1
|
Niu Y, Wang C, Liu Y, Zhang P, Wu Y, Li M, Zhao J, Zhang X, Ma X. Pre-packaged cold-chain ready-to-eat food as a source of sporadic listeriosis in Beijing, China. J Infect 2024; 89:106254. [PMID: 39182653 DOI: 10.1016/j.jinf.2024.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Using a sporadic case of listeriosis suspected to have been caused by consuming a pre-packaged cold-chain ready-to-eat (RTE) food in Beijing, China in 2021 as an exemplar, this study demonstrated the importance of thoroughly investigating the source of listeriosis up to the production point for mitigating infection risk during routine monitoring of Listeria in food facilities and national surveillance program using whole-genome sequencing (WGS). METHODS Epidemiological, laboratory, traceback, and plant investigations were used to identify the source of infection. RESULTS WGS showed the isolate from the patient was genetically indistinguishable from that of the implicated food. During a plant investigation, L. monocytogenes was detected in 26% (9/35) of the environmental samples and one of two raw material samples, confirming the source. CONCLUSION To our knowledge, this is the first investigation in China linking a case of L. monocytogenes infection to a suspected food and its production environment. This report highlights the risk of L. monocytogenes contamination of RTE food and demonstrates the role of food safety risk monitoring in identifying potential sources of infection. Reinforcing control programs in RTE processing plants, intensified surveillance of microorganisms in food products and targeted health education is required to mitigate the infection risk.
Collapse
Affiliation(s)
- Yanlin Niu
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China
| | - Chao Wang
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China
| | - Yuzhu Liu
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China
| | - Penghang Zhang
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China
| | - Yangbo Wu
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China
| | - Mingying Li
- Xicheng Center for Disease Prevention and Control, No. 38 Deshengmenwai Street, Xicheng District, Beijing 100044, China
| | - Jingjing Zhao
- Fengtai Center for Disease Prevention and Control, Kandan Health Science and Technology Industrial Park, Fengtai District, Beijing 100071, China
| | - Xiaoyuan Zhang
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China.
| | - Xiaochen Ma
- Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing 100013, China.
| |
Collapse
|
2
|
Li X, Wang H, Abdelrahman H, Kelly A, Roy L, Wang L. Profiling and source tracking of the microbial populations and resistome present in fish products. Int J Food Microbiol 2024; 413:110591. [PMID: 38306774 DOI: 10.1016/j.ijfoodmicro.2024.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.
Collapse
Affiliation(s)
- Xiran Li
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hongye Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States
| | - Hisham Abdelrahman
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Anita Kelly
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luke Roy
- Alabama Fish Farming Center, Greensboro, AL 36744, United States; School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL 3684, United States
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
3
|
Jia S, Shen H, Wang D, Liu S, Ding Y, Zhou X. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review. Food Chem 2024; 431:137142. [PMID: 37591146 DOI: 10.1016/j.foodchem.2023.137142] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Sodium chloride (NaCl) confers a unique flavor and quality in meat products, however, due to growing concerns about the adverse effects of excessive NaCl consumption, how to reduce NaCl content while ensuring quality and safety has become a research hotspot in this field. This review mainly discusses the role of NaCl in dry-cured meat, as well as novel salt-reducing substances that can substitute for the effects of NaCl to achieve sodium reduction objectives. New technologies, such as vacuum curing, ultrahigh pressure curing, ultrasonic curing, pulsed electric field curing, and gamma irradiation, to facilitate the development of low-sodium products are also introduced. The majority of current salt reduction technologies function to enhance salt diffusion and decrease curing time, resulting in a decrease in NaCl content. Notably, future studies should focus on implementing multiple strategies to compensate for the deficiencies in flavor and safety caused by NaCl reduction.
Collapse
Affiliation(s)
- Shiliang Jia
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanrui Shen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Dong Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Zhang J, Wei Z, Lu T, Qi X, Xie L, Vincenzetti S, Polidori P, Li L, Liu G. The Research Field of Meat Preservation: A Scientometric and Visualization Analysis Based on the Web of Science. Foods 2023; 12:4239. [PMID: 38231689 DOI: 10.3390/foods12234239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Meat plays a significant role in human diets, providing a rich source of high-quality protein. With advancements in technology, research in the field of meat preservation has been undergoing dynamic evolution. To gain insights into the development of this discipline, the study conducted an analysis and knowledge structure mapping of 1672 papers related to meat preservation research within the Web of Science Core Collection (WOSCC) spanning from 2001 to 2023. And using software tools such as VOSviewer 1.6.18 and CiteSpace 5.8.R3c allowed for the convenient analysis of the literature by strictly following the software operation manuals. Moreover, the knowledge structure of research in the field of meat preservation was synthesized within the framework of "basic research-technological application-integration of technology with fundamental research," aligning with the research content. Co-cited literature analysis indicated that meat preservation research could be further categorized into seven collections, as well as highlighting the prominent role of the antibacterial and antioxidant properties of plant essential oils in ongoing research. Subsequently, the future research direction and focus of the meat preservation field were predicted and prospected. The findings of this study could offer valuable assistance to researchers in swiftly comprehending the discipline's development and identifying prominent research areas, thus providing valuable guidance for shaping research topics.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Zixiang Wei
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ting Lu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xingzhen Qi
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Lan Xie
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93, 62024 Matelica, MC, Italy
| | - Paolo Polidori
- School of Pharmacy, University of Camerino, Via Gentile da Varano, 62032 Camerino, MC, Italy
| | - Lanjie Li
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
- Office of International Programs, Liaocheng University, Liaocheng 252000, China
| | - Guiqin Liu
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
5
|
Jung J, Sekercioglu F, Young I. Ready-to-eat Meat Plant Characteristics Associated with Food Safety Deficiencies During Regulatory Compliance Audits, Ontario, Canada. J Food Prot 2023; 86:100135. [PMID: 37500059 DOI: 10.1016/j.jfp.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Food safety deficiencies in ready-to-eat (RTE) meat processing plants can increase foodborne disease risks. The purpose of this study was to identify common deficiencies and factors related to improved food safety performance in RTE meat plants in Ontario. Routine food safety audit records for licensed provincial free-standing meat processing plants (FSMPs) and abattoirs that process RTE meats were obtained and analyzed in Ontario, Canada, from 2015 to 2019. A Bayesian regression analysis was conducted to examine the association between selected plant characteristics and two outcomes: overall audit rating (pass vs. conditional pass or fail) and individual audit item fail rate. The audit rating was examined in a logistic model, while the audit item fail rate was evaluated in a negative binomial model. The majority (87.7%, n = 800/912) of audits resulted in a pass rating (compared to conditional pass or fail). The mean number of employees per plant, among 200/204 plants with employee data available, was 11.6 (SD = 20.6, range = 1-200). For the logistic regression model, FSMPs were predicted to have a much higher probability of passing audits than abattoirs (32.0% on average, with a 95% credible interval [CI] of 13.8-52.8%). The number of plant employees, water source (municipal vs. private), and types of RTE meat products produced had little to no consistent association with this outcome. The negative binomial model predicted a -0.009 points lower fail rate, on average, for audit items among FSMPs than abattoirs (95% CI: -0.001, -0.018). Meat plants producing jerky had a higher audit item fail rate compared to those that did not produce such products. The other investigated variables had little to no association with this outcome. The results found in this study can support and guide future inspection, audit and outreach efforts to reduce foodborne illness risks associated with RTE meats.
