1
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
2
|
Mathew R, Wunderlich J, Thivierge K, Cwiklinski K, Dumont C, Tilley L, Rohrbach P, Dalton JP. Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci Rep 2021; 11:2854. [PMID: 33536500 PMCID: PMC7858622 DOI: 10.1038/s41598-021-82499-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
The Plasmodium falciparum M1 alanyl aminopeptidase and M17 leucyl aminopeptidase, PfM1AAP and PfM17LAP, are potential targets for novel anti-malarial drug development. Inhibitors of these aminopeptidases have been shown to kill malaria parasites in culture and reduce parasite growth in murine models. The two enzymes may function in the terminal stages of haemoglobin digestion, providing free amino acids for protein synthesis by the rapidly growing intra-erythrocytic parasites. Here we have performed a comparative cellular and biochemical characterisation of the two enzymes. Cell fractionation and immunolocalisation studies reveal that both enzymes are associated with the soluble cytosolic fraction of the parasite, with no evidence that they are present within other compartments, such as the digestive vacuole (DV). Enzyme kinetic studies show that the optimal pH of both enzymes is in the neutral range (pH 7.0-8.0), although PfM1AAP also possesses some activity (< 20%) at the lower pH range of 5.0-5.5. The data supports the proposal that PfM1AAP and PfM17LAP function in the cytoplasm of the parasite, likely in the degradation of haemoglobin-derived peptides generated in the DV and transported to the cytosol.
Collapse
Affiliation(s)
- Rency Mathew
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 Canada ,grid.4777.30000 0004 0374 7521School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland UK
| | - Juliane Wunderlich
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 Canada ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Notkestraße 85, 22607 Hamburg, Germany
| | - Karine Thivierge
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 Canada ,grid.434819.30000 0000 8929 2775Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC Canada
| | - Krystyna Cwiklinski
- grid.4777.30000 0004 0374 7521School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland UK ,grid.6142.10000 0004 0488 0789Centre for One Health & Ryan Institute, School of Natural Sciences, NUI Galway, Galway, Republic of Ireland
| | - Claire Dumont
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC Australia
| | - Leann Tilley
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, VIC Australia
| | - Petra Rohrbach
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 Canada
| | - John P. Dalton
- grid.14709.3b0000 0004 1936 8649Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3V9 Canada ,grid.4777.30000 0004 0374 7521School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland UK ,grid.6142.10000 0004 0488 0789Centre for One Health & Ryan Institute, School of Natural Sciences, NUI Galway, Galway, Republic of Ireland
| |
Collapse
|
3
|
New insight into the mechanism of accumulation and intraerythrocytic compartmentation of albitiazolium, a new type of antimalarial. Antimicrob Agents Chemother 2014; 58:5519-27. [PMID: 25001307 DOI: 10.1128/aac.00040-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bis-thiazolium salts constitute a new class of antihematozoan drugs that inhibit parasite phosphatidylcholine biosynthesis. They specifically accumulate in Plasmodium- and Babesia-infected red blood cells (IRBC). Here, we provide new insight into the choline analogue albitiazolium, which is currently being clinically tested against severe malaria. Concentration-dependent accumulation in P. falciparum-infected erythrocytes reached steady state after 90 to 120 min and was massive throughout the blood cycle, with cellular accumulation ratios of up to 1,000. This could not occur through a lysosomotropic effect, and the extent did not depend on the food vacuole pH, which was the case for the weak base chloroquine. Analysis of albitiazolium accumulation in P. falciparum IRBC revealed a high-affinity component that was restricted to mature stages and suppressed by pepstatin A treatment, and thus likely related to drug accumulation in the parasite food vacuole. Albitiazolium also accumulated in a second high-capacity component present throughout the blood cycle that was likely not related to the food vacuole and also observed with Babesia divergens-infected erythrocytes. Accumulation was strictly glucose dependent, drastically inhibited by H+/K+ and Na+ ionophores upon collapse of ionic gradients, and appeared to be energized by the proton-motive force across the erythrocyte plasma membrane, indicating the importance of transport steps for this permanently charged new type of antimalarial agent. This specific, massive, and irreversible accumulation allows albitiazolium to restrict its toxicity to hematozoa-infected erythrocytes. The intraparasitic compartmentation of albitiazolium corroborates a dual mechanism of action, which could make this new type of antimalarial agent resistant to parasite resistance.
