1
|
Watanabe T, Hachiya H, Watanabe H, Anno K, Okuyama T, Harunari T, Yokota A, Kamioka M, Komori T, Torigoe‐Kurosu Y, Makimoto H, Kabutoya T, Kimura Y, Imai Y, Kario K. Relationship between the atrial-activation pattern around the triangle of Koch and successful ablation sites in slow-fast atrioventricular nodal reentrant tachycardia. J Arrhythm 2024; 40:363-373. [PMID: 38586857 PMCID: PMC10995602 DOI: 10.1002/joa3.12999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 04/09/2024] Open
Abstract
Background The precise details of atrial activation around the triangle of Koch (ToK) remain unknown. We evaluated the relationship between the atrial-activation pattern around the ToK and success sites for slow-pathway (SP) modification ablation in slow-fast atrioventricular reentrant tachycardia (AVNRT). Methods Thirty patients with slow-fast AVNRT who underwent successful ablation were enrolled. Atrial activation around the ToK during sinus rhythm was investigated using ultra-high-density mapping pre-ablation. The relationships among features of atrial-activation pattern and success sites were examined. Results Of 30 patients (22 cryoablation; 8 radiofrequency ablation), 26 patients had a collision site of two wavefronts of delayed atrial activation within ToK, indicating a success site. The activation-search function of Lumipoint software, which highlights only atrial activation with a spatiotemporal consistency, showed non-highlighted area on the tricuspid-annulus side of ToK. In 23 of the patients, a spiky potential was recorded at that collision site outside the Lumipoint-highlighted area. Fifteen cryoablation patients with a success site coincident with a collision site outside the Lumipoint-highlighted area had significantly more frequent disappearances of SP after initial cryoablation (46.7% vs. 0%, p = .029), fewer cryoablations (3.7 ± 1.8 vs. 5.3 ± 1.3, p = .045), and shorter procedure times (170 ± 57 vs. 228 ± 91 min, p = .082) compared to the seven cryoablation patients without such sites. Four patients had transient AV block by ablation inside the Lumipoint-highlighted area with fractionated signals, but no patient developed permanent AV block or recurrence post-procedure (median follow-up: 375 days). Conclusions SP modification ablation at the collision site of atrial activation of the tricuspid-annulus side along with a spiky potential could provide a better outcome.
Collapse
Affiliation(s)
- Tomonori Watanabe
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Hitoshi Hachiya
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
- Cardiovascular Center, Tsuchiura Kyodo HospitalIbarakiJapan
| | - Hiroaki Watanabe
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Kazunori Anno
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Takafumi Okuyama
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Tomohiko Harunari
- Division of Cardiovascular Medicine, Shin‐Oyama City HospitalTochigiJapan
| | - Ayako Yokota
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Masashi Kamioka
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Takahiro Komori
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yuko Torigoe‐Kurosu
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Hisaki Makimoto
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Tomoyuki Kabutoya
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yoshifumi Kimura
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yasushi Imai
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| | - Kazuomi Kario
- Division of Cardiovascular MedicineJichi Medical University School of MedicineTochigiJapan
| |
Collapse
|
2
|
Ciaccio EJ, Coromilas J, Wan EY, Yarmohammadi H, Saluja DS, Peters NS, Garan H, Biviano AB. Correlation relationships of the reentrant ventricular tachycardia circuit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107764. [PMID: 37597351 DOI: 10.1016/j.cmpb.2023.107764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/01/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION A quantitative analysis of the components of reentrant ventricular tachycardia (VT) circuitry could improve understanding of its onset and perpetuation. METHOD In 19 canine experiments, the left anterior descending coronary artery was ligated to generate a subepicardial infarct. The border zone resided at the epicardial surface of the anterior left ventricle and was mapped 3-5 days postinfarction with a 196-312 bipolar multielectrode array. Monomorphic VT was inducible by extrastimulation. Activation maps revealed an epicardial double-loop reentrant circuit and isthmus, causing VT. Several circuit parameters were analyzed: the coupling interval for VT induction, VT cycle length, the lateral isthmus boundary (LIB) lengths, and isthmus width and angle. RESULTS The extrastimulus interval for VT induction and the VT cycle length were strongly correlated (p < 0.001). Both the extrastimulus interval and VT cycle length were correlated to the shortest LIB (p < 0.005). A derivation was developed to suggest that when conduction block at the shorter LIB is functional, the VT cycle length may depend on the local refractory period and the delay from wavefront pivot around the LIB. Isthmus width and angle were uncorrelated to other parameters. CONCLUSIONS The shorter LIB is correlated to VT cycle length, hence its circuit loop may drive reentrant VT. The extrastimulation interval, VT cycle length, and shorter LIB are intertwined, and may depend upon the local refractory period. Isthmus width and angle are less correlated, perhaps being more related to electrical discontinuity caused by alterations in infarct shape at depth.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - James Coromilas
- Department of Medicine - Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, NJ, USA
| | - Elaine Y Wan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hirad Yarmohammadi
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Deepak S Saluja
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Angelo B Biviano
- Department of Medicine - Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
3
|
Chieffo E, D’Amore S, De Regibus V, Dossena C, Frigerio L, Taravelli E, Ferrazzano C, De Iuliis P, Cacucci M, Landolina ME. Atrioventricular nodal reentry tachycardia treatment using CARTO 3 V7 activation mapping: a new era of slow pathway radiofrequency ablation is under coming. Front Cardiovasc Med 2023; 10:1144988. [PMID: 37840959 PMCID: PMC10570829 DOI: 10.3389/fcvm.2023.1144988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023] Open
Abstract
Background Slow pathway (SP) ablation is the cornerstone for atrioventricular nodal reentry tachycardia (AVNRT) treatment, and a low-voltage bridge offers a good target during mapping using low x-ray exposure. We aimed to assess a new tool to identify SP by activation mapping using the last CARTO3® version, i.e., CARTO PRIME® V7 (Biosense Webster, Diamond Bar, CA, USA). Methods and results Right atrial septum and triangle of Koch 3D-activation map were obtained from intracardiac contact mapping during low x-ray CARTO 3® procedure. In 60 patients (mean age 60.3 ± 14.7, 61% females) undergoing ablation for AVNRT, an automatic activation map using a DECANAV® mapping catheter and CARTO® Confidense™, Coherent, and FAM DX software modules were obtained. The SP was identified in all patients as the latest atrioventricular node activation area; RF catheter ablation (RFCA) in that region elicited junctional beats. The mean procedural time was 150.3 ± 48.3 min, the mean fluoroscopy time exposure was 2.9 ± 2 min, the mean dose-area product (DAP) was 16.5 ± 2.7 cGy/cm2. The mean number of RF applications was 3.9 ± 2, the mean ablation index was 428.6 ± 96.6, and the mean contact force was 8 ± 2.8 g. There were no adverse event during the procedure, and no AVNRT recurrences occurred during a mean follow-up of 14.3 ± 8.3 months. Conclusion Ablation of the SP by automatic mapping using Confidense™, Coherent, and FAM DX software modules is an innovative, safe, and effective approach to AVNRT ablation. The CARTO3® V7 system shows on a 3D map the latest AV node activation area during sinus rhythm allowing low fluoroscopy time and highly effective RFCA.
Collapse
Affiliation(s)
- Enrico Chieffo
- Department of Cardiology, ASST Ospedale Maggiore, Crema, Italy
| | - Sabato D’Amore
- Department of Cardiology, ASST Ospedale Maggiore, Crema, Italy
| | | | - Cinzia Dossena
- Department of Cardiology, ASST Ospedale Maggiore, Crema, Italy
| | - Laura Frigerio
- Department of Cardiology, ASST Ospedale Maggiore, Crema, Italy
| | - Erika Taravelli
- Department of Cardiology, S. Croce e Carle Hospital, Cuneo, Italy
| | | | | | - Michele Cacucci
- Department of Cardiology, ASST Ospedale Maggiore, Crema, Italy
| | | |
Collapse
|
4
|
Ono K, Iwasaki Y, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki‐Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. J Arrhythm 2022; 38:833-973. [PMID: 36524037 PMCID: PMC9745564 DOI: 10.1002/joa3.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
5
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
6
|
Yamamoto C, Trayanova NA. Atrial fibrillation: Insights from animal models, computational modeling, and clinical studies. EBioMedicine 2022; 85:104310. [PMID: 36309006 PMCID: PMC9619190 DOI: 10.1016/j.ebiom.2022.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia, affecting millions of patients worldwide. A combination of risk factors and comorbidities results in complex atrial remodeling, which increases AF vulnerability and persistence. Insights from animal models, clinical studies, and computational modeling have advanced the understanding of the mechanisms and pathophysiology of AF. Areas of heterogeneous pathological remodeling, as well as altered electrophysiological properties, serve as a substrate for AF drivers and spontaneous activations. The complex and individualized presentation of this arrhythmia suggests that mechanisms-based personalized approaches will likely be needed to overcome current challenges in AF management. In this paper, we review the insights on the mechanisms of AF obtained from animal models and clinical studies and how computational models integrate this knowledge to advance AF clinical management. We also assess the challenges that need to be overcome to implement these mechanistic models in clinical practice.