Collapse
Affiliation(s)
- Jiin Jung
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Fatih Sekercioglu
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Ian Young
- School of Occupational and Public Health, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
6
|
Yadav B, Roopesh MS. In-Package Atmospheric Cold Plasma Treatment and Storage Effects on Membrane Integrity, Oxidative Stress, and Esterase Activity of Listeria monocytogenes. Microorganisms 2023; 11:microorganisms11030682. [PMID: 36985254 PMCID: PMC10057520 DOI: 10.3390/microorganisms11030682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Atmospheric cold plasma (ACP) treatment can reduce bacterial pathogens in foods. Additional reduction in bacterial cells during storage after ACP treatment was previously reported. The underlying mechanisms of bacterial inactivation during ACP treatment and post-treatment storage need to be understood. This study investigated the changes in the morpho-physiological status of Listeria monocytogenes on ham surfaces after post-ACP-treatment storage of 1 h, 24 h, and 7 days at 4 °C. The membrane integrity, intracellular oxidative stress, and esterase activity of L. monocytogenes were evaluated by flow cytometry. L. monocytogenes cells were under high oxidative stress conditions with slightly permeabilized membranes after 1 h of post-ACP-treatment storage according to the flow cytometry data. During the extended storage of 24 h, the percentage of cells with a slightly permeabilized membrane increased; subsequently, the percentage of cells with intact membranes decreased. The percentage of L. monocytogenes cells with intact membranes decreased to <5% with a treatment time of 10 min and after 7 days of post-treatment storage. In addition, the percentage of L. monocytogenes cells under oxidation stress decreased to <1%, whereas the percentage of cells with completely permeabilized membranes increased to more than 90% for samples treated with ACP for 10 min and 7 days of post-treatment storage. With increased ACP treatment time, for 1 h stored samples, the percentage of cells with active esterase and slightly permeabilized membranes increased. However, during the extended post-treatment storage of 7 days, the percentage of cells with active esterase and slightly permeabilized membranes decreased to below 1%. At the same time, the percentage of cells with permeabilized membrane increased to more than 92% with an increase in ACP treatment time of 10 min. In conclusion, the higher inactivation after 24 h and 7 days post-ACP-treatment storage compared to 1 h stored samples correlated with the loss of esterase activity and membrane integrity of L. monocytogenes cells.
Collapse
Affiliation(s)
- Barun Yadav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
7
|
Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. ScientificWorldJournal 2022; 2022:9901018. [PMID: 36193042 PMCID: PMC9525789 DOI: 10.1155/2022/9901018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Food-borne illnesses are a significant concern for consumers, the food industry, and food safety authorities. Natural preservatives are very crucial for enhancing food safety and shelf life. Therefore, this review aimed to assess the literature regarding the potential of natural preservatives to enhance food safety and extend the shelf life of food products. The review paper indicated that natural antimicrobial agents that inhibit bacterial and fungal growth for better quality and shelf life have been of considerable interest in recent years. Natural antimicrobials are mainly extracted and isolated as secondary metabolites of plants, animals, and microorganisms. Plants, especially herbs and spices, are given more attention as a source of natural antimicrobials. Microorganisms used in food fermentation also produce different antimicrobial metabolites, including organic acids, hydrogen peroxide, and diacetyl, in addition to bacteriocins. Products of animal origin, such as tissues and milk, contain different antimicrobial agents. Natural antimicrobials are primarily extracted and purified before utilization for food product development. The extraction condition and purification of natural preservatives may change their structure and affect their functionality. Selecting the best extraction method coupled with minimal processing such as direct mechanical extraction seems to preserve active ingredients. The activity of natural antimicrobials could also be influenced by the source, time of harvesting, and stage of development. The effectiveness of natural antimicrobial compounds in food applications is affected by different factors, including food composition, processing method, and storage conditions. Natural antimicrobials are safe because they can limit microbial resistance and meet consumers’ demands for healthier foods.
