1
|
Chang SL, Chang CT, Hung WT, Chen LK. A case of congenital long QT syndrome, type 8, undergoing laparoscopic hysterectomy with general anesthesia. Taiwan J Obstet Gynecol 2019; 58:552-556. [PMID: 31307750 DOI: 10.1016/j.tjog.2019.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Patients with Long QT syndrome (LQTS) P may present with torsades de pointes, ventricular tachycardia (VT), or ventricular fibrillation (VF) and are at risk of sudden cardiac death. MATERIALS AND METHODS A 38 y/o female patient with uterus myoma developed VF during laparoscopic assisted vaginal hysterectomy surgery. Defibrillation was delivered and the electrocardiogram (ECG) returned to sinus rhythm after CPR. RESULTS Patient survived and implantable cardioverter-defibrillator was implanted and received beta-blocker therapy. ECG obtained in out-patient clinic still showed QT interval prolongation, but revealed no prolongation few months after persistent beta-blocker therapy. LQTS type 8 (CACNA1C E768del mutation) was identified by genetic DNA sequencing study. CONCLUSIONS Patients with concealed LQTS may have normal QT interval unless exposing to stress or specific stimuli. Unexpected ventricular arrhythmia may happen during any medical management. We should avoid triggers of QT prolongation, and get familiar with management of the episode.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, No.69, Guizi Rd., Taishan Dist., New Taipei City 243, Taiwan.
| | - Ching-Tao Chang
- Department of Anesthesiology, National Taiwan University Hospital Hsin-Chu Branch, No.25, Ln. 442, Sec. 1, Jingguo Rd., East Dist., Hsinchu City 300, Taiwan.
| | - Wei-Te Hung
- Department of Anesthesiology, Chung Shan Medical University, Taichung City, Taiwan; Department of Anesthesiology, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| | - Li-Kuei Chen
- Department of Anesthesiology, Chung Shan Medical University, Taichung City, Taiwan; Department of Anesthesiology, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
2
|
Tse G, Gong M, Li CKH, Leung KSK, Georgopoulos S, Bazoukis G, Letsas KP, Sawant AC, Mugnai G, Wong MC, Yan GX, Brugada P, Chierchia G, de Asmundis C, Baranchuk A, Liu T. T peak-T end, T peak-T end/QT ratio and T peak-T end dispersion for risk stratification in Brugada Syndrome: A systematic review and meta-analysis. J Arrhythm 2018; 34:587-597. [PMID: 30555602 PMCID: PMC6288557 DOI: 10.1002/joa3.12118] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Brugada syndrome is an ion channelopathy that predisposes affected subjects to ventricular tachycardia/fibrillation (VT/VF), potentially leading to sudden cardiac death (SCD). Tpeak-Tend intervals, (Tpeak-Tend)/QT ratio and Tpeak-Tend dispersion have been proposed for risk stratification, but their predictive values in Brugada syndrome have been challenged recently. METHODS A systematic review and meta-analysis was conducted to examine their values in predicting arrhythmic and mortality outcomes in Brugada Syndrome. PubMed and Embase databases were searched until 1 May 2018, identifying 29 and 57 studies. RESULTS Nine studies involving 1740 subjects (mean age 45 years old, 80% male, mean follow-up duration was 68 ± 27 months) were included. The mean Tpeak-Tend interval was 98.9 ms (95% CI: 90.5-107.2 ms) for patients with adverse events (ventricular arrhythmias or SCD) compared to 87.7 ms (95% CI: 80.5-94.9 ms) for those without such events, with a mean difference of 11.9 ms (95% CI: 3.6-20.2 ms, P = 0.005; I 2 = 86%). Higher (Tpeak-Tend)/QT ratios (mean difference = 0.019, 95% CI: 0.003-0.036, P = 0.024; I 2 = 74%) and Tpeak-Tend dispersion (mean difference = 7.8 ms, 95% CI: 2.1-13.4 ms, P = 0.007; I 2 = 80%) were observed for the event-positive group. CONCLUSION Tpeak-Tend interval, (Tpeak-Tend)/QT ratio and Tpeak-Tend dispersion were higher in high-risk than low-risk Brugada subjects, and thus offer incremental value for risk stratification.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Faculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health Sciences, Faculty of MedicineChinese University of Hong KongHong KongChina
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologyTianjin Institute of Cardiology, Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Christien Ka Hou Li
- Department of Medicine and Therapeutics, Faculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health Sciences, Faculty of MedicineChinese University of Hong KongHong KongChina
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
- Faculty of MedicineNewcastle UniversityNewcastleUK
| | - Keith Sai Kit Leung
- Department of Medicine and Therapeutics, Faculty of MedicineChinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health Sciences, Faculty of MedicineChinese University of Hong KongHong KongChina
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
- Aston Medical SchoolAston UniversityBirminghamUK
| | - Stamatis Georgopoulos
- Second Department of Cardiology, Laboratory of Cardiac ElectrophysiologyEvangelismos General Hospital of AthensAthensGreece
| | - George Bazoukis
- Second Department of Cardiology, Laboratory of Cardiac ElectrophysiologyEvangelismos General Hospital of AthensAthensGreece
| | - Konstantinos P. Letsas
- Second Department of Cardiology, Laboratory of Cardiac ElectrophysiologyEvangelismos General Hospital of AthensAthensGreece
| | - Abhishek C. Sawant
- Division of Cardiology, Department of Internal MedicineState University of New York at BuffaloBuffaloNew York
| | - Giacomo Mugnai
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel‐Vrije Universiteit BrusselBrusselsBelgium
| | - Martin C.S. Wong
- JC School of Public Health and Primary CareThe Chinese University of Hong KongHong KongChina
| | - Gan Xin Yan
- Lankenau Institute for Medical Research and Lankenau Medical CenterWynnewoodPennsylvania
- Beijing Anzhen Hospital, Capital Medical UniversityBeijingChina
| | - Pedro Brugada
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel‐Vrije Universiteit BrusselBrusselsBelgium
| | - Gian‐Battista Chierchia
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel‐Vrije Universiteit BrusselBrusselsBelgium
| | - Carlo de Asmundis
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and PacingUniversitair Ziekenhuis Brussel‐Vrije Universiteit BrusselBrusselsBelgium
| | - Adrian Baranchuk
- Division of CardiologyKingston General Hospital, Queen's UniversityKingstonONCanada
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of CardiologyTianjin Institute of Cardiology, Second Hospital of Tianjin Medical UniversityTianjinChina
| | | |
Collapse
|
3
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
4
|
Wang J, Wang G, Quan X, Ruan L, Liu Y, Ruan Y, Liu N, Zhang C, Bai R. Fluconazole-induced long QT syndrome via impaired human ether-a-go-go-related gene (hERG) protein trafficking in rabbits. Europace 2017; 19:1244-1249. [PMID: 27189953 DOI: 10.1093/europace/euw091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/14/2016] [Indexed: 11/12/2022] Open
Abstract
Aims hERG protein trafficking deficiency has long been known in drug-induced long QT syndrome (LQTS). However, validated evidence from in vivo data kept scanty. Our goal was to investigate the proarrhythmic action of fluconazole and its underlying mechanism in an animal model. Methods and results Twenty female Japanese long-eared white rabbits were randomly distributed into a control group and a fluconazole group for a chronic 2-week treatment. The control group was treated with 0.5% sodium carboxymethylcellulose (CMCNa), and the fluconazole group was treated with fluconazole. Electrocardiograms (ECGs) were recorded during the experimental period. Isolated arterially perfused left ventricular wedge preparations from the rabbits were made 2 weeks after treatment, and the arrhythmia events, the transmural ECG, and action potential from both the endocardium and epicardium were recorded. The changes in hERG protein expression were measured by western blot. The fluconazole group showed a longer QT interval 1 week after treatment (P < 0.05) and a higher arrhythmia occurrence 2 weeks after treatment (P < 0.05) than the control group. The fluconazole group also showed a longer transmural dispersion of repolarization and a higher occurrence of life-threatening torsades de pointes in arterially perfused left ventricular preparations. Furthermore, western blot analysis showed that the density of mature hERG protein was lower in the fluconazole group than that in the control group. Conclusion Fluconazole can prolong the QT interval and possess proarrhythmic activity due to its inhibition of hERG protein trafficking in our experimental model. These findings may impact the clinical potential of fluconazole in humans.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Guan Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Xiaoqing Quan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Lei Ruan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P.R. China
