1
|
Wang C, Ren Y, Chen A, Li X, Ding D, Yan J, Sun L, Chi RA. Facile electrospinning-electrospray method to fabricate flexible rice straw-derived cellulose acetate/TiO 2 nanofibrous membrane with excellent photocatalytic performance. Int J Biol Macromol 2024; 282:137501. [PMID: 39528179 DOI: 10.1016/j.ijbiomac.2024.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A novel and facile electrospinning-electrospray (EE) method that based on electrospinning technique and simultaneous electrospray was proposed to anchor TiO2 (P25) nanoparticles on the surface of rice straw-derived cellulose acetate (CA) nanofiber, a series of EE-CA/P25 nanofibrous membranes with different P25 dosage were successfully fabricated, which were characterized in terms of SEM, TEM, FI-IR, XRD, DRS, PL, UV-vis and 3D-EMMs, etc. Results confirmed that P25 nanoparticles were anchored on the surface of CA nanofiber. For different organic dyes of Methylene blue (MB), Rhodamine B (RhB) and Methyl orange (MO), EE-CA/P25(0.05) nanofibrous membrane toward MB dye showed the best photocatalytic degradation efficiency of 99.13 % after 30 min of light exposure. For the different antibiotics of Tetracycline (TC), Ciprofloxacin (CIP) and Sulfamethoxazole (SMX), EE-CA/P25(0.05) exhibited the best photocatalytic degradation efficiency of 83.59 % for TC after 30 min of light exposure. Moreover, EE-CA/P25(0.05) exhibited a good antimicrobial efficiency of 98.42 % for E. coli, and maintained 97.49 % after 5 cycles. The reactive radical trapping experiments revealed that h+, •O2-, and •OH participated in the reaction, and h+ and •O2- played a major role in the photocatalytic degradation process. Moreover, EE-CA/P25(0.05) flexible membrane was easy to recycle and transform rice straw waste into treasure.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yufeng Ren
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Anqi Chen
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaofang Li
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Linbing Sun
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ru An Chi
- Hubei Three Gorges Laboratory, China
| |
Collapse
|
2
|
Kavrut E, Sezer Ç, Alwazeer D. A bibliometric analysis: what do we know about edible coatings? JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2057-2070. [PMID: 39397842 PMCID: PMC11464871 DOI: 10.1007/s13197-024-06052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Packaging aims first to protect the quality and safety of food. Although synthetic packaging is easy and practical to use, it significantly poses many health and environmental hazards. In this context, the need for environmentally and food-friendly packaging is increasing. Edible coatings with many barrier properties cover the food surface like a blanket. This study evaluated content analyses and research trends on the edible coating of foods. For this goal, a bibliometric network analysis of the studies that included the concepts of "edible packaging", "coating", and "food" together in the abstracts, keywords, and titles of the articles was carried out. Today, with this network analysis method, it is easier to summarize innovations in edible coating technology and their applicability to foods in a detailed and understandable way. Between 2016 and 2023, bibliometric data consisting of 2131 studies were processed VOSviewer program using the network analysis method. Results revealed that China is the leading country in coatings studies, followed by India. The study shows which foods and methods the coatings are applied. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06052-7.
Collapse
Affiliation(s)
- Enes Kavrut
- Restaurant and Catering Services Department, Igdir Vocational School, Hotel, Igdir, 76002 Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Turkey
| | - Çiğdem Sezer
- Faculty of Veterinary Medicine, Department of Food Safety and Public Health, Kafkas University, Kars, 36100 Turkey
| | - Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, Igdir, 76002 Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, Iğdır, Turkey
| |
Collapse
|
3
|
Miranda M, Bai J, Pilon L, Torres R, Casals C, Solsona C, Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods 2024; 13:2980. [PMID: 39335908 PMCID: PMC11431373 DOI: 10.3390/foods13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Challenges in global food supply chains include preserving postharvest quality and extending the shelf life of fruits and vegetables. The utilization of edible coatings (ECs) combined with biocontrol agents (BCAs) represents a promising strategy to enhance the postharvest quality and shelf life of these commodities. This review analyzes the most recent developments in EC technologies and their combination with BCAs, highlighting their synergistic effects on postharvest pathogen control and quality maintenance. Various types of ECs, including polysaccharides, proteins, and lipids, are discussed alongside coating fundamentals and the mechanisms through which BCAs contribute to pathogen suppression. The review also highlights the efficacy of these combined approaches in maintaining the physicochemical properties, sensory attributes, and nutritional value of fruits. Key challenges such as regulatory requirements, consumer acceptance, and the scalability of these technologies are addressed. Future research directions are proposed to optimize formulations, improve application techniques, and enhance the overall efficacy of these biocomposite coatings and multifunctional coatings. By synthesizing current knowledge and identifying gaps, this review provides a comprehensive understanding of the potential and limitations of using ECs and BCAs for sustainable postharvest management.
Collapse
Affiliation(s)
- Marcela Miranda
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Jinhe Bai
- US Horticultural Research Laboratory, United States Department of Agriculture (USDA)-ARS, Ft. Pierce, FL 34945, USA;
| | - Lucimeire Pilon
- Embrapa Vegetables—Brazilian Agricultural Research Corporation, Brasilia 70351-970, DF, Brazil;
| | - Rosario Torres
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Carla Casals
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Cristina Solsona
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Neus Teixidó
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| |
Collapse
|
4
|
Hanan E, Dar AH, Shams R, Goksen G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int J Biol Macromol 2024; 280:135751. [PMID: 39304053 DOI: 10.1016/j.ijbiomac.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Customer demand for wholesome diets has spurred researchers to explore preservative-free methods for maintaining food product quality. Nano emulsion-based coatings and films are seen as sustainable solutions for extending the shelf life of fresh produce. These innovations are driving progress in various industries. Nano emulsion techniques offer effective encapsulation of bioactive compounds due to their small droplet size, stability, and enhanced activity. This review highlights the preparation and manufacturing methods of biopolymer-based nano emulsions containing essential oils, which are used as edible coatings and films over the past decade, representing the first comprehensive review paper on this topic to encompass research from the past ten years. The characterization and application of these coatings and films are also discussed. It has been revealed that essential oils can be successfully incorporated into nano emulsion delivery system with different biopolymers. These edible coatings and films help delay or prevent oxidation in various food products, enhancing their quality and safety during storage. They present a green, sustainable, and biodegradable solution for protecting fresh foods in the industry. Essential oil biopolymer nano emulsions not only extend shelf life but also offer protection against hazards, contributing to consumer trust in food safety and quality. This technology holds promise for delivering healthier food options in the marketplace. The current review thus provides an updated overview of the latest literature on EO nano emulsions as active agents in the advancement of edible coatings and films.
Collapse
Affiliation(s)
- Entesar Hanan
- Department of Nutrition and Dietetics, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad Haryana, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India.