Collapse
|
8
|
Calvo-Arrieta K, Matamoros-Montoya K, Arias-Echandi ML, Huete-Soto A, Redondo-Solano M. Presence of Listeria monocytogenes in Ready-to-Eat Meat Products Sold at Retail Stores in Costa Rica and Analysis of Contributing Factors. J Food Prot 2021; 84:1729-1740. [PMID: 34047780 DOI: 10.4315/jfp-21-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a pathogenic bacterium associated with ready-to-eat (RTE) meat products sold at the retail level. The objective of this research was to determine the prevalence of L. monocytogenes in RTE meat products sold at retail in Costa Rica and to study the factors associated with the levels of contamination; analyzed factors include hygienic practices within stores (cutting techniques and microbial contamination of products) and the behavior of the isolates (persistence against antimicrobials and transfer potential). A total of 190 samples of RTE meat products were collected and analyzed for the presence of coliforms and Listeria spp. Isolates of L. monocytogenes were then evaluated in terms of resistance to disinfectants (quaternary ammonium compound [QAC] and chlorine) and their transfer potential from food contact surfaces (knife and cutting boards). Overall Listeria spp. prevalence was 37.4% (71 of 190); Listeria innocua was present in 32.1% (61 of 190) of the products, and L. monocytogenes was found in just 2.6% (5 of 190) of the samples. Most contaminated samples were cut with a knife at the moment of purchase (44.2%). When analyzing practices within the stores, it was observed that L. monocytogenes transfer from inoculated knife to salchichón was higher for samples cut at the beginning of the experiment. In addition, L. monocytogenes transfer from inoculated cutting boards was independent of the number of slices but contamination from plastic was higher than wood. Regarding L. monocytogenes resistance to disinfectants, average reductions of 2.6 ± 1.1 log CFU/mL were detected after 6 min of exposure to 200 ppm of chlorine; however, chlorine resistance varied among the strains. Prevalence of L. monocytogenes in RTE meat products sold at retail could be associated with handling practices within the stores; further studies are necessary to estimate the impact of these practices on the overall risk for consumers. HIGHLIGHTS
Collapse
Affiliation(s)
- Karol Calvo-Arrieta
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Karol Matamoros-Montoya
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - María Laura Arias-Echandi
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Alejandra Huete-Soto
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| | - Mauricio Redondo-Solano
- Tropical Disease Investigation Center (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
9
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
10
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
11
|
Wu J, Zhao L, Lai S, Yang H. NMR-based metabolomic investigation of antimicrobial mechanism of electrolysed water combined with moderate heat treatment against Listeria monocytogenes on salmon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Seok JH, Ha JW. Synergistic mechanism and enhanced inactivation exhibited by UVA irradiation combined with citric acid against pathogenic bacteria on sliced cheese. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Resendiz-Moctezuma C, Rezac SD, Miller MJ, Stasiewicz MJ. Enabling Cost-Effective Screening for Antimicrobials against Listeria monocytogenes in Ham. J Food Prot 2021; 84:802-810. [PMID: 33302287 DOI: 10.4315/jfp-20-435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ready-to-eat meat products, such as deli ham, can support the growth of Listeria monocytogenes (LM), which can cause severe illness in immunocompromised individuals. The objectives of this study were to validate a miniature ham model (MHM) against the ham slice method and to screen antimicrobial combinations to control LM on ham by using response surface methology (RSM) as a time- and cost-effective high-throughput screening tool. The effect of nisin (Ni), potassium lactate and sodium diacetate, lauric arginate (LAG), lytic bacteriophage (P100), and ε-polylysine (EPL) added alone, or in combination, were determined on the MHM over 12 days of storage. Results showed the MHM accurately mimics the ham slice method because no statistical differences were found (P = 0.526) in the change of LM cell counts in MHM and slice counts after 12 days of storage at 4°C for treated and untreated hams. The MHM was then used to screen antimicrobial combinations by using an on-face design and three center points in a central composite design. The RSM was tested by using a cocktail of five LM strains isolated from foodborne disease outbreaks. Three levels of the previously mentioned antimicrobials were used in combination for a total of 28 runs performed in triplicate. The change of LM cell counts were determined after 12 days of storage at 4°C. All tested antimicrobials were effective on reducing LM cell counts on ham when added alone. A significant antagonistic interaction (P = 0.002) was identified by the RSM between LAG and P100, where this antimicrobial combination caused a 2.2-log CFU/g change of LM cell counts after 12 days of storage. Two interactions, between Ni and EPL (P = 0.058), and Ni and P100 (P = 0.068), showed possible synergistic effects against LM on the MHM. Other interactions were clearly nonsignificant, suggesting additive effects. In future work, the developed MHM in combination with RSM can be used as a high-throughput method to analyze novel antimicrobial treatments against LM. HIGHLIGHTS
Collapse
Affiliation(s)
- Cristina Resendiz-Moctezuma
- Agricultural Bioprocess Laboratory, Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Shannon D Rezac
- Agricultural Bioprocess Laboratory, Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Michael J Miller
- Agricultural Bioprocess Laboratory, Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew J Stasiewicz
- Agricultural Bioprocess Laboratory, Food Science and Human Nutrition Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,(ORCID: https://orcid.org/0000-0003-2712-0793 [M.J.S.])
| |
Collapse
|
14
|
Wu J, Acuff J, Waterman K, Ponder M. Evaluation of Listeria monocytogenes and Staphylococcus aureus Survival and Growth during Cooling of Hams Cured with Natural-Source Nitrite. J Food Prot 2021; 84:286-290. [PMID: 33003208 DOI: 10.4315/jfp-20-249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Growing consumer demand for clean-label "natural" products has encouraged more meat processors to cure meat products with natural sources of nitrate or nitrite such as celery juice powder. One challenge for these producers is to identify safe cooling rates in products cured with celery juice powder where extended cooling could allow growth of pathogens. The Food Safety and Inspection Service of the U.S. Department of Agriculture recently added guidelines for stabilization of meat products cured using naturally occurring nitrites based on control of Clostridium spp. However, a knowledge gap exists for safe cooling rates that prevent the growth of Listeria monocytogenes and Staphylococcus aureus, potential postlethality contaminants, in naturally cured ham. The study was conducted to investigate the temperature profiles of naturally cured hams of typical sizes during refrigerator cooling and to determine the behavior of S. aureus and L. monocytogenes on ham during these cooling periods. Whole hams (14 lb [6,300 g]), half hams (6 lb [2,700 g]), and quarter hams (3 lb [1,400 g]) were slowly cooked in a smokehouse until internal temperatures reached a minimum of 140°F (60°C) and then were immediately transferred into a walk-in cooler (38°F [3.3°C]). Cooling times for hams of all sizes were within the requirements for cured products but not for uncured products. Worst-case scenarios of postprocessing surface contamination were simulated by inoculating small naturally cured ham samples with S. aureus or L. monocytogenes. These inoculated hams were then cooled under controlled conditions of 130 to 45°F (54.4 to 7.2°C) for 720 to 900 min. By the end of cooling, small decreases (0.5 to 0.6 log CFU/g) were found for each inoculum. These findings may help small ham processors evaluating production and quality control methods to determine whether recommended concentrations of natural curing agents used to prevent growth of clostridial pathogens may also prevent growth of other pathogens during meat cooling. HIGHLIGHTS
Collapse
Affiliation(s)
- Jian Wu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Jennifer Acuff
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Monica Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.,(ORCID: https://orcid.org/0000-0001-7047-3127 [M.P.])