| | - Yanfei Ruan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Beijing 100029, P.R. China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Beijing 100029, P.R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Rong Bai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Rd, Beijing 100029, P.R. China.,Texas Cardiac Arrhythmia Institute at St David's Medical Center, Austin, TX, USA
| |
Collapse
|
5
|
Affiliation(s)
- Stuart B Prenner
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sanjiv J Shah
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Andrew J Sauer
- Division of Cardiology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
6
|
Ramakrishna H, O’Hare M, Mookadam F, Gutsche JT, Shah R, Augoustides JG. Sudden Cardiac Death and Disorders of the QT Interval: Anesthetic Implications and Focus on Perioperative Management. J Cardiothorac Vasc Anesth 2015; 29:1723-33. [DOI: 10.1053/j.jvca.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/19/2022]
|
7
|
[Perioperative treatment of patients with long QT syndrome]. Anaesthesist 2015; 64:625-37; quiz 638-9. [PMID: 26260197 DOI: 10.1007/s00101-015-0067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Long QT syndrome (LQTS) is caused by a change in cardiac repolarization due to functional ion channel dysfunction which is associated with an elongation of the QT interval (hence the name) in the electrocardiogram and a predisposition to cardiac rhythm disorders (e.g. torsade de pointes, TdP) as well as cardiac events up to sudden cardiac death. There is a congenital (cLQTS) and an acquired (aLQTS) form of the disease. The prevalence of cLQTS is 1 in 2000 but aLQTS is much more common and includes a grey area due to many asymptomatic patients. The LQTS is, therefore, more common than malignant hyperthermia which is much discussed in anesthesiology and has a reported prevalence in the population of 1:3000. Considering the prevalence of both aLQTS as well as cLQTS the importance of the LQTS seems to be underestimated in current perioperative care. Potential perioperative risks of such patients can be significantly reduced by appropriate patient management. This includes adequate preoperative preparation, the correct choice of anesthetic medication as well as adequate perioperative monitoring and preparedness for immediate pharmaceutical and electrical intervention in case of typical cardiac rhythm disturbances, such as TdP arrhythmia.
Collapse
|
8
|
Bennett MT, Gula LJ, Klein GJ, Skanes AC, Yee R, Leong-Sit P, Chattha I, Sy R, Jones DL, Krahn AD. Effect of beta-blockers on QT dynamics in the long QT syndrome: measuring the benefit. ACTA ACUST UNITED AC 2014; 16:1847-51. [DOI: 10.1093/europace/euu086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Ruan L, Quan X, Li L, Bai R, Ni M, Xu R, Zhang C. Increasing gap junction coupling suppresses ibutilide-induced torsades de pointes. Exp Ther Med 2014; 7:1279-1284. [PMID: 24940425 PMCID: PMC3991525 DOI: 10.3892/etm.2014.1601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 02/13/2014] [Indexed: 11/24/2022] Open
Abstract
Drug-induced torsades de pointes (TdP) is common with class III antiarrhythmic drugs. Increased transmural dispersion of repolarization (TDR) contributes significantly to the development of TdP. Gap junctions play an important role in maintaining TDR in long QT syndrome. The present study examined the effect of a gap junction enhancer, antiarrhythmic peptide 10 (AAP10), on ibutilide-induced TdP. Coronary-perfused rabbit ventricular wedge preparations were used to evaluate the effect of AAP10 on ibutilide-induced arrhythmia. Transmural electrocardiograms and action potentials were recorded simultaneously. Early afterdepolarizations (EADs), R-on-T extrasystole, TdP and changes in Tpeak-end (Tp-e) and the Tp-e/QT ratio were observed. Changes in the levels of non-phosphorylated connexin 43 (Cx43) were measured by immunoblotting. Compared with those in the control group, the QT interval, Tp-e/QT and incidence rates of EAD and TdP increased with augmented dephosphorylation in the ventricular wedge preparations perfused with ibutilide under conditions of hypokalemia and hypomagnesemia. In the presence of AAP10, the incidence rates of EAD and TdP were reduced and the Tp-e/QT ratio decreased, with a parallel reduction in the level of non-phosphorylated Cx43. The results indicate that AAP10 suppressed ibutilide-induced TdP under conditions of hypokalemia and hypomagnesemia by decreasing TDR. AAP10 reduced TDR, possibly by preventing the dephosphorylation of Cx43 and thereby increasing myocardial cell gap junction coupling.
Collapse
Affiliation(s)
- Lei Ruan
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoqing Quan
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liandong Li
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rong Bai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Mingke Ni
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rende Xu
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cuntai Zhang
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Townsend C, Brown BS. Predicting drug-induced QT prolongation and torsades de pointes: a review of preclinical endpoint measures. ACTA ACUST UNITED AC 2013; Chapter 10:Unit 10.16. [PMID: 23744708 DOI: 10.1002/0471141755.ph1016s61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compound-induced prolongation of the cardiac QT interval is a major concern in drug development and this unit discusses approaches that can predict QT effects prior to undertaking clinical trials. The majority of compounds that prolong the QT interval block the cardiac rapid delayed rectifier potassium current, IKr (hERG). Described in this overview are different ways to measure hERG, from recent advances in automated electrophysiology to the quantification of channel protein trafficking and binding. The contribution of other cardiac ion channels to hERG data interpretation is also discussed. In addition, endpoint measures of the integrated activity of cardiac ion channels at the single-cell, tissue, and whole-animal level, including for example the well-established action potential to the more recent beat-to-beat variability, transmural dispersion of repolarization, and field potential duration, are described in the context of their ability to predict QT prolongation and torsadogenicity in humans.
Collapse
Affiliation(s)
- Claire Townsend
- GlaxoSmithKline Biological Reagents and Assay Development, Research Triangle Park, NC, USA
| | | |
Collapse
|
11
|
Polymorphic Ventricular Tachycardia—Part I: Structural Heart Disease and Acquired Causes. Curr Probl Cardiol 2013; 38:463-96. [DOI: 10.1016/j.cpcardiol.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Morissette P, Nishida M, Trepakova E, Imredy J, Lagrutta A, Chaves A, Hoagland K, Hoe CML, Zrada MM, Travis JJ, Zingaro GJ, Gerenser P, Friedrichs G, Salata JJ. The anesthetized guinea pig: An effective early cardiovascular derisking and lead optimization model. J Pharmacol Toxicol Methods 2013; 68:137-49. [DOI: 10.1016/j.vascn.2013.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/19/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
13
|
Khobragade SB, Gupta P, Gurav P, Chaudhari G, Gatne MM, Shingatgeri VM. Assessment of proarrhythmic activity of chloroquine in in vivo and ex vivo rabbit models. J Pharmacol Pharmacother 2013; 4:116-24. [PMID: 23759957 PMCID: PMC3669570 DOI: 10.4103/0976-500x.110892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the prolongation of ventricular repolarization and proarrhythmic activity of antimalarial drug chloroquine in two rabbit proarrhythmia models viz., in vivo α1 adrenoceptor-stimulated anesthetized rabbit and ex vivo isolated Langendorff rabbit heart using clofilium as standard proarrhythmic agent. MATERIALS AND METHODS In the in vivo model, three groups of rabbits, anesthetized by pentobarbitone sodium and α-chloralose, sensitized with α1 agonist methoxamine followed by either continuous infusion of saline (control) or clofilium (3 mg/kg) or chloroquine (21 mg/kg) for 30 min. In ex vivo model, rabbit hearts were perfused with clofilium (10 μM) or chloroquine (300 μM) continuously after priming along with methoxamine, acetylcholine chloride and propranolol hydrochloride. RESULTS In these models, prolongation of repolarization during α1-adrenoceptor stimulation produced early after depolarization (EAD) and Torsade de pointes (TdP). Saline infusion did not induce any abnormality in the animals. Clofilium caused expected changes in the electrocardiogram in both the models including TdP (50.0% in in vivo and 66.67% in ex vivo). Chloroquine caused decrease in heart rate and increase in the corrected QT (QTc) interval in both the models. Further, apart from different stages of arrhythmia, TdP was evident in 33.33% in ex vivo model, whereas no TdP was observed in in vivo model. CONCLUSIONS The results indicated that proarrhythmic potential of chloroquine and clofilium was well evaluated in both the models; moreover, both the models can be used to assess the proarrhythmic potential of the new drug candidates.