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey.
| |
Collapse
|
5
|
Monasterio A, Núñez E, Verdugo V, Osorio FA. Stability and Biaxial Behavior of Fresh Cheese Coated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides Using Immersion and Spray Methods. Polymers (Basel) 2024; 16:1559. [PMID: 38891503 PMCID: PMC11174876 DOI: 10.3390/polym16111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In the food industry context, where fresh cheese stands out as a highly perishable product with a short shelf life, this study aimed to extend its preservation through multi-layer edible coatings. The overall objective was to analyze the biaxial behavior and texture of fresh cheese coated with nanoliposomes encapsulating grape seed tannins (NTs) and polysaccharides (hydroxypropyl methylcellulose; HPMC and kappa carrageenan; KC) using immersion and spray methods, establishing comparisons with uncoated cheeses and commercial samples, including an accelerated shelf-life study. NT, HPMC, and KC were employed as primary components in the multi-layer edible coatings, which were applied through immersion and spray. The results revealed significant improvements, such as a 20% reduction in weight loss and increased stability against oxidation, evidenced by a 30% lower peroxide index than the uncoated samples. These findings underscore the effectiveness of edible coatings in enhancing the quality and extending the shelf life of fresh cheese, highlighting the innovative application of nanoliposomes and polysaccharide blends and the relevance of applying this strategy in the food industry. In conclusion, this study provides a promising perspective for developing dairy products with improved properties, opening opportunities to meet market demands and enhance consumer acceptance.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Natural Systems, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Valeria Verdugo
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile (USACH), Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile; (A.M.); (V.V.)
| |
Collapse
|
6
|
Iacovino S, Cofelice M, Sorrentino E, Cuomo F, Messia MC, Lopez F. Alginate-Based Emulsions and Hydrogels for Extending the Shelf Life of Banana Fruit. Gels 2024; 10:245. [PMID: 38667664 PMCID: PMC11049227 DOI: 10.3390/gels10040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Edible coatings are used to extend the shelf life of various fruit, including bananas (Musa from the Musaceae family). After harvest, bananas reach the ripening and subsequent senescence phase. During senescence, the quality of the fruit deteriorates as it takes on a brown color and the tissue becomes soft. To extend the shelf life of such a fruit, effective methods to delay ripening are required. In this study, an alginate-based emulsion, i.e., an oil-in-water emulsion of lemongrass essential oil in alginate, was used to combine the mechanical properties of hydrocolloids with the water barrier properties of the oil phase. The emulsion was sprayed onto the whole fruit with an airbrush, and calcium chloride was added to promote gelling of the alginate. Compared to the uncoated fruit, coated bananas remained uniform in appearance (peel color) for longer, showed less weight loss, had a delay in the formation of total soluble solids, and in the consumption of organic acids. The shelf life of the coated fruit was extended by up to 11 days, at least 5 days more than uncoated bananas. Overall, the proposed coating could be suitable for reducing the global amount of food waste.
Collapse
Affiliation(s)
- Silvio Iacovino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
- Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Martina Cofelice
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
- Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
| | - Francesca Cuomo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
- Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Maria Cristina Messia
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (S.I.); (M.C.); (E.S.); (F.C.); (M.C.M.)
- Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| |
Collapse
|
7
|
Betancur-D´Ambrosio MC, Pérez-Cervera CE, Barrera-Martinez C, Andrade-Pizarro R. Antimicrobial activity, mechanical and thermal properties of cassava starch films incorporated with beeswax and propolis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:782-789. [PMID: 38410275 PMCID: PMC10894146 DOI: 10.1007/s13197-023-05878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 02/28/2024]
Abstract
Edible films can be formed from different polymeric compounds. The use of starch has gained extra value; because it can be used in combination with plasticizers and lipids, helping to improve mechanical properties. Besides, with the addition of an antimicrobial, the function of these films can be extended. The objective of this research was to evaluate the effect of native cassava starch, beeswax and ethanolic propolis extract (EPE) on the mechanical, thermal and inhibitory properties against the Aspergillus niger fungus. An experimental Box-Behnken design with three factors: cassava starch concentration (2-4%w/v), beeswax (0.5-0.9%w/w) and EPE (1-4%v/w) was used. The films obtained were opaque and with low mechanical properties. EPE concentration affected tensile strength, elongation at break (EB) and Young's modulus (YM), and cassava starch content only affected EB and YM. In thermal properties, the weight loss was affected by the cassava starch-beeswax interaction, where the most loss occurred at high levels of these factors in the temperature range of 200-360 °C. The films reduced the growth of the Aspergillus niger by 51%, where the beeswax-EPE interaction had a significant positive effect. The characteristics of the developed films suggest that they would be more acceptable as fruit and vegetable coatings.
Collapse
|
8
|
Olunusi SO, Ramli NH, Fatmawati A, Ismail AF, Okwuwa CC. Revolutionizing tropical fruits preservation: Emerging edible coating technologies. Int J Biol Macromol 2024; 264:130682. [PMID: 38460636 DOI: 10.1016/j.ijbiomac.2024.130682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.
Collapse
Affiliation(s)
- Samuel Olugbenga Olunusi
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nor Hanuni Ramli
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Adam Fatmawati
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Ahmad Fahmi Ismail
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200, Bandar Indera Mahkota Razak, Kuantan, Pahang, Malaysia
| | - Chigozie Charity Okwuwa
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
9
|
Devi LS, Jaiswal AK, Jaiswal S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr Res Food Sci 2024; 8:100720. [PMID: 38559379 PMCID: PMC10978484 DOI: 10.1016/j.crfs.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.
Collapse
Affiliation(s)
- L. Susmita Devi
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam, 783370, India
| | - Amit K. Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| |
Collapse
|
10
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
11
|
Fernando SS, Jo C, Mudannayake DC, Jayasena DD. An overview of the potential application of chitosan in meat and meat products. Carbohydr Polym 2024; 324:121477. [PMID: 37985042 DOI: 10.1016/j.carbpol.2023.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.
Collapse
Affiliation(s)
- Sandithi S Fernando
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| | - Deshani C Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Dinesh D Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| |
Collapse
|
12
|
Aaqil M, Peng C, Kamal A, Nawaz T, Gong J. Recent Approaches to the Formulation, Uses, and Impact of Edible Coatings on Fresh Peach Fruit. Foods 2024; 13:267. [PMID: 38254568 PMCID: PMC10815105 DOI: 10.3390/foods13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Peaches are among the most well-known fruits in the world due to their appealing taste and high nutritional value. Peach fruit, on the other hand, has a variety of postharvest quality issues like chilling injury symptoms, internal breakdown, weight loss, decay, shriveling, and over-ripeness, which makes a challenging environment for industries and researchers to develop sophisticated strategies for fruit quality preservation and extending shelf life. All over the world, consumers prefer excellent-quality, high-nutritional-value, and long-lasting fresh fruits that are free of chemicals. An eco-friendly solution to this issue is the coating and filming of fresh produce with natural edible materials. The edible coating utilization eliminates the adulteration risk, presents fruit hygienically, and improves aesthetics. Coatings are used in a way that combines food chemistry and preservation technology. This review, therefore, examines a variety of natural coatings (proteins, lipids, polysaccharides, and composite) and their effects on the quality aspects of fresh peach fruit, as well as their advantages and mode of action. From this useful information, the processors could benefit in choosing the suitable edible coating material for a variety of fresh peach fruits and their application on a commercial scale. In addition, prospects of the application of natural coatings on peach fruit and gaps observed in the literature are identified.
Collapse
Affiliation(s)
- Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Ayesha Kamal
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (C.P.); (A.K.)
| | - Taufiq Nawaz
- College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA;
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
13
|
de Jesus GAM, Berton SBR, Simões BM, Zola RS, Monteiro JP, Martins AF, Bonafé EG. κ-Carrageenan/poly(vinyl alcohol) functionalized films with gallic acid and stabilized with metallic ions. Int J Biol Macromol 2023; 253:127087. [PMID: 37769774 DOI: 10.1016/j.ijbiomac.2023.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.