| |
Collapse
|
15
|
Yousefi M, Khorshidian N, Hosseini H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front Nutr 2020; 7:577287. [PMID: 33330578 PMCID: PMC7732451 DOI: 10.3389/fnut.2020.577287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023] Open
Abstract
One of the most important challenges in the food industry is to provide healthy and safe food. Therefore, it is not possible to achieve this without different processes and the use of various additives. In order to improve safety and extend the shelf life of food products, various synthetic preservatives have been widely utilized by the food industry to prevent growth of spoilage and pathogenic microorganisms. On the other hand, consumers' preference to consume food products with natural additives induced food industries to use natural-based preservatives in their production. It has been observed that herbal extracts and their essential oils could be potentially considered as a replacement for chemical antimicrobials. Antimicrobial properties of plant essential oils are derived from some main bioactive components such as phenolic acids, terpenes, aldehydes, and flavonoids that are present in essential oils. Various mechanisms such as changing the fatty acid profile and structure of cell membranes and increasing the cell permeability as well as affecting membrane proteins and inhibition of functional properties of the cell wall are effective in antimicrobial activity of essential oils. Therefore, our objective is to revise the effect of various essential oils and their bioactive components against Listeria monocytogenes in meat and poultry products.
Collapse
Affiliation(s)
- Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Rezac SD, Resendiz-Moctezuma C, Boler DD, Stasiewicz MJ, Miller MJ. Non-Destructive Luminescence-Based Screening Tool for Listeria monocytogenes Growth on Ham. Foods 2020; 9:E1700. [PMID: 33233500 PMCID: PMC7699547 DOI: 10.3390/foods9111700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen often associated with ready-to-eat (RTE) food products. Many antimicrobial compounds have been evaluated in RTE meats. However, the search for optimum antimicrobial treatments is ongoing. The present study developed a rapid, non-destructive preliminary screening tool for large-scale evaluation of antimicrobials utilizing a bioluminescent L. monocytogenes with a model meat system. Miniature hams were produced, surface treated with antimicrobials nisin (at 0-100 ppm) and potassium lactate sodium diacetate (at 0-3.5%) and inoculated with bioluminescent L. monocytogenes. A strong correlation (r = 0.91) was found between log scale relative light units (log RLU, ranging from 0.00 to 3.35) read directly from the ham surface and endpoint enumeration on selective agar (log colony forming units (CFU)/g, ranging from 4.7 to 8.3) when the hams were inoculated with 6 log CFU/g, treated with antimicrobials, and L. monocytogenes were allowed to grow over a 12 d refrigerated shelf life at 4 °C. Then, a threshold of 1 log RLU emitted from a ham surface was determined to separate antimicrobial treatments that allowed more than 2 log CFU/g growth of L. monocytogenes (from 6 log CFU/g inoculation to 8 log CFU/g after 12 d). The proposed threshold was utilized in a luminescent screening of antimicrobials with days-to-detect growth monitoring of luminescent L. monocytogenes. Significantly different (p < 0.05) plate counts were found in antimicrobial treated hams that had reached a 1 log RLU increase (8.1-8.5 log(CFU/g)) and the hams that did not reach the proposed light threshold (5.3-7.5 log(CFU/g)). This confirms the potential use of the proposed light threshold as a qualitative tool to screen antimicrobials with less than or greater than a 2 log CFU/g increase. This screening tool can be used to prioritize novel antimicrobials targeting L. monocytogenes, alone or in combination, for future validation.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Miller
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302 W Pennsylvania Ave, Urbana, IL 61801, USA; (S.D.R.); (C.R.-M.); (D.D.B.); (M.J.S.)
| |
Collapse
|
17
|
Abstract
At present, humanity is confronting with a novel life-threatening challenge from the COVID-19 pandemic infectious disease caused by the novel coronavirus SARS-CoV-2. To date, the various transmission modes of SARS-CoV-2 have not been completely determined. Food products might be carriers for SARS-CoV-2. The COVID-19 pandemic not only can spread through the respiratory tract like SARS and MERS but also the presence of the SARS-CoV-2 RNA in feces of several patients, shows the possibility of their fecal-oral route spread. Besides, people with gastric problems, including gastric intestinal metaplasia and atrophic gastritis, may be susceptible to this kind of COVID-19 infection. Accordingly, food may act as a potential vehicle of SARS-CoV-2 due to whether carry-through or carry-over contaminations. Considering carry-over, SARS-CoV-2 spread from personnel to food products or food surfaces is feasible. Beyond that, some shreds of evidence showed that pigs and rabbits can be infected by SARS-CoV-2. Thus, viral transmission through meat products may be conceivable, indicating carry-through contamination. As the spread rate of SARS-CoV-2 is high and its stability in different environments, especially food processing surfaces, is also remarkable, it may enter foods in whether industrialized processing or the traditional one. Therefore, established precautious acts is suggested to be applied in food processing units. The present review elucidates the risk of various staple food products, including meat and meat products, dairy products, bread, fruits, vegetables, and ready-to-eat foods as potential carriers for transmission of SARS-CoV-2.
Collapse
|
18
|
Gómez I, Janardhanan R, Ibañez FC, Beriain MJ. The Effects of Processing and Preservation Technologies on Meat Quality: Sensory and Nutritional Aspects. Foods 2020; 9:E1416. [PMID: 33036478 PMCID: PMC7601710 DOI: 10.3390/foods9101416] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
This review describes the effects of processing and preservation technologies on sensory and nutritional quality of meat products. Physical methods such as dry aging, dry curing, high pressure processing (HPP), conventional cooking, sous-vide cooking and 3D printing are discussed. Chemical and biochemical methods as fermentation, smoking, curing, marination, and reformulation are also reviewed. Their technical limitations, due to loss of sensory quality when nutritional value of these products is improved, are presented and discussed. There are several studies focused either on the nutritional or sensorial quality of the processed meat products, but more studies with an integration of the two aspects are necessary. Combination of different processing and preservation methods leads to better results of sensory quality; thus, further research in combinations of different techniques are necessary, such that the nutritional value of meat is not compromised.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain;
| | - Rasmi Janardhanan
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - Francisco C. Ibañez
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| | - María José Beriain
- Research Institute for Innovation & Sustainable Development in Food Chain, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain; (R.J.); (F.C.I.)