Collapse
|
4
|
Mesplet M, Echaide I, Dominguez M, Mosqueda JJ, Suarez CE, Schnittger L, Florin-Christensen M. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bovis. Parasit Vectors 2010; 3:113. [PMID: 21092313 PMCID: PMC3003645 DOI: 10.1186/1756-3305-3-113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/23/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cysteine proteases have been shown to be highly relevant for Apicomplexan parasites. In the case of Babesia bovis, a tick-transmitted hemoparasite of cattle, inhibitors of these enzymes were shown to hamper intraerythrocytic replication of the parasite, underscoring their importance for survival. RESULTS Four papain-like cysteine proteases were found to be encoded by the B. bovis genome using the MEROPS database. One of them, the ortholog of Plasmodium falciparum falcipain-2, here named bovipain-2, was further characterized. Bovipain-2 is encoded in B. bovis chromosome 4 by an ORF of 1.3 kb, has a predicted molecular weight of 42 kDa, and is hydrophilic with the exception of a transmembrane region. It has orthologs in several other apicomplexans, and its predicted amino acid sequence shows a high degree of conservation among several B. bovis isolates from North and South America. Synteny studies demonstrated that the bovipain-2 gene has expanded in the genomes of two related piroplasmids, Theileria parva and T. annulata, into families of 6 and 7 clustered genes respectively. The bovipain-2 gene is transcribed in in vitro cultured intra-erythrocyte forms of a virulent and an attenuated B. bovis strain from Argentina, and has no introns, as shown by RT-PCR followed by sequencing. Antibodies against a recombinant form of bovipain-2 recognized two parasite protein bands of 34 and 26 kDa, which coincide with the predicted sizes of the pro-peptidase and mature peptidase, respectively. Immunofluorescence studies showed an intracellular localization of bovipain-2 in the middle-rear region of in vitro cultured merozoites, as well as diffused in the cytoplasm of infected erythrocytes. Anti-bovipain-2 antibodies also reacted with B. bigemina-infected erythrocytes giving a similar pattern, which suggests cross-reactivity among these species. Antibodies in sera of two out of six B. bovis-experimentally infected bovines tested, reacted specifically with recombinant bovipain-2 in immunoblots, thus demonstrating expression and immunogenicity during bovine-infecting stages. CONCLUSIONS Overall, we present the characterization of bovipain-2 and demonstrate its in vitro and in vivo expression in virulent and attenuated strains. Given the involvement of apicomplexan cysteine proteases in essential parasite functions, bovipain-2 constitutes a new vaccine candidate and potential drug target for bovine babesiosis.
Collapse
Affiliation(s)
- María Mesplet
- Instituto de Patobiología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, INTA-Castelar, Argentina.
| | | | | | | | | | | | | |
Collapse
|
5
|
Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 2008; 105:2463-8. [PMID: 18263733 DOI: 10.1073/pnas.0711067105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the bloodstage of malaria infection, the parasite internalizes and degrades massive amounts of hemoglobin from the host red blood cell. Using serial thin-section electron microscopy and three-dimensional reconstruction, we demonstrate four independent, but partially overlapping, hemoglobin-uptake processes distinguishable temporally, morphologically, and pharmacologically. Early ring-stage parasites undergo a profound morphological transformation in which they fold, like a cup, onto themselves and in so doing take a large first gulp of host cell cytoplasm. This event, which we term the "Big Gulp," appears to be independent of actin polymerization and marks the first step in biogenesis of the parasite's lysosomal compartment-the food vacuole. A second, previously identified uptake process, uses the cytostome, a well characterized and morphologically distinct structure at the surface of the parasite. This process is more akin to classical endocytosis, giving rise to small (<0.004 fl) vesicles that are marked by the early endosomal regulatory protein Rab5a. A third process, also arising from cytostomes, creates long thin tubes previously termed cytostomal tubes in an actin-dependent manner. The fourth pathway, which we term phagotrophy, is similar to the Big Gulp in that it more closely resembles phagocytosis, except that phagotrophy does not require actin polymerization. Each of these four processes has aspects that are unique to Plasmodium, thus opening avenues to antimalarial therapy.