Collapse
Affiliation(s)
- Shailaja B. Khobragade
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| | - Pankaj Gupta
- Department of Pharmacology, Central Research Institute for Homoeopathy, Noida, India
| | - Prashant Gurav
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Girish Chaudhari
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Madhumanjiri M. Gatne
- Department of Pharmacology and Toxicology, Bombay Veterinary College, Mumbai, Maharashtra, India
| | - Vyas M. Shingatgeri
- Department of Drug Safety Evaluation, Ranbaxy Research Laboratories, Gurgaon, Haryana, India
| |
Collapse
|
14
|
Affiliation(s)
- Andrew J Sauer
- Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
15
|
Predicting the degree of drug-induced QT prolongation and the risk for torsades de pointes. Heart Rhythm 2011; 8:1535-6. [DOI: 10.1016/j.hrthm.2011.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Indexed: 11/22/2022]
|
16
|
Supplemental Studies for Cardiovascular Risk Assessment in Safety Pharmacology: A Critical Overview. Cardiovasc Toxicol 2011; 11:285-307. [DOI: 10.1007/s12012-011-9133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Electrophysiological properties of HBI-3000: a new antiarrhythmic agent with multiple-channel blocking properties in human ventricular myocytes. J Cardiovasc Pharmacol 2011; 57:79-85. [PMID: 20980921 DOI: 10.1097/fjc.0b013e3181ffe8b3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HBI-3000 (sulcardine sulfate) has been shown to suppress various ventricular arrhythmias in animal models. The electrophysiological properties of HBI-3000 were investigated using standard microelectrode and patch-clamp techniques in single human ventricular myocytes. HBI-3000 led to concentration-dependent suppression of dofetilide-induced early afterdepolarizations in single nonfailing human ventricular myocytes and early afterdepolarizations seen in failing ventricular myocytes. The concentration-dependent prolongation of action potential duration (APD) by HBI-3000 was bell shaped with maximum response occurring around 10 μM. Interestingly, HBI-3000 at the concentration of 10 μM modestly prolonged the APD at all 3 basic cycle lengths. The slope of APD-cycle length curve of HBI-3000 was only slightly steeper than that of control (88.8 ± 7.7 ms/s vs. 78.9 ± 5.2 ms/s in control, n = 8, P > 0.05). HBI-3000 only showed a minimal use-dependent prolongation of the APD in human ventricular myocytes. HBI-3000 inhibited fast sodium current (INa-F), late sodium channel (INa-L), L-type calcium current (ICa-L), and rapidly activating delayed rectifier K current (IKr) in single human ventricular myocytes. The estimated half-maximal inhibitory concentration values of INa-F, INa-L, ICa-L, and IKr were 48.3 ± 3.8, 16.5 ± 1.4, 32.2 ± 2.9, and 22.7 ± 2.5 μM, respectively. The ion channel profile and electrophysiological properties of HBI-3000 are similar to those of ranolazine and chronic amiodarone (reduced INa-F, INa-L, ICa-L, and IKr). HBI-3000 may be a promising antiarrhythmic agent with low proarrhythmic risk.
Collapse
|
18
|
Okada JI, Washio T, Maehara A, Momomura SI, Sugiura S, Hisada T. Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG. Am J Physiol Heart Circ Physiol 2011; 301:H200-8. [PMID: 21460196 DOI: 10.1152/ajpheart.01241.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular basis of the T-wave morphology of surface ECG remains controversial in clinical cardiology. We examined the effect of action potential duration (APD) distribution on T-wave morphology using a realistic model of the human ventricle and torso. We developed a finite-element model of the ventricle consisting of ∼26 million elements, including the conduction system, each implemented with the ion current model of cardiomyocytes. This model was embedded in a torso model with distinct organ structures to obtain the standard ECG leads. The APD distribution was changed in the transmural direction by locating the M cells in either the endocardial or epicardial region. We also introduced apicobasal gradients by modifying the ion channel parameters. Both the transmural gradient (with M cells on the endocardial side) and the apicobasal gradient produced positive T waves, although a very large gradient was required for the apicobasal gradient. By contrast, T waves obtained with the transmural gradient were highly symmetric and, therefore, did not represent the true physiological state. Only combination of the transmural and the moderate apicobasal gradients produced physiological T waves in surface ECG. Positive T waves in surface ECG mainly originated from the transmural distribution of APD with M cells on the endocardial side, although the apicobasal gradient was also required to attain the physiological waveform.
Collapse
Affiliation(s)
- Jun-Ichi Okada
- #381 Environmental Bldg., Kashiwa Campus, The Univ. of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Kalin A, Usher-Smith J, Jones VJ, Huang CLH, Sabir IN. Cardiac arrhythmia: a simple conceptual framework. Trends Cardiovasc Med 2011; 20:103-7. [PMID: 21130954 DOI: 10.1016/j.tcm.2010.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
This review presents a simple trigger-substrate model of arrhythmogenesis and its application to the generation of reentrant ventricular arrhythmias. We demonstrate its broad applicability to the understanding of arrhythmic phenomena in a wide range of both hereditary and acquired arrhythmic disorders.
Collapse
Affiliation(s)
- Asli Kalin
- John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
The drug-induced long QT syndrome is a distinct clinical entity that has evolved from an electrophysiologic curiosity to a centerpiece in drug regulation and development. This evolution reflects an increasing recognition that a rare adverse drug effect can profoundly upset the balance between benefit and risk that goes into the prescription of a drug by an individual practitioner as well as the approval of a new drug entity by a regulatory agency. This review will outline how defining the central mechanism, block of the cardiac delayed-rectifier potassium current I(Kr), has contributed to defining risk in patients and in populations. Models for studying risk, and understanding the way in which clinical risk factors modulate cardiac repolarization at the molecular level are discussed. Finally, the role of genetic variants in modulating risk is described.