Collapse
Affiliation(s)
- Guilherme A M de Jesus
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Sharise B R Berton
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruno M Simões
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Rafael S Zola
- Department of Physics, Federal University of Technology - Paraná (UTFPR), 86812-460 Apucarana, Paraná, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil; Department of Chemistry & Biotechnology, University of Wisconsin-River Falls (UWRF), River Falls, WI 54022, USA.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), Maringá, PR 87020-900, Brazil.
| |
Collapse
|
14
|
Au-Yeung L, Tsai PA. Predicting Impact Outcomes and Maximum Spreading of Drop Impact on Heated Nanostructures Using Machine Learning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18327-18341. [PMID: 38055354 PMCID: PMC10734637 DOI: 10.1021/acs.langmuir.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
Accurate prediction of droplet behavior upon impact on a heated nanostructured surface is vital for various industrial applications. In this study, we leverage multiple data-driven machine learning (ML) techniques to model the impact outcome and droplet spreading, employing existing experimental data. Our approach incorporates a comprehensive range of critical control parameters, such as the impact velocity (V), surface temperature (Ts), nanopillars' packing fraction (ϕ), and surface roughness (r). We obtain optimal results when utilizing the artificial neural network classification (ANNC) to construct a phase diagram that encompasses all of the experimental impact behaviors. Additionally, we utilize the support vector regression (SVR) method to model the maximum spreading factor (βmax) as a function of the Weber number (We), defined as the ratio of droplet kinetic to surface energy, and Ts for each surface combination. Consistent with previous experimental observations, our results illustrate that nanostructures not only introduce distinct impact behaviors, such as central jetting, but also influence the boundaries among the deposition, rebound, and splashing regimes within the phase diagram. An increase in ϕ at a constant r promotes deposition and spreading events, while increasing r at a constant ϕ results in enhanced heat transfer to promote the Leidenfrost effect for the rebound regime and a greater disturbance of the liquid lamella to trigger splashing. The SVR prediction reveals the existence of a We-number threshold governed by the nanostructure parameters. Beyond this threshold, the maximum spreading factor (βmax) of a spreading droplet becomes independent of the surface temperature (Ts) as We increases, suggesting that fluid properties are likely the dominating factors influencing the spreading dynamics in the extreme We range.
Collapse
Affiliation(s)
- Lap Au-Yeung
- Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Peichun Amy Tsai
- Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
15
|
Albayrak GE, Bozdogan N, Tavman S, Kumcuoglu S. Evaluation of the quality features of electrospray-coated pineapple slices with pomegranate and grape seed oil-enriched emulsions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:3067-3081. [PMID: 37790924 PMCID: PMC10542432 DOI: 10.1007/s13197-023-05839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
The quality characteristics of pineapple slices coated with emulsions enriched with pomegranate seed oil (PSO) and grape seed oil (GSO) by electrospray coating (ESC) and dip-coating (DC) methods were investigated. The ESC method was evaluated as an alternative to conventional DC. Pineapple slices were stored in clear polystyrene cups for seven days at 5 °C and 80% RH. The weight loss (%), pH, titratable acidity, color, firmness, total antioxidant activity (TAA), total phenolic content (TPC), microbiological, and sensory qualities of fresh-cut pineapple slices were evaluated. Coated samples had significantly lower weight loss values than the non-coated samples after 7 days of storage. The usage of GSO-enriched emulsion with the ESC method was found to be more successful in preserving the titratable acidity. Although all the samples exhibited a significant decrease in yellowness (b*), the electrospray-coated pineapple slices had the highest. Incorporating GSO into the emulsions helped protect the tissue of the fresh-cut pineapples, regardless of the coating method used. The TPC and TAA values of the samples coated by the ESC method with emulsions enriched with PSO showed a lower decrease compared to other treatments. It was determined that the ESC method was more successful in preserving the sensory qualities of fresh-cut pineapples. These findings suggested that using ESC as a coating method with EO-enriched emulsions has positive effects on the quality features of fresh-cut pineapples. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05839-4.
Collapse
Affiliation(s)
- Gozde Ela Albayrak
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova İzmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova İzmir, Türkiye
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Bornova İzmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Bornova İzmir, Türkiye
| |
Collapse
|
16
|
Zhang S, Kuang Y, Xu P, Chen X, Bi Y, Peng D, Li J. Applications of Prolamin-Based Edible Coatings in Food Preservation: A Review. Molecules 2023; 28:7800. [PMID: 38067529 PMCID: PMC10708058 DOI: 10.3390/molecules28237800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Foods are susceptible to deterioration and sour due to external environmental influences during production and storage. Coating can form a layer of physical barrier on the surface of foods to achieve the purpose of food preservation. Because of its good barrier properties and biocompatibility, prolamin-based film has been valued as a new green and environment-friendly material in the application of food preservation. Single prolamin-based film has weaknesses of poor toughness and stability, and it is necessary to select appropriate modification methods to improve the performance of film according to the application requirements. The practical application effect of film is not only affected by the raw materials and the properties of the film itself, but also affected by the selection of preparation methods and processing techniques of film-forming liquid. In this review, the properties and selection of prolamins, the forming mechanisms and processes of prolamin-based coatings, the coating techniques, and the modifications of prolamin-based coatings were systematically introduced from the perspective of food coating applications. Moreover, the defects and deficiencies in the research and development of prolamin-based coatings were also reviewed in order to provide a reference for the follow-up research on the application of prolamin-based coatings in food preservation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Y.K.); (P.X.); (X.C.); (Y.B.); (D.P.)
| |
Collapse
|
17
|
Nunes C, Silva M, Farinha D, Sales H, Pontes R, Nunes J. Edible Coatings and Future Trends in Active Food Packaging-Fruits' and Traditional Sausages' Shelf Life Increasing. Foods 2023; 12:3308. [PMID: 37685240 PMCID: PMC10486622 DOI: 10.3390/foods12173308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The global food production industry faces environmental concerns exacerbated by substantial food waste. European countries are striving to reduce food waste towards a circular bioeconomy and sustainable development. To address environmental issues and reduce plastic waste, researchers are developing sustainable active packaging systems, including edible packaging made from industry residues. These innovations aim to increase food safety and quality, extend shelf life, and reduce plastic and food waste. Particularly important in the context of the growing demand for fresh and minimally processed fruits, edible coatings have emerged as a potential solution that offers numerous advantages in maintaining fruit quality. In addition to fruit, edible coatings have also been investigated for animal-based foods to meet the demand for high-quality, chemical-free food and extended shelf life. These products globally consumed can be susceptible to the growth of harmful microorganisms and spoilage. One of the main advantages of using edible coatings is their ability to preserve meat quality and freshness by reducing undesirable physicochemical changes, such as color, texture, and moisture loss. Furthermore, edible coatings also contribute to the development of a circular bioeconomy, promoting sustainability in the food industry. This paper reviews the antimicrobial edible coatings investigated in recent years in minimally processed fruits and traditional sausages. It also approaches bionanocomposites as a recently emerged technology with potential application in food quality and safety.