Collapse
|
6
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Dalal S, Klemba M. Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J Biol Chem 2007; 282:35978-87. [PMID: 17895246 DOI: 10.1074/jbc.m703643200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the erythrocytic stage of its life cycle, the human malaria parasite Plasmodium falciparum catabolizes large quantities of host-cell hemoglobin in an acidic organelle, the food vacuole. A current model for the catabolism of globin-derived oligopeptides invokes peptide transport out of the food vacuole followed by hydrolysis to amino acids by cytosolic aminopeptidases. To test this model, we have examined the roles of four parasite aminopeptidases during the erythrocytic cycle. Localization of tagged aminopeptidases, coupled with biochemical analysis of enriched food vacuoles, revealed the presence of amino acid-generating pathways in the food vacuole as well as the cytosol. Based on the localization data and in vitro assays, we propose a specific role for one of the plasmodial enzymes, aminopeptidase P, in the catabolism of proline-containing peptides in both the vacuole and the cytosol. We establish an apparent requirement for three of the four aminopeptidases (including the two food vacuole enzymes) for efficient parasite proliferation. To gain insight into the impact of aminopeptidase inhibition on parasite development, we examined the effect of the presence of amino acids in the culture medium of the parasite on the toxicity of the aminopeptidase inhibitor bestatin. The ability of bestatin to block parasite replication was only slightly affected when 19 of 20 amino acids were withdrawn from the medium, indicating that exogenous amino acids cannot compensate for the loss of aminopeptidase activity. Together, these results support the development of aminopeptidase inhibitors as novel chemotherapeutics directed against malaria.
Collapse
Affiliation(s)
- Seema Dalal
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
8
|
Richier E, Biagini GA, Wein S, Boudou F, Bray PG, Ward SA, Precigout E, Calas M, Dubremetz JF, Vial HJ. Potent antihematozoan activity of novel bisthiazolium drug T16: evidence for inhibition of phosphatidylcholine metabolism in erythrocytes infected with Babesia and Plasmodium spp. Antimicrob Agents Chemother 2006; 50:3381-8. [PMID: 17005821 PMCID: PMC1610066 DOI: 10.1128/aac.00443-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A leading bisthiazolium drug, T16, designed to mimic choline, was shown to exert potent antibabesial activity, with 50% inhibitory concentrations of 28 and 7 nM against Babesia divergens and B. canis, respectively. T16 accumulated inside Babesia-infected erythrocytes (cellular accumulation ratio, >60) by a saturable process with an apparent K(m) of 0.65 microM. Subcellular fractionation of Babesia parasites revealed the accumulation of T16 into a low-density fraction, while in malaria-infected erythrocytes a significant fraction of the drug was associated with heme malaria pigment. T16 exerts an early and specific inhibition of the de novo biosynthesis of phosphatidylcholine both in B. divergens- and Plasmodium falciparum-infected erythrocytes. Choline accumulation into isolated Babesia parasites was highly sensitive to inhibition by T16. These data are consistent with the hypothesis that bisthiazolium drugs target the de novo phosphatidylcholine biosynthesis of intraerythrocytic hematozoan parasites. In malaria parasites, which generate ferriprotoporphyrin IX during hemoglobin digestion, T16 binding to heme may enhance the accumulation and activity of the drug. The selectivity of accumulation and potent activity of this class of drug into parasite-infected erythrocytes offers unique advantages over more traditional antihematozoan drugs.
Collapse
Affiliation(s)
- Eric Richier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR 5539, CNRS University Montpellier II, F-34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Babesiosis is caused by a haemotropic protozoal parasite of the genus Babesia, member of the phylum Apicomplexa and transmitted by the bite of an infected tick. There are many Babesia species affecting livestock, dogs, horses and rodents which are of economic significance. Infections can occur without producing symptoms, but babesiosis may also be severe and sometimes fatal caused by the intraerythrocytic parasite development. The disease can cause fever, fatigue and haemolytic anemia lasting from several days to several months. There are a number of effective babesiacides, but imidocarb dipropionate (which consistently clears the parasitaemia; often the only available drug on the market) and diminazene aceturate are the most widely used. Some Babesia spp. can infect humans, particularly Babesia microti and Babesia divergens, and human babesiosis is a significant emerging tick-borne zoonotic disease. Clinical manifestations differ markedly between European and North American diseases. In clinical cases, a combination of clindamycin and quinine is administered as the standard treatment, but also administration of atovaquone-azithromycin is successful. Supportive therapy such as intravenous fluids and blood transfusions are employed when necessary. More specific fast-acting new treatments for babesiosis have now to be developed. This should be facilitated by the knowledge of the Babesia spp. genome and increased interest for this malaria-like parasite.