| |
Collapse
|
19
|
Pérez-Baltar A, Alía A, Rodríguez A, Córdoba JJ, Medina M, Montiel R. Impact of Water Activity on the Inactivation and Gene Expression of Listeria monocytogenes during Refrigerated Storage of Pressurized Dry-Cured Ham. Foods 2020; 9:E1092. [PMID: 32785197 PMCID: PMC7466251 DOI: 10.3390/foods9081092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes population and the expression patterns of three virulence (plcA, hly, and iap) and one stress-related (sigB) genes in dry-cured ham with different water activity (aw) values (0.92, 0.88, and 0.84) and treated with high pressure processing (HPP, 450 MPa/10 min and 600 MPa/5 min) were monitored throughout 30 days (d) at 4 °C. The antimicrobial effect of HPP at 600 MPa against L. monocytogenes S4-2 (serotype 1/2b) and S12-1 (serotype 1/2c) was greater in dry-cured ham with aw values of 0.92, with reductions of 2.5 and 2.8 log units, respectively. The efficacy of HPP treatments decreased at lower aw values. Regarding gene expression, L. monocytogenes strains responded differently to HPP. For strain S4-2, the four target genes were generally overexpressed in dry-cured ham immediately after HPP treatments at the three aw values investigated, although the extent of this induction was lower in the samples pressurized at 600 MPa and with aw values of 0.84. For strain S12-1, the expression of all target genes was repressed at the three aw values investigated. The antimicrobial efficacy of HPP against L. monocytogenes could be compromised by low aw values in food products. However, no growth of HPP-survival cells was observed during refrigerated storage in low-aw dry-cured ham, and the overexpression of virulence and stress-related genes decreased.
Collapse
Affiliation(s)
- Aida Pérez-Baltar
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Alberto Alía
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Alicia Rodríguez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Juan José Córdoba
- Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain; (A.A.); (A.R.); (J.J.C.)
| | - Margarita Medina
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| | - Raquel Montiel
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (A.P.-B.); (M.M.)
| |
Collapse
|
20
|
KALKAN S, ERGİNKAYA Z. Impact of whey protein isolate coatings containing different antimicrobial agents on sliced bologna-type sausage during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Yadav B, Spinelli AC, Misra NN, Tsui YY, McMullen LM, Roopesh MS. Effect of in-package atmospheric cold plasma discharge on microbial safety and quality of ready-to-eat ham in modified atmospheric packaging during storage. J Food Sci 2020; 85:1203-1212. [PMID: 32118300 DOI: 10.1111/1750-3841.15072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is often responsible for postprocessing contamination of ready-to-eat (RTE) products including cooked ham. As an emerging technology, atmospheric cold plasma (ACP) has the potential to inactivate L. monocytogenes in packaged RTE meats. The objectives of this study were to evaluate the effect of treatment time, modified atmosphere gas compositions (MAP), ham formulation, and post-treatment storage (1 and 7 days at 4 °C) on the reduction of a five-strain cocktail of L. monocytogenes and quality changes in ham subjected to in-package ACP treatment. Initial average cells population on ham surfaces were 8 log CFU/cm2 . The ACP treatment time and gas composition significantly (P < 0.05) influenced the inactivation of L. monocytogenes, irrespective of ham formulations. When MAP1 (20% O2 + 40% CO2 + 40% N2 ) was used, there was a significantly higher log reduction (>2 log reduction) in L. monocytogenes on ham in comparison to MAP2 (50% CO2 + 50% N2 ) and MAP3 (100% CO2 ), irrespective of ham formulation. Addition of preservatives (that is, 0.1% sodium diacetate and 1.4% sodium lactate) or bacteriocins (that is, 0.05% of a partially purified culture ferment from Carnobacterium maltaromaticum UAL 307) did not significantly reduce cell counts of L. monocytogenes after ACP treatment. Regardless of type of ham, storage of 24 hr after ACP treatment significantly reduced cells counts of L. monocytogenes to approximately 4 log CFU/cm2 . Following 7 days of storage after ACP treatment, L. monocytogenes counts were below the detection limit (>6 log reduction) when samples were stored in MAP1. However, there were significant changes in lipid oxidation and color after post-treatment storage. In conclusion, the antimicrobial efficacy of ACP is strongly influenced by gas composition inside the package and post-treatment storage. PRACTICAL APPLICATION: Surface contamination of RTE ham with L. monocytogenes may occur during processing steps such as slicing and packaging. In-package ACP is an emerging nonthermal technology, which can be used as a postpackaging decontamination step in industrial settings. This study demonstrated the influence of in-package gas composition, treatment time, post-treatment storage, and ham formulation on L. monocytogenes inactivation efficacy of ACP. Results of present study will be helpful to optimize in-package ACP treatment and storage conditions to reduce L. monocytogenes, while maintaining the quality of ham.