Collapse
Affiliation(s)
| | | | - Diana Farinha
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (C.N.); (M.S.); (H.S.); (R.P.); (J.N.)
| | | | | | | |
Collapse
|
18
|
Gómez-Galindo M, Truchado P, Allende A, Gil MI. Optimization of the Use of a Commercial Phage-Based Product as a Control Strategy of Listeria monocytogenes in the Fresh-Cut Industry. Foods 2023; 12:3171. [PMID: 37685104 PMCID: PMC10487045 DOI: 10.3390/foods12173171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A commercial phage biocontrol for reducing Listeria monocytogenes has been described as an effective tool for improving fresh produce safety. Critical challenges in the phage application must be overcome for the industrial application. The validation studies were performed in two processing lines of two industry collaborators in Spain and Denmark, using shredded iceberg lettuce as the ready-to-eat (RTE), high process volume product. The biocontrol treatment optimized in lab-scale trials for the application of PhageGuard ListexTM was confirmed in industrial settings by four tests, two in Spain and two in Denmark. Results showed that the method of application that included the device and the processing operation step was appropriate for the proper application. The proper dose of Phage Guard ListexTM was reached in shredded iceberg lettuce and the surface was adequately covered for the successful application of phages. There was no impact on the headspace gas composition (CO2 and O2 levels), nor on the color when untreated and treated samples were compared. The post-process treatment with PhageGuard ListexTM did not cause any detrimental impact on the sensory quality, including flavor, texture, browning, spoilage, and visual appearance over the shelf-life as the phage solution was applied as a fine, mist solution.
Collapse
Affiliation(s)
| | | | | | - Maria I. Gil
- Research Group on Microbiology and Quality of Fruits and Vegetables, Food Science & Technology Department, CEBAS-CSIC, 30100 Murcia, Spain; (M.G.-G.); (P.T.); (A.A.)
| |
Collapse
|
19
|
Matloob A, Ayub H, Mohsin M, Ambreen S, Khan FA, Oranab S, Rahim MA, Khalid W, Nayik GA, Ramniwas S, Ercisli S. A Review on Edible Coatings and Films: Advances, Composition, Production Methods, and Safety Concerns. ACS OMEGA 2023; 8:28932-28944. [PMID: 37599927 PMCID: PMC10433350 DOI: 10.1021/acsomega.3c03459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Food is a crucial source for the endurance of individuals, and quality concerns of consumers are being raised with the progression of time. Edible coatings and films (ECFs) are increasingly important in biobased packaging because they have a prime role in enhancing the organoleptic characteristics of the food products and minimizing the spread of microorganisms. These sustainable ingredients are crucial for a safer and healthier environment. These are created from proteins, polysaccharides, lipids, plasticizers, emulsifiers, and active substances. These are eco-friendly since made from innocuous material. Nanocomposite films are also beginning to be developed and support networks of biological polymers. Antioxidant, flavoring, and coloring compounds can be employed to improve the quality, wellbeing, and stability of packaged foods. Gelatin-enhanced fruit and vegetable-based ECFs compositions have the potential to produce biodegradable films. Root plants like cassava, potato, and sweet potato have been employed to create edible films and coatings. Achira flour, amylum, yam, ulluco, and water chestnut have all been considered as novel film-forming ingredients. The physical properties of biopolymers are influenced by the characteristics, biochemical confirmation, compatibility, relative humidity, temperature, water resistance, and application procedures of the components. ECFs must adhere to all regulations governing food safety and be generally recognized as safe (GRAS). This review covers the new advancements in ECFs regarding the commitment of novel components to the improvement of their properties. It is expected that ECFs can be further investigated to provide innovative components and strategies that are helpful for global financial issues and the environment.
Collapse
Affiliation(s)
- Anam Matloob
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hudda Ayub
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Mohsin
- National
Institute of Food Science & Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saadia Ambreen
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Faima Atta Khan
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sadaf Oranab
- Department
of Biochemistry, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Abdul Rahim
- Department
of Food Science, Faculty of Life Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- University
Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Government
Degree College Shopian Gagran 192303, Jammu and Kashmir, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
- HGF
Agro, Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
20
|
Hermann KM, Grünberger A, Patel AV. Polyvinyl alcohol coating releasing fungal blastospores improves kill effect of attract-and-kill beads. AMB Express 2023; 13:72. [PMID: 37432529 DOI: 10.1186/s13568-023-01575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Polyvinyl alcohol (PVA) is a biodegradable, water-soluble polymer with excellent film forming properties, commonly studied or used as tablet coating, food packaging or controlled release fertilizers. Attract-and-kill (AK) beads are sustainable, microbial alternatives to synthetic soil insecticides, whose onset of lethal effect largely depend on how fast the encapsulated entomopathogenic fungus forms virulent conidia. Therefore, the objective of this study was to develop a water-soluble coating accelerating the kill effect of AK beads by immediately releasing virulent Metarhizium brunneum CB15-III blastospores. We assessed three PVA types (PVA 4-88, 8-88, 10-98) which differed in their degree of hydrolysis or molecular weight for their ability to release viable blastospores from thin films after drying at 60-40 °C, and examined how polyethylene glycol and soy-lecithin impact the blastospore survival. Finally, we evaluated the effectiveness of coated AK beads in a bioassay against Tenebrio molitor larvae. The blastospore release rate quadrupled within the first 5 min with decreasing molecular weight and degree of hydrolysis, with PVA 4-88 releasing 79 ± 19% blastospores. Polyethylene glycol and soy-lecithin significantly increased the blastospore survival to 18-28% for all three PVA types. Coated beads exhibited a uniform, 22.4 ± 7.3 µm thin coating layer, with embedded blastospores, as confirmed by scanning electron microscopy. The blastospore coating increased the mortality rate of T. molitor larvae over uncoated AK beads, decreasing the median lethal time from 10 to 6 days. Consequently, the blastospore coating accelerated the kill effect of regular AK beads. These findings pave the way to enhanced pest control efficacy from coated systems such as beads or seeds.
Collapse
Affiliation(s)
- Katharina M Hermann
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Hochschule Bielefeld - University of Applied Sciences and Arts, Bielefeld, Germany
- Faculty of Technology, Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Faculty of Technology, Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Anant V Patel
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Hochschule Bielefeld - University of Applied Sciences and Arts, Bielefeld, Germany.
| |
Collapse
|
21
|
Mushtaq A, Mohd Wani S, Malik A, Gull A, Ramniwas S, Ahmad Nayik G, Ercisli S, Alina Marc R, Ullah R, Bari A. Recent insights into Nanoemulsions: Their preparation, properties and applications. Food Chem X 2023; 18:100684. [PMID: 37131847 PMCID: PMC10149285 DOI: 10.1016/j.fochx.2023.100684] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
The ever-increasing demand for healthy diet by consumers has prompted the research adopting cutting-edge methods that can maintain the quality of fruits and vegetables without the use of preservatives. Emulsion based coating approach has been regarded as a viable way to extend the shelf life of fresh produce. New opportunities are being created in a number of industries, (medicines, cosmetics and food) because of new advancements in the developing field of nanoemulsions. Nanoemulsion based methods are efficient for encapsulating the active ingredients including antioxidants, lipids, vitamins and antimicrobial agents owing to the small droplet size, stability and improved biological activity. This review provides an overview of recent developments in preserving the quality and safety of fresh-cut fruits & vegetables with nanoemulsion as a carrier of functional compounds (antimicrobial agents, antibrowning/antioxidants and texture enhancers). In addition, material and methods used for fabrication of the nanoemulsion is also described in this review. In addition, material and methods used for fabrication, of the nanoemulsion is also present.