Collapse
Affiliation(s)
- Henri J Vial
- Dynamique Moléculaire des Interactions Membranaires, UMR 5539 CNRS/Université Montpellier II, Case 107, Place Eugène bataillon, F-34095 Montpellier Cedex 5, France.
| | | |
Collapse
|
10
|
Fitch CD. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci 2004; 74:1957-72. [PMID: 14967191 DOI: 10.1016/j.lfs.2003.10.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 10/04/2003] [Indexed: 11/23/2022]
Abstract
Two subclasses of quinoline antimalarial drugs are used clinically. Both act on the endolysosomal system of malaria parasites, but in different ways. Treatment with 4-aminoquinoline drugs, such as chloroquine, causes morphologic changes and hemoglobin accumulation in endocytic vesicles. Treatment with quinoline-4-methanol drugs, such as quinine and mefloquine, also causes morphologic changes, but does not cause hemoglobin accumulation. In addition, chloroquine causes undimerized ferriprotoporphyrin IX (ferric heme) to accumulate whereas quinine and mefloquine do not. On the contrary, treatment with quinine or mefloquine prevents and reverses chloroquine-induced accumulation of hemoglobin and undimerized ferriprotoporphyrin IX. This difference is of particular interest since there is convincing evidence that undimerized ferriprotoporphyrin IX in malaria parasites would interact with and serve as a target for chloroquine. According to the ferriprotoporphyrin IX interaction hypothesis, chloroquine would bind to undimerized ferriprotoporphyrin IX, delay its detoxification, cause it to accumulate, and allow it to exert its intrinsic biological toxicities. The ferriprotoporphyrin IX interaction hypothesis appears to explain the antimalarial action of chloroquine, but a drug target in addition to ferriprotoporphyrin IX is suggested by the antimalarial actions of quinine and mefloquine. This article summarizes current knowledge of the role of ferriprotoporphyrin IX in the antimalarial actions of quinoline drugs and evaluates the currently available evidence in support of phospholipids as a second target for quinine, mefloquine and, possibly, the chloroquine-ferriprotoporphyrin IX complex.
Collapse
Affiliation(s)
- Coy D Fitch
- Department of Internal Medicine, School of Medicine, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| |
Collapse
|
11
|
Guimarães AM, Lima JD, Ribeiro MFB. Ultrastructure of Babesia equi trophozoites isolated in Minas Gerais, Brazil. PESQUISA VETERINARIA BRASILEIRA 2003. [DOI: 10.1590/s0100-736x2003000300002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transmission electron microscope study was carried out on Babesia equi obtained from a splenectomized horse, from the municipality of Santa Luzia, Minas Gerais, Brazil. The isolate was inoculated into two splenectomized foals (1.05 x 10(10) parasitized erythrocytes by B. equi). Trophozoites have a single membrane in direct contact with the cytoplasm of the red blood cells, a prominent nucleus, well-developed rough and smooth endoplasmic reticulum, numerous free ribosomes and small food vacuoles. B. equi trophozoites have a cytostome and a long tubular feeding structure in direct contact with the blood plasma.
Collapse
|
12
|
Fitch CD, Cai GZ, Chen YF, Ryerse JS. Relationship of chloroquine-induced redistribution of a neutral aminopeptidase to hemoglobin accumulation in malaria parasites. Arch Biochem Biophys 2003; 410:296-306. [PMID: 12573290 DOI: 10.1016/s0003-9861(02)00688-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To study the relationship between neutral aminopeptidase activity and hemoglobin accumulation in malaria parasites, we treated mice infected with Plasmodium berghei NYU-2 with chloroquine intraperitoneally in doses ranging from 0.3 to 3 micromol per 25 g mouse. Preparations of infected erythrocytes (normalized to represent 1000 parasites per 1000 erythrocytes) hydrolyzed 1200 nmol of leucine-p-nitroanilide per minute per milliliter of packed erythrocytes, which was 10x more than that of uninfected preparations. The activity in infected preparations was distinguished by resistance to ferriprotoporphyrin IX and puromycin and susceptibility to inhibition by ethanol and Tris. Chloroquine treatment caused the activity in unwashed membrane ghosts of infected preparations to decrease by 50% despite an increase in total activity. Concomitantly, hemoglobin in washed membrane ghosts increased. Electron microscopy revealed that the hemoglobin was retained in endocytic vesicles. Chloroquine-induced redistribution of a neutral aminopeptidase may be the cause of hemoglobin accumulation in endocytic vesicles of malaria parasites.