Collapse
Affiliation(s)
- Prince Kannankeril
- Oates Institute for Experimental Therapeutics, Vanderbilt University School of Medicine, Nashville, TN 37232-0575, USA
| | | | | |
Collapse
|
21
|
Antzelevitch C, Dumaine R. Electrical Heterogeneity in the Heart: Physiological, Pharmacological and Clinical Implications. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Inaba H, Hayami N, Ajiki K, Kunishima T, Watanabe H, Tsutsui K, Yamagishi N, Yamagishi S, Sugiura A, Mikamo T, Murakawa Y. Deep Anesthesia Suppresses Ventricular Tachyarrhythmias in Rabbit Model of the Acquired Long QT Syndrome. Circ J 2011; 75:89-93. [DOI: 10.1253/circj.cj-10-0478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hideko Inaba
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Noriyuki Hayami
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Kosuke Ajiki
- Department of Cardiovascular Medicine, Tokyo University
| | - Tomoyuki Kunishima
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Hidenori Watanabe
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Kenta Tsutsui
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Noboru Yamagishi
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Satoshi Yamagishi
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Anna Sugiura
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Takashi Mikamo
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| | - Yuji Murakawa
- Fourth Department of Internal Medicine, Teikyo University School of Medicine
| |
Collapse
|
23
|
|
24
|
|
25
|
|
26
|
Salvi V, Karnad DR, Panicker GK, Kothari S. Update on the evaluation of a new drug for effects on cardiac repolarization in humans: issues in early drug development. Br J Pharmacol 2009; 159:34-48. [PMID: 19775279 DOI: 10.1111/j.1476-5381.2009.00427.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Following reports of death from cardiac arrhythmias with drugs like terfenadine and cisapride, the International Conference for Harmonization formulated a guidance (E14) document. This specifies that all new drugs must undergo a 'thorough QT/QTc' (TQT) study to detect drug-induced QT prolongation, a surrogate marker of ventricular tachycardia, especially torsades de pointes (TdPs). With better understanding of data from several completed TQT studies, regulatory requirements have undergone some changes since the E14 guidance was implemented in October 2005. This article reviews the implications of the E14 guidance and the changes in its interpretation including choice of baseline QT, demonstration of assay sensitivity, statistical analysis of the effect of new drug and positive control, and PK-PD modelling. Some issues like use of automated QT measurements remain unresolved. Pharmaceutical companies too are modifying Phase 1 studies to detect QTc liability early in order to save time and resources. After the E14 guidance, development of several drugs that prolong QTc by >5 ms is being abandoned by sponsors. However, all drugs that prolong the QT interval do not increase risk of TdP. Researchers in regulatory agencies, academia and industry are working to find better biomarkers of drug-induced TdP which could prevent many useful drugs from being prematurely abandoned. Drug-induced TdP is a rare occurrence. With fewer drugs that prolong QT interval reaching the licensing stage, knowing which of these drugs are torsadogenic is proving to be elusive. Thus, paradoxically, the effectiveness of the E14 guidance itself has made prospective validation of new biomarkers difficult.
Collapse
Affiliation(s)
- Vaibhav Salvi
- Quintiles ECG Services, Andheri (East), Mumbai, India.
| | | | | | | |
Collapse
|
27
|
Abstract
The long QT syndrome (LQTS) is a rare, congenital or acquired disease, which may lead to fatal cardiac arrhythmias (torsade de pointes, TdP). In all LQTS subtypes, TdPs are caused by disturbances in cardiac ion channels. Diagnosis is made using clinical, anamnestic and electrocardiographic data. Triggers of TdPs are numerous and should be avoided perioperatively. Sufficient sedation and preoperative correction of electrolyte imbalances are essential. Volatile anaesthetics and antagonists of muscle relaxants should be avoided and high doses of local anaesthetics are not recommended to date. Propofol is safe for anaesthesia induction and maintenance. The acute therapy of TdPs with cardiovascular depression should be performed in accordance with the guidelines for advanced cardiac life support and includes cardioversion/defibrillation and magnesium. Torsades de pointes may be associated with bradycardia or tachycardia resulting in specific therapeutic and prophylactic measures.
Collapse
Affiliation(s)
- S Rasche
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinikum Carl Gustav Carus, Technische Universität, Dresden.
| | | | | |
Collapse
|
28
|
Overholser BR, Zheng X, Tisdale JE. Catecholaminergic Effects on Ventricular Repolarization During Inhibition of the Rapid Component of the Delayed Rectifier Potassium Current in a Perfused Heart Model. Pharmacotherapy 2008; 28:1315-24. [DOI: 10.1592/phco.28.11.1315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. Br J Pharmacol 2008; 154:1528-37. [PMID: 18552873 DOI: 10.1038/bjp.2008.240] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
As an increasing number of non-cardiac drugs have been reported to cause QT interval prolongation and torsades de pointes (TdP), we extensively studied the utility of atrioventricular (AV) block animals as a model to predict their torsadogenic action in human. The present review highlights such in vivo proarrhythmia models. In the case of the canine model, test substances were administered p.o. at conscious state >4 weeks after the induction of AV block, with subsequent Holter ECG monitoring to evaluate drug effects. Control AV block dogs (no pharmacological treatment) survive for several years without TdP attack. For pharmacologically treated dogs, drugs were identified as high, low or no risk. High-risk drugs induced TdP at 1-3 times the therapeutic dose. Low-risk drugs did not induce TdP at this dose range, but induced it at higher doses. No-risk drugs never induced TdP at any dose tested. Electrophysiological, anatomical histological and biochemical adaptations against persistent bradycardia-induced chronic heart failure were observed in AV block dogs. Recently, we have developed another highly sensitive proarrhythmia model using a chronic AV block cynomolgus monkey, which possesses essentially the same pathophysiological adaptations and drug responses as those demonstrated in the canine model. As a common remodelling process leading to a diminished repolarization reserve may present in patients who experience drug-induced TdP and in the AV block animals, the in vivo proarrhythmia models described in this review may be useful for predicting the risk of pharmacologically induced TdP in humans.
Collapse
|
30
|
Kannankeril PJ. Understanding drug-induced torsades de pointes: a genetic stance. Expert Opin Drug Saf 2008; 7:231-9. [PMID: 18462182 DOI: 10.1517/14740338.7.3.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Drugs may produce a variety of arrhythmias, but drug-induced QT prolongation and the risk of the polymorphic ventricular tachycardia torsades de pointes (drug-induced long QT syndrome) has garnered the most attention. The wide array of drugs with potential for QT prolongation, the correspondingly large number of patients exposed to such drugs, the difficulty in predicting an individual's risk, and the potentially fatal outcome, make drug-induced long QT syndrome an important public health problem for clinicians, researchers, drug development programs, and regulatory agencies. This review focuses on the genetic risk factors and mechanisms underlying QT prolongation and proarrhythmia. The post-genomic era hints at an improved understanding (and prediction) of how the gene-environment interaction produces this particular adverse drug response.
Collapse
Affiliation(s)
- Prince J Kannankeril
- Vanderbilt Children's Hospital, Division of Cardiology, 2200 Children's Way, Suite 5230, Nashville, TN 37232-9119, USA.
| |
Collapse
|
31
|
Antzelevitch C. Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace 2008; 9 Suppl 4:iv4-15. [PMID: 17766323 PMCID: PMC2365914 DOI: 10.1093/europace/eum166] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Torsade de pointes (TdP) is a life-threatening arrhythmia that develops as a consequence of a reduction in the repolarization reserve of cardiac cells leading to amplification of electrical heterogeneities in the ventricular myocardium as well as to the development of early after depolarization-induced triggered activity. Electrical heterogeneities within the ventricles are due to differences in the time course of repolarization of the three predominant cell types that make up the ventricular myocardium, giving rise to transmural voltage gradients and a dispersion of repolarization that contributes to the inscription of the electrocardiographic T wave. A number of non-antiarrhythmic drugs and antiarrhythmic agents with class III actions and/or the various mutations and cardiomyopathies associated with the long QT syndrome reduce net repolarizing current and amplify spatial dispersion of repolarization, thus creating the substrate for re-entry. This results in a prolongation of the QT interval, abnormal T waves, and development of TdP. Agents that prolong the QT interval but do not cause an increase in transmural dispersion of repolarization (TDR) do not induce TdP, suggesting that QT prolongation is not the sole or optimal determinant for arrhythmogenesis. This article reviews recent advances in our understanding of these mechanisms, particularly the role of TDR in the genesis of drug-induced TdP, and examines how these may guide us towards development of safer drugs.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Masonic Medical Research Laboratory, 2150 Bleecker Street, Utica, NY 13501, USA.