Collapse
Affiliation(s)
- Carolyna Yamamoto
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Alliance for Cardiovascular Diagnostic and Treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, MD, USA,Corresponding author. Johns Hopkins, Johns Hopkins University, United States.
| |
Collapse
|
7
|
Ho SY. Normal and Abnormal Atrial Anatomy Relevant to Atrial Flutters: Areas of Physiological and Acquired Conduction Blocks and Delays Predisposing to Re-entry. Card Electrophysiol Clin 2022; 14:375-384. [PMID: 36153120 DOI: 10.1016/j.ccep.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article reviews the structure of the atrial chambers to consider the anatomic bases for obstacles and barriers in atrial flutter. In particular, the complex myocardial arrangement and composition of the cavotricuspid isthmus could account for a slow zone of conduction. Prominent muscle bundles within the atria and interatrial, and myoarchitecture of the walls, could contribute to preferential conduction pathways. Alterations from tissue damage as part of aging, or from surgical interventions could lead to re-entry.
Collapse
Affiliation(s)
- S Yen Ho
- Royal Brompton Hospital, Imperial College London, Sydney Street, London SW3 6NP, United Kingdom.
| |
Collapse
|
8
|
Valeri Y, Bagliani G, Compagnucci P, Volpato G, Cipolletta L, Parisi Q, Misiani A, Fogante M, Molini S, Dello Russo A, Casella M. Pathophysiology of Typical Atrial Flutter. Card Electrophysiol Clin 2022; 14:401-409. [PMID: 36153122 DOI: 10.1016/j.ccep.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nowadays, the pathophysiology mechanism of initiation and maintenance of reentrant arrhythmias, including atrial flutter, is well characterized. However, the anatomic and functional elements of the macro reentrant arrhythmias are not always well defined. In this article, we illustrate the anatomic structures that delineate the typical atrial flutter circuit, both clockwise and counterclockwise, paying attention to the inferior vena cava-tricuspid isthmus (CTI) and crista terminalis crucial role. Finally, we describe the left atrial role during typical atrial flutter, electrophysiologically a by-stander but essential in the phenotypic electrocardiogram (ECG).
Collapse
Affiliation(s)
- Yari Valeri
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy.
| | - Giuseppe Bagliani
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Volpato
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Laura Cipolletta
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy
| | - Quintino Parisi
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy
| | - Agostino Misiani
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy
| | - Marco Fogante
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Silvano Molini
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital "Ospedali Riuniti", Via Conca 71, Ancona 60126, Italy; Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
9
|
The Pathogenesis of Cardiac Arrhythmias in Vitamin D Deficiency. Biomedicines 2022; 10:biomedicines10061239. [PMID: 35740261 PMCID: PMC9220304 DOI: 10.3390/biomedicines10061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
The global prevalence of vitamin D deficiency is more than 20%, and the main causes include insufficient intake, reduced absorption, abnormal metabolism, or resistance to its effects. The levels of serum vitamin D appear to influence cardiovascular risk, and the mechanism involved is linked to the transient outward current and the ultrarapid delayed rectifier K+ current densities, activated through the nuclear vitamin D receptor and Akt pathway. A significant number of studies have correlated vitamin D deficiency with an increased risk of developing cardiac arrhythmias and sudden cardiac death. For this reason, the purpose of this review is to analyze the relation between vitamin D deficiency and the pathogenesis of cardiac arrhythmias. Atrial fibrillation, increased QT interval, and QT dispersion were the most common findings associated with vitamin D deficiency. Due to the heterogeneity among existing studies, further research is necessary to confirm the existing data and to analyze its relationship with other types of arrhythmias.
Collapse
|
10
|
Ono K, Iwasaki YK, Akao M, Ikeda T, Ishii K, Inden Y, Kusano K, Kobayashi Y, Koretsune Y, Sasano T, Sumitomo N, Takahashi N, Niwano S, Hagiwara N, Hisatome I, Furukawa T, Honjo H, Maruyama T, Murakawa Y, Yasaka M, Watanabe E, Aiba T, Amino M, Itoh H, Ogawa H, Okumura Y, Aoki-Kamiya C, Kishihara J, Kodani E, Komatsu T, Sakamoto Y, Satomi K, Shiga T, Shinohara T, Suzuki A, Suzuki S, Sekiguchi Y, Nagase S, Hayami N, Harada M, Fujino T, Makiyama T, Maruyama M, Miake J, Muraji S, Murata H, Morita N, Yokoshiki H, Yoshioka K, Yodogawa K, Inoue H, Okumura K, Kimura T, Tsutsui H, Shimizu W. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. Circ J 2022; 86:1790-1924. [DOI: 10.1253/circj.cj-20-1212] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yu-ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Masaharu Akao
- Department of Cardiovascular Medicine, National Hospital Organization Kyoto Medical Center
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University Faculty of Medicine
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | | | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | | | | | - Tetsushi Furukawa
- Department of Bio-information Pharmacology, Medical Research Institute, Tokyo Medical and Dental University
| | - Haruo Honjo
- Research Institute of Environmental Medicine, Nagoya University
| | - Toru Maruyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital
| | - Yuji Murakawa
- The 4th Department of Internal Medicine, Teikyo University School of Medicine, Mizonokuchi Hospital
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization Kyushu Medical Center
| | - Eiichi Watanabe
- Department of Cardiology, Fujita Health University School of Medicine
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Mari Amino
- Department of Cardiovascular Medicine, Tokai University School of Medicine
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital
| | - Hisashi Ogawa
- Department of Cardiology, National Hospital Organisation Kyoto Medical Center
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Chizuko Aoki-Kamiya
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center
| | - Jun Kishihara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Eitaro Kodani
- Department of Cardiovascular Medicine, Nippon Medical School Tama Nagayama Hospital
| | - Takashi Komatsu
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University School of Medicine
| | | | | | - Tsuyoshi Shiga
- Department of Clinical Pharmacology and Therapeutics, The Jikei University School of Medicine
| | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Atsushi Suzuki
- Department of Cardiology, Tokyo Women's Medical University
| | - Shinya Suzuki
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yukio Sekiguchi
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Noriyuki Hayami
- Department of Fourth Internal Medicine, Teikyo University Mizonokuchi Hospital
| | | | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University, Faculty of Medicine
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Mitsunori Maruyama
- Department of Cardiovascular Medicine, Nippon Medical School Musashi Kosugi Hospital
| | - Junichiro Miake
- Department of Pharmacology, Tottori University Faculty of Medicine
| | - Shota Muraji
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | | | - Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital
| | - Hisashi Yokoshiki
- Department of Cardiovascular Medicine, Sapporo City General Hospital
| | - Koichiro Yoshioka
- Division of Cardiology, Department of Internal Medicine, Tokai University School of Medicine
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | | | - Ken Okumura
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | | |
Collapse
|
11
|
Ciaccio EJ, Anter E, Coromilas J, Wan EY, Yarmohammadi H, Wit AL, Peters NS, Garan H. Structure and function of the ventricular tachycardia isthmus. Heart Rhythm 2022; 19:137-153. [PMID: 34371192 DOI: 10.1016/j.hrthm.2021.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Catheter ablation of postinfarction reentrant ventricular tachycardia (VT) has received renewed interest owing to the increased availability of high-resolution electroanatomic mapping systems that can describe the VT circuits in greater detail, and the emergence and need to target noninvasive external beam radioablation. These recent advancements provide optimism for improving the clinical outcome of VT ablation in patients with postinfarction and potentially other scar-related VTs. The combination of analyses gleaned from studies in swine and canine models of postinfarction reentrant VT, and in human studies, suggests the existence of common electroanatomic properties for reentrant VT circuits. Characterizing these properties may be useful for increasing the specificity of substrate mapping techniques and for noninvasive identification to guide ablation. Herein, we describe properties of reentrant VT circuits that may assist in elucidating the mechanisms of onset and maintenance, as well as a means to localize and delineate optimal catheter ablation targets.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Elad Anter
- Department of Cardiovascular Medicine, Cardiac Electrophysiology, Cleveland Clinic, Cleveland, Ohio
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
12
|
AF Inducibility Is Related to Conduction Abnormalities at Bachmann's Bundle. J Clin Med 2021; 10:jcm10235536. [PMID: 34884237 PMCID: PMC8658171 DOI: 10.3390/jcm10235536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
We investigated whether patterns of activation at Bachmann’s bundle are related to AF inducibility. Epicardial mapping of Bachmann’s bundle during sinus rhythm was performed prior to cardiac surgery (192 electrodes, interelectrode distances: 2 mm). Compared to non-inducible patients (N = 20), patients with inducible AF (N = 34) had longer lines of conduction block (18(2–164) mm vs. 6(2–28) mm, p = 0.048), prolonged total activation time (55(28–143) ms vs. 46(24–73) ms, p = 0.012), multiple wavefronts entering Bachmann’s bundle more frequently (64% vs. 37%, p = 0.046) and more often areas of simultaneous activation (conduction velocity > 1.7 m/s, 45% vs. 16%, p = 0.038). These observations further support a relation between conduction abnormalities at Bachmann’s bundle and AF inducibility. The next step is to examine whether Bachmann’s bundle activation patterns can also be used to identify patients who will develop AF after cardiac surgery during both short- and long-term follow-up.