Collapse
Affiliation(s)
- Coy D Fitch
- Department of Internal Medicine, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
13
|
Gavigan CS, Dalton JP, Bell A. The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 2001; 117:37-48. [PMID: 11551630 DOI: 10.1016/s0166-6851(01)00327-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intra-erythrocytic Plasmodium parasites digest host cell haemoglobin and use the liberated amino acids for protein synthesis. Although several endoproteases (aspartic, cysteine, and metallo-) have been shown to be involved in the initial stages of haemoglobin degradation, little is known about the steps immediately before amino acid release. In our studies, fluorometric enzyme assays indicated that the stage of the P. falciparum erythrocytic cycle with highest aminopeptidase activity was the stage at which most haemoglobin degradation occurs, i.e. the trophozoite. Consistent with these results, metabolic growth assays indicated that the late ring/trophozoite stage was most susceptible to aminopeptidase inhibitors. To reconstitute the terminal stages of haemoglobin breakdown in vitro, we synthesised three peptides with amino acid sequences corresponding to known products of the endoproteolytic digestion of haemoglobin and employed them as substrates for aminopeptidases. Both trophozoite cytosolic extract, and partially-purified aminopeptidase, hydrolysed these peptide fragments to amino acids. Hydrolysis appeared to occur sequentially from the amino-termini of the peptides, and was inhibited in a concentration-dependent manner by the aminopeptidase-specific inhibitor nitrobestatin. The results suggest that P. falciparum aminopeptidases could be the enzymes responsible for the hydrolysis of haemoglobin-derived peptides to free amino acids. Lack of ultrastructural change in parasites treated with relevant concentrations of aminopeptidase-specific inhibitors, however, indicated that little feedback exists whereby the inhibition of cytosolic aminopeptidases results in obvious inhibition of initial haemoglobin degradation in the digestive vacuole.
Collapse
Affiliation(s)
- C S Gavigan
- Department of Microbiology, Moyne Institute, Trinity College, 2, Dublin, Ireland
| | | | | |
Collapse
|
14
|
Francis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol 2001; 51:97-123. [PMID: 9343345 DOI: 10.1146/annurev.micro.51.1.97] [Citation(s) in RCA: 566] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemoglobin degradation in intraerythrocytic malaria parasites is a vast process that occurs in an acidic digestive vacuole. Proteases that participate in this catabolic pathway have been defined. Studies of protease biosynthesis have revealed unusual targeting and activation mechanisms. Oxygen radicals and heme are released during proteolysis and must be detoxified by dismutation and polymerization, respectively. The quinoline antimalarials appear to act by preventing sequestration of this toxic heme. Understanding the disposition of hemoglobin has allowed identification of essential processes and metabolic weakpoints that can be exploited to combat this scourge of mankind.
Collapse
Affiliation(s)
- S E Francis
- Howard Hughes Medical Institute, Department of Molecular Microbiology and Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
15
|
Okhuysen PC, DuPont HL, Sterling CR, Chappell CL. Arginine aminopeptidase, an integral membrane protein of the Cryptosporidium parvum sporozoite. Infect Immun 1994; 62:4667-70. [PMID: 7927738 PMCID: PMC303163 DOI: 10.1128/iai.62.10.4667-4670.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidium parvum oocysts were studied for the expression of aminopeptidase by using amino acids bound to the synthetic fluorescent substrate 7-amino-4-trifluoromethyl coumarin. After 1 h of incubation, intact oocysts showed no activity; however, homogenization and solubilization with Triton X-114 followed by phase separation yielded a 22-fold increase in aminopeptidase activity in the detergent fraction. With arginyl-6-amino-2-styrylquinoline as a substrate, aminopeptidase activity was observed in permeabilized oocysts and freshly excysted sporozoites but not on intact oocysts or empty oocyst membranes after excystation. These results suggest that C. parvum expresses an arginine aminopeptidase that is an integral protein of the sporozoite membrane.