Collapse
Affiliation(s)
- Abeeda Mushtaq
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, Srinagar, Jammu and Kashmir, India
- Corresponding authors.
| | - A.R. Malik
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
- Corresponding authors.
| | - Amir Gull
- Department of Food Science and Technology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, J&K, India
- Corresponding authors.
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Peng Z, Zhang Y, Choi CLR, Zhang P, Wu T, Chan YK. Continuous roller nanoimprinting: next generation lithography. NANOSCALE 2023. [PMID: 37376894 DOI: 10.1039/d2nr06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoimprint lithography (NIL) is a cost-effective and high-throughput technique for replicating nanoscale structures that does not require expensive light sources for advanced photolithography equipment. NIL overcomes the limitations of light diffraction or beam scattering in traditional photolithography and is suitable for replicating nanoscale structures with high resolution. Roller nanoimprint lithography (R-NIL) is the most common NIL technique benefiting large-scale, continuous, and efficient industrial production. In the past two decades, a range of R-NIL equipment has emerged to meet the industrial needs for applications including biomedical devices, semiconductors, flexible electronics, optical films, and interface functional materials. R-NIL equipment has a simple and compact design, which allows multiple units to be clustered together for increased productivity. These units include transmission control, resist coating, resist curing, and imprinting. This critical review summarizes the hitherto R-NIL processes, their typical technical problems, and corresponding solutions and gives guidelines for developing advanced R-NIL equipment.
Collapse
Affiliation(s)
- Zhiting Peng
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chin Long Ronald Choi
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Pengcheng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Cho B, Charoensri K, Doh H, Park HJ. Preparation of Colorimetric Sensor Array System to Evaluate the Effects of Alginate Edible Coating on Boiled-Dried Anchovy. Foods 2023; 12:foods12030638. [PMID: 36766165 PMCID: PMC9913907 DOI: 10.3390/foods12030638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
The colorimetric sensor array (CSA) is a simple, rapid, and cost-effective system widely used in food science to assess food quality by identifying undesirable volatile organic compounds. As a prospective alternative to conventional techniques such as total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance analysis, the CSA system has garnered significant attention. This study evaluated the quality of edible-coated food products using both conventional and CSA methods in order to demonstrate that the CSA approach is a feasible alternative to conventional methods. Boiled-dried anchovies (BDA) were selected as the model food product, and the sample's quality was assessed as a function of storage temperature and incubation period using conventional techniques and the CSA system. The surface of BDA was coated with an edible alginate film to form the surface-modified food product. The conventional methods revealed that an increase in storage temperature and incubation time accelerated the lipid oxidation process, with the uncoated BDA undergoing lipid oxidation at a faster rate than the coated BDA. Utilizing multivariate statistical analysis, the CSA approach essentially yielded the same results. In addition, the partial least square regression technique revealed a strong correlation between the CSA system and conventional methods, indicating that the CSA system may be a feasible alternative to existing methods for evaluating the quality of food products with surface modifications.
Collapse
Affiliation(s)
- Byungchan Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Korakot Charoensri
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| | - Hyun jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Correspondence: (H.D.); (H.j.P.); Tel.: +82-2-3277-3104 (H.D.); +82-2-3290-3450 (H.j.P.)
| |
Collapse
|
24
|
Selected Biopolymers' Processing and Their Applications: A Review. Polymers (Basel) 2023; 15:polym15030641. [PMID: 36771942 PMCID: PMC9919854 DOI: 10.3390/polym15030641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.
Collapse
|
25
|
Moller A, Leone C, Kataria J, Sidhu G, Rama EN, Kroft B, Thippareddi H, Singh M. Effect of a carrageenan/chitosan coating with allyl isothiocyanate on microbial spoilage and quality of chicken breast. Poult Sci 2022; 102:102442. [PMID: 36621098 PMCID: PMC9841265 DOI: 10.1016/j.psj.2022.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 3.7% of poultry meat is lost due to spoilage each year in the United States. The objective of this study was to determine the efficacy of a layered carrageenan/chitosan coating in combination with an application of two concentrations of allyl isothiocyanate (AITC) against lactic acid bacteria, aerobic bacteria, and yeast and mold during storage of chicken breast for 21 d. Additionally, the rancidity, color, and pH of the chicken breast as indicators of non-microbial quality were evaluated. The combination of carrageenan/chitosan coating with 20 and 200 ppm AITC reduced (P ≤ 0.05) yeast and mold populations by 3 log10 CFU/g at d 21 compared to the untreated control. The carrageenan/chitosan coating with 20 and 200 ppm AITC delayed aerobic spoilage by 3 and 12 d, respectively, compared to the untreated control; aerobic bacteria populations on the samples treated with 200 ppm AITC remained below the threshold for spoilage (∼6 log10 CFU/g) for the duration of storage. The pH of the 20 ppm and 200 ppm AITC-treated chicken breast was unaltered (P > 0.05) at the end of storage and was lower than the pH of the untreated and coating-only-treated control chicken breast at d 18 through the end of storage (P ≤ 0.05). The application of the coating alone did not (P > 0.05) affect L*, a*, and b* values of the chicken breast at the end of storage compared to the uncoated control. The carrageenan/chitosan coating with 20 and 200 ppm AITC prevented decreases in the lightness (L* values) of the chicken breast at the end of storage (P ≤ 0.05) compared to the control and coating-only-treated samples. The coating alone or with AITC did not (P > 0.05) impact the rancidity of the chicken breast over the 21-d storage period, thus showing potential to be used as antimicrobial packaging to increase shelf life of fresh poultry.
Collapse
Affiliation(s)
- Amanda Moller
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Cortney Leone
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Jasmine Kataria
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Gaganpreet Sidhu
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Estefania Novoa Rama
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | - Brenda Kroft
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | | - Manpreet Singh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Say M, Brett CJ, Edberg J, Roth SV, Söderberg LD, Engquist I, Berggren M. Scalable Paper Supercapacitors for Printed Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55850-55863. [PMID: 36508553 PMCID: PMC9782359 DOI: 10.1021/acsami.2c15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Printed paper-based electronics offers solutions to rising energy concerns by supplying flexible, environmentally friendly, low-cost infrastructure for portable and wearable electronics. Herein, we demonstrate a scalable spray-coating approach to fabricate tailored paper poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/cellulose nanofibril (CNF) electrodes for all-printed supercapacitors. Layer-by-layer spray deposition was used to achieve high-quality electrodes with optimized electrode thickness. The morphology of these electrodes was analyzed using advanced X-ray scattering methods, revealing that spray-coated electrodes have smaller agglomerations, resulting in a homogeneous film, ultimately suggesting a better electrode manufacturing method than drop-casting. The printed paper-based supercapacitors exhibit an areal capacitance of 9.1 mF/cm2, which provides enough energy to power electrochromic indicators. The measured equivalent series resistance (ESR) is as low as 0.3 Ω, due to improved contact and homogeneous electrodes. In addition, a demonstrator in the form of a self-powered wearable wristband is shown, where a large-area (90 cm2) supercapacitor is integrated with a flexible solar cell and charged by ambient indoor light. This demonstration shows the tremendous potential for sequential coating/printing methods in the scaling up of printed wearables and self-sustaining systems.