Collapse
Affiliation(s)
- Barun Yadav
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Ana Claudia Spinelli
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada.,Dept. of Food Science, Univ. of Campinas UNICAMP, Campinas, São Paulo, Brazil
| | - N N Misra
- Dept. of Electrical Engineering, Dalhousie Univ., Halifax, Nova Scotia, Canada.,Ingenium Naturae Pvt. Ltd., Mumbai, India
| | - Ying Y Tsui
- Dept. of Electrical & Computer Engineering, Univ. of Alberta, Edmonton, Alberta, Canada
| | - Lynn M McMullen
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| | - M S Roopesh
- Dept. of Agricultural, Food and Nutritional Science, Univ. of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Vahabi Anaraki N, Abbasvali M, Bonyadian M. Effects of post‐packaging pasteurization process on microbial, chemical, and sensory qualities of ready‐to‐eat cured vacuum‐packed Turkey breast. J Food Saf 2020. [DOI: 10.1111/jfs.12776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Neda Vahabi Anaraki
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord University Shahrekord Iran
| | - Maryam Abbasvali
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord University Shahrekord Iran
| | - Mojtaba Bonyadian
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineShahrekord University Shahrekord Iran
| |
Collapse
|
23
|
Vinnikova L, Mudryk V, Agunova L. MODERN PRODUCTION TRENDS OF FERMENTED MEAT PRODUCTS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i4.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The work aims to the generalization and analysis of the main problems of production of fermented meat products, which are reflected in scientific publications of the meat processing industry experts. The modern researches of scientists all over the world are aimed to the achievement of bio- and microbiological safety, structure formation, use of new kinds of raw materials, features of color formation, formation of sensory properties, increase of biological value of smoked and uncooked products. The work emphasizes that the quality of finished products and the stability of the technological process depends on the quality of raw materials, the properties of their own microbiota of raw materials and/or introduced starter cultures of microorganisms. The possibility of improving the sanitary condition of raw materials and reducing the impact of pathogenic microorganisms due to the use of ultrasound, hydrostatic high pressure, high-intensity pulsating electric field, cold plasma are described in the work. Also, in addition to physical processing methods, the use of competing microflora, extracts of spicy-aromatic plants, combining salt mixtures, packaging are effective. It is stated that the formation of the structure of the finished product depends on the parameters of the technological process, the activity of exo-endoenzymes and prescription composition. It is shown that the color of fermented meat products and their stability depend on the content of natural pigments and the conditions of their interaction with nitrites under the action of microorganisms with nitrite reductase activity and pH of the environment. The possibility of obtaining a characteristic pink-red color of meat products without the use of nitrites was noted. The results of investigations of the possibility of varying the organoleptic parameters of the finished product by modeling the ingredient composition and fermentation conditions are presented. The possibilities of creation of new types of fermented meat products of functional purpose by the introduction of ω-3 fatty acids, probiotics, macro-, microelements and more are described.
Collapse
|
24
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
25
|
Thermal resistance of Listeria monocytogenes in natural unsweetened cocoa powder under different water activity. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Bodie AR, Dittoe DK, Feye KM, Knueven CJ, Ricke SC. Application of an Alternative Inorganic Acid Antimicrobial for Controlling Listeria monocytogenes in Frankfurters. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Rothrock MJ, Micciche AC, Bodie AR, Ricke SC. Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Comparison between random forest and gradient boosting machine methods for predicting Listeria spp. prevalence in the environment of pastured poultry farms. Food Res Int 2019; 122:47-55. [PMID: 31229101 DOI: 10.1016/j.foodres.2019.03.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/25/2022]
Abstract
Foodborne pathogens such as Listeria spp. contain the ability to survive and multiply in poultry farming environments, which provides a route of contamination for poultry processing environments and final poultry products. An understanding of the effect of meteorological variables on the prevalence of Listeria spp. in the farming environment is lacking. Soil and feces samples were collected from 11 pastured poultry farms from 2014 to 2017. Random forest (RF) and gradient boosting machine (GBM) predictive models were generated to describe and predict Listeria spp. prevalence in feces and soil samples based on meteorological factors at the farming location. This study attempted to demonstrate the use of GBM models in a food safety context and compare their use to RF models. Both feces models performed very well, with area under the curve (AUC) values of 0.905 and 0.855 for the RF and GBM models, respectively. The soil GBM model outperformed the RF model with AUCs of 0.873 and 0.700, respectively. The developed models can be used to predict the prevalence of Listeria spp. in pastured poultry farm environments and should be of great use to poultry farmers, producers, and risk managers.
Collapse
|
29
|
Golden CE, Rothrock MJ, Mishra A. Using Farm Practice Variables as Predictors of Listeria spp. Prevalence in Pastured Poultry Farms. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
30
|
Comparative evaluation of impedanciometry combined with chromogenic agars or RNA hybridization and real-time PCR methods for the detection of L. monocytogenes in dry-cured ham. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Suo Y, Gao S, Baranzoni GM, Xie Y, Liu Y. Comparative transcriptome RNA-Seq analysis of Listeria monocytogenes with sodium lactate adaptation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Favaro L, Todorov SD. Bacteriocinogenic LAB Strains for Fermented Meat Preservation: Perspectives, Challenges, and Limitations. Probiotics Antimicrob Proteins 2018; 9:444-458. [PMID: 28921417 DOI: 10.1007/s12602-017-9330-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and "healthy" fermented meat products.
Collapse
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, 580, Professor Lineu Prestes, 13B, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
33
|
Characterization of damage on Listeria innocua surviving to pulsed light: Effect on growth, DNA and proteome. Int J Food Microbiol 2018; 284:63-72. [PMID: 30005928 DOI: 10.1016/j.ijfoodmicro.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
Abstract
The effect of pulsed light treatment on the lag phase and the maximum specific growth rate of Listeria innocua was determined in culture media at 7 °C. Fluences of 0.175, 0.350 and 0.525 J/cm2 were tested. The lag phase of the survivors increased as fluence did, showing significant differences for all the doses; an 8.7-fold increase was observed at 0.525 J/cm2. Pulsed light decreased the maximum specific growth rate by 38% at the same fluence. Both parameters were also determined by time-lapse microscopy at 25 °C in survivors to 0.525 J/cm2, with an increase of 13-fold of the lag phase and a 45% decrease of the maximum specific growth rate. The higher the fluence, the higher the variability of both parameters was. To characterize pulsed light damage on L. innocua, the formation of dimers on DNA was assessed, and a proteomic study was undertaken. In cells treated with 0.525 J/cm2, cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts were detected at 5:1 ratio. Pulsed light induced the expression of three proteins, among them the general stress protein Ctc. Furthermore, treated cells showed an up-regulation of proteins related to metabolism of nucleotides and fatty acids, as well as with translation processes, whereas flagellin and some glucose metabolism proteins were down-regulated. Differences in the proteome of the survivors could contribute to explain the mechanisms of adaptation of L. innocua after pulsed light treatment.