Collapse
Affiliation(s)
- P C Okhuysen
- Center for Infectious Diseases, University of Texas Health Science Center-Houston Medical School 77030
| | | | | | | |
Collapse
|
16
|
Slomianny C, Prensier G. A cytochemical ultrastructural study of the lysosomal system of different species of malaria parasites. THE JOURNAL OF PROTOZOOLOGY 1990; 37:465-70. [PMID: 2086778 DOI: 10.1111/j.1550-7408.1990.tb01247.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have used ultrastructural techniques in different malarial species to demonstrate a lysosomal system. First, we have tried to localize acid phosphatase, a typical lysosomal label. Its activity was localized in the endoplasmic reticulum and in endocytic vesicles, and in dense-cored vesicles near the digestive vacuoles, especially in Plasmodium falciparum (FCR3 strain). Then, we have studied the different cellular compartments of the malarial parasite by the zinc iodide-osmium tetroxide technique that heavily contrasted the cellular compartments of the parasite. This experiment led to the observation of a profound rearrangement of the endoplasmic reticulum, especially in P. berghei. A very atypical but functional Golgi apparatus was demonstrated in all the growing stages of the parasite and lysosome-like vesicles were observed, showing a structure very similar to those of the coated vesicles of a true Golgi complex. The presence of these organelles are in favor of the existence of a lysosomal system and of the endogenicity of some enzymes involved hemoglobin degradation.
Collapse
Affiliation(s)
- C Slomianny
- INSERM U. 42, Domaine du Certia, Villeneuve d'Ascq, France
| | | |
Collapse
|
17
|
Mahmalgi J, Veignie E, Prensier G, Moreau S. Relations between resistance to chloroquine and acidification of endocytic vesicle of Plasmodium berghei. Parasitology 1989; 98 ( Pt 1):1-6. [PMID: 2654832 DOI: 10.1017/s003118200005962x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to visualize low-pH compartments of Plasmodium berghei strains we have used a basic congener of dinitrophenol, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP) which concentrates in acidic compartments, and can be detected by immunocytochemistry with anti-dinitrophenol antibodies. We have demonstrated that in a P. berghei chloroquine-sensitive strain (N strain), DAMP accumulates in the endocytic vacuoles where haemoglobin degradation is occurring. These compartments which have recently been shown to concentrate 4-aminoquinoline drugs (Moreau, Prensier, Maalla & Fortier, 1986) have an acidic pH. Conversely DAMP was found scattered all over the cytoplasm in a P. berghei chloroquine-resistant strain; the same phenomenon was previously observed (Moreau et al. 1986) in the localization of a 4-aminoquinoline on this same strain. Monensin-induced swelling of acidic compartments (Boss & Morre, 1984) was used as a complementary method for the determination of low-pH compartments on P. berghei strains. All the data reported here suggest that chloroquine resistance in P. berghei RC may be related to an impairment in the acidification of endocytic vesicles.
Collapse
Affiliation(s)
- J Mahmalgi
- INSERM U.42, Biologie et Biochimie Parasitaire et Fongique, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
18
|
Vander Jagt DL, Hunsaker LA, Campos NM. Comparison of proteases from chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Biochem Pharmacol 1987; 36:3285-91. [PMID: 3311049 DOI: 10.1016/0006-2952(87)90646-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An aminopeptidase and four hemoglobin-degrading acid proteases have been isolated from cloned strains of chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Amino-peptidases from both strains showed similar properties including molecular weights of 63,000 and non-competitive inhibition by chloroquine; Ki = 535 and 410 microM for enzymes from the sensitive and resistant strains respectively. The acid proteases from the chloroquine-sensitive strain included a low molecular weight enzyme in the soluble fraction (protease S), an enzyme weakly associated with membrane (protease M2), and two enzymes strongly associated with membrane (proteases M3 and M4). The acid proteases from the chloroquine-resistant strain included protease S, protease M2, a second enzyme weakly associated with membrane (protease M1), and protease M3. All of the acid proteases were inhibited by ferriprotoporphyrin IX and by the chloroquine-ferriprotoporphyrin IX complex, I50 = 5-25 microM. The data were consistent with a model for chloroquine action wherein chloroquine acts to divert ferriprotoporphyrin IX from sequestration into malarial pigment, leaving ferriprotoporphyrin IX (or its chloroquine complex) to interfere with digestion of host cytosol by inhibiting hemoglobin-degrading proteases. However, the similarities among the proteases from chloroquine-sensitive and chloroquine-resistant strains of parasites suggest that chloroquine resistance does not result from changes in parasite proteases.