Collapse
|
13
|
Dusik M, Fingrova Z, Ambroz D, Jansa P, Linhart A, Havranek S. The Role of Pulmonary Artery Wedge Pressure on the Incidence of Atrial Fibrillation and Atrial Tachycardias in Patients With Isolated Pre-capillary Pulmonary Hypertens. Physiol Res 2021; 70:841-849. [PMID: 34717065 DOI: 10.33549/physiolres.934706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation and atrial tachycardias (AF/AT) have been reported as a common condition in patients with pulmonary hypertension (PH). As yet, limited data exists about the significance of the borderline post-capillary pressure component on the occurrence of AF / AT in patients with isolated pre-capillary PH. We retrospectively studied the prevalence of AF / AT in 333 patients (mean age 61 ± 15 years, 44% males) with pre-capillary idiopathic / familiar pulmonary arterial hypertension, and inoperable chronic thromboembolic pulmonary hypertension. The prevalence of AF / AT was analyzed in different categories of pulmonary artery wedge pressure (PAWP). In the study population overall, the mean PAWP was 10.5 ± 3 mmHg, median of 11 mmHg, range 2-15 mmHg. AF / AT was diagnosed in 79 patients (24%). The proportion of AF / AT among patients with PAWP below the median (?11 mmHg) was lower than in subjects with PAWP between 12 and 15 mmHg, 30 (16%) vs. 46 (35%), p = 0.0001. Compared to the patients with PAWP?11 mmHg, subjects with PAWP between 12 and 15 mmHg were older (65 ± 13 years vs. 58 ± 16), with more prevalent arterial hyperte\nsion [100 (70%) vs. 106 (55%)] and diabetes mellitus [50 (35%) vs. 48 (25%)], showed larger size of the left atrium (42 ± 7 vs. 40 ± 6 mm), and higher values of right atrium pressure (12 ± 5 vs. 8 ± 5 mm Hg), p < 0.05 in all comparisons. The prevalence of AF / AT in the group studied increased with the growing post-capillary component.
Collapse
Affiliation(s)
- M Dusik
- 2nd Department of Medicine, Department of Cardiovascular Medicine, General University Hospital in Prague, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
14
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
15
|
Limitations and Pitfalls of Substrate Mapping for Ventricular Tachycardia. JACC Clin Electrophysiol 2021; 7:542-560. [PMID: 33888275 DOI: 10.1016/j.jacep.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The fundamental hypothesis of substrate mapping for scar-mediated ventricular tachycardia is that surrogates of the isthmus can be identified and targeted with ablation during sinus rhythm. These surrogates include electrocardiographic indications for electric discontinuity such as fractionation, split, late, and long potentials, also evident as sites displaying activation slowing. However, ablation strategies targeting these surrogates during sinus rhythm have resulted in unacceptably high rates of clinical failures, promoting the idea that a more widespread ablation may be required. High-resolution mapping technologies provide an opportunity to examine the substrate at greater detail; however, their use has not yet translated into improved clinical outcomes. This may be related to ongoing efforts to examine the same surrogates at higher resolution instead of using high-resolution technologies for discovering new and potentially more specific surrogates. This article reviews common limitations and pitfalls of substrate mapping and discusses new opportunities for high-resolution mapping to increase the accuracy of substrate mapping: 1) multielectrode mapping catheters provide an opportunity to rapidly examine the substrate during electrophysiological conditions that more closely simulate ventricular tachycardia by means of activation from different directions and coupling intervals; 2) electrogram annotation methods based on the maximal negative derivative of the extracellular potential or maximal voltage are often inaccurate in nonuniform anisotropic tissue. The use of multielectrode catheters may improve the accuracy of electrogram annotation by using spatiotemporal dispersion of single-beat acquisitions and a localized indifferent reference; and 3) resetting and entrainment remain important methods for studying re-entry for and guiding ablation.
Collapse
|
16
|
Oranges MA, Lindholm JR, Quinn RL. ECG of the Month. J Am Vet Med Assoc 2021; 257:1235-1239. [PMID: 33269966 DOI: 10.2460/javma.257.12.1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Fingrova Z, Ambroz D, Jansa P, Kuchar J, Lindner J, Kunstyr J, Aschermann M, Linhart A, Havranek S. The prevalence and clinical outcome of supraventricular tachycardia in different etiologies of pulmonary hypertension. PLoS One 2021; 16:e0245752. [PMID: 33471824 PMCID: PMC7817034 DOI: 10.1371/journal.pone.0245752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Patients with pulmonary hypertension (PH) frequently suffer from supraventricular tachycardias (SVT). The main purpose of our study was to identify the cumulative incidence of SVT in patients with different etiologies of PH. The secondary objective was to analyse the clinical impact of SVT. Methods We retrospectively studied the prevalence of SVT and the clinical outcome in 755 patients (41% males; 60 ± 15 years; mean follow-up 3.8 ± 2.8 years) with PH of different etiologies. The prevalence of SVT was analysed separately in isolated pre-capillary PH (Ipc-PH) and in patients with combined post- and pre-capillary PH (Cpc-PH). Results The prevalence of SVT in the Ipc-PH group (n = 641) was 25% (n = 162). The most prevalent arrhythmias were atrial fibrillation followed by a typical atrial flutter (17% and 4.4% of all Icp-PH patients). An excessive prevalence of SVT was found in patients with pulmonary arterial hypertension associated with congenital heart disease (35%, p = 0.01). Out of the overall study population, Cpc-PH was present in 114 (15%) patients. Patients with Cpc-PH manifested a higher prevalence of SVT than subjects with Ipc-PH (58; 51% vs. 162; 25%; p <0.0001) and were more likely to have persistent or permanent atrial fibrillation (38; 29% vs. 61; 10%; p <0.0001). Parameters significantly associated with mortality in a multivariate analysis included age, male gender, functional exercise capacity and right atrial diameter (p < 0.05). Neither diagnosis of SVT nor type of arrhythmia predicted mortality. Conclusions The study detected a significant prevalence of SVT in the population of PH of different origins. Different spectrum and prevalence of arrhythmia might be expected in different etiologies of PH. Patients with an elevated post-capillary pressure showed a higher arrhythmia prevalence, predominantly due to an excessive number of atrial fibrillations. The diagnosis of SVT was not associated with mortality.
Collapse
Affiliation(s)
- Zdenka Fingrova
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - David Ambroz
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Pavel Jansa
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Jan Kuchar
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
- Regional Hospital in Tabor, Tabor, Czech Republic
| | - Jaroslav Lindner
- 1 Faculty of Medicine, 2 Department of Surgery–Department of Cardiovascular Surgery, General University Hospital, Charles University, Prague, Czech Republic
| | - Jan Kunstyr
- 1 Faculty of Medicine, Department of Anaesthesiology, Resuscitation and Intensive Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Michael Aschermann
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Ales Linhart
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
| | - Stepan Havranek
- 1Faculty of Medicine, 2 Department of Medicine-Department of Cardiovascular Medicine, General University Hospital, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
18
|
Katritsis DG. Anisotropic Conduction and Re-entry in the Heart. Arrhythm Electrophysiol Rev 2020; 9:174. [PMID: 33473320 PMCID: PMC7801881 DOI: 10.15420/aer.2020.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Mikhailov AV, Kalyanasundaram A, Li N, Scott SS, Artiga EJ, Subr MM, Zhao J, Hansen BJ, Hummel JD, Fedorov VV. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol 2020; 151:56-71. [PMID: 33130148 DOI: 10.1016/j.yjmcc.2020.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) occurrence and maintenance is associated with progressive remodeling of electrophysiological (repolarization and conduction) and 3D structural (fibrosis, fiber orientations, and wall thickness) features of the human atria. Significant diversity in AF etiology leads to heterogeneous arrhythmogenic electrophysiological and structural substrates within the 3D structure of the human atria. Since current clinical methods have yet to fully resolve the patient-specific arrhythmogenic substrates, mechanism-based AF treatments remain underdeveloped. Here, we review current knowledge from in-vivo, ex-vivo, and in-vitro human heart studies, and discuss how these studies may provide new insights on the synergy of atrial electrophysiological and 3D structural features in AF maintenance. In-vitro studies on surgically acquired human atrial samples provide a great opportunity to study a wide spectrum of AF pathology, including functional changes in single-cell action potentials, ion channels, and gene/protein expression. However, limited size of the samples prevents evaluation of heterogeneous AF substrates and reentrant mechanisms. In contrast, coronary-perfused ex-vivo human hearts can be studied with state-of-the-art functional and structural technologies, such as high-resolution near-infrared optical mapping and contrast-enhanced MRI. These imaging modalities can resolve atrial arrhythmogenic substrates and their role in reentrant mechanisms maintaining AF and validate clinical approaches. Nonetheless, longitudinal studies are not feasible in explanted human hearts. As no approach is perfect, we suggest that combining the strengths of direct human atrial studies with high fidelity approaches available in the laboratory and in realistic patient-specific computer models would elucidate deeper knowledge of AF mechanisms. We propose that a comprehensive translational pipeline from ex-vivo human heart studies to longitudinal clinically relevant AF animal studies and finally to clinical trials is necessary to identify patient-specific arrhythmogenic substrates and develop novel AF treatments.
Collapse
Affiliation(s)
- Aleksei V Mikhailov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Arrhythmology Research Department, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anuradha Kalyanasundaram
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Li
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shane S Scott
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Megan M Subr
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Brian J Hansen
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vadim V Fedorov
- Department of Physiology & Cell Biology, Bob and Corrine Frick Center for Heart Failure and Arrhythmia, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
20
|
Letsas KP, Efremidis M, Bazoukis G, Dragasis S, Megarisiotou A, Mililis P, Saplaouras A, Vlachos K, Asvestas D, Valkanas K, Tse G, Sideris A. High-density mapping of de novo focal atrial tachycardias using a new software: Protected low-voltage areas by zones of conduction delay. J Arrhythm 2020; 36:785-788. [PMID: 32782657 PMCID: PMC7411206 DOI: 10.1002/joa3.12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathophysiological mechanism of focal atrial tachycardias (AT) remains obscure. METHODS Fifteen patients (6 males, age 45 ± 18) with focal AT underwent high-density activation mapping using a new software called extended early-meets-late (EEML). RESULTS Irrespective of the arrhythmia mechanism, low bipolar voltage fractionated signals (0.14 ± 0.10 mV) were seen at the earliest activation site. The mean low-voltage area (LVA) at the earliest activation site was 3.2 ± 1.0 cm2. EEML mapping revealed zones of conduction delay at the borders of LVAs. CONCLUSIONS LVAs protected by zones of slow conduction appears to play an important role in the initiation and maintenance of focal ATs.