Collapse
|
34
|
Balay DR, Gänzle MG, McMullen LM. The Effect of Carbohydrates and Bacteriocins on the Growth Kinetics and Resistance of Listeria monocytogenes. Front Microbiol 2018; 9:347. [PMID: 29545781 PMCID: PMC5838005 DOI: 10.3389/fmicb.2018.00347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine if different carbohydrates influence the growth of Listeria monocytogenes in the presence of carnocyclin A or leucocin A. Carnobacterium maltaromaticum ATCC PTA-5313 and Leuconostoc gelidum UAL187 were used to produce carnocyclin A and leucocin A, respectively. Growth curves were modeled for five strains of L. monocytogenes grown in basal medium supplemented with glucose, sucrose, fructose, mannose, or cellobiose, in the presence of carnocyclin A or leucocin A. The growth of L. monocytogenes to leucocin A or carnocyclin A was influenced by carbohydrate and/or strain. Carnocyclin A inhibited the growth of L. monocytogenes more than leucocin A. Growth in media containing glucose, mannose, and fructose increased the sensitivity of some strains of L. monocytogenes to bacteriocins, while growth in cellobiose and sucrose increased the resistance of L. monocytogenes to bacteriocins, as evidenced by a shorter lag phase. Strains of L. monocytogenes developed resistance to both leucocin A and carnocyclin A, but the time to develop resistance was longer when strains are treated with carnocyclin A. Carbohydrate influences the development of resistance of L. monocytogenes to the bacteriocins, but the ability of strains to develop resistance to leucocin A or carnocyclin A differs. Results of this study indicate that carbohydrates influence the ability of L. monocytogenes to grow in the presence of bacteriocins.
Collapse
Affiliation(s)
| | | | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Horita CN, Baptista RC, Caturla MY, Lorenzo JM, Barba FJ, Sant’Ana AS. Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Castellano P, Peña N, Ibarreche MP, Carduza F, Soteras T, Vignolo G. Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:689-697. [PMID: 29391633 PMCID: PMC5785394 DOI: 10.1007/s13197-017-2979-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Dipping solutions containing bacteriocins produced by Lactobacillus curvatus CRL705 and Lactobacillus sakei CRL1862 (Bact705/1862), nisin and organic acids (lactic acid, LA; acetic acid, AA) were tested alone or in combination against Listeria monocytogenes inoculated by immersion on vacuum-packaged frankfurters stored at 10 °C during 36 days. LA/AA solution (2.5% v/v each) reduced pathogen population by 1.50 log10 CFU/ml during storage. Semi-purified Bact705/1862 prevented L. monocytogenes growth, while nisin was not able to avoid its regrowth after 20 days. The combined addition of Bact705/1862 + LA/AA was the most effective approach for pathogen reduction below detection level from day 6 to final storage. Frankfurters treated with Bact705/1862 + LA/AA compared to fresh-purchased samples did not show significant differences in flavor, juiciness, color intensity and overall preference at 22 days-storage at 5 °C. Meat processors should not only validate the antimicrobial efficacy of combined treatments but also their sensory impact on the product, which is directly related to consumer acceptability.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Natalia Peña
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| | | | - Fernando Carduza
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Trinidad Soteras
- Instituto de Tecnología de Alimentos, CIA, INTA, CC 77, B1708WAB Morón, Buenos Aires Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), Chacabuco 145, T4000ILC Tucumán, Argentina
| |
Collapse
|
37
|
Rothrock MJ, Davis ML, Locatelli A, Bodie A, McIntosh TG, Donaldson JR, Ricke SC. Listeria Occurrence in Poultry Flocks: Detection and Potential Implications. Front Vet Sci 2017; 4:125. [PMID: 29018807 PMCID: PMC5615842 DOI: 10.3389/fvets.2017.00125] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/25/2017] [Indexed: 12/03/2022] Open
Abstract
Foodborne pathogens such as Salmonella, Campylobacter, Escherichia coli, and Listeria are a major concern within the food industry due to their pathogenic potential to cause infection. Of these, Listeria monocytogenes, possesses a high mortality rate (approximately 20%) and is considered one of the most dangerous foodborne pathogens. Although the usual reservoirs for Listeria transmission have been extensively studied, little is known about the relationship between Listeria and live poultry production. Sporadic and isolated cases of listeriosis have been attributed to poultry production and Listeria spp. have been isolated from all stages of poultry production and processing. Farm studies suggest that live birds may be an important vector and contributor to contamination of the processing environment and transmission of Listeria to consumers. Therefore, the purpose of this review is to highlight the occurrence, incidence, and potential systemic interactions of Listeria spp. with poultry.
Collapse
Affiliation(s)
- Michael J. Rothrock
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Morgan L. Davis
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Aude Locatelli
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Aaron Bodie
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Tori G. McIntosh
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Janet R. Donaldson
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Steven C. Ricke
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
38
|
Balay DR, Dangeti RV, Kaur K, McMullen LM. Purification of leucocin A for use on wieners to inhibit Listeria monocytogenes in the presence of spoilage organisms. Int J Food Microbiol 2017; 255:25-31. [DOI: 10.1016/j.ijfoodmicro.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
|
39
|
Hsiao HI, Tu M, Yang MF, Tseng WC. Deteriorating inventory model for ready-to-eat food under fuzzy environment. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS 2017. [DOI: 10.1080/13675567.2017.1351532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Mengru Tu
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Fang Yang
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Chung Tseng
- Department of Transportation Science, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
40
|
Melia S, Purwati E, . Y, . J, Aritonang SN, Silaen M. Characterization of the Antimicrobial Activity of Lactic Acid Bacteria Isolated from Buffalo Milk in West Sumatera (Indonesia) Against Listeria monocytogenes. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/pjn.2017.645.650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms. Int J Food Microbiol 2017; 243:96-102. [DOI: 10.1016/j.ijfoodmicro.2016.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022]
|
42
|
Volatile compounds and odor traits of dry-cured ham (Prosciutto crudo) irradiated by electron beam and gamma rays. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol 2016; 63:159-163. [PMID: 28040164 DOI: 10.1016/j.fm.2016.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
The aim of this study was to evaluate the effectiveness of a biodegradable film, with antimicrobial metabolites produced by Lactobacillus curvatus P99 incorporated, targeting the control of Listeria monocytogenes in sliced "Prato" cheese. Tests were performed to evaluate the spectrum of action of cell-free supernatant (CFS) of P99 against different microorganisms, as well as to detect the minimum inhibitory (MIC) and bactericidal (MBC) concentrations against L. monocytogenes Scott A. The detection of genes that encode for the production of bacteriocins and evaluation of their expression were performed. Antimicrobial films were prepared, followed by in vitro and in situ analysis. The MIC and MBC of CFS against L. monocytogenes Scott A was 15.6 μL/mL and 62.5 μL/mL, respectively. Lactobacillus curvatus P99 presented two genes coding for the bacteriocins, which were expressed. Films with added MBC showed activity against different indicator microorganisms and were able to control L. monocytogenes Scott A when used in sliced "Prato" cheese.