Collapse
Affiliation(s)
- Mehmet
Girayhan Say
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
| | - Calvin J. Brett
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Osquars
Backe 18, 100 44Stockholm, Sweden
- Deutsches
Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany
| | - Jesper Edberg
- RISE
Research Institutes of Sweden, Bio- and Organic Electronics, Bredgatan 35, SE-602 21Norrköping, Sweden
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607Hamburg, Germany
- Fibre
and
Polymer Technology, KTH Royal Institute
of Technology, Teknikringen
56-58, 100 44Stockholm, Sweden
| | - L. Daniel Söderberg
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, Teknikringen 56-58, 100 44Stockholm, Sweden
- Department
of Engineering Mechanics, KTH Royal Institute
of Technology, Osquars
Backe 18, 100 44Stockholm, Sweden
| | - Isak Engquist
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
- Wallenberg
Wood Science Center, ITN, Linköping
University, SE-601 74Norrköping, Sweden
| | - Magnus Berggren
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74Norrköping, Sweden
- Wallenberg
Wood Science Center, ITN, Linköping
University, SE-601 74Norrköping, Sweden
| |
Collapse
|
27
|
Yousuf S, Maktedar SS. Influence of quince seed mucilage-alginate composite hydrogel coatings on quality of fresh walnut kernels during refrigerated storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4801-4811. [PMID: 36276538 PMCID: PMC9579239 DOI: 10.1007/s13197-022-05566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/16/2023]
Abstract
The presence of high unsaturated fat content and polyphenols results in the short storage life of fresh walnut kernels. For prolonging their shelf life, edible coatings incorporated with antimicrobial compounds can be used as a tool. Quince seed mucilage was identified as a novel green biomaterial to be explored as a coating substance. Quince seed mucilage and sodium alginate were mixed in five different proportions of 100:0 (QAH1), 80:20 (QAH2), 60:40 (QAH3), 40:60 (QAH4), and 20:80 (QAH5) and the resultant composite hydrogels were studied for different physical properties. These composite hydrogels incorporated with vanillin were coated on fresh walnut kernels while uncoated samples served as control. Composite hydrogel coatings with a higher proportion of QSM retained a higher whiteness index, lightness (L*), DPPH radical scavenging capacity, total phenolic content, and overall acceptability values in walnut kernels during the entire storage period of 35 days. QAH1 showed the lowest weight loss percentage, lipid oxidation, and yeast and mold counts while the control sample showed the highest (P < 0.05) values. The results concluded that quince-based composite hydrogel coatings were effective in retention of quality and prevention of degradation of fresh walnut kernels during the storage. Graphical abstract
Collapse
Affiliation(s)
- Sabreena Yousuf
- Materials Chemistry and Engineering Research Laboratory, Department of Chemistry, National Institute of Technology Srinagar J&K, Srinagar, 190006 India
| | - Shrikant S. Maktedar
- Materials Chemistry and Engineering Research Laboratory, Department of Chemistry, National Institute of Technology Srinagar J&K, Srinagar, 190006 India
| |
Collapse
|
28
|
Innovations in the development and application of edible coatings for fresh and minimally processed Apple. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
30
|
Liu T, Li J, Tang Q, Qiu P, Gou D, Zhao J. Chitosan-Based Materials: An Overview of Potential Applications in Food Packaging. Foods 2022; 11:1490. [PMID: 35627060 PMCID: PMC9141390 DOI: 10.3390/foods11101490] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023] Open
Abstract
Chitosan is a multifunctional biopolymer that is widely used in the food and medical fields because of its good antibacterial, antioxidant, and enzyme inhibiting activity and its degradability. The biological activity of chitosan as a new food preservation material has gradually become a hot research topic. This paper reviews recent research on the bioactive mechanism of chitosan and introduces strategies for modifying and applying chitosan for food preservation and different preservation techniques to explore the potential application value of active chitosan-based food packaging. Finally, issues and perspectives on the role of chitosan in enhancing the freshness of food products are presented to provide a theoretical basis and scientific reference for subsequent research.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.L.); (J.L.); (Q.T.); (P.Q.); (D.G.)
| |
Collapse
|
31
|
Luciano CG, Caicedo Chacon WD, Valencia GA. Starch‐Based Coatings for Food Preservation: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias North, 225, 13635–900 Pirassununga SP Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
32
|
Murugan A, Banu AT, Lakshmi DS. Edible Coatings to Enhance Shelf life of Fruits and Vegetables -A Mini Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220303161527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, edible coatings or films have gained enormous importance in fruits and vegetables preservation. This review summarises edible coatings, the classification of coating materials, formulation procedures, and the benefits of active edible coating. Studies reported that edible coating or films from natural resources benefit the consumer as well as the environment. In general, edible coatings or films are a combination of polysaccharides, proteins, lipids, and plasticizers, used to enhance the functional properties and the general quality parameters of fruits and vegetables, such as texture, colour, acidity, total soluble solids, thus preventing their browning and oxidation. Casting (wet process) and extrusion (dry process) are two prominent methods used to fabricate edible thin films. General techniques for applying edible coatings are dipping, spraying, coating, panning, using a fluidized bed, and film wrapping. Active edible coatings or films are developed with herbal extracts to improve the functional properties, i.e., antioxidant and antimicrobial. Therefore, based on the literature review, future research exploration will focus on underutilized edible natural resources, along with some natural edible plasticizers used to improve the postharvest quality of fruits and vegetables without affecting their nutritional, organoleptic, and sensory attributes. The primary objective of the present review was to summarize the different types of edible coating with an infusion of herbal extracts and their application on fruits and vegetables.
Collapse
Affiliation(s)
- Aswini Murugan
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - A. Thahira Banu
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | | |
Collapse
|
33
|
Cloete L, Picot-Allain C, Ramasawmy B, Neetoo H, Ramful-Baboolall D, Emmambux MN. Drivers and Barriers for Commercial Uptake of Edible Coatings for Fresh Fruits and Vegetables Industry- A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Liza Cloete
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Carene Picot-Allain
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Agricultural Production and Systems Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Deena Ramful-Baboolall
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
34
|
Biopolymers from Agriculture Waste and By-Products. Biopolymers 2022. [DOI: 10.1007/978-3-030-98392-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Hashim AF, Al-Amrousi EF, Abd-Elsalam KA. Nanolipid-based edible films to improve food shelf life. BIO-BASED NANOEMULSIONS FOR AGRI-FOOD APPLICATIONS 2022:399-412. [DOI: 10.1016/b978-0-323-89846-1.00009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
36
|
Polysaccharide-Based Active Coatings Incorporated with Bioactive Compounds for Reducing Postharvest Losses of Fresh Fruits. COATINGS 2021. [DOI: 10.3390/coatings12010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review reports recently published research related to the application of polysaccharide-based biodegradable and edible coatings (BECs) fortified with bioactive compounds obtained from plant essential oils (EOs) and phenolic compounds of plant extracts. Combinations of polysaccharides such as starches, pectin, alginate, cellulose derivatives, and chitosan with active compounds obtained from clove, lemon, cinnamon, lavender, oregano, and peppermint have been documented as potential candidates for biologically active coating materials for retardation of quality changes in fresh fruits. Additionally, polysaccharide-based active coatings supplemented with plant extracts such as cashew leaves, pomegranate peel, red roselle, apple fiber, and green tea extracts rich in phenolic compounds and their derivatives have been reported to be excellent substituents to replace chemically formulated wax coatings. Moreover, EOs and plant polyphenolics including alcohols, aldehydes, ketones phenols, organic acids, terpenes, and esters contain hydroxyl functional groups that contribute bioactivity to BECs against oxidation and reduction of microbial load in fresh fruits. Therefore, BECs enriched with active compounds from EOs and plant extracts minimize physiological and microbial deterioration by reducing moisture loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains, mold, or yeast rots, respectively. As a result, shelf life of fresh fruits can be extended by employing active polysaccharide coatings supplemented with EOs and plant extracts prior to postharvest storage.