Collapse
Affiliation(s)
- Konstantinos P. Letsas
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Michael Efremidis
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - George Bazoukis
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Stylianos Dragasis
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Athanasia Megarisiotou
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Panagiotis Mililis
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Athanasios Saplaouras
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Konstantinos Vlachos
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Dimitrios Asvestas
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Kosmas Valkanas
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| | - Gary Tse
- Xiamen Cardiovascular HospitalXiamen UniversityXiamenP.R. China
| | - Antonios Sideris
- Second Department of CardiologyLaboratory of Cardiac Electrophysiology“Evangelismos” General Hospital of AthensAthensGreece
| |
Collapse
|
21
|
Saraiva RM, Pacheco NP, Pereira TOJS, Costa AR, Holanda MT, Sangenis LHC, Mendes FSNS, Sousa AS, Hasslocher-Moreno AM, Xavier SS, Mediano MFF, Veloso HH. Left Atrial Structure and Function Predictors of New-Onset Atrial Fibrillation in Patients with Chagas Disease. J Am Soc Echocardiogr 2020; 33:1363-1374.e1. [PMID: 32747223 DOI: 10.1016/j.echo.2020.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) carries ominous consequences in patients with Chagas disease. The aim of this study was to determine whether left atrial (LA) volume and function assessed using three-dimensional echocardiographic (3DE) imaging and two-dimensional speckle-tracking echocardiographic deformation analysis of strain (ε) could predict new-onset AF in patients with Chagas disease. METHODS A total of 392 adult patients with chronic Chagas disease (59% women; mean age, 53 ± 11 years) who underwent echocardiography were consecutively enrolled in this prospective longitudinal study. Echocardiographic evaluation included two-dimensional (2D) Doppler echocardiography, with evaluation of left ventricular systolic and diastolic function, LA size, and LA and left ventricular function on 3DE and ε analyses. Multivariate Cox proportional-hazards regression analysis models adjusting for age, sex, hypertension, presence of a pacemaker, and 2D Doppler echocardiographic parameters were used to test if the variables of interest had independent prognostic value for AF prediction. RESULTS Patients with Chagas disease were followed for 5.6 ± 2.7 years. Among these, 139 (35.5%) had the indeterminate form, 224 (57.1%) had the cardiac form, five (1.3%) had the digestive form, and 24 (6.1%) had the cardiodigestive form. The study end point of AF occurred in 45 patients. Total LA emptying fraction (hazard ratio, 0.93; 95% CI, 0.89-0.98; P = .002), passive LA emptying fraction (HR, 0.95; 95% CI, 0.91-0.99; P = .02), and peak negative global LA ε (HR, 1.22; 95% CI, 1.05-1.41; P = .01) were predictors of new-onset AF independent of clinical and 2D Doppler echocardiographic parameters. CONCLUSIONS LA function assessed on 3DE and ε analyses predicts new-onset AF in patients with Chagas disease independent of clinical and 2D Doppler echocardiographic indexes.
Collapse
Affiliation(s)
- Roberto M Saraiva
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Nicole P Pacheco
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thayanne O J S Pereira
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andréa R Costa
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcelo T Holanda
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz Henrique C Sangenis
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernanda S N S Mendes
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andréa S Sousa
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Sergio S Xavier
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mauro Felippe F Mediano
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Henrique H Veloso
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Perez-Alday EA, Haq KT, German DM, Hamilton C, Johnson K, Phan F, Rogovoy NM, Yang K, Wirth A, Thomas JA, Dalouk K, Fuss C, Ferencik M, Heitner S, Tereshchenko LG. Mechanisms of Arrhythmogenicity in Hypertrophic Cardiomyopathy: Insight From Non-invasive Electrocardiographic Imaging. Front Physiol 2020; 11:344. [PMID: 32390862 PMCID: PMC7194131 DOI: 10.3389/fphys.2020.00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Mechanisms of arrhythmogenicity in hypertrophic cardiomyopathy (HCM) are not well understood. Objective To characterize an electrophysiological substrate of HCM in comparison to ischemic cardiomyopathy (ICM), or healthy individuals. Methods We conducted a prospective case-control study. The study enrolled HCM patients at high risk for ventricular tachyarrhythmia (VT) [n = 10; age 61 ± 9 years; left ventricular ejection fraction (LVEF) 60 ± 9%], and three comparison groups: healthy individuals (n = 10; age 28 ± 6 years; LVEF > 70%), ICM patients with LV hypertrophy (LVH) and known VT (n = 10; age 64 ± 9 years; LVEF 31 ± 15%), and ICM patients with LVH and no known VT (n = 10; age 70 ± 7 years; LVEF 46 ± 16%). All participants underwent 12-lead ECG, cardiac CT or MRI, and 128-electrode body surface mapping (BioSemi ActiveTwo, Netherlands). Non-invasive voltage and activation maps were reconstructed using the open-source SCIRun (University of Utah) inverse problem-solving environment. Results In the epicardial basal anterior segment, HCM patients had the greatest ventricular activation dispersion [16.4 ± 5.5 vs. 13.1 ± 2.7 (ICM with VT) vs. 13.8 ± 4.3 (ICM no VT) vs. 8.1 ± 2.4 ms (Healthy); P = 0.0007], the largest unipolar voltage [1094 ± 211 vs. 934 ± 189 (ICM with VT) vs. 898 ± 358 (ICM no VT) vs. 842 ± 90 μV (Healthy); P = 0.023], and the greatest voltage dispersion [median (interquartile range) 215 (161–281) vs. 189 (143–208) (ICM with VT) vs. 158 (109–236) (ICM no VT) vs. 110 (106–168) μV (Healthy); P = 0.041]. Differences were also observed in other endo-and epicardial basal and apical segments. Conclusion HCM is characterized by a greater activation dispersion in basal segments, a larger voltage, and a larger voltage dispersion through LV. Clinical Trial Registration www.clinicaltrials.gov Unique identifier: NCT02806479.
Collapse
Affiliation(s)
- Erick A Perez-Alday
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kazi T Haq
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - David M German
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Christopher Hamilton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kyle Johnson
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Francis Phan
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Nichole M Rogovoy
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Katherine Yang
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Ashley Wirth
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jason A Thomas
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Khidir Dalouk
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.,Portland VA Medical Center, Portland, OR, United States
| | - Cristina Fuss
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, OR, United States
| | - Maros Ferencik
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Stephen Heitner
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Larisa G Tereshchenko
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
23
|
Szabó Z, Ujvárosy D, Ötvös T, Sebestyén V, Nánási PP. Handling of Ventricular Fibrillation in the Emergency Setting. Front Pharmacol 2020; 10:1640. [PMID: 32140103 PMCID: PMC7043313 DOI: 10.3389/fphar.2019.01640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Ventricular fibrillation (VF) and sudden cardiac death (SCD) are predominantly caused by channelopathies and cardiomyopathies in youngsters and coronary heart disease in the elderly. Temporary factors, e.g., electrolyte imbalance, drug interactions, and substance abuses may play an additive role in arrhythmogenesis. Ectopic automaticity, triggered activity, and reentry mechanisms are known as important electrophysiological substrates for VF determining the antiarrhythmic therapies at the same time. Emergency need for electrical cardioversion is supported by the fact that every minute without defibrillation decreases survival rates by approximately 7%–10%. Thus, early defibrillation is an essential part of antiarrhythmic emergency management. Drug therapy has its relevance rather in the prevention of sudden cardiac death, where early recognition and treatment of the underlying disease has significant importance. Cardioprotective and antiarrhythmic effects of beta blockers in patients predisposed to sudden cardiac death were highlighted in numerous studies, hence nowadays these drugs are considered to be the cornerstones of the prevention and treatment of life-threatening ventricular arrhythmias. Nevertheless, other medical therapies have not been proven to be useful in the prevention of VF. Although amiodarone has shown positive results occasionally, this was not demonstrated to be consistent. Furthermore, the potential proarrhythmic effects of drugs may also limit their applicability. Based on these unfavorable observations we highlight the importance of arrhythmia prevention, where echocardiography, electrocardiography and laboratory testing play a significant role even in the emergency setting. In the following we provide a summary on the latest developments on cardiopulmonary resuscitation, and the evaluation and preventive treatment possibilities of patients with increased susceptibility to VF and SCD.
Collapse
Affiliation(s)
- Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Ujvárosy
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Tamás Ötvös
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Health Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Coppini R, Santini L, Palandri C, Sartiani L, Cerbai E, Raimondi L. Pharmacological Inhibition of Serine Proteases to Reduce Cardiac Inflammation and Fibrosis in Atrial Fibrillation. Front Pharmacol 2019; 10:1420. [PMID: 31956307 PMCID: PMC6951407 DOI: 10.3389/fphar.2019.01420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Systemic inflammation correlates with an increased risk of atrial fibrillation (AF) and thrombogenesis. Systemic inflammation alters vessel permeability, allowing inflammatory and immune cell migration toward target organs, including the heart. Among inflammatory cells infiltrating the atria, macrophages and mast cell have recently attracted the interest of basic researchers due to the pathogenic mechanisms triggered by their activation. This chemotactic invasion is likely implicated in short- and long-term changes in cardiac cell-to-cell communication and in triggering fibrous tissue accumulation in the atrial myocardium and electrophysiological re-arrangements of atrial cardiomyocytes, thus favoring the onset and progression of AF. Serine proteases are a large and heterogeneous class of proteases involved in several processes that are important for cardiac function and are involved in cardiac diseases, such as (i) coagulation, (ii) fibrinolysis, (iii) extracellular matrix degradation, (iv) activation of receptors (i.e., protease-activated receptors [PPARs]), and (v) modulation of the activity of endogenous signals. The recognition of serine proteases substrates and their involvement in inflammatory/profibrotic mechanisms allowed the identification of novel cardio-protective mechanisms for commonly used drugs that inhibit serine proteases. The aim of this review is to summarize knowledge on the role of inflammation and fibrosis as determinants of AF. Moreover, we will recapitulate current findings on the role of serine proteases in the pathogenesis of AF and the possible beneficial effects of drugs inhibiting serine proteases in reducing the risk of AF through decrease of cardiac inflammation and fibrosis. These drugs include thrombin and factor Xa inhibitors (used as oral anticoagulants), dipeptidyl-peptidase 4 (DPP4) inhibitors, used for type-2 diabetes, as well as novel experimental inhibitors of mast cell chymases.