Collapse
|
44
|
Salinas-Salazar C, Hernández-Brenes C, Rodríguez-Sánchez DG, Castillo EC, Navarro-Silva JM, Pacheco A. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes. J Food Sci 2016; 82:134-144. [PMID: 27871119 DOI: 10.1111/1750-3841.13553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/12/2016] [Accepted: 10/14/2016] [Indexed: 12/25/2022]
Abstract
High standards regarding Listeria monocytogenes control and consumer demands for food products without synthetic additives represent a challenge to food industry. We determined the antilisterial properties of an enriched acetogenin extract (EAE) from avocado seed, compared it to two commercial antimicrobials (one enriched in avocado acetogenins), and tested purified molecules. Acetogenin composition in pulp and seed of Hass avocado was quantified. EAE were obtained by two sequential centrifuge partition chromatography separations and molecules purified by preparative chromatography and quantified by HPLC-MS-TOF and HPLC-PDA. Avocado seed extracts which are the following two: 1) EAE and 2) the commercially available antimicrobial Avosafe®, presented similar inhibition zones and chemical profiles. Minimum inhibitory concentration (MIC) values of extracts and two isolated acetogenins varied between 7.8 and 15.6 mg/L, were effective at 37 and 4 °C, and showed a bactericidal effect probably caused by increased membrane permeability and lytic effects, evidenced by flow cytometry at 10 and 100× MIC. Activity was comparable to Mirenat®. Most potent acetogenins were Persenone C (5) and A (6), and AcO-avocadenyne (1), the latter exclusively present in seed. Common features of bioactive molecules were the acetyl moiety and multiple unsaturations (2 to 3) in the aliphatic chain, some persenones also featured a trans-enone group. Seeds contained 1.6 times higher levels of acetogenins than pulp (5048.1 ± 575.5 and 3107.0 ± 207.2 mg/kg fresh weight, respectively), and total content in pulp was 199 to 398 times higher than MIC values. Therefore, acetogenin levels potentially consumed by humans are higher than inhibitory concentrations. Results document properties of avocado seed acetogenins as natural antilisterial food additives.
Collapse
Affiliation(s)
- Carmen Salinas-Salazar
- Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | | | - Elena Cristina Castillo
- Tecnologico de Monterrey, Escuela de Medicina, Ave. Batallón de San Patricio 112, San Pedro, N.L., 66278, Mexico
| | - Jesús Manuel Navarro-Silva
- Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| | - Adriana Pacheco
- Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64849, Mexico
| |
Collapse
|
45
|
Thermal inactivation kinetics of surface contaminating Listeria monocytogenes on vacuum-packaged agar surface and ready-to-eat sliced ham and sausage. Food Res Int 2016; 89:843-849. [DOI: 10.1016/j.foodres.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022]
|
46
|
Aloui H, Khwaldia K. Natural Antimicrobial Edible Coatings for Microbial Safety and Food Quality Enhancement. Compr Rev Food Sci Food Saf 2016; 15:1080-1103. [DOI: 10.1111/1541-4337.12226] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Hajer Aloui
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| | - Khaoula Khwaldia
- Laboratoire des Substances Naturelles (LSN, LR10 INRAP02), Inst. Natl. de Recherche et d'Analyse Physico-chimique (INRAP); Pôle Technologique de Sidi Thabet; 2020 Sidi Thabet Tunisia
| |
Collapse
|
47
|
Badvela MK, Dickson JS, Sebranek JG, Schroeder WD. Inhibition of Listeria monocytogenes by Buffered Dry Vinegar in Reduced-Sodium Ready-to-Eat Uncured Turkey Stored at 4°C. J Food Prot 2016; 79:1396-403. [PMID: 27497127 DOI: 10.4315/0362-028x.jfp-15-370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A reduced-sodium ready-to-eat (RTE) uncured turkey was manufactured with buffered dry vinegar treatments to validate the inhibition of Listeria monocytogenes and spoilage microflora and to determine the effects on sensory and quality attributes. Samples were stored at 4°C for 12 weeks, and the study was independently replicated three times. Two different five-strain inocula of L. monocytogenes obtained from different sources were used for evaluating the efficacy of the buffered dry vinegar treatments. The results showed that 0.6 and 0.8% buffered dry vinegar with a sodium base (BDV-SB) and buffered dry vinegar with a potassium base (BDV-PB) at 0.7 and 0.9% controlled L. monocytogenes for 12 weeks. The untreated control product containing no buffered dry vinegar showed >1 log increase in L. monocytogenes populations counts at the end of 2 weeks. Statistical analysis confirmed that the dry vinegar treatments inhibited (P > 0.05) the growth of L. monocytogenes compared with the untreated control. No significant differences (P > 0.05) were seen in the inhibition of L. monocytogenes between the two different five-strain inocula. Instrumental color results showed no significant differences between the treatments. Purge loss results showed no significant differences between the dry vinegar treatments, but significant differences were seen between the untreated control and dry vinegar treatments at a few testing intervals. The overall results indicated that the dry vinegar ingredients (6.66 to 8.83 mM acetic acid in the finished product) were effective in inhibiting L. monocytogenes obtained from multiple sources in reduced-sodium RTE uncured turkey stored at 4°C without adversely impacting the quality attributes.
Collapse
Affiliation(s)
- Mani K Badvela
- Kemin Industries Inc., 2100 Maury Street, Des Moines, Iowa 50317, USA
| | - James S Dickson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA.
| | - Joseph G Sebranek
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
48
|
Velasco R, Ordóñez JA, Cabeza MC, Cambero MI. Effect of E-beam sanitation of surface mould cheese on texture and sensory attributes. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Kapetanakou AE, Karyotis D, Skandamis PN. Control of Listeria monocytogenes by applying ethanol-based antimicrobial edible films on ham slices and microwave-reheated frankfurters. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Angmo K, Kumari A, . M, . S, Chand Bhalla T. Antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. FOOD BIOSCI 2016. [DOI: 10.1016/j.fbio.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|