| |
Collapse
|
32
|
Dobesh PP, Trujillo TC. Ranolazine: A New Option in the Management of Chronic Stable Angina. Pharmacotherapy 2007; 27:1659-76. [PMID: 18041887 DOI: 10.1592/phco.27.12.1659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paul P Dobesh
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6045, USA
| | | |
Collapse
|
33
|
Vincze D, Farkas AS, Rudas L, Makra P, Csík N, Leprán I, Forster T, Csanády M, Papp JG, Varró A, Farkas A. Relevance of anaesthesia for dofetilide-induced torsades de pointes in alpha1-adrenoceptor-stimulated rabbits. Br J Pharmacol 2007; 153:75-89. [PMID: 17965737 DOI: 10.1038/sj.bjp.0707536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE No information is available concerning the effects of anaesthetics in the most frequently used in vivo pro-arrhythmia model. Accordingly, in this study we examined the effect of pentobarbital, propofol or alpha-chloralose anaesthesia on the pro-arrhythmic activity of the class III anti-arrhythmic dofetilide in alpha(1)-adrenoceptor-stimulated rabbits. EXPERIMENTAL APPROACH Rabbits anaesthetized intravenously with pentobarbital, propofol or alpha-chloralose were infused simultaneously with the alpha(1)-adrenoceptor agonist phenylephrine (15 microg kg(-1) min(-1), i.v.) and dofetilide (0.04 mg kg(-1) min(-1), i.v.). The electrocardiographic QT interval, the T (peak)-T (end) interval and certain QT variability parameters were measured. The heart rate variability and the baroreflex sensitivity were utilized to assess the vagal nerve activity. The spectral power of the systolic arterial pressure was calculated in the frequency range 0.15-0.5 Hz to assess the sympathetic activity. KEY RESULTS Pentobarbital considerably reduced, whereas propofol did not significantly affect the incidence of dofetilide-induced torsades de pointes (TdP) as compared with the results with alpha-chloralose (40% (P=0.011) and 70% (P=0.211) vs 100%, respectively). In additional experiments, neither doubling of the rate of the dofetilide infusion nor tripling of the rate of phenylephrine infusion elevated the incidence of TdP to the level seen with alpha-chloralose. None of the repolarization-related parameters predicted TdP. The indices of the parasympathetic and sympathetic activity were significantly depressed in the alpha-chloralose and propofol anaesthesia groups. CONCLUSIONS AND IMPLICATIONS In rabbits, anaesthetics may affect drug-induced TdP genesis differently, which must be considered when results of different studies are compared.
Collapse
Affiliation(s)
- D Vincze
- Department of Anaesthesiology and Intensive Care, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Scirica BM, Morrow DA, Hod H, Murphy SA, Belardinelli L, Hedgepeth CM, Molhoek P, Verheugt FWA, Gersh BJ, McCabe CH, Braunwald E. Effect of Ranolazine, an Antianginal Agent With Novel Electrophysiological Properties, on the Incidence of Arrhythmias in Patients With Non–ST-Segment–Elevation Acute Coronary Syndrome. Circulation 2007; 116:1647-52. [PMID: 17804441 DOI: 10.1161/circulationaha.107.724880] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background—
Ranolazine, a piperazine derivative, reduces ischemia via inhibition of the late phase of the inward sodium current (late I
Na
) during cardiac repolarization, with a consequent reduction in intracellular sodium and calcium overload. Increased intracellular calcium leads to both mechanical dysfunction and electric instability. Ranolazine reduces proarrhythmic substrate and triggers such as early afterdepolarization in experimental models. However, the potential antiarrhythmic actions of ranolazine have yet to be demonstrated in humans.
Methods and Results—
The Metabolic Efficiency With Ranolazine for Less Ischemia in Non–ST-Elevation Acute Coronary Syndrome (MERLIN)–Thrombolysis in Myocardial Infarction (TIMI) 36 (MERLIN-TIMI 36) trial randomized 6560 patients hospitalized with a non–ST-elevation acute coronary syndrome to ranolazine or placebo in addition to standard therapy. Continuous ECG (Holter) recording was performed for the first 7 days after randomization. A prespecified set of arrhythmias were evaluated by a core laboratory blinded to treatment and outcomes. Of the 6560 patients in MERLIN-TIMI 36, 6351 (97%) had continuous ECG recordings that could be evaluated for arrhythmia analysis. Treatment with ranolazine resulted in significantly lower incidences of arrhythmias. Specifically, fewer patients had an episode of ventricular tachycardia lasting ≥8 beats (166 [5.3%] versus 265 [8.3%];
P
<0.001), supraventricular tachycardia (1413 [44.7%] versus 1752 [55.0%];
P
<0.001), or new-onset atrial fibrillation (55 [1.7%] versus 75 [2.4%];
P
=0.08). In addition, pauses ≥3 seconds were less frequent with ranolazine (97 [3.1%] versus 136 [4.3%];
P
=0.01).
Conclusions—
Ranolazine, an inhibitor of late I
Na
, appears to have antiarrhythmic effects as assessed by continuous ECG monitoring of patients in the first week after admission for acute coronary syndrome. Studies specifically designed to evaluate the potential role of ranolazine as an antiarrhythmic agent are warranted.
Collapse
Affiliation(s)
- Benjamin M Scirica
- TIMI Study Group, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shah SA, Kluger J, White CM. Monotherapy versus Combination Therapy with Class III Antiarrhythmic Agents to Attenuate Transmural Dispersion of Repolarization: A Potential Risk Factor for Torsade de Pointes. Pharmacotherapy 2007; 27:1297-305. [PMID: 17723083 DOI: 10.1592/phco.27.9.1297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Class III antiarrhythmic agents are used for conversion to and maintenance of sinus rhythm from arrhythmias of atrial or ventricular origin. Monotherapy can be limited by adverse events or recurrent arrhythmias. Sotalol, dofetilide, and ibutilide may induce torsade de pointes in 2-8% of patients, whereas amiodarone induces torsade de pointes in less than 1%. We reviewed the literature regarding the possible combination of class III antiarrhythmics and risk for inducing torsade de pointes. Animal studies using amiodarone plus sotalol or d-sotalol suggest that these drug combinations prolong the QTc interval but do not induce torsade de pointes. Similar data extracted from human studies of ibutilide in patients also receiving amiodarone or sotalol showed greater efficacy with combination therapy than with monotherapy, without increased torsade de pointes induction. Reduced transmural dispersion of repolarization with amiodarone and sotalol combination therapy may serve as a mechanism for reducing the risk of torsade de pointes compared with sotalol monotherapy.
Collapse
Affiliation(s)
- Sachin A Shah
- Department of Drug Information, Hartford Hospital, Hartford, Connecticut 06102-5037, USA
| | | | | |
Collapse
|
36
|
Quan XQ, Bai R, Liu N, Chen BD, Zhang CT. Increasing gap junction coupling reduces transmural dispersion of repolarization and prevents torsade de pointes in rabbit LQT3 model. J Cardiovasc Electrophysiol 2007; 18:1184-9. [PMID: 17711442 DOI: 10.1111/j.1540-8167.2007.00923.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Increased transmural dispersion of repolarization (TDR) contributes importantly to the development of torsades de pointes (TdP) in long QT syndrome (LQTS). Intercellular electrical coupling via gap junctions plays an important role in maintaining TDR in both normal and diseased hearts. This study examined the effects of antiarrhythmic peptide AAP10, a gap junction enhancer, on TDR and induction of TdP in a rabbit LQT3 model. METHODS AND RESULTS An arterially perfused rabbit left ventricular preparation and sea anemone toxin II (ATX-II, 20 nM) were used to establish a LQT3 model. Transmural ECG as well as action potentials from both endocardium and epicardium were simultaneously recorded. Changes in nonphosphorylated connexin43 (Cx43) were measured by immunoblotting. Compared with the control group, the QT interval, TDR, early afterdepolariztion (EAD), R-on-T extrasystole, and TdP increased sharply with augmented nonphosphorylated Cx43 in the LQT3 group (P < 0.001 for both). Interestingly, compared with the LQT3 group, 500 nM AAP10 reduced QT interval, TDR (P < 0.001 for both), and prevented EAD, R-on-T extrasystole, and TdP (P = 0.003, P = 0.001, P = 0.02) with a parallel decrease in nonphosphorylated Cx43 in the presence of ATX-II (P < 0.001). CONCLUSION Gap junction enhancer AAP10 is capable of abbreviating the QT interval, reducing TDR, and suppressing TdP in a rabbit LQT3 model probably via its effect by preventing dephosphorylation of Cx43. These data suggest that increasing intercellular coupling may reduce TDR and, therefore, prevent TdP in LQTS.