Collapse
Affiliation(s)
- Raffaele Coppini
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Lorenzo Santini
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Chiara Palandri
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Laura Sartiani
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| | - Laura Raimondi
- Section of Pharmacology, Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Zungur M. QT Dispersion Changes after Transcatheter Aortic Valve Implantation in Patients with Aortic Stenosis. Braz J Cardiovasc Surg 2019; 34:704-710. [PMID: 31545576 PMCID: PMC6894015 DOI: 10.21470/1678-9741-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective The aim of this study was to evaluate the QT dispersion and echocardiographic parameters in patients before and after transcatheter aortic valve implantation (TAVI). Methods One hundred and fifty-two patients with severe aortic valve stenosis (AS) were included in our study. Ninety five patients who underwent aortic valve replacement with TAVI were included in the TAVI group and 57 patients, who refused TAVI, were included in the medical treatment group. The QT interval and echocardiographic parameters of all patients were assessed before and after the procedure (first and sixth months and first year). The QT intervals were taken from the onset of the QRS to the end of the T wave. Results All patients had severe AS. The average mean aortic valve gradient was 46.1±12. Left ventricular internal diastolic diameter (LVIDD) and interventricular septum diastolic thickness (IVSDT) did not change significantly after TAVI (P>0.05). QT dispersion, corrected QT dispersion, and mean aortic valve gradient changed significantly six months after TAVI (P<0.05). Compared to the medical treatment group, QT dispersion and corrected QT dispersion were significantly decreased at the sixth month in the TAVI group. The incidence of malignant arrhythmias was smaller in the TAVI group than in the medical treatment group. The mortality rate was lower at the first-year follow-up in the TAVI group than in the medical treatment group. Conclusion Increased QT dispersion is associated with severe symptomatic AS. After TAVI, QT dispersion reduces.
Collapse
Affiliation(s)
- Mustafa Zungur
- Kent Hospital Department of Cardiology Izmir Turkey Department of Cardiology, Kent Hospital, Izmir, Turkey
| |
Collapse
|
26
|
Fingrova Z, Havranek S, Ambroz D, Jansa P, Linhart A. The left atrial substrate plays a significant role in the development of complex atrial tachycardia in patients with precapillary pulmonary hypertension. BMC Cardiovasc Disord 2019; 19:157. [PMID: 31253083 PMCID: PMC6599239 DOI: 10.1186/s12872-019-1142-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
Background Atrial fibrillation (AF) and related atrial tachyarrhythmias (AT), including type I atrial flutter (AFL) are frequently observed in patients with pulmonary hypertension (PH). Their relationship to hemodynamic changes, atrial size, and ventricular function are still not fully verified. Methods We retrospectively studied hemodynamic data, echocardiographic findings and arrhythmia incidence in 814 patients with invasively diagnosed precapillary PH (aged 59 ± 14 years; 46% males). Patients with combined or post-capillary PH were excluded. Results AF / AT were identified in 225 (28%) of all the study population. Compared to the subgroup without arrhythmia, patients with AF / AT had elevated right atrial pressure (11 ± 5 vs. 9 ± 5 mmHg), wedge pressure (11 ± 3 vs. 10 ± 3), a more enlarged right atrium (50 ± 12 vs. 47 ± 11 mm) and an increased left atrial diameter in the parasternal long axis projection, p < 0.05 for all comparisons. In the multivariate model, the left atrial size, patient age, arterial hypertension, diabetes and type of PH were associated with AF / AT occurrence, p < 0.05. Patients with type I AFL were more frequently male (39 (80%) vs. 62 (42%)), were younger (61 ± 11 vs. 67 ± 10 years), had increased pulmonary artery mean pressure (50 ± 12 vs. 45 ± 12 mmHg), less advanced left atrial dilatation (38 ± 10 vs. 42 ± 7 mm), and a more enlarged right atrium (56 ± 12 vs. 48 ± 11) as compared to subjects with AF or other AT, p < 0.05. Conclusions The evidence of elevated wedge pressure and the enlargement of the left atrium especially in patients with AF suggest a parallel involvement of the left atrial substrate in arrhythmia formation despite invasively confirmed evidence of purely isolated precapillary PH. Substantial differences were noticed between patients with type I AFL and the remaining patients with other arrhythmia types.
Collapse
Affiliation(s)
- Zdenka Fingrova
- 2nd Department of Medicine - Department of Cardiovascular Medicine, General University Hospital in Prague, U Nemocnice 2, 12808, Prague, Czech Republic.,2nd Department of Medicine - Department of Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 12808, Prague, Czech Republic
| | - Stepan Havranek
- 2nd Department of Medicine - Department of Cardiovascular Medicine, General University Hospital in Prague, U Nemocnice 2, 12808, Prague, Czech Republic. .,2nd Department of Medicine - Department of Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 12808, Prague, Czech Republic.
| | - David Ambroz
- 2nd Department of Medicine - Department of Cardiovascular Medicine, General University Hospital in Prague, U Nemocnice 2, 12808, Prague, Czech Republic.,2nd Department of Medicine - Department of Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 12808, Prague, Czech Republic
| | - Pavel Jansa
- 2nd Department of Medicine - Department of Cardiovascular Medicine, General University Hospital in Prague, U Nemocnice 2, 12808, Prague, Czech Republic.,2nd Department of Medicine - Department of Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 12808, Prague, Czech Republic
| | - Ales Linhart
- 2nd Department of Medicine - Department of Cardiovascular Medicine, General University Hospital in Prague, U Nemocnice 2, 12808, Prague, Czech Republic.,2nd Department of Medicine - Department of Cardiovascular Medicine, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 2, 12808, Prague, Czech Republic
| |
Collapse
|
27
|
Tsai YT, Lin FY, Lin CS, Loh SH, Li CY, Lin CY, Lin YW, Tsai CS. B-type natriuretic peptide enhances fibrotic effects via matrix metalloproteinase-2 expression in the mouse atrium in vivo and in human atrial myofibroblasts in vitro. Transl Res 2019; 208:30-46. [PMID: 30857762 DOI: 10.1016/j.trsl.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/04/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
B-type natriuretic peptide (BNP) was approved by the US Food and Drug Administration in 2001 for the treatment of heart failure. However, the effects of BNP in clinical applications are controversial and uncertain. Recently, study indicated that high BNP levels are associated with an increased risk of developing atrial fibrillation. In this study, we investigated the direct effects of BNP on TNF-α-induced atrial fibrosis mice, as well as its effects on human atrial myofibroblasts. We found that injecting TNF-α-induced mice with recombinant human BNP enhanced atrial fibrosis via matrix metalloproteinase-2 (MMP-2) expression and collagen accumulation. Furthermore, we found that BNP stimulated MMP-2 expression in human atrial myofibroblasts. Treatment of human atrial myofibroblasts with cycloheximide had no effect on this outcome; however, treatment of cells with MG132 enhanced BNP-induced MMP-2 expression, indicating that protein stability and inhibition of proteasome-mediated protein degradation pathways are potentially involved. Inhibition of SIRT1 significantly decreased BNP-induced MMP-2 expression. Additionally, confocal and coimmunoprecipitation data indicated that BNP-regulated MMP-2 expression are likely to be mediated through direct interaction with SIRT1, which is thought to deacetylate MMP-2 and to increase its protein stability in human atrial myofibroblasts. Finally, we confirmed that SIRT1 is expressed and cytoplasmically redistributed as well as colocalized with MMP-2 in mouse fibrotic atrial tissue. We suggest a possible fibrosis-promoting role of BNP in the atrium, although the antifibrotic properties of BNP in the ventricle have been reported in previous studies, and that the coordination between MMP-2 and SIRT1 in BNP-induced atrial myofibroblasts participates in atrial fibrosis.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yen Lin
- Division of Cardiology and Cardiovascular Research Center, TaipeiMedical University Hospital, Taipei, Taiwan; Departments of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hurng Loh
- Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Yuan Li
- Department of Anesthesiology, China Medical University and Hospital, Taichung, Taiwan
| | - Cheng-Yen Lin
- Departments of Internal Medicine, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan; Healthcare Information and Management Department, Ming Chuan University, Taipei, Taiwan
| | - Yi-Wen Lin
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacology & Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
28
|
Atrial Fibrillation and Acute Myocardial Infarction – An Inflammation-Mediated Association. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2018. [DOI: 10.2478/jce-2018-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT
Atrial fibrillation (AF) is an increasingly widespread healthcare problem. AF can frequently present as a complication in acute coronary syndromes (ACS), especially in ST-elevation acute myocardial infarction (AMI), in which case it is the most frequent supraventricular rhythm disturbance with an estimated incidence of 6.8-21%. The presence of AF in ACS heralds worse outcomes in comparison to subjects in sinus rhythm, and several studies have shown that in AMI patients, both new-onset and pre-existing AF are associated with a higher risk of major adverse cardiovascular and cerebrovascular events during hospitalization. The cause of newonset AF in AMI is multifactorial. Although still incompletely understood, the mechanisms involved in the development of AF in acute myocardial ischemic events include the neurohormonal activation of the sympathetic nervous system that accompanies the AMI, ischemic involvement of the atrial myocytes, ventricular dysfunction, and atrial overload. The identification of patients at risk for AF is of great significance as it may lead to prompt therapeutic interventions and closer follow-up, thus improving prognosis and decreasing cardiovascular and cerebrovascular events. The present manuscript aims to summarize the current research findings related to new-onset AF in AMI patients, as well as the predictors and prognostic impact of this comorbid association.
