 10.1155/2012/384685] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/15/2012] [Indexed: 11/17/2022] Open
Abstract
Platelets are small anucleate cells circulating in the blood. It has been recognized for more than 100 years that platelet adhesion and aggregation at the site of vascular injury are critical events in hemostasis and thrombosis; however, recent studies demonstrated that, in addition to these classic roles, platelets also have important functions in inflammation and the immune response. Platelets contain many proinflammatory molecules and cytokines (e.g., P-selectin, CD40L, IL-1β, etc.), which support leukocyte trafficking, modulate immunoglobulin class switch, and germinal center formation. Platelets express several functional Toll-like receptors (TLRs), such as TLR-2, TLR-4, and TLR-9, which may potentially link innate immunity with thrombosis. Interestingly, platelets also contain multiple anti-inflammatory molecules and cytokines (e.g., transforming growth factor-β and thrombospondin-1). Emerging evidence also suggests that platelets are involved in lymphatic vessel development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2. Besides the active contributions of platelets to the immune system, platelets are passively targeted in several immune-mediated diseases, such as autoimmune thrombocytopenia, infection-associated thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. These data suggest that platelets are important immune cells and may contribute to innate and adaptive immunity under both physiological and pathological conditions.
Collapse
|
40
|
Chavez CL, Keravala A, Chu JN, Farruggio AP, Cuéllar VE, Voorberg J, Calos MP. Long-term expression of human coagulation factor VIII in a tolerant mouse model using the φC31 integrase system. Hum Gene Ther 2012; 23:390-8. [PMID: 22077817 DOI: 10.1089/hum.2011.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We generated a mouse model for hemophilia A that combines a homozygous knockout for murine factor VIII (FVIII) and a homozygous addition of a mutant human FVIII (hFVIII). The resulting mouse, having no detectable FVIII protein or activity and tolerant to hFVIII, is useful for evaluating FVIII gene-therapy protocols. This model was used to develop an effective gene-therapy strategy using the φC31 integrase to mediate permanent genomic integration of an hFVIII cDNA deleted for the B-domain. Various plasmids encoding φC31 integrase and hFVIII were delivered to the livers of these mice by using hydrodynamic tail-vein injection. Long-term expression of therapeutic levels of hFVIII was observed over a 6-month time course when an intron was included in the hFVIII expression cassette and wild-type φC31 integrase was used. A second dose of the hFVIII and integrase plasmids resulted in higher long-term hFVIII levels, indicating that incremental doses were beneficial and that a second dose of φC31 integrase was tolerated. We observed a significant decrease in the bleeding time after a tail-clip challenge in mice treated with plasmids expressing hFVIII and φC31 integrase. Genomic integration of the hFVIII expression plasmid was demonstrated by junction PCR at a known hotspot for integration in mouse liver. The φC31 integrase system provided a nonviral method to achieve long-term FVIII gene therapy in a relevant mouse model of hemophilia A.
Collapse
Affiliation(s)
- Christopher L Chavez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:151-209. [PMID: 22137432 PMCID: PMC3713797 DOI: 10.1016/b978-0-12-394596-9.00006-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in preclinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for long-term follow-up as well as for studies that require larger blood volumes.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Timothy C. Nichols
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Elizabeth Merricks
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Dwight A. Bellinger
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Paul E. Monahan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
42
|
Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood 2011; 118:2333-41. [PMID: 21700771 DOI: 10.1182/blood-2011-02-336172] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current management of hemophilia B entails multiple weekly infusions of factor IX (FIX) to prevent bleeding episodes. In an attempt to make a longer acting recombinant FIX (rFIX), we have explored a new releasable protraction concept using the native N-glycans in the activation peptide as sites for attachment of polyethylene glycol (PEG). Release of the activation peptide by physiologic activators converted glycoPEGylated rFIX (N9-GP) to native rFIXa and proceeded with normal kinetics for FXIa, while the K(m) for activation by FVIIa-tissue factor (TF) was increased by 2-fold. Consistent with minimal perturbation of rFIX by the attached PEG, N9-GP retained 73%-100% specific activity in plasma and whole-blood-based assays and showed efficacy comparable with rFIX in stopping acute bleeds in hemophilia B mice. In animal models N9-GP exhibited up to 2-fold increased in vivo recovery and a markedly prolonged half-life in mini-pig (76 hours) and hemophilia B dog (113 hours) compared with rFIX (16 hours). The extended circulation time of N9-GP was reflected in prolonged correction of coagulation parameters in hemophilia B dog and duration of effect in hemophilia B mice. Collectively, these results suggest that N9-GP has the potential to offer efficacious prophylactic and acute treatment of hemophilia B patients at a reduced dosing frequency.