Collapse
Affiliation(s)
- D L Vander Jagt
- Department of Biochemistry, University of New Mexico, School of Medicine, Albuquerque 87131
| | | | | |
Collapse
|
19
|
Abstract
Drug resistance is a serious problem in malaria, and prospects for new drugs are not optimistic. In 1963, the US Army began a huge programme to develop new antimalarials; they screened over 235 000 compounds, but very few were sufficiently active and safe for use in humans. Part of the problem is that not enough is known about the biochemical properties of malaria parasites, especially the metabolic differences between them and their host cells which could offer targets for specific chemotherapy. An important characteristic of malaria infection is the rapid growth of the parasite population, and changes in host metabolism that result from this. A similar effect occurs in many cancers. In this article, Ya Zhang argues that malaria parasites also have metabolic similarities with tumour cells, and suggests that careful comparison of these two could provide insight for new drug development.
Collapse
Affiliation(s)
- Y Zhang
- Institut für Biochemie II der Universität Heidelberg, Im Neuenheimer Feld 328, D6900-Heidelberg I, FR Germany
| |
Collapse
|
20
|
Zhang Y, Just WW. A comparative study on the effect of chloroquine and ammonium chloride on feeding process of Plasmodium falciparum in vitro. Parasitol Res 1987; 73:475-8. [PMID: 3309944 DOI: 10.1007/bf00538208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Y Zhang
- Institut für Biochemie II, Universität Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
21
|
Hempelmann E, Putfarken B, Rangachari K, Wilson RJ. Immunoprecipitation of malarial acid endopeptidase. Parasitology 1986; 92 ( Pt 2):305-12. [PMID: 3520446 DOI: 10.1017/s0031182000064076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrophoresis of extracts of schizonts of Plasmodium knowlesi in non-dissociating polyacrylamide gels, separates several bands of acid endopeptidase activity. A polyclonal antiserum, produced by immunization with purified merozoites, failed to distinguish between different bands of the parasite enzyme, indicating that they are serologically related. Apart from the loss of one minor peak, extraction in Triton X-100 did not reduce the enzyme's electrophoretic heterogeneity. The antiserum did not react with red cell acid proteases.
Collapse
|
22
|
Wiser MF, Schweiger HG. Cytosolic protein kinase activity associated with the maturation of the malaria parasite Plasmodium berghei. Mol Biochem Parasitol 1985; 17:179-89. [PMID: 3906392 DOI: 10.1016/0166-6851(85)90017-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Seven cytosolic phosphoproteins with relative molecular masses of 110, 58, 52, 46, 38, 36 and 34kDa and isoelectric points between 4.2 and 5.0 are identified from the rodent malaria parasite Plasmodium berghei. Similar patterns of phosphorylated proteins are obtained from parasite cytosol after incubation of intact infected erythrocytes with [32P]orthophosphate, or from parasite cytosol incubated with [gamma-32P]ATP. The characteristics of the phosphorylation reaction are similar to the previously described Plasmodium protein kinase [Wiser, M.F., Eaton, J.W. and Sheppard, J.R. (1983) J. Cell. Biochem. 21, 305-314], suggesting that the same protein kinase is involved. More protein phosphorylation activity is associated with the mature parasites than the immature forms, suggesting that these phosphoproteins may play some role in the parasite's erythrocytic stage cycle.