Collapse
|
29
|
Zhao J, Schotten U, Smaill B, Verheule S. Loss of Side-to-Side Connections Affects the Relative Contributions of the Sodium and Calcium Current to Transverse Propagation Between Strands of Atrial Myocytes. Front Physiol 2018; 9:1212. [PMID: 30233394 PMCID: PMC6131618 DOI: 10.3389/fphys.2018.01212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Atrial fibrillation (AF) leads to a loss of transverse connections between myocyte strands that is associated with an increased complexity and stability of AF. We have explored the interaction between longitudinal and transverse coupling, and the relative contribution of the sodium (INa) and calcium (ICa) current to propagation, both in healthy tissue and under diseased conditions using computer simulations. Methods: Two parallel strands of atrial myocytes were modeled (Courtemanche et al. ionic model). As a control condition, every single cell was connected both transversely and longitudinally. To simulate a loss of transverse connectivity, this number was reduced to 1 in 4, 8, 12, or 16 transversely. To study the interaction with longitudinal coupling, anisotropy ratios of 3, 9, 16, and 25:1 were used. All simulations were repeated for varying degrees of INa and ICa block and the transverse activation delay (TAD) between the paced and non-paced strands was calculated for all cases. Results: The TAD was highly sensitive to the transverse connectivity, increasing from 1 ms at 1 in 1, to 25 ms at 1 in 4, and 100 ms at 1 in 12 connectivity. The TAD also increased when longitudinal coupling was increased. Both decreasing transverse connectivity and increasing longitudinal coupling enhanced the synchronicity of activation of the non-paced strand and increased the propensity for transverse conduction block. Even after long TADs, the action potential upstroke in the non-paced strand was still mainly dependent on the INa. Nevertheless, ICa in the paced strand was essential to provide depolarizing current to the non-paced strand. Loss of transverse connections increased the sensitivity to both INa and ICa block. However, when longitudinal coupling was relatively high, transverse propagation was more sensitive to ICa block than to INa block. Conclusions: Although transverse propagation depends on both INa and ICa, their relative contribution, and sensitivity to channel blockade, depends on the distribution of transverse connections and the axial conductivity. This simple two-strand model helps to explain the nature of atrial discontinuous conduction during structural remodeling and provides an opportunity for more effective drug development.
Collapse
Affiliation(s)
- Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ulrich Schotten
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Bruce Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
30
|
Anter E, Duytschaever M, Shen C, Strisciuglio T, Leshem E, Contreras-Valdes FM, Waks JW, Zimetbaum PJ, Kumar K, Spector PS, Lee A, Gerstenfeld EP, Nakar E, Bar-Tal M, Buxton AE. Activation Mapping With Integration of Vector and Velocity Information Improves the Ability to Identify the Mechanism and Location of Complex Scar-Related Atrial Tachycardias. Circ Arrhythm Electrophysiol 2018; 11:e006536. [DOI: 10.1161/circep.118.006536] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elad Anter
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | | | - Changyu Shen
- Division of Cardiovascular Medicine, Richard A. and Susan F. Smith Center for Cardiovascular Outcomes Research, Beth Israel Deaconess Medical Center, Boston, MA (C.S.)
| | | | - Eran Leshem
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | - Fernando M. Contreras-Valdes
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | - Jonathan W. Waks
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | - Peter J. Zimetbaum
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | - Kapil Kumar
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| | | | - Adam Lee
- Division of Cardiology, Section of Cardiac Electrophysiology and Arrhythmia Service, University of California, San Francisco (A.L., E.P.G.)
| | - Edward P. Gerstenfeld
- Division of Cardiology, Section of Cardiac Electrophysiology and Arrhythmia Service, University of California, San Francisco (A.L., E.P.G.)
| | - Elad Nakar
- Biosense Webster, Johnson & Johnson, Research and Development Department, Yokneam, Israel (E.N., M.B.-T.)
| | - Meir Bar-Tal
- Biosense Webster, Johnson & Johnson, Research and Development Department, Yokneam, Israel (E.N., M.B.-T.)
| | - Alfred E. Buxton
- Cardiovascular Division, Department of Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (E.A., E.L., F.M.C.-V., J.W.W., P.J.Z., K.K., A.E.B.)
| |
Collapse
|
31
|
An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data. Comput Biol Med 2018; 102:267-277. [PMID: 29891242 DOI: 10.1016/j.compbiomed.2018.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 01/25/2023]
Abstract
Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters.
Collapse
|
32
|
Mendonca Costa C, Plank G, Rinaldi CA, Niederer SA, Bishop MJ. Modeling the Electrophysiological Properties of the Infarct Border Zone. Front Physiol 2018; 9:356. [PMID: 29686626 PMCID: PMC5900020 DOI: 10.3389/fphys.2018.00356] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/28/2022] Open
Abstract
Ventricular arrhythmias (VA) in patients with myocardial infarction (MI) are thought to be associated with structural and electrophysiological remodeling within the infarct border zone (BZ). Personalized computational models have been used to investigate the potential role of the infarct BZ in arrhythmogenesis, which still remains incompletely understood. Most recent models have relied on experimental data to assign BZ properties. However, experimental measurements vary significantly resulting in different computational representations of this region. Here, we review experimental data available in the literature to determine the most prominent properties of the infarct BZ. Computational models are then used to investigate the effect of different representations of the BZ on activation and repolarization properties, which may be associated with VA. Experimental data obtained from several animal species and patients with infarct show that BZ properties vary significantly depending on disease's stage, with the early disease stage dominated by ionic remodeling and the chronic stage by structural remodeling. In addition, our simulations show that ionic remodeling in the BZ leads to large repolarization gradients in the vicinity of the scar, which may have a significant impact on arrhythmia simulations, while structural remodeling plays a secondary role. We conclude that it is imperative to faithfully represent the properties of regions of infarction within computational models specific to the disease stage under investigation in order to conduct in silico mechanistic investigations.
Collapse
Affiliation(s)
- Caroline Mendonca Costa
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gernot Plank
- Department of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Lim B, Hwang M, Song JS, Ryu AJ, Joung B, Shim EB, Ryu H, Pak HN. Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study. PLoS One 2017; 12:e0190398. [PMID: 29287119 PMCID: PMC5747478 DOI: 10.1371/journal.pone.0190398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. METHODS We integrated 3D CT images of left atrium obtained from 10 patients with persistent AF (80% male, 61.8±13.5 years old) into in-silico AF model. We compared AF maintenance durations (max 300s), spatiotemporal stabilities of DF, phase singularity (PS) number, life-span of PS, and AF termination or defragmentation rates after virtual DF ablation with 5 different CV conditions (0.2, 0.3, 0.4, 0.5, and 0.6m/s). RESULTS 1. AF maintenance duration (p<0.001), spatiotemporal mean variance of DF (p<0.001), and the number of PS (p = 0.023) showed CV dependent bimodal patterns (highest at CV0.4m/s and lowest at CV0.6m/s) consistently. 2. After 10% highest DF ablation, AF defragmentation rates were the lowest at CV0.4m/s (37.8%), but highest at CV0.5 and 0.6m/s (all 100%, p<0.001). 3. In the episodes with AF termination or defragmentation followed by 10% highest DF ablation, baseline AF maintenance duration was shorter (p<0.001), spatiotemporal mean variance of DF was lower (p = 0.014), and the number of PS was lower (p = 0.004) than those with failed AF defragmentation after DF ablation. CONCLUSION Virtual ablation of DF, which may indicate AF driver, was more likely to terminate or defragment AF with spatiotemporally stable DF, but not likely to do so in long-lasting and sustained AF conditions, depending on CV.