Collapse
|
37
|
Abstract
Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.
Collapse
|
38
|
Kowalska H, Marzec A, Domian E, Kowalska J, Ciurzyńska A, Galus S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr Rev Food Sci Food Saf 2021; 20:5641-5674. [PMID: 34698434 DOI: 10.1111/1541-4337.12837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
Edible coatings (ECs) are thin layers applied on food to protect it and improve quality. They are made from bio-based materials such as polysaccharides, proteins, lipids, or their composites. The incorporation of functional agents, such as bioactive compounds, vitamins, or antimicrobials into the EC, has been investigated to control the shelf life of many food products from horticulture ones to processed food. Osmotic dehydration (OD) as a mild technology may also positively impact the availability of innovative fruit snacks and consequently influence consumer health. Combination of the EC with the OD aims to remove water through the semipermeable membrane while limiting the transfer of solutes from the dehydrated tissue and in the opposite direction from the osmotic solution to the food. The development trend of the snack market is expanding, especially with health-promoting properties. Consumers pay increasing attention to quality of food and its beneficial effects on health. This review attempts to provide the advancement of recent studies on the application of the EC before the OD of different fresh or fresh-cut fruit and vegetables. A fundamental theory related to the methodology of creating the EC, their composition, and the influence on the physicochemical properties of products that are osmo-dehydrated to a medium water content or additionally dried to a low water content have been described. Efforts have been exerted to introduce hydrocolloids used in the production of the EC, including new sources of biopolymers such as agricultural waste and by-products. The perspectives of using ECs in the technology of producing pro-healthy snacks are emphasized.
Collapse
Affiliation(s)
- Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agata Marzec
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Ewa Domian
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jolanta Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Agnieszka Ciurzyńska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Sabina Galus
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
39
|
de Oliveira Filho JG, Miranda M, Ferreira MD, Plotto A. Nanoemulsions as Edible Coatings: A Potential Strategy for Fresh Fruits and Vegetables Preservation. Foods 2021; 10:foods10102438. [PMID: 34681488 PMCID: PMC8535803 DOI: 10.3390/foods10102438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.
Collapse
Affiliation(s)
- Josemar Gonçalves de Oliveira Filho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcela Miranda
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara—Jaú Km 1, Araraquara 14800-903, SP, Brazil; (J.G.d.O.F.); (M.M.)
| | - Marcos David Ferreira
- Embrapa Instrumentação, Rua XV de Novembro, 1452, São Carlos 13560-970, SP, Brazil
- Correspondence: (M.D.F.); (A.P.)
| | - Anne Plotto
- ARS Horticultural Research Laboratory, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL 34945, USA
- Correspondence: (M.D.F.); (A.P.)
| |
Collapse
|
40
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
41
|
Influence of Two Different Coating Application Methods on the Maintenance of the Nutritional Quality of Fresh-Cut Melon during Storage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed at evaluating the effects of two coating application methods, spraying and dipping, on the quality of fresh-cut melons. An alginate-based coating containing both ascorbic and citric acid was applied at two concentrations (5% and 10%) with both methods on fresh-cut melon. The nutritional quality of the products was investigated during 11 days of storage at 10 °C. The suitability and adaptability of the applied coatings on the fruit were evaluated based on rheological and microstructural properties. Moisture, carotenoids, total polyphenols and ascorbic acid content were analyzed on melon samples during storage. Results showed that the coating solution applied by the dipping method and at the highest concentration (10%), allowed to better maintain some quality characteristics of fresh-cut melon, thanks also to the better coating homogeneity and higher thickness observed through microstructural analysis.
Collapse
|
42
|
Pei Y, Hinchliffe BA, Minelli C. Measurement of the Size Distribution of Multimodal Colloidal Systems by Laser Diffraction. ACS OMEGA 2021; 6:14049-14058. [PMID: 34124428 PMCID: PMC8190786 DOI: 10.1021/acsomega.1c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 06/01/2023]
Abstract
Laser diffraction (LD) is a well-established tool for the measurement of particle size distribution. Recently, its demand and use for the measurement of complex biological systems have increased. Among the challenges that these types of samples present, there is the presence of multiple particle populations whose modal size may span across several orders of magnitude. In this study, we assessed the accuracy of LD for the measurement of the modal diameter of both single and mixed populations of polystyrene particles with diameters ranging from 60 nm to 40 μm. We discuss the application of different available algorithms to the analysis of the data and their impact on the measurement results. Independent methods were applied to guide the selection of the algorithms and validate the measured size distributions. We found that the modal diameters of the particle size distribution measured by LD for the mixed suspension was accurate within 2 % for particles larger than 1 μm and generally within 25 % for the particles tested. Method repeatability was found to be robust, with deviations below 1%. The method was also found to be useful for estimating the relative concentration of the particle populations in the mixed samples. This study provides confidence in the use of LD for the measurement of complex multimodal colloidal samples.
Collapse
|
43
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
44
|
Lisitsyn A, Semenova A, Nasonova V, Polishchuk E, Revutskaya N, Kozyrev I, Kotenkova E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers (Basel) 2021; 13:1592. [PMID: 34063360 PMCID: PMC8156411 DOI: 10.3390/polym13101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Natural biopolymers are an interesting resource for edible films production, as they are environmentally friendly packaging materials. The possibilities of the application of main animal proteins and natural polysaccharides are considered in the review, including the sources, structure, and limitations of usage. The main ways for overcoming the limitations caused by the physico-chemical properties of biopolymers are also discussed, including composites approaches, plasticizers, and the addition of crosslinking agents. Approaches for the production of biopolymer-based films and coatings are classified according to wet and dried processes and considered depending on biopolymer types. The methods for mechanical, physico-chemical, hydration, and uniformity estimation of edible films are reviewed.
Collapse
Affiliation(s)
- Andrey Lisitsyn
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Anastasia Semenova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Viktoria Nasonova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| | - Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia; (A.L.); (A.S.); (V.N.); (N.R.); (I.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of RAS, Talalikhina st., 26, 109316 Moscow, Russia;
| |
Collapse
|
45
|
Trajkovska Petkoska A, Daniloski D, D'Cunha NM, Naumovski N, Broach AT. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res Int 2021; 140:109981. [PMID: 33648216 DOI: 10.1016/j.foodres.2020.109981] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
Novel food packaging techniques are an important area of research to promote food quality and safety. There is a trend towards environmentally sustainable and edible forms of packaging. Edible packaging typically uses sustainable, biodegradable material that is applied as a consumable wrapping or coating around the food, which generates no waste. Numerous studies have recently investigated the importance of edible materials as an added value to packaged foods. Nanotechnology has emerged as a promising method to provide use of bioactives, antimicrobials, vitamins, antioxidants and nutrients to potentially increase the functionality of edible packaging. It can act as edible dispensers of food ingredients as encapsulants, nanofibers, nanoparticles and nanoemulsions. In this way, edible packaging serves as an active form of packaging. It plays an important role in packaged foods by desirably interacting with the food and providing technological functions such as releasing scavenging compounds (antimicrobials and antioxidants), and removing harmful gasses such as oxygen and water vapour which all can decrease products quality and shelf life. Active packaging can also contribute to maintaining the nutritive profile of packaged foods. In this review, authors present the latest information on new technological advances in edible food packaging, their novel applications and provide examples of recent studies where edible packaging possesses also an active role.