Collapse
Affiliation(s)
- Xiao-Qing Quan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
37
|
Abstract
This lecture examines the hypothesis that amplification of spatial dispersion of repolarization in the form of transmural dispersion of repolarization (TDR) underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies, including the long QT, short QT, and Brugada syndromes as well as catecholaminergic polymorphic ventricular tachycardia. In the long QT syndrome, amplification of TDR often is secondary to preferential prolongation of the action potential duration of M cells, whereas in Brugada syndrome, it is thought to be due to selective abbreviation of the action potential duration of right ventricular epicardium. In the short QT syndrome, preferential abbreviation of action potential duration of either endocardium or epicardium appears to be responsible for amplification of TDR. In catecholaminergic polymorphic ventricular tachycardia, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. Thus, the long QT, short QT, Brugada, and catecholaminergic ventricular tachycardia syndromes are pathologies with very different phenotypes and etiologies. However, these syndromes share a common final pathway in their predisposition to sudden cardiac death.
Collapse
|
38
|
Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol 2007; 293:H2024-38. [PMID: 17586620 PMCID: PMC2085107 DOI: 10.1152/ajpheart.00355.2007] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review examines the role of spatial electrical heterogeneity within the ventricular myocardium on the function of the heart in health and disease. The cellular basis for transmural dispersion of repolarization (TDR) is reviewed, and the hypothesis that amplification of spatial dispersion of repolarization underlies the development of life-threatening ventricular arrhythmias associated with inherited ion channelopathies is evaluated. The role of TDR in long QT, short QT, and Brugada syndromes, as well as catecholaminergic polymorphic ventricular tachycardia (VT), is critically examined. In long QT syndrome, amplification of TDR is often secondary to preferential prolongation of the action potential duration (APD) of M cells; in Brugada syndrome, however, it is thought to be due to selective abbreviation of the APD of the right ventricular epicardium. Preferential abbreviation of APD of the endocardium or epicardium appears to be responsible for the amplification of TDR in short QT syndrome. In catecholaminergic polymorphic VT, reversal of the direction of activation of the ventricular wall is responsible for the increase in TDR. In conclusion, long QT, short QT, Brugada, and catecholaminergic polymorphic VT syndromes are pathologies with very different phenotypes and etiologies, but they share a common final pathway in causing sudden cardiac death.
Collapse
Affiliation(s)
- Charles Antzelevitch
- Masonic Medical Research Laboratory, 2150 Bleecker St., Utica, NY 13501-1787, USA.
| |
Collapse
|
39
|
Sabir IN, Killeen MJ, Goddard CA, Thomas G, Gray S, Grace AA, Huang CLH. Transient alterations in transmural repolarization gradients and arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts. J Physiol 2007; 581:277-89. [PMID: 17331992 PMCID: PMC2075225 DOI: 10.1113/jphysiol.2007.128637] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clinical hypokalaemia is associated with acquired electrocardiographic QT prolongation and arrhythmic activity initiated by premature ventricular depolarizations and suppressed by lidocaine (lignocaine). Nevertheless, regular (S1) pacing at a 125 ms interstimulus interval resulted in stable waveforms and rhythm studied using epicardial and endocardial monophasic action potential (MAP) electrodes in Langendorff-perfused murine hearts whether under normokalaemic (5.2 mM K+) or hypokalaemic (3.0 mM K+) conditions, in both the presence and absence of lidocaine (10 microM). Furthermore, the transmural gradient in repolarization time, known to be altered in the congenital long-QT syndromes, and reflected in the difference between endocardial and epicardial MAP duration at 90% repolarization (DeltaAPD(90)), did not differ significantly (P > 0.05) between normokalaemic (5.5 +/- 4.5 ms, n = 8, five hearts), hypokalaemic (n = 8, five hearts), or lidocaine-treated normokalaemic (n = 8, five hearts) or hypokalaemic (n = 8, five hearts) hearts. However, premature ventricular depolarizations occurring in response to extrasystolic (S2) stimulation delivered at S1S2 intervals between 0 and 22 +/- 6 ms following recovery from refractoriness initiated arrhythmic activity specifically in hypokalaemic (n = 8, five hearts) as opposed to normokalaemic (n = 25, 14 hearts), or lidocaine-treated hypokalaemic (n = 8, five hearts) or normokalaemic hearts (n = 8, five hearts). This was associated with sharp but transient reversals in DeltaAPD(90) in MAPs initiated within the 250 ms interval directly succeeding premature ventricular depolarizations, from 3.3 +/- 5.6 ms to -31.8 +/- 11.8 ms (P < 0.05) when they were initiated immediately after recovery from refractoriness. In contrast the corresponding latency differences consistently remained close to the normokalaemic value (-1.6 +/- 1.4 ms, P > 0.05). These findings empirically associate arrhythmogenesis in hypokalaemic hearts with transient alterations in transmural repolarization gradients resulting from premature ventricular depolarizations. This is in contrast to sustained alterations in transmural repolarization gradients present on regular stimulation in long-QT syndrome models.
Collapse
Affiliation(s)
- Ian N Sabir
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Limitations in understanding of arrhythmias stem from lack of animal models which serve as surrogates for man. The purpose of this review is to discuss iatrogenic and naturally occurring animal models that are useful in our understanding of the mechanisms of ventricular arrhythmia and of antiarrhythmic and proarrhythmic agents. It is not surprising however that some information obtained from studies on infrahuman mammals may not be extrapolated to man. Need for anesthesia affects profoundly the electrophysiology of the heart, including autonomic affects. Most of the animal are modification of the Harris' 2-stage model. A model proposed by Schwartz, Billman and Stone has evolved as one that produces arguably the most information on the pathophysiology of arrhythmia production, including the role of the autonomic nervous system and the interaction with pharmacological agents. Intoxication with digitalis and escalating doses of epinephrine are commonly used models for production of ventricular arrhythmias. No matter what model of ventricular arrhythmias is used, programmed electrical stimulation can be useful to uncover increased tendency for arrhythmia, even if no arrhythmia occurs spontaneously. Models of spontaneous ventricular arrhythmia occur in German shepherd puppies, Boxer dogs, Doberman pinchers with dilated cardiomyopathy, and in large dogs with gastric dilatation or splenic torsion. Models are necessary because they allow for controlled studies and methods of exploration impossible, for legal and ethical reasons, in humans. Nonetheless, ethical considerations in using animal models are still important, and there is a continual search for non-animal models to explore ventricular arrhythmias.