Collapse
Affiliation(s)
- Byounghyun Lim
- Yonsei University Health System, Seoul, Republic of Korea
| | - Minki Hwang
- Yonsei University Health System, Seoul, Republic of Korea
| | - Jun-Seop Song
- Yonsei University Health System, Seoul, Republic of Korea
| | - Ah-Jin Ryu
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Ganwon-do, Republic of Korea
| | - Boyoung Joung
- Yonsei University Health System, Seoul, Republic of Korea
| | - Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Ganwon-do, Republic of Korea
| | - Hyungon Ryu
- NVIDIA, Yonsei University, Department of Mathematics, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
34
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
35
|
Pachón-M JC, Pachón-M EI, Santillana P TG, Lobo TJ, Pachón CTC, Pachón-M JC, Albornoz V RN, Zerpa A JC, Ortencio F, Arruda M. Ablation of "Background Tachycardia" in Long Standing Atrial Fibrillation: Improving the Outcomes by Unmasking a Residual Atrial Fibrillation Perpetuator. J Atr Fibrillation 2017; 10:1583. [PMID: 29250230 DOI: 10.4022/jafib.1583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022]
Abstract
Background Catheter ablation of long-standing persistent AF (LSAF) remains challenging. Since AF-Nest (AFN) description, we have observed that a stable, protected, fast source firing, namely "Background Tachycardia"(BT), could be hidden beneath the chaotic AF. Following pulmonary vein isolation (PVI)+AFN ablation one or more BT may arise or be induced in 30-40% of patients, which could be the culprit forAF maintenance and ablation recurrences. Methods and Results We studied 114 patients, from 322 sequential LSAF regular ablations, having spontaneous or induced residual BT after EGM-guided PVI+AFN ablation of LSAF; 55.6±11y/o, 97males (85.1%), EF=65.5±8%, LA=42.8±6.7mm. Macroreentrant tachycardias were excluded. Pre-ablationAF 12-leads ECG Digital processing(DP) and spectral analysis(SA) was performed searching for BT before AF ablation and its correlation with BT during ablation.After PVI, 38.1±9 AFN sites/patient and 135 sustained BTs (1-3, 1.2±0.5/patient) were ablated. BT cycle length(CL) was 246.3±37.3ms. In 79 patients presenting suitable DP for SA, the BT-CL was 241.6±34.3ms with intra procedure BT-CL correlation r=0.83/p<0.01. Following BT ablation, AF could not be induced. During FU of 13→60 months(22.8±12m), AF freedom for BT RF(+) vs. BT RF(-) groups were 77.9% vs. 56.4% (p=0.009), respectively. There was no significant complication. Conclusion BT ablation following PVI and AFN ablation improved long-term outcomes ofLSAF ablation. BT is likely due to sustained microreentry, protected during AF by entry block. BT can be suspected by spectral analysis of the pre-ablation ECG and is likely one important AF perpetuator by causing electrical resonance of the AFN. This ablation strategy warrants randomized, multicenter investigation.
Collapse
Affiliation(s)
- José Carlos Pachón-M
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Enrique I Pachón-M
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Tomas G Santillana P
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Tasso Julio Lobo
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Carlos Thiene C Pachón
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Juán Carlos Pachón-M
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Remy Nelson Albornoz V
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Juán Carlos Zerpa A
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Felipe Ortencio
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| | - Mauricio Arruda
- Institutional review board statement: The study was reviewed and approved by theinstitutional review boards of Sao Paulo Cardiology Institute (IDPC) and Sao Paulo University (USP)
| |
Collapse
|
36
|
Anter E. Cardiac magnetic resonance imaging to guide ventricular tachycardia ablation: Are we there? Heart Rhythm 2017; 14:1494-1495. [PMID: 28713026 DOI: 10.1016/j.hrthm.2017.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Elad Anter
- Cardiovascular Division, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
37
|
Breitenstein A, Steffel J. [Not Available]. PRAXIS 2017; 106:757-765. [PMID: 28677488 DOI: 10.1024/1661-8157/a002725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zusammenfassung. Zusammenfassung: Das Vorhofflimmern ist die häufigste supraventrikuläre Rhythmusstörung und entwickelt sich typischerweise bei Patienten mit kardiovaskulären Risikofaktoren oder einer zugrunde liegenden Kardiopathie. Die Bandbreite an Symptomen ist sehr weit und reicht von vollkommen asymptomatischen Patienten bis zur schweren Herzinsuffizienz. Eine korrekte Dokumentation mittels EKG ist unabdingbar für die Diagnose. Für jeden Patienten mit Vorhofflimmern ist eine komplette internistisch-kardiologische Abklärung indiziert. Von zentraler Bedeutung in der Behandlung ist die Thromboembolie-Prophylaxe bei Patienten mit einem erhöhten Risiko für einen Schlaganfall, dies unabhängig von der übrigen Therapie des Vorhofflimmerns. Beim Letzteren ist neben der antiarrhythmischen Therapie die Kontrolle der kardiovaskulären Risikofaktoren sowie die Behandlung einer allfällig vorhandenen Herzinsuffizienz entscheidend. Neben der medikamentösen Rhythmuskontrolle hat sich die Ablationsbehandlung als effektive und sichere alternative Therapieoption etabliert.
Collapse
Affiliation(s)
| | - Jan Steffel
- 1 Elektrophysiologie, Universitäres Herzzentrum Zürich, Zürich
| |
Collapse
|
38
|
Abstract
In the last twenty years, new imaging techniques to assess atrial function and to predict the risk of recurrence of atrial fibrillation after treatment have been developed. The present review deals with the role of these techniques in the detection of structural and functional changes of the atrium and diagnosis of atrial remodeling, particularly atrial fibrosis. Echocardiography allows the detection of anatomical, functional changes and deformation of the atrial wall during the phases of the cardiac cycle. For this, adequate acquisition of atrial images is necessary using speckle tracking imaging and interpretation of the resulting strain and strain rate curves. This allows to predict new-onset atrial fibrillation and recurrences. Its main limitations are inter-observer variability, the existence of different software manufacturers, and the fact that the software used were originally developed for the evaluation of the ventricular function and are now applied to the atria. Cardiac magnetic resonance, using contrast enhancement with gadolinium, plays a key role in the visualization and quantification of atrial fibrosis. This is the established method for in vivo visualization of myocardial fibrotic tissue. The non-invasive evaluation of atrial fibrosis is associated with the risk of recurrence of atrial fibrillation and with electro-anatomical endocardial mapping. We discuss the limitations of these techniques, derived from the difficulty of demonstrating the correlation between fibrosis imaging and histology, and poor intra- and inter-observer reproducibility. The sources of discordance are described, mainly due to image acquisition and processing, and the challenges ahead in an attempt to eliminate differences between operators.
Collapse
|
39
|
Enriquez A, Frankel DS, Baranchuk A. Pathophysiology of ventricular tachyarrhythmias : From automaticity to reentry. Herzschrittmacherther Elektrophysiol 2017; 28:149-156. [PMID: 28567491 DOI: 10.1007/s00399-017-0512-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023]
Abstract
Ventricular arrhythmias are a heterogeneous group of arrhythmias and may arise in patients with cardiomyopathy or structurally normal hearts. The electrophysiologic mechanisms responsible for the initiation and maintenance of ventricular tachycardia include enhanced automaticity, triggered activity, and reentry. Differentiating between these three mechanisms can be challenging and usually requires an invasive electrophysiology study. Establishing the underlying mechanism in a particular patient is helpful to define the optimal therapeutic approach, including the selection of pharmacologic agents or delineation of an ablation strategy.
Collapse
Affiliation(s)
- Andres Enriquez
- Section of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David S Frankel
- Section of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Baranchuk
- Heart Rhythm Service, Kingston General Hospital, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
40
|
Hernandez-Betancor I, Izquierdo-Gómez MM, García-Niebla J, Laynez-Cerdeña I, García-González MJ, Irribarren-Sarriá JL, Jimenez-Rivera JJ, Lacalzada-Almeida J. Bayes Syndrome and Imaging Techniques. Curr Cardiol Rev 2017; 13:263-273. [PMID: 28707575 PMCID: PMC5730959 DOI: 10.2174/1573403x13666170713122600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interatrial block (IAB) is due to disruption in the Bachmann region (BR). According to whether interatrial electrical conduction is delayed or completely blocked through the BR, it can be classified as IAB of first, second or third degree. On the surface electrocardiogram, a P wave ≥ 120 ms (partial IAB) is observed or associated to the prolongation of the P wave with a biphasic (positive / negative) morphology in the inferior leads (advanced IAB). Bayes syndrome is defined as an advanced IAB associated with atrial arrhythmia, more specifically atrial fibrillation. Objective and Conclusion: The purpose of this review is to describe the latest evidence about an entity considered an anatomical and electrical substrate with its own name, which may be a predictor of supraventricular arrhythmia and cardioembolic cerebrovascular accidents, as well as the role of new imaging techniques, such as echocardiographic strain and cardiac magnetic resonance imaging, in characterizing atrial alterations associated with this syndrome and generally in the study of anatomy and atrial function.
Collapse
Affiliation(s)
- Iván Hernandez-Betancor
- Departamento de Cardiología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | | | - Javier García-Niebla
- Centro de Salud Valle del Golfo, Servicios Sanitarios del Área de Salud de El Hierro, Frontera-El Hierro, Santa Cruz de Tenerife, Tenerife, España
| | - Ignacio Laynez-Cerdeña
- Departamento de Cardiología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | | | - Barragan-Acea
- Departamento de Cardiología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
- Centro de Salud Valle del Golfo, Servicios Sanitarios del Área de Salud de El Hierro, Frontera-El Hierro, Santa Cruz de Tenerife, Tenerife, España
- Departamento de Unidad de Cuidados Intensivos, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | - A.