Collapse
Affiliation(s)
- Anka Trajkovska Petkoska
- Faculty of Technology and Technical Sciences, St. Clement of Ohrid University of Bitola, Dimitar Vlahov, 1400 Veles, Republic of North Macedonia.
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities and College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia; Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland.
| | - Nathan M D'Cunha
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Nenad Naumovski
- Faculty of Health, School of Rehabilitation and Exercise Sciences, Department of Food Science and Human Nutrition, University of Canberra, Bruce, ACT 2617, Australia.
| | - Anita T Broach
- CSI: Create.Solve.Innovate. LLC, 2020 Kraft Dr., Suite 3007, Blacksburg, VA 24060, USA.
| |
Collapse
|
46
|
Yu D, Yu Z, Zhao W, Regenstein JM, Xia W. Advances in the application of chitosan as a sustainable bioactive material in food preservation. Crit Rev Food Sci Nutr 2021; 62:3782-3797. [PMID: 33401936 DOI: 10.1080/10408398.2020.1869920] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chitosan is obtained from chitin and considered to be one of the most abundant natural polysaccharides. Due to its functional activity, chitosan has received intense and growing interest in terms of applications for food preservation over the last half-century. Compared with earlier studies, recent research has increasingly focused on the exploration of preservation mechanism as well as the targeted inhibition with higher efficiency, which is fueled by availability of more active composite ingredients and integration of more technologies, and gradually perceived as "chitosan-based biofilm preservation." In this Review, we comprehensively summarize the potential antimicrobial mechanisms or hypotheses of chitosan and its widely compounded ingredients, as well as their impacts on endogenous enzymes, oxidation and/or gas barriers. The strategies used for enhancing active function of the film-forming system and subsequent film fabrication processes including direct coating, bioactive packaging film and layer-by-layer assembly are introduced. Finally, future development of chitosan-based bioactive film is also proposed to broaden its application boundaries. Generally, our goal is that this Review is easily accessible and instructive for whose new to the field, as well as hope to advance to the filed forward.
Collapse
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijuan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyu Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
47
|
Coating and Film-Forming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Tavassoli-Kafrani E, Gamage MV, Dumée LF, Kong L, Zhao S. Edible films and coatings for shelf life extension of mango: a review. Crit Rev Food Sci Nutr 2020; 62:2432-2459. [PMID: 33280405 DOI: 10.1080/10408398.2020.1853038] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Edible films and coatings are eco-friendly promising materials for preserving the quality and extending the shelf life of fresh and minimally-processed fruits. They can form protective layers around fruits, regulate their respiration rates, and protect them from loss of water, tissue softening, browning, and microbial contamination. Edible films and coatings have many advantages over other post-harvest treatments. They can add commercial value to fruits by enhancing their appearance, and act as carriers of functional ingredients, such as antioxidants, antimicrobial agents and nutraceuticals. Mango, a highly perishable tropical fruit, has a short post-harvest life, which limits transport to distant markets. Application of edible films and coatings on mango fruits is an effective method to preserve their quality and safety. This paper provides an overview of desirable properties for films and coatings, and recent development in different edible coatings for both fresh and minimally-processed mango. The most popular edible coating materials, such as chitosan, waxes, starch, gums, and cellulose used for mango are reviewed. The commercialization of coating formulations and equipment used for application of coatings are discussed. The environmental impacts, safety aspects, and the challenges encountered are outlined. The opportunities to use other coating materials, such as aloe-vera gel, microbial polysaccharides, and photosynthetic microorganisms are also examined.
Collapse
Affiliation(s)
- Elham Tavassoli-Kafrani
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | | | - Ludovic F Dumée
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Lingxue Kong
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| | - Shuaifei Zhao
- Geelong, Institute for Frontier Materials, Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Experimental and Mathematical Tools to Predict Droplet Size and Velocity Distribution for a Two-Fluid Nozzle. FLUIDS 2020. [DOI: 10.3390/fluids5040231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form of the conservation equations to create a system of equations by solving which, the far-field secondary atomization can be analyzed through predicting droplet size and velocity distributions of the involved phases. To validate the model predictions, experiments are conducted at ambient conditions using water, methanol, and acetone as model fluids with varying formulation properties, such as density, viscosity, and surface tension. Droplet size distribution and velocity are measured with laser diffraction and a high-speed camera, respectively. Finally, an attempt is made to utilize non-scaled parameters to characterize the atomization process, useful for extrapolating the sensitivity analysis to other scales. The merit of this model lies in its simplicity for use in process control and optimization.
Collapse
|
50
|
Lara G, Yakoubi S, Villacorta CM, Uemura K, Kobayashi I, Takahashi C, Nakajima M, Neves MA. Spray technology applications of xanthan gum-based edible coatings for fresh-cut lotus root (Nelumbo nucifera). Food Res Int 2020; 137:109723. [PMID: 33233292 DOI: 10.1016/j.foodres.2020.109723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
In this study, the effect of spraying method as an application technique for xanthan gum-based edible coatings was investigated, based on its barrier and microbial properties on fresh-cut lotus root. Xanthan gum solutions (0.1%, 0.3%, and 0.5%) were prepared and incorporated with 2% (w/w) citric acid as an anti-browning agent and 1% (w/w) glycerol as plasticizer. The coatings were then sprayed using a pilot spray system to 5 mm-thick slices of fresh-cut lotus root for 20 s, packed in polyethylene bags, stored for 16 d at 5 °C and analyzed for color, pH, morphology and microbial counts. It was found that spray-coated fresh-cut lotus root samples had significant reduction in the total color changes as compared to non-coated samples. The experimental results suggested that the spray coating treatments were effective in decreasing the enzymatic browning of fresh-cut lotus root during storage which could potentially increase its shelf-life in the market. In addition, we have also found that the xanthan gum-based spray coated treatments were also effective against inhibiting the growth of Bacillus subtilis during 24 h of incubation which were indicated by the lower microbial counts recorded as compared to non-coated fresh-cut lotus root samples. In this part of the work, the author highlighted the spray coating technique of xanthan gum-based edible coatings as a promising strategy in improving the storage stability of fresh-cut lotus root during post-harvest storage. Overall, the application of edible coatings is a promising strategy in extending the shelf life of fresh-cut lotus root. In the future, the author aims to widen the scope of the application of these coatings to other agricultural products which are prone to degradation during storage in the market.
Collapse
Affiliation(s)
- Grace Lara
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Sana Yakoubi
- University Tunis El Manar, Faculty of Science of Tunis, Department of Biology, 2092 Tunis, Tunisia
| | - Cherry Mae Villacorta
- College of Agrobiological Resources Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kunihiko Uemura
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Isao Kobayashi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Chieko Takahashi
- Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Marcos A Neves
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|