Collapse
Affiliation(s)
- Robert L Hamlin
- Department of Veterinary Biosciences, The Ohio State University, OH, USA.
| |
Collapse
|
41
|
Sicouri S, Timothy KW, Zygmunt AC, Glass A, Goodrow RJ, Belardinelli L, Antzelevitch C. Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: effects of ranolazine. Heart Rhythm 2007; 4:638-47. [PMID: 17467634 PMCID: PMC1951535 DOI: 10.1016/j.hrthm.2006.12.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 12/21/2006] [Indexed: 12/15/2022]
Abstract
BACKGROUND Timothy syndrome is a multisystem disorder associated with QT interval prolongation and ventricular cardiac arrhythmias. The syndrome has been linked to mutations in Ca(V)1.2 resulting in gain of function of the L-type calcium current (I(Ca,L)). Ranolazine is an antianginal agent shown to exert an antiarrhythmic effect in experimental models of long QT syndrome. OBJECTIVE The purpose of this study was to develop and characterize an experimental model of Timothy syndrome by using BayK8644 to mimic the gain of function of I(Ca,L) and to examine the effects of ranolazine. METHODS Action potentials from epicardial and M regions and a pseudo-electrocardiogram (ECG) were simultaneously recorded from coronary-perfused left ventricular wedge preparations, before and after addition of BayK8644 (1 microM). RESULTS BayK8644 preferentially prolonged action potential duration of the M cell, leading to prolongation of the QT interval and an increase in transmural dispersion of repolarization (from 44.3 +/- 7 ms to 86.5 +/- 25 ms). Stimulation at cycle lengths of 250-500 ms led to ST-T wave alternans due to alternation of the plateau voltage of the M cell action potential as well as development of delayed afterdepolarizations in epicardial and M cell action potentials. Ventricular extrasystoles and tachycardia (monomorphic, bidirectional, or torsades de pointes) developed spontaneously or after rapid pacing. Peak and late I(Na) were unaffected by BayK8644. Clinically relevant concentrations of ranolazine (10 microM) suppressed all actions of BayK8644. CONCLUSION A left ventricular wedge model of long QT syndrome created by augmentation of I(Ca,L) recapitulates the ECG and arrhythmic manifestations of Timothy syndrome, which can be suppressed by ranolazine.
Collapse
Affiliation(s)
- Serge Sicouri
- Masonic Medical Research Laboratory, Utica, New York
| | | | | | - Aaron Glass
- Masonic Medical Research Laboratory, Utica, New York
| | | | | | | |
Collapse
|
42
|
Antzelevitch C, Belardinelli L. The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S79-S85. [PMID: 16686686 PMCID: PMC1474079 DOI: 10.1111/j.1540-8167.2006.00388.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular myocardium in larger mammals is composed of three distinct cell types: epicardial, M, and endocardial cells. Epicardial and M cell, but not endocardial cell, action potentials have a prominent I(to)-mediated notch. M cells are distinguished from the other cell types in that they display a smaller I(Ks), but a larger late I(Na) and I(Na-Ca). These ionic differences may account for the longer action potential duration (APD) and steeper APD-rate relationship of the M cell. The difference in the time course of repolarization of phase 1 and phase 3 contributes to the inscription of the electrocardiographic J wave and T wave, respectively. These repolarization gradients are modulated by electrotonic interactions, [K(+)](o), and agents or mutations that alter net repolarizing current. An increase in late I(Na), as occurring under a variety of pathophysiological states or in response to certain toxins, leads to a preferential prolongation of the M cell action potential, thus prolonging the QT interval and increasing transmural dispersion of repolarization (TDR), which underlies the development of torsade de pointes (TdP) arrhythmias. Agents that reduce late I(Na) are effective in reducing TDR and suppressing TdP. A reduction in peak I(Na) or an increase in net repolarizing current in the early phases of the action potential can lead to a preferential abbreviation of the action potential of epicardium in the right ventricle, and thus the development of a large TDR, phase 2 reentry, and polymorphic ventricular tachycardia associated with the Brugada syndrome.
Collapse
|
43
|
Shimizu W. Effects of sympathetic stimulation on various repolarization indices in the congenital long QT syndrome. Ann Noninvasive Electrocardiol 2006; 7:332-42. [PMID: 12431311 PMCID: PMC7027645 DOI: 10.1111/j.1542-474x.2002.tb00182.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sympathetic stimulation or catecholamines modulate ventricular repolarization and provoke ventricular tachyarrhythmias in a variety of heart diseases and conditions. Among those, the congenital form of long QT syndrome (LQTS) has long been known to be a Rosetta stone for sympathetic-related ventricular tachyarrhythmias. Recent experimental studies employing arterially-perfused ventricular wedge preparations as well as some clinical studies have greatly advanced our knowledge of the cellular mechanism of the T wave and the various repolarization indices in the ECG, as well as the effect of sympathetic stimulation on these repolarization indices under normal and long QT conditions. Differences in the time course of repolarization of the three predominant cell types, the epicardial, midmyocardial (M), and endocardial cells, across the ventricular wall give rise to voltage gradients responsible for the inscription of normal T waves as well as the manifestation of abnormal T waves in the congenital LQTS. The data from the wedge experiments suggest that the repolarization time of the longest M cell action potential determines the Q-Tend interval, while that of the epicardial action potential determines the Q-Tpeak interval. Therefore, Tpeak-end interval in the ECG may provide an index of transmural dispersion of repolarization (TDR). In this review article, sympathetic stimulation with isoproterenol or epinephrine infusion is demonstrated to modulate differentially these repolarization indices in the ECG as well as the action potentials of the three cells between the LQT1, LQT2, and LQT3 syndromes both experimentally and clinically, explaining the differences in the sensitivity of genotypes of congenital LQTS to sympathetic stimulation.
Collapse
Affiliation(s)
- Wataru Shimizu
- Division of Cardiology, Department of Internal Medicine, National Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka, 565-8565 Japan.
| |
Collapse
|
44
|
Judson RS, Salisbury BA, Reed CR, Ackerman MJ. Pharmacogenetic issues in thorough QT trials. Mol Diagn Ther 2006; 10:153-62. [PMID: 16771601 DOI: 10.1007/bf03256454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Drug-induced QT prolongation (DI-LQT), through its associated arrhythmias, is a leading cause of drugs being withdrawn from the market. As a consequence, the US FDA and other regulatory agencies are mandating that all new drugs go through a so-called 'Thorough QT' (TQT) study to evaluate the potential for 'QT liability', specifically the potential for a drug to cause a discernible increase in the QT interval. Several genetic factors that modulate the risk of DI-LQT have been discovered. These are genes responsible for the congenital long QT syndrome, drug metabolism genes (mainly CYP2D6 and CYP3A4), and genes in other regulatory pathways. Here, we briefly review the links between genetic variants and drug-induced QT risk, and propose approaches to consider for using pharmacogenetics in planning and analyzing TQT studies.
Collapse
|
45
|
Yamada KA, Nerbonne JM. Validation of a model for predicting drug-induced torsades de pointes: The risky business of assessing arrhythmogenic potential. Heart Rhythm 2006; 3:957-8. [PMID: 16876746 DOI: 10.1016/j.hrthm.2006.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
|
46
|
Thomsen MB, Matz J, Volders PGA, Vos MA. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther 2006; 112:150-70. [PMID: 16714061 DOI: 10.1016/j.pharmthera.2005.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 02/08/2023]
Abstract
Torsades de pointes (TdP) is a potentially lethal cardiac arrhythmia that can occur as an unwanted adverse effect of various pharmacological therapies. Before a drug is approved for marketing, its effects on cardiac repolarisation are examined clinically and experimentally. This paper expresses the opinion that effects on repolarisation duration cannot directly be translated to risk of proarrhythmia. Current safety assessments of drugs only involve repolarisation assays, however the proarrhythmic profile can only be determined in the predisposed model. The availability of these proarrhythmic animal models is emphasised in the present paper. It is feasible for the pharmaceutical industry to establish one or more of these proarrhythmic animal models and large benefits are potentially available if pharmaceutical industries and patient-care authorities embraced these models. Furthermore, suggested surrogate parameters possessing predictive power of TdP arrhythmia are reviewed. As these parameters are not developed to finalisation, any meaningful study of the proarrhythmic potential of a new drug will include evaluation in an integrated model of TdP arrhythmia.