- Departamento de Cardiología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | - Jose Luis Irribarren-Sarriá
- Departamento de Unidad de Cuidados Intensivos, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | - Juan José Jimenez-Rivera
- Departamento de Unidad de Cuidados Intensivos, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| | - Juan Lacalzada-Almeida
- Departamento de Cardiología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Tenerife, España
| |
Collapse
|
41
|
Kirsh JA. When Is a "Pathway" Not a Pathway? Explaining Late Recurrences After Successful Ablation of Pediatric Atrioventricular Nodal Reentrant Tachycardia. Circ Arrhythm Electrophysiol 2016; 9:CIRCEP.116.004650. [PMID: 27784740 DOI: 10.1161/circep.116.004650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joel A Kirsh
- From the Labatt Family Heart Centre, and Department of Pediatrics, Hospital for Sick Children & University of Toronto, Canada.
| |
Collapse
|
42
|
Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016; 37:2893-2962. [PMID: 27567408 DOI: 10.1093/eurheartj/ehw210] [Citation(s) in RCA: 4754] [Impact Index Per Article: 594.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
43
|
Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, De Caterina R, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GYH, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, Van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg 2016; 50:e1-e88. [DOI: 10.1093/ejcts/ezw313] [Citation(s) in RCA: 602] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, De Caterina R, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GYH, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, Van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace 2016; 18:1609-1678. [PMID: 27567465 DOI: 10.1093/europace/euw295] [Citation(s) in RCA: 1318] [Impact Index Per Article: 164.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Stefan Agewall
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - John Camm
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Gonzalo Baron Esquivias
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Werner Budts
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Scipione Carerj
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Filip Casselman
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Antonio Coca
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Raffaele De Caterina
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Spiridon Deftereos
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Dobromir Dobrev
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - José M Ferro
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Gerasimos Filippatos
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Donna Fitzsimons
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Bulent Gorenek
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Maxine Guenoun
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Stefan H Hohnloser
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Philippe Kolh
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Gregory Y H Lip
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Athanasios Manolis
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - John McMurray
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Piotr Ponikowski
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Raphael Rosenhek
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Frank Ruschitzka
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Irina Savelieva
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Sanjay Sharma
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Piotr Suwalski
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Juan Luis Tamargo
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Clare J Taylor
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Isabelle C Van Gelder
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Adriaan A Voors
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Stephan Windecker
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Jose Luis Zamorano
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| | - Katja Zeppenfeld
- The disclosure forms of all experts involved in the development of these guidelines are available on the ESC website http://www.escardio.org/guidelines
| |
Collapse
|
45
|
Aro AL, Chugh SS. Clinical Diagnosis of Electrical Versus Anatomic Left Ventricular Hypertrophy: Prognostic and Therapeutic Implications. Circ Arrhythm Electrophysiol 2016; 9:e003629. [PMID: 27009417 DOI: 10.1161/circep.115.003629] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/24/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Aapo L Aro
- From the The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sumeet S Chugh
- From the The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
46
|
Park JS, Hwang H, Joung B, Lee MH, Kim SS. Clinical and Electrophysiologic Characteristics Before and After Radiofrequency Ablation of Sustained Slow Atrioventricular Nodal Pathway Conduction. JACC Clin Electrophysiol 2016; 2:367-374. [DOI: 10.1016/j.jacep.2015.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/17/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
47
|
Tse G, Lai ETH, Yeo JM, Yan BP. Electrophysiological Mechanisms of Bayés Syndrome: Insights from Clinical and Mouse Studies. Front Physiol 2016; 7:188. [PMID: 27303306 PMCID: PMC4886053 DOI: 10.3389/fphys.2016.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Bayés syndrome is an under-recognized clinical condition characterized by inter-atrial block (IAB). This is defined electrocardiographically as P-wave duration > 120 ms and can be categorized into first, second and third degree IAB. It can be caused by inflammatory conditions such as systemic sclerosis and rheumatoid arthritis, abnormal protein deposition in cardiac amyloidosis, or neoplastic processes invading the inter-atrial conduction system, such as primary cardiac lymphoma. It may arise transiently during volume overload, autonomic dysfunction or electrolyte disturbances from vomiting. In other patients without an obvious cause, the predisposing factors are diabetes mellitus, hypertensive heart disease, and hypercholesterolemia. IAB has a strong association with atrial arrhythmogenesis, left atrial enlargement (LAE), and electro-mechanical discordance, increasing the risk of cerebrovascular accidents as well as myocardial and mesenteric ischemia. The aim of this review article is to synthesize experimental evidence on the pathogenesis of IAB and its underlying molecular mechanisms. Current medical therapies include anti-fibrotic, anti-arrhythmic and anti-coagulation agents, whereas interventional options include atrial resynchronization therapy by single or multisite pacing. Future studies will be needed to elucidate the significance of the link between IAB and atrial tachyarrhythmias in patients with different underlying etiologies and optimize the management options in these populations.
Collapse
Affiliation(s)
- Gary Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Eric Tsz Him Lai
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, University of Hong KongHong Kong, China
| | - Jie Ming Yeo
- School of Medicine, Imperial College LondonLondon, UK
| | - Bryan P. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong KongHong Kong, China
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourne, VIC, Australia
| |
Collapse
|
48
|
Tse G, Tse V, Yeo JM, Sun B. Atrial Anti-Arrhythmic Effects of Heptanol in Langendorff-Perfused Mouse Hearts. PLoS One 2016; 11:e0148858. [PMID: 26872148 PMCID: PMC4752503 DOI: 10.1371/journal.pone.0148858] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/24/2016] [Indexed: 12/24/2022] Open
Abstract
Acute effects of heptanol (0.1 to 2 mM) on atrial electrophysiology were explored in Langendorff-perfused mouse hearts. Left atrial bipolar electrogram or monophasic action potential recordings were obtained during right atrial stimulation. Regular pacing at 8 Hz elicited atrial activity in 11 out of 11 hearts without inducing atrial arrhythmias. Programmed electrical stimulation using a S1S2 protocol provoked atrial tachy-arrhythmias in 9 of 17 hearts. In the initially arrhythmic group, 2 mM heptanol exerted anti-arrhythmic effects (Fisher’s exact test, P < 0.05) and increased atrial effective refractory period (ERP) from 26.0 ± 1.9 to 57.1 ± 2.5 ms (ANOVA, P < 0.001) despite increasing activation latency from 18.7 ± 1.1 to 28.9 ± 2.1 ms (P < 0.001) and leaving action potential duration at 90% repolarization (APD90) unaltered (25.6 ± 1.2 vs. 27.2 ± 1.2 ms; P > 0.05), which led to increases in ERP/latency ratio from 1.4 ± 0.1 to 2.1 ± 0.2 and ERP/APD90 ratio from 1.0 ± 0.1 to 2.1 ± 0.2 (P < 0.001). In contrast, in the initially non-arrhythmic group, heptanol did not alter arrhythmogenicity, increased AERP from 47.3 ± 5.3 to 54.5 ± 3.1 ms (P < 0.05) and activation latency from 23.7 ± 2.2 to 31.3 ± 2.5 ms and did not alter APD90 (24.1 ± 1.2 vs. 25.0 ± 2.3 ms; P > 0.05), leaving both AERP/latency ratio (2.1 ± 0.3 vs. 1.9 ± 0.2; P > 0.05) and ERP/APD90 ratio (2.0 ± 0.2 vs. 2.1 ± 0.1; P > 0.05) unaltered. Lower heptanol concentrations (0.1, 0.5 and 1 mM) did not alter arrhythmogenicity or the above parameters. The present findings contrast with known ventricular pro-arrhythmic effects of heptanol associated with decreased ERP/latency ratio, despite increased ERP/APD ratio observed in both the atria and ventricles.
Collapse
Affiliation(s)
- Gary Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong S.A.R., China
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Canada
| | - Jie Ming Yeo
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Bing Sun
- Department of Cardiology, Tongji University Affiliated Tongji Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Molitoris JM, Paliwal S, Sekar RB, Blake R, Park J, Trayanova NA, Tung L, Levchenko A. Precisely parameterized experimental and computational models of tissue organization. Integr Biol (Camb) 2016; 8:230-242. [PMID: 26822672 DOI: 10.1039/c5ib00270b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patterns of cellular organization in diverse tissues frequently display a complex geometry and topology tightly related to the tissue function. Progressive disorganization of tissue morphology can lead to pathologic remodeling, necessitating the development of experimental and theoretical methods of analysis of the tolerance of normal tissue function to structural alterations. A systematic way to investigate the relationship of diverse cell organization to tissue function is to engineer two-dimensional cell monolayers replicating key aspects of the in vivo tissue architecture. However, it is still not clear how this can be accomplished on a tissue level scale in a parameterized fashion, allowing for a mathematically precise definition of the model tissue organization and properties down to a cellular scale with a parameter dependent gradual change in model tissue organization. Here, we describe and use a method of designing precisely parameterized, geometrically complex patterns that are then used to control cell alignment and communication of model tissues. We demonstrate direct application of this method to guiding the growth of cardiac cell cultures and developing mathematical models of cell function that correspond to the underlying experimental patterns. Several anisotropic patterned cultures spanning a broad range of multicellular organization, mimicking the cardiac tissue organization of different regions of the heart, were found to be similar to each other and to isotropic cell monolayers in terms of local cell-cell interactions, reflected in similar confluency, morphology and connexin-43 expression. However, in agreement with the model predictions, different anisotropic patterns of cell organization, paralleling in vivo alterations of cardiac tissue morphology, resulted in variable and novel functional responses with important implications for the initiation and maintenance of cardiac arrhythmias. We conclude that variations of tissue geometry and topology can dramatically affect cardiac tissue function even if the constituent cells are themselves similar, and that the proposed method can provide a general strategy to experimentally and computationally investigate when such variation can lead to impaired tissue function.
Collapse
Affiliation(s)
- Jared M Molitoris
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Saurabh Paliwal
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Rajesh B Sekar
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Robert Blake
- Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA
| | - JinSeok Park
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, P.O. Box 208260, New Haven, CT, 06520, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 216, Baltimore, MD, 21218, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Andre Levchenko
- Department of Biomedical Engineering and Yale Systems Biology Institute, Yale University, P.O. Box 208260, New Haven, CT, 06520, USA
| |
Collapse
|
50
|
Nageh MF, Kotak K. Paradoxical preexcitation following successful ablation of a concealed accessory pathway. HeartRhythm Case Rep 2015; 2:149-152. [PMID: 28491655 PMCID: PMC5412656 DOI: 10.1016/j.hrcr.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Maged F Nageh
- Department of Electrophysiology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, California
| | - Kamal Kotak
- Department of Electrophysiology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, California
| |
Collapse
|