Collapse
|
43
|
Keravala A, Chavez CL, Hu G, Woodard LE, Monahan PE, Calos MP. Long-term phenotypic correction in factor IX knockout mice by using ΦC31 integrase-mediated gene therapy. Gene Ther 2011; 18:842-8. [PMID: 21412285 DOI: 10.1038/gt.2011.31] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemophilia B, a hereditary bleeding disorder caused by a deficiency of coagulation factor IX (FIX), is an excellent candidate for gene therapy. However, to date, success in hemophilia gene therapy clinical trials has been limited due to failure to achieve or sustain therapeutic levels of factor expression. The ΦC31 integrase system efficiently integrates plasmid DNA carrying a transgene and an attB site into a limited number of endogenous pseudo attP sites in mammalian genomes, leading to robust, sustained transgene expression. A strategy utilizing plasmid DNA integrated with ΦC31 integrase may offer a facile and safe alternative for sustained human FIX (hFIX) expression. Hydrodynamic tail vein injection was used for delivery of plasmids encoding ΦC31 integrase and hFIX to the liver of FIX knockout mice. We demonstrated prolonged therapeutic levels of hFIX in this knockout mouse model of hemophilia B over a 6-month time course when ΦC31 integrase was used. Additionally, we observed sustained FIX activity in plasma and phenotypic correction of bleeding after tail clip in ΦC31-treated mice. In the livers that received integrase, we also demonstrated prolonged hFIX expression in hepatocytes by immunohistochemistry and documented sequence-specific genomic integration of the hFIX plasmid. These studies suggest the possibility that a similar approach in large animals and humans could lead to a simple and successful gene therapy for hemophilia.
Collapse
Affiliation(s)
- A Keravala
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Key NS, DE Paepe A, Malfait F, Shovlin CL. Vascular haemostasis. Haemophilia 2010; 16 Suppl 5:146-51. [PMID: 20590874 DOI: 10.1111/j.1365-2516.2010.02313.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY While the majority of this session will deal with selected inherited vascular abnormalities that may manifest as a haemorrhagic disorder, the initial discussion by Dr Key will focus on the interplay between the vessel wall and components of the coagulation system, with a focus on haemophilia A and B. Although it is generally accepted that physiological haemostasis is triggered by contact of blood with tissue factor (TF), there remains some controversy regarding the cellular origin of TF in vivo. In addition, the initiation and propagation of thrombin generation are highly dependent on the balance of pro- and anticoagulant functions of endothelium, a profile that varies significantly throughout the vasculature. Drs De Paepe and Malfait address heritable collagen disorders such as the Ehlers-Danlos syndromes (EDS), a heterogeneous group of diseases involving the skin, ligaments and joints, blood vessels and internal organs. Most EDS subtypes are caused by mutations in genes encoding fibrillar collagens, or in genes coding for enzymes involved in posttranslational modifications of collagens. Accurate biochemical and molecular testing is now available for most EDS subtypes and can direct genetic counselling and medical management for these disorders. Dr Shovlin reviews recent developments in hereditary haemorrhagic telengiectasia (HHT), a frequently undiagnosed disorder characterized by arteriovenous malformations in multiple organs. These abnormal blood vessels are the result of mutations in one of a number of genes whose protein products influence TGF-beta signalling in vascular endothelial cells. Several HHT management guidelines have been published and are discussed.
Collapse
Affiliation(s)
- N S Key
- Harold R Roberts Comprehensive Hemophilia Diagnostic and Treatment Center, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- D Gailani
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-6307, USA.
| |
Collapse
|