Collapse
|
23
|
Billingsley P, Downe A. Cellular localisation of aminopeptidase in the midgut of Rhodnius prolixus St�l (Hemiptera:Reduviidae) during blood digestion. Cell Tissue Res 1985. [DOI: 10.1007/bf00217189] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Slomianny C, Prensier G, Charet P. Ingestion of erythrocytic stroma by Plasmodium chabaudi trophozoites: ultrastructural study by serial sectioning and 3-dimensional reconstruction. Parasitology 1985; 90 ( Pt 3):579-88. [PMID: 4011321 DOI: 10.1017/s0031182000055578] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An ultrastructural study of numerous serial sections of Plasmodium chabaudi trophozoites at various growth stages, followed by 3-dimensional reconstruction, allowed us to describe more precisely the internalization process of the erythrocytic stroma, both in space and in time. Two endocytotic processes are apparent. (1) Pinocytosis--as soon as the merozoite has become a young trophozoite (ring stage), small double membrane-bound vesicles can be seen budding off around the whole periphery of the parasite. After the inner membrane of the vesicle has disappeared, the contents alter and a pigment crystal appears. (2) Cytostomal system--this phenomenon coexists with, and eventually replaces, pinocytosis. It consists of invagination of the membrane of the parasitophorous vacuole and of the plasmalemma, through a typical cytostome, in order to form a cytostomal vacuole. This extends into a long tube, the cytostomal tube, which eventually digitates. When the tube reaches its maximal size, the cytostome disappears and the tube remains open to the erythrocytic stroma by a simple aperture. A new cytostome can form elsewhere on the parasite surface and another tube can extend. Two or three such tubes can coexist in a trophozoite although only one cytostome is functional at one time. At the end of the tubes vesicles bud off, the contents of which become modified as described previously. The residual product of haemoglobin degradation is the malarial pigment.
Collapse
|
25
|
Slomianny C, Prensier G, Charet P. [Comparative ultrastructural study of the process of hemoglobin degradation by P. berghei (Vincke and Lips, 1948) as a function of the state of maturity of the host cell]. THE JOURNAL OF PROTOZOOLOGY 1985; 32:1-5. [PMID: 3886896 DOI: 10.1111/j.1550-7408.1985.tb03003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By serial sectioning and 3D reconstruction we have been able to demonstrate that the type of system for hemoglobin digestion in two strains of Plasmodium berghei, N and RC, is dependent on the maturity of the host cell. In parasites growing in erythrocytes, both systems for the endocytosis of hemoglobin-micropinocytosis and the cytostomal system (i.e. a cytostome budding a cytostomal tube that releases food vacuoles)-are fully functional and produce a great quantity of residual pigment. Parasites growing in reticulocytes have a disrupted cytostomal system; no tube is formed and only food vacuoles are visible in their cytoplasm. Residual pigment is smaller in size and in quantity. The reduced quantity of pigment in reticulocytes is explained by our observation of the exocytosis of pigment. We propose a hypothesis that relates the process of degradation of hemoglobin to the maturity of the host cell and a possible mechanism of protection against chloroquine, a drug known for its affinity for malarial pigment.
Collapse
|
26
|
Slomianny C, Prensier G, Charet P. Relation between haemoglobin degradation and maturity of the red blood cell infected by P. berghei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1984; 78:891-6. [PMID: 6380913 DOI: 10.1016/0305-0491(84)90205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The action on haemoglobin of P. berghei growing in mature red cells, P. berghei growing in reticulocytes and P. berghei R.C. (which grows almost exclusively in reticulocytes) was compared. P. berghei growing in reticulocytes had a much higher level of proteolytic activity on haemoglobin than that of P. berghei growing in mature red cells. The amount of residual hematin was considerably reduced. In P. berghei R.C. and P. berghei growing in reticulocytes, the pigment seems to be exocyted as it is forming. The mechanism of haemoglobin degradation seemed therefore to be linked to the nature of the host red cell.
Collapse
|
27
|
Aissi E, Charet P, Bouquelet S, Biguet J. Endoprotease in Plasmodium yoelii nigeriensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1983; 74:559-66. [PMID: 6340950 DOI: 10.1016/0305-0491(83)90229-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. P. yoelli nigeriensis has an acid endoprotease (cathepsin D) and an endoarylamidase. 2. The acid endoprotease is specific towards haemogloblin. It is found in 2 molecular forms, of molecular weight 100,000 and 50,000. It is inhibited by hematin and pepsatin. 3. In mouse normal red blood cells we find an acid protease having physico-chemical properties similar to those of the enzyme present in P. yoelii nigeriensis extracts, except as regards the pHi. 4. In parasite extracts there exists an enzyme active on the synthesis substrate N-acetyl alanine 4 nitro anilide. The main properties of this enzyme have been determined. 5. This enzyme must be also involved in the mechanism of haemoglobin degradation.
Collapse
|