Collapse
Affiliation(s)
- Morten B Thomsen
- Department of Medical Physiology, Heart Lung Centre Utrecht, University Medical Centre Utrecht, Yalelaan 50, NL-3584 CM Utrecht, Netherlands.
| | | | | | | |
Collapse
|
47
|
Antzelevitch C. Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2006; 2:S9-15. [PMID: 16253930 PMCID: PMC1479892 DOI: 10.1016/j.hrthm.2004.09.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 12/24/2022]
Abstract
Torsades de pointes (TdP) is a potentially lethal arrhythmia that develops as a consequence of amplification of electrical heterogeneities intrinsic to the ventricular myocardium. These heterogeneities exist because of differences in the time course of repolarization of the three predominant cell types that make up the ventricular myocardium, giving rise to transmural voltage gradients and a dispersion of repolarization responsible for inscription of the ECG T wave. Antiarrhythmic agents with class III actions and/or the various mutations and cardiomyopathies associated with the long QT syndrome reduce net repolarizing current and amplify the intrinsic spatial dispersion of repolarization, thus creating the substrate for the development of reentry. The result is prolongation of the QT interval, abnormal T waves, and development of polymorphic reentrant ventricular tachycardia displaying characteristics of TdP. Prolongation of the QT interval apparently is not the sole determinant of a drug's potential to cause TdP. Agents that do not increase transmural dispersion of repolarization have little or no potential to induce TdP despite any ability to prolong the QT interval. In addition, drugs such as amiodarone and sodium pentobarbital can cause large QT prolongations but, by reducing transmural dispersion of repolarization, may reduce the likelihood of TdP. Arterially perfused wedge preparations of canine left ventricle can be used to explore the role of transmural dispersion of repolarization in the genesis of TdP. The purpose of this article is to review recent advances that have improved our understanding of these mechanisms, particularly the role of transmural dispersion of repolarization, in the genesis of drug-induced TdP and to examine how these advances can guide us toward the development of safer and more effective drugs.
Collapse
|
48
|
Kongstad O, Xia Y, Liang Y, Hertervig E, Ljungström E, Olsson B, Yuan S. Epicardial and endocardial dispersion of ventricular repolarization. A study of monophasic action potential mapping in healthy pigs. SCAND CARDIOVASC J 2006; 39:342-7. [PMID: 16352486 DOI: 10.1080/14017430500188744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To investigate the total dispersion of ventricular repolarization of the epi- and endocardium. DESIGN Monophasic action potentials (MAP) were recorded from 211+/-54 (151-353) left and right ventricular epi- and endocardial sites during atrial pacing in 10 pigs using the CARTO system. The activation time (AT), MAP duration (MAPd) and end of repolarization time (EOR) were measured. RESULTS The total dispersion of AT, EOR and MAPd, defined as the maximal differences of these parameters over both the epi- and endocardium, were 57+/-10, 84+/-20, and 75+/-21 ms respectively and were significantly larger than the respective epi- and endocardial dispersions (p<0.05). The epicardial dispersion of AT, EOR and MAPd of both the right and left ventricles were significantly larger than that of each ventricle alone (p<0.02). Sternotomy did not affect these dispersion parameters. CONCLUSION Detailed mapping of epicardial repolarization in vivo using the MAP mapping technique is feasible. Both the epi- and endocardium of the two ventricles contribute significantly to the total dispersion of repolarization.
Collapse
Affiliation(s)
- Ole Kongstad
- Department of Cardiology, University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wu L, Shryock JC, Song Y, Belardinelli L. An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. J Pharmacol Exp Ther 2005; 316:718-26. [PMID: 16234410 DOI: 10.1124/jpet.105.094862] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Assessment of the proarrhythmic risk associated with drugs that prolong the QT interval is difficult. We hypothesized that the proarrhythmic activities of drugs with very low to moderate risk of causing torsades de pointes would be well differentiated when the late sodium current (I(NaL)) was greater than normal. The effects of selected QT-prolonging drugs on electrical activity of female rabbit isolated hearts were determined in the absence and presence of sea anemone toxin (ATX-II; an enhancer of I(NaL)). I(NaL) recorded from ventricular myocytes isolated from female rabbit hearts was slightly increased by 1 and 3 nM ATX-II (n = 13, P < 0.01). ATX-II (1 nM) prolonged the duration of the monophasic action potential (MAPD(90)) the isolated heart by of 19 +/- 3% (P < 0.001, n = 31) and shifted the concentration-response relationships for cisapride (1-30 nM), ziprasidone (0.01-3 microM), quinidine (0.1-1 microM), and moxifloxacin (0.01-1 microM) to prolong MAPD to the left by 2- to 12-fold. In contrast, the increases in MAPD(90) caused by 1 nM ATX-II and pentobarbital were only additive, and the increases in MAPD(90) caused by ATX-II and ranolazine [(+/-)-N-(2,6-dimethylphenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-piperazine] were less than additive. Episodes of arrhythmic activity were commonly observed, and beat-to-beat variability of action potential duration was increased, during exposure of hearts to cisapride, ziprasidone, quinidine, and moxifloxacin but not during exposure of hearts to ranolazine or pentobarbital, in the presence of ATX-II. Thus, in the female rabbit heart, ATX-II potentiated the effects of QT-prolonging drugs to increase MAPD(90) and unmasked the proarrhythmic activities of these drugs at clinically relevant drug concentrations.
Collapse
Affiliation(s)
- Lin Wu
- Pharmacological Sciences, CV Therapeutics, Inc., Palo Alto, CA 94304, USA.
| | | | | | | |
Collapse
|
50
|
Bai R, Lü J, Pu J, Liu N, Zhou Q, Ruan Y, Niu H, Zhang C, Wang L, Kam R. Left Ventricular Epicardial Activation Increases Transmural Dispersion of Repolarization in Healthy, Long QT, and Dilated Cardiomyopathy Dogs. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2005; 28:1098-106. [PMID: 16221269 DOI: 10.1111/j.1540-8159.2005.00218.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Benefits of cardiac resynchronization therapy (CRT) are well established. However, less is understood concerning its effects on myocardial repolarization and the potential proarrhythmic risk. METHODS AND RESULTS Healthy dogs (n = 8) were compared to a long QT interval (LQT) model (n = 8, induced by cesium chloride, CsCl) and a dilated cardiomyopathy with congestive heart failure (DCM-CHF, induced by rapid ventricular pacing, n = 5). Monophasic action potential (MAP) recordings were obtained from the subendocardium, midmyocardium, subepicardium, and the transmural dispersion of repolarization (TDR) was calculated. The QT interval and the interval from the peak to the end of the T wave (T(p-e)) were measured. All these characteristics were compared during left ventricular epicardial (LV-Epi), right ventricular endocardial (RV-Endo), and biventricular (Bi-V) pacing. In healthy dogs, TDR prolonged to 37.54 ms for Bi-V pacing and to 47.16 ms for LV-Epi pacing as compared to 26.75 ms for RV-Endo pacing (P < 0.001), which was parallel to an augmentation in T(p-e) interval (Bi-V pacing, 64.29 ms; LV-Epi pacing, 57.89 ms; RV-Endo pacing, 50.29 ms; P < 0.01). During CsCl exposure, Bi-V and LV-Epi pacing prolonged MAPD, TDR, and T(p-e) interval as compared to RV-Endo pacing. The midmyocardial MAPD (276.30 ms vs 257.35 ms, P < 0.0001) and TDR (33.80 ms vs 27.58 ms, P=0.002) were significantly longer in DCM-CHF dogs than those in healthy dogs. LV-Epi and Bi-V pacing further prolonged the MAPD and TDR in this model. CONCLUSIONS LV-Epi and Bi-V pacing result in prolongation of ventricular repolarization time, and increase of TDR accounted for a parallel augmentation of the T(p-e) interval, which provides evidence that T(p-e) interval accurately represents TDR. These effects are magnified in the LQT and DCM-CHF canine models in addition to their intrinsic transmural heterogeneity in the intact heart. This mechanism may contribute to the development of malignant ventricular arrhythmias, such as torsades de pointes (TdP) in congestive heart failure (CHF) patients treated with CRT.
Collapse
Affiliation(s)
- Rong Bai
- Department of Internal Medicine/Cardiology, Tong-Ji Hospital, Tong-Ji Medical College, Huazhong University of Science and Technology, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|